1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 388 do { \ 389 if ((remp) != NULL) { \ 390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 391 } \ 392 _NOTE(CONSTCOND) } while (0) 393 394 395 /* 396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 397 * alloc_sz on the righthand side of the comparison in order to avoid overflow 398 * or underflow in the comparison with it. This is simpler than the INRANGE 399 * check above, because we know that the dtms_scratch_ptr is valid in the 400 * range. Allocations of size zero are allowed. 401 */ 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 404 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 405 406 #define DTRACE_LOADFUNC(bits) \ 407 /*CSTYLED*/ \ 408 uint##bits##_t \ 409 dtrace_load##bits(uintptr_t addr) \ 410 { \ 411 size_t size = bits / NBBY; \ 412 /*CSTYLED*/ \ 413 uint##bits##_t rval; \ 414 int i; \ 415 volatile uint16_t *flags = (volatile uint16_t *) \ 416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 417 \ 418 DTRACE_ALIGNCHECK(addr, size, flags); \ 419 \ 420 for (i = 0; i < dtrace_toxranges; i++) { \ 421 if (addr >= dtrace_toxrange[i].dtt_limit) \ 422 continue; \ 423 \ 424 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 425 continue; \ 426 \ 427 /* \ 428 * This address falls within a toxic region; return 0. \ 429 */ \ 430 *flags |= CPU_DTRACE_BADADDR; \ 431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 432 return (0); \ 433 } \ 434 \ 435 *flags |= CPU_DTRACE_NOFAULT; \ 436 /*CSTYLED*/ \ 437 rval = *((volatile uint##bits##_t *)addr); \ 438 *flags &= ~CPU_DTRACE_NOFAULT; \ 439 \ 440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 441 } 442 443 #ifdef _LP64 444 #define dtrace_loadptr dtrace_load64 445 #else 446 #define dtrace_loadptr dtrace_load32 447 #endif 448 449 #define DTRACE_DYNHASH_FREE 0 450 #define DTRACE_DYNHASH_SINK 1 451 #define DTRACE_DYNHASH_VALID 2 452 453 #define DTRACE_MATCH_FAIL -1 454 #define DTRACE_MATCH_NEXT 0 455 #define DTRACE_MATCH_DONE 1 456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 457 #define DTRACE_STATE_ALIGN 64 458 459 #define DTRACE_FLAGS2FLT(flags) \ 460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 469 DTRACEFLT_UNKNOWN) 470 471 #define DTRACEACT_ISSTRING(act) \ 472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 474 475 static size_t dtrace_strlen(const char *, size_t); 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 477 static void dtrace_enabling_provide(dtrace_provider_t *); 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 479 static void dtrace_enabling_matchall(void); 480 static void dtrace_enabling_reap(void); 481 static dtrace_state_t *dtrace_anon_grab(void); 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 483 dtrace_state_t *, uint64_t, uint64_t); 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 485 static void dtrace_buffer_drop(dtrace_buffer_t *); 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 488 dtrace_state_t *, dtrace_mstate_t *); 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 490 dtrace_optval_t); 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 494 static void dtrace_getf_barrier(void); 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 496 dtrace_mstate_t *, dtrace_vstate_t *); 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 498 dtrace_mstate_t *, dtrace_vstate_t *); 499 500 /* 501 * DTrace Probe Context Functions 502 * 503 * These functions are called from probe context. Because probe context is 504 * any context in which C may be called, arbitrarily locks may be held, 505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 506 * As a result, functions called from probe context may only call other DTrace 507 * support functions -- they may not interact at all with the system at large. 508 * (Note that the ASSERT macro is made probe-context safe by redefining it in 509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 510 * loads are to be performed from probe context, they _must_ be in terms of 511 * the safe dtrace_load*() variants. 512 * 513 * Some functions in this block are not actually called from probe context; 514 * for these functions, there will be a comment above the function reading 515 * "Note: not called from probe context." 516 */ 517 void 518 dtrace_panic(const char *format, ...) 519 { 520 va_list alist; 521 522 va_start(alist, format); 523 dtrace_vpanic(format, alist); 524 va_end(alist); 525 } 526 527 int 528 dtrace_assfail(const char *a, const char *f, int l) 529 { 530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 531 532 /* 533 * We just need something here that even the most clever compiler 534 * cannot optimize away. 535 */ 536 return (a[(uintptr_t)f]); 537 } 538 539 /* 540 * Atomically increment a specified error counter from probe context. 541 */ 542 static void 543 dtrace_error(uint32_t *counter) 544 { 545 /* 546 * Most counters stored to in probe context are per-CPU counters. 547 * However, there are some error conditions that are sufficiently 548 * arcane that they don't merit per-CPU storage. If these counters 549 * are incremented concurrently on different CPUs, scalability will be 550 * adversely affected -- but we don't expect them to be white-hot in a 551 * correctly constructed enabling... 552 */ 553 uint32_t oval, nval; 554 555 do { 556 oval = *counter; 557 558 if ((nval = oval + 1) == 0) { 559 /* 560 * If the counter would wrap, set it to 1 -- assuring 561 * that the counter is never zero when we have seen 562 * errors. (The counter must be 32-bits because we 563 * aren't guaranteed a 64-bit compare&swap operation.) 564 * To save this code both the infamy of being fingered 565 * by a priggish news story and the indignity of being 566 * the target of a neo-puritan witch trial, we're 567 * carefully avoiding any colorful description of the 568 * likelihood of this condition -- but suffice it to 569 * say that it is only slightly more likely than the 570 * overflow of predicate cache IDs, as discussed in 571 * dtrace_predicate_create(). 572 */ 573 nval = 1; 574 } 575 } while (dtrace_cas32(counter, oval, nval) != oval); 576 } 577 578 /* 579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 580 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 581 */ 582 /* BEGIN CSTYLED */ 583 DTRACE_LOADFUNC(8) 584 DTRACE_LOADFUNC(16) 585 DTRACE_LOADFUNC(32) 586 DTRACE_LOADFUNC(64) 587 /* END CSTYLED */ 588 589 static int 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 591 { 592 if (dest < mstate->dtms_scratch_base) 593 return (0); 594 595 if (dest + size < dest) 596 return (0); 597 598 if (dest + size > mstate->dtms_scratch_ptr) 599 return (0); 600 601 return (1); 602 } 603 604 static int 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 606 dtrace_statvar_t **svars, int nsvars) 607 { 608 int i; 609 size_t maxglobalsize, maxlocalsize; 610 611 if (nsvars == 0) 612 return (0); 613 614 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 615 maxlocalsize = maxglobalsize * NCPU; 616 617 for (i = 0; i < nsvars; i++) { 618 dtrace_statvar_t *svar = svars[i]; 619 uint8_t scope; 620 size_t size; 621 622 if (svar == NULL || (size = svar->dtsv_size) == 0) 623 continue; 624 625 scope = svar->dtsv_var.dtdv_scope; 626 627 /* 628 * We verify that our size is valid in the spirit of providing 629 * defense in depth: we want to prevent attackers from using 630 * DTrace to escalate an orthogonal kernel heap corruption bug 631 * into the ability to store to arbitrary locations in memory. 632 */ 633 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 634 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 635 636 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 637 svar->dtsv_size)) { 638 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 639 svar->dtsv_size); 640 return (1); 641 } 642 } 643 644 return (0); 645 } 646 647 /* 648 * Check to see if the address is within a memory region to which a store may 649 * be issued. This includes the DTrace scratch areas, and any DTrace variable 650 * region. The caller of dtrace_canstore() is responsible for performing any 651 * alignment checks that are needed before stores are actually executed. 652 */ 653 static int 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 655 dtrace_vstate_t *vstate) 656 { 657 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 658 } 659 660 /* 661 * Implementation of dtrace_canstore which communicates the upper bound of the 662 * allowed memory region. 663 */ 664 static int 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 667 { 668 /* 669 * First, check to see if the address is in scratch space... 670 */ 671 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 672 mstate->dtms_scratch_size)) { 673 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 674 mstate->dtms_scratch_size); 675 return (1); 676 } 677 678 /* 679 * Now check to see if it's a dynamic variable. This check will pick 680 * up both thread-local variables and any global dynamically-allocated 681 * variables. 682 */ 683 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 684 vstate->dtvs_dynvars.dtds_size)) { 685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 686 uintptr_t base = (uintptr_t)dstate->dtds_base + 687 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 688 uintptr_t chunkoffs; 689 dtrace_dynvar_t *dvar; 690 691 /* 692 * Before we assume that we can store here, we need to make 693 * sure that it isn't in our metadata -- storing to our 694 * dynamic variable metadata would corrupt our state. For 695 * the range to not include any dynamic variable metadata, 696 * it must: 697 * 698 * (1) Start above the hash table that is at the base of 699 * the dynamic variable space 700 * 701 * (2) Have a starting chunk offset that is beyond the 702 * dtrace_dynvar_t that is at the base of every chunk 703 * 704 * (3) Not span a chunk boundary 705 * 706 * (4) Not be in the tuple space of a dynamic variable 707 * 708 */ 709 if (addr < base) 710 return (0); 711 712 chunkoffs = (addr - base) % dstate->dtds_chunksize; 713 714 if (chunkoffs < sizeof (dtrace_dynvar_t)) 715 return (0); 716 717 if (chunkoffs + sz > dstate->dtds_chunksize) 718 return (0); 719 720 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 721 722 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 723 return (0); 724 725 if (chunkoffs < sizeof (dtrace_dynvar_t) + 726 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 727 return (0); 728 729 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 730 return (1); 731 } 732 733 /* 734 * Finally, check the static local and global variables. These checks 735 * take the longest, so we perform them last. 736 */ 737 if (dtrace_canstore_statvar(addr, sz, remain, 738 vstate->dtvs_locals, vstate->dtvs_nlocals)) 739 return (1); 740 741 if (dtrace_canstore_statvar(addr, sz, remain, 742 vstate->dtvs_globals, vstate->dtvs_nglobals)) 743 return (1); 744 745 return (0); 746 } 747 748 749 /* 750 * Convenience routine to check to see if the address is within a memory 751 * region in which a load may be issued given the user's privilege level; 752 * if not, it sets the appropriate error flags and loads 'addr' into the 753 * illegal value slot. 754 * 755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 756 * appropriate memory access protection. 757 */ 758 static int 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 760 dtrace_vstate_t *vstate) 761 { 762 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 763 } 764 765 /* 766 * Implementation of dtrace_canload which communicates the upper bound of the 767 * allowed memory region. 768 */ 769 static int 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 771 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 772 { 773 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 774 file_t *fp; 775 776 /* 777 * If we hold the privilege to read from kernel memory, then 778 * everything is readable. 779 */ 780 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 781 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 782 return (1); 783 } 784 785 /* 786 * You can obviously read that which you can store. 787 */ 788 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 789 return (1); 790 791 /* 792 * We're allowed to read from our own string table. 793 */ 794 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 795 mstate->dtms_difo->dtdo_strlen)) { 796 DTRACE_RANGE_REMAIN(remain, addr, 797 mstate->dtms_difo->dtdo_strtab, 798 mstate->dtms_difo->dtdo_strlen); 799 return (1); 800 } 801 802 if (vstate->dtvs_state != NULL && 803 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 804 proc_t *p; 805 806 /* 807 * When we have privileges to the current process, there are 808 * several context-related kernel structures that are safe to 809 * read, even absent the privilege to read from kernel memory. 810 * These reads are safe because these structures contain only 811 * state that (1) we're permitted to read, (2) is harmless or 812 * (3) contains pointers to additional kernel state that we're 813 * not permitted to read (and as such, do not present an 814 * opportunity for privilege escalation). Finally (and 815 * critically), because of the nature of their relation with 816 * the current thread context, the memory associated with these 817 * structures cannot change over the duration of probe context, 818 * and it is therefore impossible for this memory to be 819 * deallocated and reallocated as something else while it's 820 * being operated upon. 821 */ 822 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 823 DTRACE_RANGE_REMAIN(remain, addr, curthread, 824 sizeof (kthread_t)); 825 return (1); 826 } 827 828 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 829 sz, curthread->t_procp, sizeof (proc_t))) { 830 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 831 sizeof (proc_t)); 832 return (1); 833 } 834 835 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 836 curthread->t_cred, sizeof (cred_t))) { 837 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 838 sizeof (cred_t)); 839 return (1); 840 } 841 842 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 843 &(p->p_pidp->pid_id), sizeof (pid_t))) { 844 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 845 sizeof (pid_t)); 846 return (1); 847 } 848 849 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 850 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 852 offsetof(cpu_t, cpu_pause_thread)); 853 return (1); 854 } 855 } 856 857 if ((fp = mstate->dtms_getf) != NULL) { 858 uintptr_t psz = sizeof (void *); 859 vnode_t *vp; 860 vnodeops_t *op; 861 862 /* 863 * When getf() returns a file_t, the enabling is implicitly 864 * granted the (transient) right to read the returned file_t 865 * as well as the v_path and v_op->vnop_name of the underlying 866 * vnode. These accesses are allowed after a successful 867 * getf() because the members that they refer to cannot change 868 * once set -- and the barrier logic in the kernel's closef() 869 * path assures that the file_t and its referenced vode_t 870 * cannot themselves be stale (that is, it impossible for 871 * either dtms_getf itself or its f_vnode member to reference 872 * freed memory). 873 */ 874 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 875 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 876 return (1); 877 } 878 879 if ((vp = fp->f_vnode) != NULL) { 880 size_t slen; 881 882 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 883 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 884 psz); 885 return (1); 886 } 887 888 slen = strlen(vp->v_path) + 1; 889 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 890 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 891 slen); 892 return (1); 893 } 894 895 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 897 psz); 898 return (1); 899 } 900 901 if ((op = vp->v_op) != NULL && 902 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 903 DTRACE_RANGE_REMAIN(remain, addr, 904 &op->vnop_name, psz); 905 return (1); 906 } 907 908 if (op != NULL && op->vnop_name != NULL && 909 DTRACE_INRANGE(addr, sz, op->vnop_name, 910 (slen = strlen(op->vnop_name) + 1))) { 911 DTRACE_RANGE_REMAIN(remain, addr, 912 op->vnop_name, slen); 913 return (1); 914 } 915 } 916 } 917 918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 919 *illval = addr; 920 return (0); 921 } 922 923 /* 924 * Convenience routine to check to see if a given string is within a memory 925 * region in which a load may be issued given the user's privilege level; 926 * this exists so that we don't need to issue unnecessary dtrace_strlen() 927 * calls in the event that the user has all privileges. 928 */ 929 static int 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 931 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 932 { 933 size_t rsize; 934 935 /* 936 * If we hold the privilege to read from kernel memory, then 937 * everything is readable. 938 */ 939 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 940 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 941 return (1); 942 } 943 944 /* 945 * Even if the caller is uninterested in querying the remaining valid 946 * range, it is required to ensure that the access is allowed. 947 */ 948 if (remain == NULL) { 949 remain = &rsize; 950 } 951 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 952 size_t strsz; 953 /* 954 * Perform the strlen after determining the length of the 955 * memory region which is accessible. This prevents timing 956 * information from being used to find NULs in memory which is 957 * not accessible to the caller. 958 */ 959 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 960 MIN(sz, *remain)); 961 if (strsz <= *remain) { 962 return (1); 963 } 964 } 965 966 return (0); 967 } 968 969 /* 970 * Convenience routine to check to see if a given variable is within a memory 971 * region in which a load may be issued given the user's privilege level. 972 */ 973 static int 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 975 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 976 { 977 size_t sz; 978 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 979 980 /* 981 * Calculate the max size before performing any checks since even 982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 983 * return the max length via 'remain'. 984 */ 985 if (type->dtdt_kind == DIF_TYPE_STRING) { 986 dtrace_state_t *state = vstate->dtvs_state; 987 988 if (state != NULL) { 989 sz = state->dts_options[DTRACEOPT_STRSIZE]; 990 } else { 991 /* 992 * In helper context, we have a NULL state; fall back 993 * to using the system-wide default for the string size 994 * in this case. 995 */ 996 sz = dtrace_strsize_default; 997 } 998 } else { 999 sz = type->dtdt_size; 1000 } 1001 1002 /* 1003 * If we hold the privilege to read from kernel memory, then 1004 * everything is readable. 1005 */ 1006 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1007 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1008 return (1); 1009 } 1010 1011 if (type->dtdt_kind == DIF_TYPE_STRING) { 1012 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1013 vstate)); 1014 } 1015 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1016 vstate)); 1017 } 1018 1019 /* 1020 * Convert a string to a signed integer using safe loads. 1021 * 1022 * NOTE: This function uses various macros from strtolctype.h to manipulate 1023 * digit values, etc -- these have all been checked to ensure they make 1024 * no additional function calls. 1025 */ 1026 static int64_t 1027 dtrace_strtoll(char *input, int base, size_t limit) 1028 { 1029 uintptr_t pos = (uintptr_t)input; 1030 int64_t val = 0; 1031 int x; 1032 boolean_t neg = B_FALSE; 1033 char c, cc, ccc; 1034 uintptr_t end = pos + limit; 1035 1036 /* 1037 * Consume any whitespace preceding digits. 1038 */ 1039 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1040 pos++; 1041 1042 /* 1043 * Handle an explicit sign if one is present. 1044 */ 1045 if (c == '-' || c == '+') { 1046 if (c == '-') 1047 neg = B_TRUE; 1048 c = dtrace_load8(++pos); 1049 } 1050 1051 /* 1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1053 * if present. 1054 */ 1055 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1056 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1057 pos += 2; 1058 c = ccc; 1059 } 1060 1061 /* 1062 * Read in contiguous digits until the first non-digit character. 1063 */ 1064 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1065 c = dtrace_load8(++pos)) 1066 val = val * base + x; 1067 1068 return (neg ? -val : val); 1069 } 1070 1071 /* 1072 * Compare two strings using safe loads. 1073 */ 1074 static int 1075 dtrace_strncmp(char *s1, char *s2, size_t limit) 1076 { 1077 uint8_t c1, c2; 1078 volatile uint16_t *flags; 1079 1080 if (s1 == s2 || limit == 0) 1081 return (0); 1082 1083 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1084 1085 do { 1086 if (s1 == NULL) { 1087 c1 = '\0'; 1088 } else { 1089 c1 = dtrace_load8((uintptr_t)s1++); 1090 } 1091 1092 if (s2 == NULL) { 1093 c2 = '\0'; 1094 } else { 1095 c2 = dtrace_load8((uintptr_t)s2++); 1096 } 1097 1098 if (c1 != c2) 1099 return (c1 - c2); 1100 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Compute strlen(s) for a string using safe memory accesses. The additional 1107 * len parameter is used to specify a maximum length to ensure completion. 1108 */ 1109 static size_t 1110 dtrace_strlen(const char *s, size_t lim) 1111 { 1112 uint_t len; 1113 1114 for (len = 0; len != lim; len++) { 1115 if (dtrace_load8((uintptr_t)s++) == '\0') 1116 break; 1117 } 1118 1119 return (len); 1120 } 1121 1122 /* 1123 * Check if an address falls within a toxic region. 1124 */ 1125 static int 1126 dtrace_istoxic(uintptr_t kaddr, size_t size) 1127 { 1128 uintptr_t taddr, tsize; 1129 int i; 1130 1131 for (i = 0; i < dtrace_toxranges; i++) { 1132 taddr = dtrace_toxrange[i].dtt_base; 1133 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1134 1135 if (kaddr - taddr < tsize) { 1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1137 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1138 return (1); 1139 } 1140 1141 if (taddr - kaddr < size) { 1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1143 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1144 return (1); 1145 } 1146 } 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1153 * memory specified by the DIF program. The dst is assumed to be safe memory 1154 * that we can store to directly because it is managed by DTrace. As with 1155 * standard bcopy, overlapping copies are handled properly. 1156 */ 1157 static void 1158 dtrace_bcopy(const void *src, void *dst, size_t len) 1159 { 1160 if (len != 0) { 1161 uint8_t *s1 = dst; 1162 const uint8_t *s2 = src; 1163 1164 if (s1 <= s2) { 1165 do { 1166 *s1++ = dtrace_load8((uintptr_t)s2++); 1167 } while (--len != 0); 1168 } else { 1169 s2 += len; 1170 s1 += len; 1171 1172 do { 1173 *--s1 = dtrace_load8((uintptr_t)--s2); 1174 } while (--len != 0); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * Copy src to dst using safe memory accesses, up to either the specified 1181 * length, or the point that a nul byte is encountered. The src is assumed to 1182 * be unsafe memory specified by the DIF program. The dst is assumed to be 1183 * safe memory that we can store to directly because it is managed by DTrace. 1184 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1185 */ 1186 static void 1187 dtrace_strcpy(const void *src, void *dst, size_t len) 1188 { 1189 if (len != 0) { 1190 uint8_t *s1 = dst, c; 1191 const uint8_t *s2 = src; 1192 1193 do { 1194 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1195 } while (--len != 0 && c != '\0'); 1196 } 1197 } 1198 1199 /* 1200 * Copy src to dst, deriving the size and type from the specified (BYREF) 1201 * variable type. The src is assumed to be unsafe memory specified by the DIF 1202 * program. The dst is assumed to be DTrace variable memory that is of the 1203 * specified type; we assume that we can store to directly. 1204 */ 1205 static void 1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1207 { 1208 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1209 1210 if (type->dtdt_kind == DIF_TYPE_STRING) { 1211 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1212 } else { 1213 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1214 } 1215 } 1216 1217 /* 1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1220 * safe memory that we can access directly because it is managed by DTrace. 1221 */ 1222 static int 1223 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1224 { 1225 volatile uint16_t *flags; 1226 1227 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1228 1229 if (s1 == s2) 1230 return (0); 1231 1232 if (s1 == NULL || s2 == NULL) 1233 return (1); 1234 1235 if (s1 != s2 && len != 0) { 1236 const uint8_t *ps1 = s1; 1237 const uint8_t *ps2 = s2; 1238 1239 do { 1240 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1241 return (1); 1242 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1243 } 1244 return (0); 1245 } 1246 1247 /* 1248 * Zero the specified region using a simple byte-by-byte loop. Note that this 1249 * is for safe DTrace-managed memory only. 1250 */ 1251 static void 1252 dtrace_bzero(void *dst, size_t len) 1253 { 1254 uchar_t *cp; 1255 1256 for (cp = dst; len != 0; len--) 1257 *cp++ = 0; 1258 } 1259 1260 static void 1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1262 { 1263 uint64_t result[2]; 1264 1265 result[0] = addend1[0] + addend2[0]; 1266 result[1] = addend1[1] + addend2[1] + 1267 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1268 1269 sum[0] = result[0]; 1270 sum[1] = result[1]; 1271 } 1272 1273 /* 1274 * Shift the 128-bit value in a by b. If b is positive, shift left. 1275 * If b is negative, shift right. 1276 */ 1277 static void 1278 dtrace_shift_128(uint64_t *a, int b) 1279 { 1280 uint64_t mask; 1281 1282 if (b == 0) 1283 return; 1284 1285 if (b < 0) { 1286 b = -b; 1287 if (b >= 64) { 1288 a[0] = a[1] >> (b - 64); 1289 a[1] = 0; 1290 } else { 1291 a[0] >>= b; 1292 mask = 1LL << (64 - b); 1293 mask -= 1; 1294 a[0] |= ((a[1] & mask) << (64 - b)); 1295 a[1] >>= b; 1296 } 1297 } else { 1298 if (b >= 64) { 1299 a[1] = a[0] << (b - 64); 1300 a[0] = 0; 1301 } else { 1302 a[1] <<= b; 1303 mask = a[0] >> (64 - b); 1304 a[1] |= mask; 1305 a[0] <<= b; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1312 * use native multiplication on those, and then re-combine into the 1313 * resulting 128-bit value. 1314 * 1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1316 * hi1 * hi2 << 64 + 1317 * hi1 * lo2 << 32 + 1318 * hi2 * lo1 << 32 + 1319 * lo1 * lo2 1320 */ 1321 static void 1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1323 { 1324 uint64_t hi1, hi2, lo1, lo2; 1325 uint64_t tmp[2]; 1326 1327 hi1 = factor1 >> 32; 1328 hi2 = factor2 >> 32; 1329 1330 lo1 = factor1 & DT_MASK_LO; 1331 lo2 = factor2 & DT_MASK_LO; 1332 1333 product[0] = lo1 * lo2; 1334 product[1] = hi1 * hi2; 1335 1336 tmp[0] = hi1 * lo2; 1337 tmp[1] = 0; 1338 dtrace_shift_128(tmp, 32); 1339 dtrace_add_128(product, tmp, product); 1340 1341 tmp[0] = hi2 * lo1; 1342 tmp[1] = 0; 1343 dtrace_shift_128(tmp, 32); 1344 dtrace_add_128(product, tmp, product); 1345 } 1346 1347 /* 1348 * This privilege check should be used by actions and subroutines to 1349 * verify that the user credentials of the process that enabled the 1350 * invoking ECB match the target credentials 1351 */ 1352 static int 1353 dtrace_priv_proc_common_user(dtrace_state_t *state) 1354 { 1355 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1356 1357 /* 1358 * We should always have a non-NULL state cred here, since if cred 1359 * is null (anonymous tracing), we fast-path bypass this routine. 1360 */ 1361 ASSERT(s_cr != NULL); 1362 1363 if ((cr = CRED()) != NULL && 1364 s_cr->cr_uid == cr->cr_uid && 1365 s_cr->cr_uid == cr->cr_ruid && 1366 s_cr->cr_uid == cr->cr_suid && 1367 s_cr->cr_gid == cr->cr_gid && 1368 s_cr->cr_gid == cr->cr_rgid && 1369 s_cr->cr_gid == cr->cr_sgid) 1370 return (1); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * This privilege check should be used by actions and subroutines to 1377 * verify that the zone of the process that enabled the invoking ECB 1378 * matches the target credentials 1379 */ 1380 static int 1381 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1382 { 1383 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1384 1385 /* 1386 * We should always have a non-NULL state cred here, since if cred 1387 * is null (anonymous tracing), we fast-path bypass this routine. 1388 */ 1389 ASSERT(s_cr != NULL); 1390 1391 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1392 return (1); 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * This privilege check should be used by actions and subroutines to 1399 * verify that the process has not setuid or changed credentials. 1400 */ 1401 static int 1402 dtrace_priv_proc_common_nocd() 1403 { 1404 proc_t *proc; 1405 1406 if ((proc = ttoproc(curthread)) != NULL && 1407 !(proc->p_flag & SNOCD)) 1408 return (1); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1415 { 1416 int action = state->dts_cred.dcr_action; 1417 1418 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1419 goto bad; 1420 1421 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1422 dtrace_priv_proc_common_zone(state) == 0) 1423 goto bad; 1424 1425 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1426 dtrace_priv_proc_common_user(state) == 0) 1427 goto bad; 1428 1429 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1430 dtrace_priv_proc_common_nocd() == 0) 1431 goto bad; 1432 1433 return (1); 1434 1435 bad: 1436 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1437 1438 return (0); 1439 } 1440 1441 static int 1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1443 { 1444 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1445 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1446 return (1); 1447 1448 if (dtrace_priv_proc_common_zone(state) && 1449 dtrace_priv_proc_common_user(state) && 1450 dtrace_priv_proc_common_nocd()) 1451 return (1); 1452 } 1453 1454 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1455 1456 return (0); 1457 } 1458 1459 static int 1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1461 { 1462 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1463 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1464 return (1); 1465 1466 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1467 1468 return (0); 1469 } 1470 1471 static int 1472 dtrace_priv_kernel(dtrace_state_t *state) 1473 { 1474 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1475 return (1); 1476 1477 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1478 1479 return (0); 1480 } 1481 1482 static int 1483 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1484 { 1485 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1486 return (1); 1487 1488 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1489 1490 return (0); 1491 } 1492 1493 /* 1494 * Determine if the dte_cond of the specified ECB allows for processing of 1495 * the current probe to continue. Note that this routine may allow continued 1496 * processing, but with access(es) stripped from the mstate's dtms_access 1497 * field. 1498 */ 1499 static int 1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1501 dtrace_ecb_t *ecb) 1502 { 1503 dtrace_probe_t *probe = ecb->dte_probe; 1504 dtrace_provider_t *prov = probe->dtpr_provider; 1505 dtrace_pops_t *pops = &prov->dtpv_pops; 1506 int mode = DTRACE_MODE_NOPRIV_DROP; 1507 1508 ASSERT(ecb->dte_cond); 1509 1510 if (pops->dtps_mode != NULL) { 1511 mode = pops->dtps_mode(prov->dtpv_arg, 1512 probe->dtpr_id, probe->dtpr_arg); 1513 1514 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1515 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1516 DTRACE_MODE_NOPRIV_DROP)); 1517 } 1518 1519 /* 1520 * If the dte_cond bits indicate that this consumer is only allowed to 1521 * see user-mode firings of this probe, check that the probe was fired 1522 * while in a user context. If that's not the case, use the policy 1523 * specified by the provider to determine if we drop the probe or 1524 * merely restrict operation. 1525 */ 1526 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1527 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1528 1529 if (!(mode & DTRACE_MODE_USER)) { 1530 if (mode & DTRACE_MODE_NOPRIV_DROP) 1531 return (0); 1532 1533 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1534 } 1535 } 1536 1537 /* 1538 * This is more subtle than it looks. We have to be absolutely certain 1539 * that CRED() isn't going to change out from under us so it's only 1540 * legit to examine that structure if we're in constrained situations. 1541 * Currently, the only times we'll this check is if a non-super-user 1542 * has enabled the profile or syscall providers -- providers that 1543 * allow visibility of all processes. For the profile case, the check 1544 * above will ensure that we're examining a user context. 1545 */ 1546 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1547 cred_t *cr; 1548 cred_t *s_cr = state->dts_cred.dcr_cred; 1549 proc_t *proc; 1550 1551 ASSERT(s_cr != NULL); 1552 1553 if ((cr = CRED()) == NULL || 1554 s_cr->cr_uid != cr->cr_uid || 1555 s_cr->cr_uid != cr->cr_ruid || 1556 s_cr->cr_uid != cr->cr_suid || 1557 s_cr->cr_gid != cr->cr_gid || 1558 s_cr->cr_gid != cr->cr_rgid || 1559 s_cr->cr_gid != cr->cr_sgid || 1560 (proc = ttoproc(curthread)) == NULL || 1561 (proc->p_flag & SNOCD)) { 1562 if (mode & DTRACE_MODE_NOPRIV_DROP) 1563 return (0); 1564 1565 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1566 } 1567 } 1568 1569 /* 1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1571 * in our zone, check to see if our mode policy is to restrict rather 1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1573 * and DTRACE_ACCESS_ARGS 1574 */ 1575 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1576 cred_t *cr; 1577 cred_t *s_cr = state->dts_cred.dcr_cred; 1578 1579 ASSERT(s_cr != NULL); 1580 1581 if ((cr = CRED()) == NULL || 1582 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1583 if (mode & DTRACE_MODE_NOPRIV_DROP) 1584 return (0); 1585 1586 mstate->dtms_access &= 1587 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1588 } 1589 } 1590 1591 /* 1592 * By merits of being in this code path at all, we have limited 1593 * privileges. If the provider has indicated that limited privileges 1594 * are to denote restricted operation, strip off the ability to access 1595 * arguments. 1596 */ 1597 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1598 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1599 1600 return (1); 1601 } 1602 1603 /* 1604 * Note: not called from probe context. This function is called 1605 * asynchronously (and at a regular interval) from outside of probe context to 1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1607 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1608 */ 1609 void 1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1611 { 1612 dtrace_dynvar_t *dirty; 1613 dtrace_dstate_percpu_t *dcpu; 1614 dtrace_dynvar_t **rinsep; 1615 int i, j, work = 0; 1616 1617 for (i = 0; i < NCPU; i++) { 1618 dcpu = &dstate->dtds_percpu[i]; 1619 rinsep = &dcpu->dtdsc_rinsing; 1620 1621 /* 1622 * If the dirty list is NULL, there is no dirty work to do. 1623 */ 1624 if (dcpu->dtdsc_dirty == NULL) 1625 continue; 1626 1627 if (dcpu->dtdsc_rinsing != NULL) { 1628 /* 1629 * If the rinsing list is non-NULL, then it is because 1630 * this CPU was selected to accept another CPU's 1631 * dirty list -- and since that time, dirty buffers 1632 * have accumulated. This is a highly unlikely 1633 * condition, but we choose to ignore the dirty 1634 * buffers -- they'll be picked up a future cleanse. 1635 */ 1636 continue; 1637 } 1638 1639 if (dcpu->dtdsc_clean != NULL) { 1640 /* 1641 * If the clean list is non-NULL, then we're in a 1642 * situation where a CPU has done deallocations (we 1643 * have a non-NULL dirty list) but no allocations (we 1644 * also have a non-NULL clean list). We can't simply 1645 * move the dirty list into the clean list on this 1646 * CPU, yet we also don't want to allow this condition 1647 * to persist, lest a short clean list prevent a 1648 * massive dirty list from being cleaned (which in 1649 * turn could lead to otherwise avoidable dynamic 1650 * drops). To deal with this, we look for some CPU 1651 * with a NULL clean list, NULL dirty list, and NULL 1652 * rinsing list -- and then we borrow this CPU to 1653 * rinse our dirty list. 1654 */ 1655 for (j = 0; j < NCPU; j++) { 1656 dtrace_dstate_percpu_t *rinser; 1657 1658 rinser = &dstate->dtds_percpu[j]; 1659 1660 if (rinser->dtdsc_rinsing != NULL) 1661 continue; 1662 1663 if (rinser->dtdsc_dirty != NULL) 1664 continue; 1665 1666 if (rinser->dtdsc_clean != NULL) 1667 continue; 1668 1669 rinsep = &rinser->dtdsc_rinsing; 1670 break; 1671 } 1672 1673 if (j == NCPU) { 1674 /* 1675 * We were unable to find another CPU that 1676 * could accept this dirty list -- we are 1677 * therefore unable to clean it now. 1678 */ 1679 dtrace_dynvar_failclean++; 1680 continue; 1681 } 1682 } 1683 1684 work = 1; 1685 1686 /* 1687 * Atomically move the dirty list aside. 1688 */ 1689 do { 1690 dirty = dcpu->dtdsc_dirty; 1691 1692 /* 1693 * Before we zap the dirty list, set the rinsing list. 1694 * (This allows for a potential assertion in 1695 * dtrace_dynvar(): if a free dynamic variable appears 1696 * on a hash chain, either the dirty list or the 1697 * rinsing list for some CPU must be non-NULL.) 1698 */ 1699 *rinsep = dirty; 1700 dtrace_membar_producer(); 1701 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1702 dirty, NULL) != dirty); 1703 } 1704 1705 if (!work) { 1706 /* 1707 * We have no work to do; we can simply return. 1708 */ 1709 return; 1710 } 1711 1712 dtrace_sync(); 1713 1714 for (i = 0; i < NCPU; i++) { 1715 dcpu = &dstate->dtds_percpu[i]; 1716 1717 if (dcpu->dtdsc_rinsing == NULL) 1718 continue; 1719 1720 /* 1721 * We are now guaranteed that no hash chain contains a pointer 1722 * into this dirty list; we can make it clean. 1723 */ 1724 ASSERT(dcpu->dtdsc_clean == NULL); 1725 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1726 dcpu->dtdsc_rinsing = NULL; 1727 } 1728 1729 /* 1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1731 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1732 * This prevents a race whereby a CPU incorrectly decides that 1733 * the state should be something other than DTRACE_DSTATE_CLEAN 1734 * after dtrace_dynvar_clean() has completed. 1735 */ 1736 dtrace_sync(); 1737 1738 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1739 } 1740 1741 /* 1742 * Depending on the value of the op parameter, this function looks-up, 1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1744 * allocation is requested, this function will return a pointer to a 1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1746 * variable can be allocated. If NULL is returned, the appropriate counter 1747 * will be incremented. 1748 */ 1749 dtrace_dynvar_t * 1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1751 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1752 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1753 { 1754 uint64_t hashval = DTRACE_DYNHASH_VALID; 1755 dtrace_dynhash_t *hash = dstate->dtds_hash; 1756 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1757 processorid_t me = CPU->cpu_id, cpu = me; 1758 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1759 size_t bucket, ksize; 1760 size_t chunksize = dstate->dtds_chunksize; 1761 uintptr_t kdata, lock, nstate; 1762 uint_t i; 1763 1764 ASSERT(nkeys != 0); 1765 1766 /* 1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1768 * algorithm. For the by-value portions, we perform the algorithm in 1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1770 * bit, and seems to have only a minute effect on distribution. For 1771 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1772 * over each referenced byte. It's painful to do this, but it's much 1773 * better than pathological hash distribution. The efficacy of the 1774 * hashing algorithm (and a comparison with other algorithms) may be 1775 * found by running the ::dtrace_dynstat MDB dcmd. 1776 */ 1777 for (i = 0; i < nkeys; i++) { 1778 if (key[i].dttk_size == 0) { 1779 uint64_t val = key[i].dttk_value; 1780 1781 hashval += (val >> 48) & 0xffff; 1782 hashval += (hashval << 10); 1783 hashval ^= (hashval >> 6); 1784 1785 hashval += (val >> 32) & 0xffff; 1786 hashval += (hashval << 10); 1787 hashval ^= (hashval >> 6); 1788 1789 hashval += (val >> 16) & 0xffff; 1790 hashval += (hashval << 10); 1791 hashval ^= (hashval >> 6); 1792 1793 hashval += val & 0xffff; 1794 hashval += (hashval << 10); 1795 hashval ^= (hashval >> 6); 1796 } else { 1797 /* 1798 * This is incredibly painful, but it beats the hell 1799 * out of the alternative. 1800 */ 1801 uint64_t j, size = key[i].dttk_size; 1802 uintptr_t base = (uintptr_t)key[i].dttk_value; 1803 1804 if (!dtrace_canload(base, size, mstate, vstate)) 1805 break; 1806 1807 for (j = 0; j < size; j++) { 1808 hashval += dtrace_load8(base + j); 1809 hashval += (hashval << 10); 1810 hashval ^= (hashval >> 6); 1811 } 1812 } 1813 } 1814 1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1816 return (NULL); 1817 1818 hashval += (hashval << 3); 1819 hashval ^= (hashval >> 11); 1820 hashval += (hashval << 15); 1821 1822 /* 1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1824 * comes out to be one of our two sentinel hash values. If this 1825 * actually happens, we set the hashval to be a value known to be a 1826 * non-sentinel value. 1827 */ 1828 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1829 hashval = DTRACE_DYNHASH_VALID; 1830 1831 /* 1832 * Yes, it's painful to do a divide here. If the cycle count becomes 1833 * important here, tricks can be pulled to reduce it. (However, it's 1834 * critical that hash collisions be kept to an absolute minimum; 1835 * they're much more painful than a divide.) It's better to have a 1836 * solution that generates few collisions and still keeps things 1837 * relatively simple. 1838 */ 1839 bucket = hashval % dstate->dtds_hashsize; 1840 1841 if (op == DTRACE_DYNVAR_DEALLOC) { 1842 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1843 1844 for (;;) { 1845 while ((lock = *lockp) & 1) 1846 continue; 1847 1848 if (dtrace_casptr((void *)lockp, 1849 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1850 break; 1851 } 1852 1853 dtrace_membar_producer(); 1854 } 1855 1856 top: 1857 prev = NULL; 1858 lock = hash[bucket].dtdh_lock; 1859 1860 dtrace_membar_consumer(); 1861 1862 start = hash[bucket].dtdh_chain; 1863 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1864 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1865 op != DTRACE_DYNVAR_DEALLOC)); 1866 1867 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1868 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1869 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1870 1871 if (dvar->dtdv_hashval != hashval) { 1872 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1873 /* 1874 * We've reached the sink, and therefore the 1875 * end of the hash chain; we can kick out of 1876 * the loop knowing that we have seen a valid 1877 * snapshot of state. 1878 */ 1879 ASSERT(dvar->dtdv_next == NULL); 1880 ASSERT(dvar == &dtrace_dynhash_sink); 1881 break; 1882 } 1883 1884 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1885 /* 1886 * We've gone off the rails: somewhere along 1887 * the line, one of the members of this hash 1888 * chain was deleted. Note that we could also 1889 * detect this by simply letting this loop run 1890 * to completion, as we would eventually hit 1891 * the end of the dirty list. However, we 1892 * want to avoid running the length of the 1893 * dirty list unnecessarily (it might be quite 1894 * long), so we catch this as early as 1895 * possible by detecting the hash marker. In 1896 * this case, we simply set dvar to NULL and 1897 * break; the conditional after the loop will 1898 * send us back to top. 1899 */ 1900 dvar = NULL; 1901 break; 1902 } 1903 1904 goto next; 1905 } 1906 1907 if (dtuple->dtt_nkeys != nkeys) 1908 goto next; 1909 1910 for (i = 0; i < nkeys; i++, dkey++) { 1911 if (dkey->dttk_size != key[i].dttk_size) 1912 goto next; /* size or type mismatch */ 1913 1914 if (dkey->dttk_size != 0) { 1915 if (dtrace_bcmp( 1916 (void *)(uintptr_t)key[i].dttk_value, 1917 (void *)(uintptr_t)dkey->dttk_value, 1918 dkey->dttk_size)) 1919 goto next; 1920 } else { 1921 if (dkey->dttk_value != key[i].dttk_value) 1922 goto next; 1923 } 1924 } 1925 1926 if (op != DTRACE_DYNVAR_DEALLOC) 1927 return (dvar); 1928 1929 ASSERT(dvar->dtdv_next == NULL || 1930 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1931 1932 if (prev != NULL) { 1933 ASSERT(hash[bucket].dtdh_chain != dvar); 1934 ASSERT(start != dvar); 1935 ASSERT(prev->dtdv_next == dvar); 1936 prev->dtdv_next = dvar->dtdv_next; 1937 } else { 1938 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1939 start, dvar->dtdv_next) != start) { 1940 /* 1941 * We have failed to atomically swing the 1942 * hash table head pointer, presumably because 1943 * of a conflicting allocation on another CPU. 1944 * We need to reread the hash chain and try 1945 * again. 1946 */ 1947 goto top; 1948 } 1949 } 1950 1951 dtrace_membar_producer(); 1952 1953 /* 1954 * Now set the hash value to indicate that it's free. 1955 */ 1956 ASSERT(hash[bucket].dtdh_chain != dvar); 1957 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1958 1959 dtrace_membar_producer(); 1960 1961 /* 1962 * Set the next pointer to point at the dirty list, and 1963 * atomically swing the dirty pointer to the newly freed dvar. 1964 */ 1965 do { 1966 next = dcpu->dtdsc_dirty; 1967 dvar->dtdv_next = next; 1968 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1969 1970 /* 1971 * Finally, unlock this hash bucket. 1972 */ 1973 ASSERT(hash[bucket].dtdh_lock == lock); 1974 ASSERT(lock & 1); 1975 hash[bucket].dtdh_lock++; 1976 1977 return (NULL); 1978 next: 1979 prev = dvar; 1980 continue; 1981 } 1982 1983 if (dvar == NULL) { 1984 /* 1985 * If dvar is NULL, it is because we went off the rails: 1986 * one of the elements that we traversed in the hash chain 1987 * was deleted while we were traversing it. In this case, 1988 * we assert that we aren't doing a dealloc (deallocs lock 1989 * the hash bucket to prevent themselves from racing with 1990 * one another), and retry the hash chain traversal. 1991 */ 1992 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1993 goto top; 1994 } 1995 1996 if (op != DTRACE_DYNVAR_ALLOC) { 1997 /* 1998 * If we are not to allocate a new variable, we want to 1999 * return NULL now. Before we return, check that the value 2000 * of the lock word hasn't changed. If it has, we may have 2001 * seen an inconsistent snapshot. 2002 */ 2003 if (op == DTRACE_DYNVAR_NOALLOC) { 2004 if (hash[bucket].dtdh_lock != lock) 2005 goto top; 2006 } else { 2007 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2008 ASSERT(hash[bucket].dtdh_lock == lock); 2009 ASSERT(lock & 1); 2010 hash[bucket].dtdh_lock++; 2011 } 2012 2013 return (NULL); 2014 } 2015 2016 /* 2017 * We need to allocate a new dynamic variable. The size we need is the 2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2020 * the size of any referred-to data (dsize). We then round the final 2021 * size up to the chunksize for allocation. 2022 */ 2023 for (ksize = 0, i = 0; i < nkeys; i++) 2024 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2025 2026 /* 2027 * This should be pretty much impossible, but could happen if, say, 2028 * strange DIF specified the tuple. Ideally, this should be an 2029 * assertion and not an error condition -- but that requires that the 2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2031 * bullet-proof. (That is, it must not be able to be fooled by 2032 * malicious DIF.) Given the lack of backwards branches in DIF, 2033 * solving this would presumably not amount to solving the Halting 2034 * Problem -- but it still seems awfully hard. 2035 */ 2036 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2037 ksize + dsize > chunksize) { 2038 dcpu->dtdsc_drops++; 2039 return (NULL); 2040 } 2041 2042 nstate = DTRACE_DSTATE_EMPTY; 2043 2044 do { 2045 retry: 2046 free = dcpu->dtdsc_free; 2047 2048 if (free == NULL) { 2049 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2050 void *rval; 2051 2052 if (clean == NULL) { 2053 /* 2054 * We're out of dynamic variable space on 2055 * this CPU. Unless we have tried all CPUs, 2056 * we'll try to allocate from a different 2057 * CPU. 2058 */ 2059 switch (dstate->dtds_state) { 2060 case DTRACE_DSTATE_CLEAN: { 2061 void *sp = &dstate->dtds_state; 2062 2063 if (++cpu >= NCPU) 2064 cpu = 0; 2065 2066 if (dcpu->dtdsc_dirty != NULL && 2067 nstate == DTRACE_DSTATE_EMPTY) 2068 nstate = DTRACE_DSTATE_DIRTY; 2069 2070 if (dcpu->dtdsc_rinsing != NULL) 2071 nstate = DTRACE_DSTATE_RINSING; 2072 2073 dcpu = &dstate->dtds_percpu[cpu]; 2074 2075 if (cpu != me) 2076 goto retry; 2077 2078 (void) dtrace_cas32(sp, 2079 DTRACE_DSTATE_CLEAN, nstate); 2080 2081 /* 2082 * To increment the correct bean 2083 * counter, take another lap. 2084 */ 2085 goto retry; 2086 } 2087 2088 case DTRACE_DSTATE_DIRTY: 2089 dcpu->dtdsc_dirty_drops++; 2090 break; 2091 2092 case DTRACE_DSTATE_RINSING: 2093 dcpu->dtdsc_rinsing_drops++; 2094 break; 2095 2096 case DTRACE_DSTATE_EMPTY: 2097 dcpu->dtdsc_drops++; 2098 break; 2099 } 2100 2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2102 return (NULL); 2103 } 2104 2105 /* 2106 * The clean list appears to be non-empty. We want to 2107 * move the clean list to the free list; we start by 2108 * moving the clean pointer aside. 2109 */ 2110 if (dtrace_casptr(&dcpu->dtdsc_clean, 2111 clean, NULL) != clean) { 2112 /* 2113 * We are in one of two situations: 2114 * 2115 * (a) The clean list was switched to the 2116 * free list by another CPU. 2117 * 2118 * (b) The clean list was added to by the 2119 * cleansing cyclic. 2120 * 2121 * In either of these situations, we can 2122 * just reattempt the free list allocation. 2123 */ 2124 goto retry; 2125 } 2126 2127 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2128 2129 /* 2130 * Now we'll move the clean list to our free list. 2131 * It's impossible for this to fail: the only way 2132 * the free list can be updated is through this 2133 * code path, and only one CPU can own the clean list. 2134 * Thus, it would only be possible for this to fail if 2135 * this code were racing with dtrace_dynvar_clean(). 2136 * (That is, if dtrace_dynvar_clean() updated the clean 2137 * list, and we ended up racing to update the free 2138 * list.) This race is prevented by the dtrace_sync() 2139 * in dtrace_dynvar_clean() -- which flushes the 2140 * owners of the clean lists out before resetting 2141 * the clean lists. 2142 */ 2143 dcpu = &dstate->dtds_percpu[me]; 2144 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2145 ASSERT(rval == NULL); 2146 goto retry; 2147 } 2148 2149 dvar = free; 2150 new_free = dvar->dtdv_next; 2151 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2152 2153 /* 2154 * We have now allocated a new chunk. We copy the tuple keys into the 2155 * tuple array and copy any referenced key data into the data space 2156 * following the tuple array. As we do this, we relocate dttk_value 2157 * in the final tuple to point to the key data address in the chunk. 2158 */ 2159 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2160 dvar->dtdv_data = (void *)(kdata + ksize); 2161 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2162 2163 for (i = 0; i < nkeys; i++) { 2164 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2165 size_t kesize = key[i].dttk_size; 2166 2167 if (kesize != 0) { 2168 dtrace_bcopy( 2169 (const void *)(uintptr_t)key[i].dttk_value, 2170 (void *)kdata, kesize); 2171 dkey->dttk_value = kdata; 2172 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2173 } else { 2174 dkey->dttk_value = key[i].dttk_value; 2175 } 2176 2177 dkey->dttk_size = kesize; 2178 } 2179 2180 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2181 dvar->dtdv_hashval = hashval; 2182 dvar->dtdv_next = start; 2183 2184 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2185 return (dvar); 2186 2187 /* 2188 * The cas has failed. Either another CPU is adding an element to 2189 * this hash chain, or another CPU is deleting an element from this 2190 * hash chain. The simplest way to deal with both of these cases 2191 * (though not necessarily the most efficient) is to free our 2192 * allocated block and re-attempt it all. Note that the free is 2193 * to the dirty list and _not_ to the free list. This is to prevent 2194 * races with allocators, above. 2195 */ 2196 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2197 2198 dtrace_membar_producer(); 2199 2200 do { 2201 free = dcpu->dtdsc_dirty; 2202 dvar->dtdv_next = free; 2203 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2204 2205 goto top; 2206 } 2207 2208 /*ARGSUSED*/ 2209 static void 2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2211 { 2212 if ((int64_t)nval < (int64_t)*oval) 2213 *oval = nval; 2214 } 2215 2216 /*ARGSUSED*/ 2217 static void 2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2219 { 2220 if ((int64_t)nval > (int64_t)*oval) 2221 *oval = nval; 2222 } 2223 2224 static void 2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2226 { 2227 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2228 int64_t val = (int64_t)nval; 2229 2230 if (val < 0) { 2231 for (i = 0; i < zero; i++) { 2232 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2233 quanta[i] += incr; 2234 return; 2235 } 2236 } 2237 } else { 2238 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2239 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2240 quanta[i - 1] += incr; 2241 return; 2242 } 2243 } 2244 2245 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2246 return; 2247 } 2248 2249 ASSERT(0); 2250 } 2251 2252 static void 2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2254 { 2255 uint64_t arg = *lquanta++; 2256 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2257 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2258 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2259 int32_t val = (int32_t)nval, level; 2260 2261 ASSERT(step != 0); 2262 ASSERT(levels != 0); 2263 2264 if (val < base) { 2265 /* 2266 * This is an underflow. 2267 */ 2268 lquanta[0] += incr; 2269 return; 2270 } 2271 2272 level = (val - base) / step; 2273 2274 if (level < levels) { 2275 lquanta[level + 1] += incr; 2276 return; 2277 } 2278 2279 /* 2280 * This is an overflow. 2281 */ 2282 lquanta[levels + 1] += incr; 2283 } 2284 2285 static int 2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2287 uint16_t high, uint16_t nsteps, int64_t value) 2288 { 2289 int64_t this = 1, last, next; 2290 int base = 1, order; 2291 2292 ASSERT(factor <= nsteps); 2293 ASSERT(nsteps % factor == 0); 2294 2295 for (order = 0; order < low; order++) 2296 this *= factor; 2297 2298 /* 2299 * If our value is less than our factor taken to the power of the 2300 * low order of magnitude, it goes into the zeroth bucket. 2301 */ 2302 if (value < (last = this)) 2303 return (0); 2304 2305 for (this *= factor; order <= high; order++) { 2306 int nbuckets = this > nsteps ? nsteps : this; 2307 2308 if ((next = this * factor) < this) { 2309 /* 2310 * We should not generally get log/linear quantizations 2311 * with a high magnitude that allows 64-bits to 2312 * overflow, but we nonetheless protect against this 2313 * by explicitly checking for overflow, and clamping 2314 * our value accordingly. 2315 */ 2316 value = this - 1; 2317 } 2318 2319 if (value < this) { 2320 /* 2321 * If our value lies within this order of magnitude, 2322 * determine its position by taking the offset within 2323 * the order of magnitude, dividing by the bucket 2324 * width, and adding to our (accumulated) base. 2325 */ 2326 return (base + (value - last) / (this / nbuckets)); 2327 } 2328 2329 base += nbuckets - (nbuckets / factor); 2330 last = this; 2331 this = next; 2332 } 2333 2334 /* 2335 * Our value is greater than or equal to our factor taken to the 2336 * power of one plus the high magnitude -- return the top bucket. 2337 */ 2338 return (base); 2339 } 2340 2341 static void 2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2343 { 2344 uint64_t arg = *llquanta++; 2345 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2346 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2347 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2348 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2349 2350 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2351 low, high, nsteps, nval)] += incr; 2352 } 2353 2354 /*ARGSUSED*/ 2355 static void 2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2357 { 2358 data[0]++; 2359 data[1] += nval; 2360 } 2361 2362 /*ARGSUSED*/ 2363 static void 2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2365 { 2366 int64_t snval = (int64_t)nval; 2367 uint64_t tmp[2]; 2368 2369 data[0]++; 2370 data[1] += nval; 2371 2372 /* 2373 * What we want to say here is: 2374 * 2375 * data[2] += nval * nval; 2376 * 2377 * But given that nval is 64-bit, we could easily overflow, so 2378 * we do this as 128-bit arithmetic. 2379 */ 2380 if (snval < 0) 2381 snval = -snval; 2382 2383 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2384 dtrace_add_128(data + 2, tmp, data + 2); 2385 } 2386 2387 /*ARGSUSED*/ 2388 static void 2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2390 { 2391 *oval = *oval + 1; 2392 } 2393 2394 /*ARGSUSED*/ 2395 static void 2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2397 { 2398 *oval += nval; 2399 } 2400 2401 /* 2402 * Aggregate given the tuple in the principal data buffer, and the aggregating 2403 * action denoted by the specified dtrace_aggregation_t. The aggregation 2404 * buffer is specified as the buf parameter. This routine does not return 2405 * failure; if there is no space in the aggregation buffer, the data will be 2406 * dropped, and a corresponding counter incremented. 2407 */ 2408 static void 2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2410 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2411 { 2412 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2413 uint32_t i, ndx, size, fsize; 2414 uint32_t align = sizeof (uint64_t) - 1; 2415 dtrace_aggbuffer_t *agb; 2416 dtrace_aggkey_t *key; 2417 uint32_t hashval = 0, limit, isstr; 2418 caddr_t tomax, data, kdata; 2419 dtrace_actkind_t action; 2420 dtrace_action_t *act; 2421 uintptr_t offs; 2422 2423 if (buf == NULL) 2424 return; 2425 2426 if (!agg->dtag_hasarg) { 2427 /* 2428 * Currently, only quantize() and lquantize() take additional 2429 * arguments, and they have the same semantics: an increment 2430 * value that defaults to 1 when not present. If additional 2431 * aggregating actions take arguments, the setting of the 2432 * default argument value will presumably have to become more 2433 * sophisticated... 2434 */ 2435 arg = 1; 2436 } 2437 2438 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2439 size = rec->dtrd_offset - agg->dtag_base; 2440 fsize = size + rec->dtrd_size; 2441 2442 ASSERT(dbuf->dtb_tomax != NULL); 2443 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2444 2445 if ((tomax = buf->dtb_tomax) == NULL) { 2446 dtrace_buffer_drop(buf); 2447 return; 2448 } 2449 2450 /* 2451 * The metastructure is always at the bottom of the buffer. 2452 */ 2453 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2454 sizeof (dtrace_aggbuffer_t)); 2455 2456 if (buf->dtb_offset == 0) { 2457 /* 2458 * We just kludge up approximately 1/8th of the size to be 2459 * buckets. If this guess ends up being routinely 2460 * off-the-mark, we may need to dynamically readjust this 2461 * based on past performance. 2462 */ 2463 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2464 2465 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2466 (uintptr_t)tomax || hashsize == 0) { 2467 /* 2468 * We've been given a ludicrously small buffer; 2469 * increment our drop count and leave. 2470 */ 2471 dtrace_buffer_drop(buf); 2472 return; 2473 } 2474 2475 /* 2476 * And now, a pathetic attempt to try to get a an odd (or 2477 * perchance, a prime) hash size for better hash distribution. 2478 */ 2479 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2480 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2481 2482 agb->dtagb_hashsize = hashsize; 2483 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2484 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2485 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2486 2487 for (i = 0; i < agb->dtagb_hashsize; i++) 2488 agb->dtagb_hash[i] = NULL; 2489 } 2490 2491 ASSERT(agg->dtag_first != NULL); 2492 ASSERT(agg->dtag_first->dta_intuple); 2493 2494 /* 2495 * Calculate the hash value based on the key. Note that we _don't_ 2496 * include the aggid in the hashing (but we will store it as part of 2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2498 * algorithm: a simple, quick algorithm that has no known funnels, and 2499 * gets good distribution in practice. The efficacy of the hashing 2500 * algorithm (and a comparison with other algorithms) may be found by 2501 * running the ::dtrace_aggstat MDB dcmd. 2502 */ 2503 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2504 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2505 limit = i + act->dta_rec.dtrd_size; 2506 ASSERT(limit <= size); 2507 isstr = DTRACEACT_ISSTRING(act); 2508 2509 for (; i < limit; i++) { 2510 hashval += data[i]; 2511 hashval += (hashval << 10); 2512 hashval ^= (hashval >> 6); 2513 2514 if (isstr && data[i] == '\0') 2515 break; 2516 } 2517 } 2518 2519 hashval += (hashval << 3); 2520 hashval ^= (hashval >> 11); 2521 hashval += (hashval << 15); 2522 2523 /* 2524 * Yes, the divide here is expensive -- but it's generally the least 2525 * of the performance issues given the amount of data that we iterate 2526 * over to compute hash values, compare data, etc. 2527 */ 2528 ndx = hashval % agb->dtagb_hashsize; 2529 2530 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2531 ASSERT((caddr_t)key >= tomax); 2532 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2533 2534 if (hashval != key->dtak_hashval || key->dtak_size != size) 2535 continue; 2536 2537 kdata = key->dtak_data; 2538 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2539 2540 for (act = agg->dtag_first; act->dta_intuple; 2541 act = act->dta_next) { 2542 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2543 limit = i + act->dta_rec.dtrd_size; 2544 ASSERT(limit <= size); 2545 isstr = DTRACEACT_ISSTRING(act); 2546 2547 for (; i < limit; i++) { 2548 if (kdata[i] != data[i]) 2549 goto next; 2550 2551 if (isstr && data[i] == '\0') 2552 break; 2553 } 2554 } 2555 2556 if (action != key->dtak_action) { 2557 /* 2558 * We are aggregating on the same value in the same 2559 * aggregation with two different aggregating actions. 2560 * (This should have been picked up in the compiler, 2561 * so we may be dealing with errant or devious DIF.) 2562 * This is an error condition; we indicate as much, 2563 * and return. 2564 */ 2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2566 return; 2567 } 2568 2569 /* 2570 * This is a hit: we need to apply the aggregator to 2571 * the value at this key. 2572 */ 2573 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2574 return; 2575 next: 2576 continue; 2577 } 2578 2579 /* 2580 * We didn't find it. We need to allocate some zero-filled space, 2581 * link it into the hash table appropriately, and apply the aggregator 2582 * to the (zero-filled) value. 2583 */ 2584 offs = buf->dtb_offset; 2585 while (offs & (align - 1)) 2586 offs += sizeof (uint32_t); 2587 2588 /* 2589 * If we don't have enough room to both allocate a new key _and_ 2590 * its associated data, increment the drop count and return. 2591 */ 2592 if ((uintptr_t)tomax + offs + fsize > 2593 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2594 dtrace_buffer_drop(buf); 2595 return; 2596 } 2597 2598 /*CONSTCOND*/ 2599 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2600 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2601 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2602 2603 key->dtak_data = kdata = tomax + offs; 2604 buf->dtb_offset = offs + fsize; 2605 2606 /* 2607 * Now copy the data across. 2608 */ 2609 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2610 2611 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2612 kdata[i] = data[i]; 2613 2614 /* 2615 * Because strings are not zeroed out by default, we need to iterate 2616 * looking for actions that store strings, and we need to explicitly 2617 * pad these strings out with zeroes. 2618 */ 2619 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2620 int nul; 2621 2622 if (!DTRACEACT_ISSTRING(act)) 2623 continue; 2624 2625 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2626 limit = i + act->dta_rec.dtrd_size; 2627 ASSERT(limit <= size); 2628 2629 for (nul = 0; i < limit; i++) { 2630 if (nul) { 2631 kdata[i] = '\0'; 2632 continue; 2633 } 2634 2635 if (data[i] != '\0') 2636 continue; 2637 2638 nul = 1; 2639 } 2640 } 2641 2642 for (i = size; i < fsize; i++) 2643 kdata[i] = 0; 2644 2645 key->dtak_hashval = hashval; 2646 key->dtak_size = size; 2647 key->dtak_action = action; 2648 key->dtak_next = agb->dtagb_hash[ndx]; 2649 agb->dtagb_hash[ndx] = key; 2650 2651 /* 2652 * Finally, apply the aggregator. 2653 */ 2654 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2655 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2656 } 2657 2658 /* 2659 * Given consumer state, this routine finds a speculation in the INACTIVE 2660 * state and transitions it into the ACTIVE state. If there is no speculation 2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2662 * incremented -- it is up to the caller to take appropriate action. 2663 */ 2664 static int 2665 dtrace_speculation(dtrace_state_t *state) 2666 { 2667 int i = 0; 2668 dtrace_speculation_state_t current; 2669 uint32_t *stat = &state->dts_speculations_unavail, count; 2670 2671 while (i < state->dts_nspeculations) { 2672 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2673 2674 current = spec->dtsp_state; 2675 2676 if (current != DTRACESPEC_INACTIVE) { 2677 if (current == DTRACESPEC_COMMITTINGMANY || 2678 current == DTRACESPEC_COMMITTING || 2679 current == DTRACESPEC_DISCARDING) 2680 stat = &state->dts_speculations_busy; 2681 i++; 2682 continue; 2683 } 2684 2685 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2686 current, DTRACESPEC_ACTIVE) == current) 2687 return (i + 1); 2688 } 2689 2690 /* 2691 * We couldn't find a speculation. If we found as much as a single 2692 * busy speculation buffer, we'll attribute this failure as "busy" 2693 * instead of "unavail". 2694 */ 2695 do { 2696 count = *stat; 2697 } while (dtrace_cas32(stat, count, count + 1) != count); 2698 2699 return (0); 2700 } 2701 2702 /* 2703 * This routine commits an active speculation. If the specified speculation 2704 * is not in a valid state to perform a commit(), this routine will silently do 2705 * nothing. The state of the specified speculation is transitioned according 2706 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2707 */ 2708 static void 2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2710 dtrace_specid_t which) 2711 { 2712 dtrace_speculation_t *spec; 2713 dtrace_buffer_t *src, *dest; 2714 uintptr_t daddr, saddr, dlimit, slimit; 2715 dtrace_speculation_state_t current, new; 2716 intptr_t offs; 2717 uint64_t timestamp; 2718 2719 if (which == 0) 2720 return; 2721 2722 if (which > state->dts_nspeculations) { 2723 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2724 return; 2725 } 2726 2727 spec = &state->dts_speculations[which - 1]; 2728 src = &spec->dtsp_buffer[cpu]; 2729 dest = &state->dts_buffer[cpu]; 2730 2731 do { 2732 current = spec->dtsp_state; 2733 2734 if (current == DTRACESPEC_COMMITTINGMANY) 2735 break; 2736 2737 switch (current) { 2738 case DTRACESPEC_INACTIVE: 2739 case DTRACESPEC_DISCARDING: 2740 return; 2741 2742 case DTRACESPEC_COMMITTING: 2743 /* 2744 * This is only possible if we are (a) commit()'ing 2745 * without having done a prior speculate() on this CPU 2746 * and (b) racing with another commit() on a different 2747 * CPU. There's nothing to do -- we just assert that 2748 * our offset is 0. 2749 */ 2750 ASSERT(src->dtb_offset == 0); 2751 return; 2752 2753 case DTRACESPEC_ACTIVE: 2754 new = DTRACESPEC_COMMITTING; 2755 break; 2756 2757 case DTRACESPEC_ACTIVEONE: 2758 /* 2759 * This speculation is active on one CPU. If our 2760 * buffer offset is non-zero, we know that the one CPU 2761 * must be us. Otherwise, we are committing on a 2762 * different CPU from the speculate(), and we must 2763 * rely on being asynchronously cleaned. 2764 */ 2765 if (src->dtb_offset != 0) { 2766 new = DTRACESPEC_COMMITTING; 2767 break; 2768 } 2769 /*FALLTHROUGH*/ 2770 2771 case DTRACESPEC_ACTIVEMANY: 2772 new = DTRACESPEC_COMMITTINGMANY; 2773 break; 2774 2775 default: 2776 ASSERT(0); 2777 } 2778 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2779 current, new) != current); 2780 2781 /* 2782 * We have set the state to indicate that we are committing this 2783 * speculation. Now reserve the necessary space in the destination 2784 * buffer. 2785 */ 2786 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2787 sizeof (uint64_t), state, NULL)) < 0) { 2788 dtrace_buffer_drop(dest); 2789 goto out; 2790 } 2791 2792 /* 2793 * We have sufficient space to copy the speculative buffer into the 2794 * primary buffer. First, modify the speculative buffer, filling 2795 * in the timestamp of all entries with the current time. The data 2796 * must have the commit() time rather than the time it was traced, 2797 * so that all entries in the primary buffer are in timestamp order. 2798 */ 2799 timestamp = dtrace_gethrtime(); 2800 saddr = (uintptr_t)src->dtb_tomax; 2801 slimit = saddr + src->dtb_offset; 2802 while (saddr < slimit) { 2803 size_t size; 2804 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2805 2806 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2807 saddr += sizeof (dtrace_epid_t); 2808 continue; 2809 } 2810 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2811 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2812 2813 ASSERT3U(saddr + size, <=, slimit); 2814 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2816 2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2818 2819 saddr += size; 2820 } 2821 2822 /* 2823 * Copy the buffer across. (Note that this is a 2824 * highly subobtimal bcopy(); in the unlikely event that this becomes 2825 * a serious performance issue, a high-performance DTrace-specific 2826 * bcopy() should obviously be invented.) 2827 */ 2828 daddr = (uintptr_t)dest->dtb_tomax + offs; 2829 dlimit = daddr + src->dtb_offset; 2830 saddr = (uintptr_t)src->dtb_tomax; 2831 2832 /* 2833 * First, the aligned portion. 2834 */ 2835 while (dlimit - daddr >= sizeof (uint64_t)) { 2836 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2837 2838 daddr += sizeof (uint64_t); 2839 saddr += sizeof (uint64_t); 2840 } 2841 2842 /* 2843 * Now any left-over bit... 2844 */ 2845 while (dlimit - daddr) 2846 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2847 2848 /* 2849 * Finally, commit the reserved space in the destination buffer. 2850 */ 2851 dest->dtb_offset = offs + src->dtb_offset; 2852 2853 out: 2854 /* 2855 * If we're lucky enough to be the only active CPU on this speculation 2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2857 */ 2858 if (current == DTRACESPEC_ACTIVE || 2859 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2860 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2861 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2862 2863 ASSERT(rval == DTRACESPEC_COMMITTING); 2864 } 2865 2866 src->dtb_offset = 0; 2867 src->dtb_xamot_drops += src->dtb_drops; 2868 src->dtb_drops = 0; 2869 } 2870 2871 /* 2872 * This routine discards an active speculation. If the specified speculation 2873 * is not in a valid state to perform a discard(), this routine will silently 2874 * do nothing. The state of the specified speculation is transitioned 2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2876 */ 2877 static void 2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2879 dtrace_specid_t which) 2880 { 2881 dtrace_speculation_t *spec; 2882 dtrace_speculation_state_t current, new; 2883 dtrace_buffer_t *buf; 2884 2885 if (which == 0) 2886 return; 2887 2888 if (which > state->dts_nspeculations) { 2889 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2890 return; 2891 } 2892 2893 spec = &state->dts_speculations[which - 1]; 2894 buf = &spec->dtsp_buffer[cpu]; 2895 2896 do { 2897 current = spec->dtsp_state; 2898 2899 switch (current) { 2900 case DTRACESPEC_INACTIVE: 2901 case DTRACESPEC_COMMITTINGMANY: 2902 case DTRACESPEC_COMMITTING: 2903 case DTRACESPEC_DISCARDING: 2904 return; 2905 2906 case DTRACESPEC_ACTIVE: 2907 case DTRACESPEC_ACTIVEMANY: 2908 new = DTRACESPEC_DISCARDING; 2909 break; 2910 2911 case DTRACESPEC_ACTIVEONE: 2912 if (buf->dtb_offset != 0) { 2913 new = DTRACESPEC_INACTIVE; 2914 } else { 2915 new = DTRACESPEC_DISCARDING; 2916 } 2917 break; 2918 2919 default: 2920 ASSERT(0); 2921 } 2922 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2923 current, new) != current); 2924 2925 buf->dtb_offset = 0; 2926 buf->dtb_drops = 0; 2927 } 2928 2929 /* 2930 * Note: not called from probe context. This function is called 2931 * asynchronously from cross call context to clean any speculations that are 2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2934 * speculation. 2935 */ 2936 static void 2937 dtrace_speculation_clean_here(dtrace_state_t *state) 2938 { 2939 dtrace_icookie_t cookie; 2940 processorid_t cpu = CPU->cpu_id; 2941 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2942 dtrace_specid_t i; 2943 2944 cookie = dtrace_interrupt_disable(); 2945 2946 if (dest->dtb_tomax == NULL) { 2947 dtrace_interrupt_enable(cookie); 2948 return; 2949 } 2950 2951 for (i = 0; i < state->dts_nspeculations; i++) { 2952 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2953 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2954 2955 if (src->dtb_tomax == NULL) 2956 continue; 2957 2958 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2959 src->dtb_offset = 0; 2960 continue; 2961 } 2962 2963 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2964 continue; 2965 2966 if (src->dtb_offset == 0) 2967 continue; 2968 2969 dtrace_speculation_commit(state, cpu, i + 1); 2970 } 2971 2972 dtrace_interrupt_enable(cookie); 2973 } 2974 2975 /* 2976 * Note: not called from probe context. This function is called 2977 * asynchronously (and at a regular interval) to clean any speculations that 2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2979 * is work to be done, it cross calls all CPUs to perform that work; 2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2981 * INACTIVE state until they have been cleaned by all CPUs. 2982 */ 2983 static void 2984 dtrace_speculation_clean(dtrace_state_t *state) 2985 { 2986 int work = 0, rv; 2987 dtrace_specid_t i; 2988 2989 for (i = 0; i < state->dts_nspeculations; i++) { 2990 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2991 2992 ASSERT(!spec->dtsp_cleaning); 2993 2994 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2995 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2996 continue; 2997 2998 work++; 2999 spec->dtsp_cleaning = 1; 3000 } 3001 3002 if (!work) 3003 return; 3004 3005 dtrace_xcall(DTRACE_CPUALL, 3006 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3007 3008 /* 3009 * We now know that all CPUs have committed or discarded their 3010 * speculation buffers, as appropriate. We can now set the state 3011 * to inactive. 3012 */ 3013 for (i = 0; i < state->dts_nspeculations; i++) { 3014 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3015 dtrace_speculation_state_t current, new; 3016 3017 if (!spec->dtsp_cleaning) 3018 continue; 3019 3020 current = spec->dtsp_state; 3021 ASSERT(current == DTRACESPEC_DISCARDING || 3022 current == DTRACESPEC_COMMITTINGMANY); 3023 3024 new = DTRACESPEC_INACTIVE; 3025 3026 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3027 ASSERT(rv == current); 3028 spec->dtsp_cleaning = 0; 3029 } 3030 } 3031 3032 /* 3033 * Called as part of a speculate() to get the speculative buffer associated 3034 * with a given speculation. Returns NULL if the specified speculation is not 3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3036 * the active CPU is not the specified CPU -- the speculation will be 3037 * atomically transitioned into the ACTIVEMANY state. 3038 */ 3039 static dtrace_buffer_t * 3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3041 dtrace_specid_t which) 3042 { 3043 dtrace_speculation_t *spec; 3044 dtrace_speculation_state_t current, new; 3045 dtrace_buffer_t *buf; 3046 3047 if (which == 0) 3048 return (NULL); 3049 3050 if (which > state->dts_nspeculations) { 3051 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3052 return (NULL); 3053 } 3054 3055 spec = &state->dts_speculations[which - 1]; 3056 buf = &spec->dtsp_buffer[cpuid]; 3057 3058 do { 3059 current = spec->dtsp_state; 3060 3061 switch (current) { 3062 case DTRACESPEC_INACTIVE: 3063 case DTRACESPEC_COMMITTINGMANY: 3064 case DTRACESPEC_DISCARDING: 3065 return (NULL); 3066 3067 case DTRACESPEC_COMMITTING: 3068 ASSERT(buf->dtb_offset == 0); 3069 return (NULL); 3070 3071 case DTRACESPEC_ACTIVEONE: 3072 /* 3073 * This speculation is currently active on one CPU. 3074 * Check the offset in the buffer; if it's non-zero, 3075 * that CPU must be us (and we leave the state alone). 3076 * If it's zero, assume that we're starting on a new 3077 * CPU -- and change the state to indicate that the 3078 * speculation is active on more than one CPU. 3079 */ 3080 if (buf->dtb_offset != 0) 3081 return (buf); 3082 3083 new = DTRACESPEC_ACTIVEMANY; 3084 break; 3085 3086 case DTRACESPEC_ACTIVEMANY: 3087 return (buf); 3088 3089 case DTRACESPEC_ACTIVE: 3090 new = DTRACESPEC_ACTIVEONE; 3091 break; 3092 3093 default: 3094 ASSERT(0); 3095 } 3096 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3097 current, new) != current); 3098 3099 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3100 return (buf); 3101 } 3102 3103 /* 3104 * Return a string. In the event that the user lacks the privilege to access 3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3106 * don't fail access checking. 3107 * 3108 * dtrace_dif_variable() uses this routine as a helper for various 3109 * builtin values such as 'execname' and 'probefunc.' 3110 */ 3111 uintptr_t 3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3113 dtrace_mstate_t *mstate) 3114 { 3115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3116 uintptr_t ret; 3117 size_t strsz; 3118 3119 /* 3120 * The easy case: this probe is allowed to read all of memory, so 3121 * we can just return this as a vanilla pointer. 3122 */ 3123 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3124 return (addr); 3125 3126 /* 3127 * This is the tougher case: we copy the string in question from 3128 * kernel memory into scratch memory and return it that way: this 3129 * ensures that we won't trip up when access checking tests the 3130 * BYREF return value. 3131 */ 3132 strsz = dtrace_strlen((char *)addr, size) + 1; 3133 3134 if (mstate->dtms_scratch_ptr + strsz > 3135 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3137 return (0); 3138 } 3139 3140 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3141 strsz); 3142 ret = mstate->dtms_scratch_ptr; 3143 mstate->dtms_scratch_ptr += strsz; 3144 return (ret); 3145 } 3146 3147 /* 3148 * This function implements the DIF emulator's variable lookups. The emulator 3149 * passes a reserved variable identifier and optional built-in array index. 3150 */ 3151 static uint64_t 3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3153 uint64_t ndx) 3154 { 3155 /* 3156 * If we're accessing one of the uncached arguments, we'll turn this 3157 * into a reference in the args array. 3158 */ 3159 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3160 ndx = v - DIF_VAR_ARG0; 3161 v = DIF_VAR_ARGS; 3162 } 3163 3164 switch (v) { 3165 case DIF_VAR_ARGS: 3166 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3167 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3168 CPU_DTRACE_KPRIV; 3169 return (0); 3170 } 3171 3172 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3173 if (ndx >= sizeof (mstate->dtms_arg) / 3174 sizeof (mstate->dtms_arg[0])) { 3175 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3176 dtrace_provider_t *pv; 3177 uint64_t val; 3178 3179 pv = mstate->dtms_probe->dtpr_provider; 3180 if (pv->dtpv_pops.dtps_getargval != NULL) 3181 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3182 mstate->dtms_probe->dtpr_id, 3183 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3184 else 3185 val = dtrace_getarg(ndx, aframes); 3186 3187 /* 3188 * This is regrettably required to keep the compiler 3189 * from tail-optimizing the call to dtrace_getarg(). 3190 * The condition always evaluates to true, but the 3191 * compiler has no way of figuring that out a priori. 3192 * (None of this would be necessary if the compiler 3193 * could be relied upon to _always_ tail-optimize 3194 * the call to dtrace_getarg() -- but it can't.) 3195 */ 3196 if (mstate->dtms_probe != NULL) 3197 return (val); 3198 3199 ASSERT(0); 3200 } 3201 3202 return (mstate->dtms_arg[ndx]); 3203 3204 case DIF_VAR_UREGS: { 3205 klwp_t *lwp; 3206 3207 if (!dtrace_priv_proc(state, mstate)) 3208 return (0); 3209 3210 if ((lwp = curthread->t_lwp) == NULL) { 3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3212 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3213 return (0); 3214 } 3215 3216 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3217 } 3218 3219 case DIF_VAR_VMREGS: { 3220 uint64_t rval; 3221 3222 if (!dtrace_priv_kernel(state)) 3223 return (0); 3224 3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3226 3227 rval = dtrace_getvmreg(ndx, 3228 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3229 3230 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3231 3232 return (rval); 3233 } 3234 3235 case DIF_VAR_CURTHREAD: 3236 if (!dtrace_priv_proc(state, mstate)) 3237 return (0); 3238 return ((uint64_t)(uintptr_t)curthread); 3239 3240 case DIF_VAR_TIMESTAMP: 3241 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3242 mstate->dtms_timestamp = dtrace_gethrtime(); 3243 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3244 } 3245 return (mstate->dtms_timestamp); 3246 3247 case DIF_VAR_VTIMESTAMP: 3248 ASSERT(dtrace_vtime_references != 0); 3249 return (curthread->t_dtrace_vtime); 3250 3251 case DIF_VAR_WALLTIMESTAMP: 3252 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3253 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3254 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3255 } 3256 return (mstate->dtms_walltimestamp); 3257 3258 case DIF_VAR_IPL: 3259 if (!dtrace_priv_kernel(state)) 3260 return (0); 3261 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3262 mstate->dtms_ipl = dtrace_getipl(); 3263 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3264 } 3265 return (mstate->dtms_ipl); 3266 3267 case DIF_VAR_EPID: 3268 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3269 return (mstate->dtms_epid); 3270 3271 case DIF_VAR_ID: 3272 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3273 return (mstate->dtms_probe->dtpr_id); 3274 3275 case DIF_VAR_STACKDEPTH: 3276 if (!dtrace_priv_kernel(state)) 3277 return (0); 3278 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3279 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3280 3281 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3282 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3283 } 3284 return (mstate->dtms_stackdepth); 3285 3286 case DIF_VAR_USTACKDEPTH: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3294 CPU_ON_INTR(CPU)) { 3295 mstate->dtms_ustackdepth = 0; 3296 } else { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3298 mstate->dtms_ustackdepth = 3299 dtrace_getustackdepth(); 3300 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3301 } 3302 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3303 } 3304 return (mstate->dtms_ustackdepth); 3305 3306 case DIF_VAR_CALLER: 3307 if (!dtrace_priv_kernel(state)) 3308 return (0); 3309 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3310 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3311 3312 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3313 /* 3314 * If this is an unanchored probe, we are 3315 * required to go through the slow path: 3316 * dtrace_caller() only guarantees correct 3317 * results for anchored probes. 3318 */ 3319 pc_t caller[2]; 3320 3321 dtrace_getpcstack(caller, 2, aframes, 3322 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3323 mstate->dtms_caller = caller[1]; 3324 } else if ((mstate->dtms_caller = 3325 dtrace_caller(aframes)) == -1) { 3326 /* 3327 * We have failed to do this the quick way; 3328 * we must resort to the slower approach of 3329 * calling dtrace_getpcstack(). 3330 */ 3331 pc_t caller; 3332 3333 dtrace_getpcstack(&caller, 1, aframes, NULL); 3334 mstate->dtms_caller = caller; 3335 } 3336 3337 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3338 } 3339 return (mstate->dtms_caller); 3340 3341 case DIF_VAR_UCALLER: 3342 if (!dtrace_priv_proc(state, mstate)) 3343 return (0); 3344 3345 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3346 uint64_t ustack[3]; 3347 3348 /* 3349 * dtrace_getupcstack() fills in the first uint64_t 3350 * with the current PID. The second uint64_t will 3351 * be the program counter at user-level. The third 3352 * uint64_t will contain the caller, which is what 3353 * we're after. 3354 */ 3355 ustack[2] = 0; 3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3357 dtrace_getupcstack(ustack, 3); 3358 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3359 mstate->dtms_ucaller = ustack[2]; 3360 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3361 } 3362 3363 return (mstate->dtms_ucaller); 3364 3365 case DIF_VAR_PROBEPROV: 3366 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3367 return (dtrace_dif_varstr( 3368 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3369 state, mstate)); 3370 3371 case DIF_VAR_PROBEMOD: 3372 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3373 return (dtrace_dif_varstr( 3374 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3375 state, mstate)); 3376 3377 case DIF_VAR_PROBEFUNC: 3378 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3379 return (dtrace_dif_varstr( 3380 (uintptr_t)mstate->dtms_probe->dtpr_func, 3381 state, mstate)); 3382 3383 case DIF_VAR_PROBENAME: 3384 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3385 return (dtrace_dif_varstr( 3386 (uintptr_t)mstate->dtms_probe->dtpr_name, 3387 state, mstate)); 3388 3389 case DIF_VAR_PID: 3390 if (!dtrace_priv_proc(state, mstate)) 3391 return (0); 3392 3393 /* 3394 * Note that we are assuming that an unanchored probe is 3395 * always due to a high-level interrupt. (And we're assuming 3396 * that there is only a single high level interrupt.) 3397 */ 3398 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3399 return (pid0.pid_id); 3400 3401 /* 3402 * It is always safe to dereference one's own t_procp pointer: 3403 * it always points to a valid, allocated proc structure. 3404 * Further, it is always safe to dereference the p_pidp member 3405 * of one's own proc structure. (These are truisms becuase 3406 * threads and processes don't clean up their own state -- 3407 * they leave that task to whomever reaps them.) 3408 */ 3409 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3410 3411 case DIF_VAR_PPID: 3412 if (!dtrace_priv_proc(state, mstate)) 3413 return (0); 3414 3415 /* 3416 * See comment in DIF_VAR_PID. 3417 */ 3418 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3419 return (pid0.pid_id); 3420 3421 /* 3422 * It is always safe to dereference one's own t_procp pointer: 3423 * it always points to a valid, allocated proc structure. 3424 * (This is true because threads don't clean up their own 3425 * state -- they leave that task to whomever reaps them.) 3426 */ 3427 return ((uint64_t)curthread->t_procp->p_ppid); 3428 3429 case DIF_VAR_TID: 3430 /* 3431 * See comment in DIF_VAR_PID. 3432 */ 3433 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3434 return (0); 3435 3436 return ((uint64_t)curthread->t_tid); 3437 3438 case DIF_VAR_EXECNAME: 3439 if (!dtrace_priv_proc(state, mstate)) 3440 return (0); 3441 3442 /* 3443 * See comment in DIF_VAR_PID. 3444 */ 3445 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3446 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3447 3448 /* 3449 * It is always safe to dereference one's own t_procp pointer: 3450 * it always points to a valid, allocated proc structure. 3451 * (This is true because threads don't clean up their own 3452 * state -- they leave that task to whomever reaps them.) 3453 */ 3454 return (dtrace_dif_varstr( 3455 (uintptr_t)curthread->t_procp->p_user.u_comm, 3456 state, mstate)); 3457 3458 case DIF_VAR_ZONENAME: 3459 if (!dtrace_priv_proc(state, mstate)) 3460 return (0); 3461 3462 /* 3463 * See comment in DIF_VAR_PID. 3464 */ 3465 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3466 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3467 3468 /* 3469 * It is always safe to dereference one's own t_procp pointer: 3470 * it always points to a valid, allocated proc structure. 3471 * (This is true because threads don't clean up their own 3472 * state -- they leave that task to whomever reaps them.) 3473 */ 3474 return (dtrace_dif_varstr( 3475 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3476 state, mstate)); 3477 3478 case DIF_VAR_UID: 3479 if (!dtrace_priv_proc(state, mstate)) 3480 return (0); 3481 3482 /* 3483 * See comment in DIF_VAR_PID. 3484 */ 3485 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3486 return ((uint64_t)p0.p_cred->cr_uid); 3487 3488 /* 3489 * It is always safe to dereference one's own t_procp pointer: 3490 * it always points to a valid, allocated proc structure. 3491 * (This is true because threads don't clean up their own 3492 * state -- they leave that task to whomever reaps them.) 3493 * 3494 * Additionally, it is safe to dereference one's own process 3495 * credential, since this is never NULL after process birth. 3496 */ 3497 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3498 3499 case DIF_VAR_GID: 3500 if (!dtrace_priv_proc(state, mstate)) 3501 return (0); 3502 3503 /* 3504 * See comment in DIF_VAR_PID. 3505 */ 3506 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3507 return ((uint64_t)p0.p_cred->cr_gid); 3508 3509 /* 3510 * It is always safe to dereference one's own t_procp pointer: 3511 * it always points to a valid, allocated proc structure. 3512 * (This is true because threads don't clean up their own 3513 * state -- they leave that task to whomever reaps them.) 3514 * 3515 * Additionally, it is safe to dereference one's own process 3516 * credential, since this is never NULL after process birth. 3517 */ 3518 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3519 3520 case DIF_VAR_ERRNO: { 3521 klwp_t *lwp; 3522 if (!dtrace_priv_proc(state, mstate)) 3523 return (0); 3524 3525 /* 3526 * See comment in DIF_VAR_PID. 3527 */ 3528 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3529 return (0); 3530 3531 /* 3532 * It is always safe to dereference one's own t_lwp pointer in 3533 * the event that this pointer is non-NULL. (This is true 3534 * because threads and lwps don't clean up their own state -- 3535 * they leave that task to whomever reaps them.) 3536 */ 3537 if ((lwp = curthread->t_lwp) == NULL) 3538 return (0); 3539 3540 return ((uint64_t)lwp->lwp_errno); 3541 } 3542 3543 case DIF_VAR_THREADNAME: 3544 /* 3545 * See comment in DIF_VAR_PID. 3546 */ 3547 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3548 return (0); 3549 3550 if (curthread->t_name == NULL) 3551 return (0); 3552 3553 /* 3554 * Once set, ->t_name itself is never changed: any updates are 3555 * made to the same buffer that we are pointing out. So we are 3556 * safe to dereference it here. 3557 */ 3558 return (dtrace_dif_varstr((uintptr_t)curthread->t_name, 3559 state, mstate)); 3560 3561 default: 3562 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3563 return (0); 3564 } 3565 } 3566 3567 static void 3568 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state, 3569 uint64_t v, uint64_t ndx, uint64_t data) 3570 { 3571 switch (v) { 3572 case DIF_VAR_UREGS: { 3573 klwp_t *lwp; 3574 3575 if (dtrace_destructive_disallow || 3576 !dtrace_priv_proc_control(state, mstate)) { 3577 return; 3578 } 3579 3580 if ((lwp = curthread->t_lwp) == NULL) { 3581 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3582 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3583 return; 3584 } 3585 3586 dtrace_setreg(lwp->lwp_regs, ndx, data); 3587 return; 3588 } 3589 3590 default: 3591 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3592 return; 3593 } 3594 } 3595 3596 typedef enum dtrace_json_state { 3597 DTRACE_JSON_REST = 1, 3598 DTRACE_JSON_OBJECT, 3599 DTRACE_JSON_STRING, 3600 DTRACE_JSON_STRING_ESCAPE, 3601 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3602 DTRACE_JSON_COLON, 3603 DTRACE_JSON_COMMA, 3604 DTRACE_JSON_VALUE, 3605 DTRACE_JSON_IDENTIFIER, 3606 DTRACE_JSON_NUMBER, 3607 DTRACE_JSON_NUMBER_FRAC, 3608 DTRACE_JSON_NUMBER_EXP, 3609 DTRACE_JSON_COLLECT_OBJECT 3610 } dtrace_json_state_t; 3611 3612 /* 3613 * This function possesses just enough knowledge about JSON to extract a single 3614 * value from a JSON string and store it in the scratch buffer. It is able 3615 * to extract nested object values, and members of arrays by index. 3616 * 3617 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3618 * be looked up as we descend into the object tree. e.g. 3619 * 3620 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3621 * with nelems = 5. 3622 * 3623 * The run time of this function must be bounded above by strsize to limit the 3624 * amount of work done in probe context. As such, it is implemented as a 3625 * simple state machine, reading one character at a time using safe loads 3626 * until we find the requested element, hit a parsing error or run off the 3627 * end of the object or string. 3628 * 3629 * As there is no way for a subroutine to return an error without interrupting 3630 * clause execution, we simply return NULL in the event of a missing key or any 3631 * other error condition. Each NULL return in this function is commented with 3632 * the error condition it represents -- parsing or otherwise. 3633 * 3634 * The set of states for the state machine closely matches the JSON 3635 * specification (http://json.org/). Briefly: 3636 * 3637 * DTRACE_JSON_REST: 3638 * Skip whitespace until we find either a top-level Object, moving 3639 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3640 * 3641 * DTRACE_JSON_OBJECT: 3642 * Locate the next key String in an Object. Sets a flag to denote 3643 * the next String as a key string and moves to DTRACE_JSON_STRING. 3644 * 3645 * DTRACE_JSON_COLON: 3646 * Skip whitespace until we find the colon that separates key Strings 3647 * from their values. Once found, move to DTRACE_JSON_VALUE. 3648 * 3649 * DTRACE_JSON_VALUE: 3650 * Detects the type of the next value (String, Number, Identifier, Object 3651 * or Array) and routes to the states that process that type. Here we also 3652 * deal with the element selector list if we are requested to traverse down 3653 * into the object tree. 3654 * 3655 * DTRACE_JSON_COMMA: 3656 * Skip whitespace until we find the comma that separates key-value pairs 3657 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3658 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3659 * states return to this state at the end of their value, unless otherwise 3660 * noted. 3661 * 3662 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3663 * Processes a Number literal from the JSON, including any exponent 3664 * component that may be present. Numbers are returned as strings, which 3665 * may be passed to strtoll() if an integer is required. 3666 * 3667 * DTRACE_JSON_IDENTIFIER: 3668 * Processes a "true", "false" or "null" literal in the JSON. 3669 * 3670 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3671 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3672 * Processes a String literal from the JSON, whether the String denotes 3673 * a key, a value or part of a larger Object. Handles all escape sequences 3674 * present in the specification, including four-digit unicode characters, 3675 * but merely includes the escape sequence without converting it to the 3676 * actual escaped character. If the String is flagged as a key, we 3677 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3678 * 3679 * DTRACE_JSON_COLLECT_OBJECT: 3680 * This state collects an entire Object (or Array), correctly handling 3681 * embedded strings. If the full element selector list matches this nested 3682 * object, we return the Object in full as a string. If not, we use this 3683 * state to skip to the next value at this level and continue processing. 3684 * 3685 * NOTE: This function uses various macros from strtolctype.h to manipulate 3686 * digit values, etc -- these have all been checked to ensure they make 3687 * no additional function calls. 3688 */ 3689 static char * 3690 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3691 char *dest) 3692 { 3693 dtrace_json_state_t state = DTRACE_JSON_REST; 3694 int64_t array_elem = INT64_MIN; 3695 int64_t array_pos = 0; 3696 uint8_t escape_unicount = 0; 3697 boolean_t string_is_key = B_FALSE; 3698 boolean_t collect_object = B_FALSE; 3699 boolean_t found_key = B_FALSE; 3700 boolean_t in_array = B_FALSE; 3701 uint32_t braces = 0, brackets = 0; 3702 char *elem = elemlist; 3703 char *dd = dest; 3704 uintptr_t cur; 3705 3706 for (cur = json; cur < json + size; cur++) { 3707 char cc = dtrace_load8(cur); 3708 if (cc == '\0') 3709 return (NULL); 3710 3711 switch (state) { 3712 case DTRACE_JSON_REST: 3713 if (isspace(cc)) 3714 break; 3715 3716 if (cc == '{') { 3717 state = DTRACE_JSON_OBJECT; 3718 break; 3719 } 3720 3721 if (cc == '[') { 3722 in_array = B_TRUE; 3723 array_pos = 0; 3724 array_elem = dtrace_strtoll(elem, 10, size); 3725 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3726 state = DTRACE_JSON_VALUE; 3727 break; 3728 } 3729 3730 /* 3731 * ERROR: expected to find a top-level object or array. 3732 */ 3733 return (NULL); 3734 case DTRACE_JSON_OBJECT: 3735 if (isspace(cc)) 3736 break; 3737 3738 if (cc == '"') { 3739 state = DTRACE_JSON_STRING; 3740 string_is_key = B_TRUE; 3741 break; 3742 } 3743 3744 /* 3745 * ERROR: either the object did not start with a key 3746 * string, or we've run off the end of the object 3747 * without finding the requested key. 3748 */ 3749 return (NULL); 3750 case DTRACE_JSON_STRING: 3751 if (cc == '\\') { 3752 *dd++ = '\\'; 3753 state = DTRACE_JSON_STRING_ESCAPE; 3754 break; 3755 } 3756 3757 if (cc == '"') { 3758 if (collect_object) { 3759 /* 3760 * We don't reset the dest here, as 3761 * the string is part of a larger 3762 * object being collected. 3763 */ 3764 *dd++ = cc; 3765 collect_object = B_FALSE; 3766 state = DTRACE_JSON_COLLECT_OBJECT; 3767 break; 3768 } 3769 *dd = '\0'; 3770 dd = dest; /* reset string buffer */ 3771 if (string_is_key) { 3772 if (dtrace_strncmp(dest, elem, 3773 size) == 0) 3774 found_key = B_TRUE; 3775 } else if (found_key) { 3776 if (nelems > 1) { 3777 /* 3778 * We expected an object, not 3779 * this string. 3780 */ 3781 return (NULL); 3782 } 3783 return (dest); 3784 } 3785 state = string_is_key ? DTRACE_JSON_COLON : 3786 DTRACE_JSON_COMMA; 3787 string_is_key = B_FALSE; 3788 break; 3789 } 3790 3791 *dd++ = cc; 3792 break; 3793 case DTRACE_JSON_STRING_ESCAPE: 3794 *dd++ = cc; 3795 if (cc == 'u') { 3796 escape_unicount = 0; 3797 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3798 } else { 3799 state = DTRACE_JSON_STRING; 3800 } 3801 break; 3802 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3803 if (!isxdigit(cc)) { 3804 /* 3805 * ERROR: invalid unicode escape, expected 3806 * four valid hexidecimal digits. 3807 */ 3808 return (NULL); 3809 } 3810 3811 *dd++ = cc; 3812 if (++escape_unicount == 4) 3813 state = DTRACE_JSON_STRING; 3814 break; 3815 case DTRACE_JSON_COLON: 3816 if (isspace(cc)) 3817 break; 3818 3819 if (cc == ':') { 3820 state = DTRACE_JSON_VALUE; 3821 break; 3822 } 3823 3824 /* 3825 * ERROR: expected a colon. 3826 */ 3827 return (NULL); 3828 case DTRACE_JSON_COMMA: 3829 if (isspace(cc)) 3830 break; 3831 3832 if (cc == ',') { 3833 if (in_array) { 3834 state = DTRACE_JSON_VALUE; 3835 if (++array_pos == array_elem) 3836 found_key = B_TRUE; 3837 } else { 3838 state = DTRACE_JSON_OBJECT; 3839 } 3840 break; 3841 } 3842 3843 /* 3844 * ERROR: either we hit an unexpected character, or 3845 * we reached the end of the object or array without 3846 * finding the requested key. 3847 */ 3848 return (NULL); 3849 case DTRACE_JSON_IDENTIFIER: 3850 if (islower(cc)) { 3851 *dd++ = cc; 3852 break; 3853 } 3854 3855 *dd = '\0'; 3856 dd = dest; /* reset string buffer */ 3857 3858 if (dtrace_strncmp(dest, "true", 5) == 0 || 3859 dtrace_strncmp(dest, "false", 6) == 0 || 3860 dtrace_strncmp(dest, "null", 5) == 0) { 3861 if (found_key) { 3862 if (nelems > 1) { 3863 /* 3864 * ERROR: We expected an object, 3865 * not this identifier. 3866 */ 3867 return (NULL); 3868 } 3869 return (dest); 3870 } else { 3871 cur--; 3872 state = DTRACE_JSON_COMMA; 3873 break; 3874 } 3875 } 3876 3877 /* 3878 * ERROR: we did not recognise the identifier as one 3879 * of those in the JSON specification. 3880 */ 3881 return (NULL); 3882 case DTRACE_JSON_NUMBER: 3883 if (cc == '.') { 3884 *dd++ = cc; 3885 state = DTRACE_JSON_NUMBER_FRAC; 3886 break; 3887 } 3888 3889 if (cc == 'x' || cc == 'X') { 3890 /* 3891 * ERROR: specification explicitly excludes 3892 * hexidecimal or octal numbers. 3893 */ 3894 return (NULL); 3895 } 3896 3897 /* FALLTHRU */ 3898 case DTRACE_JSON_NUMBER_FRAC: 3899 if (cc == 'e' || cc == 'E') { 3900 *dd++ = cc; 3901 state = DTRACE_JSON_NUMBER_EXP; 3902 break; 3903 } 3904 3905 if (cc == '+' || cc == '-') { 3906 /* 3907 * ERROR: expect sign as part of exponent only. 3908 */ 3909 return (NULL); 3910 } 3911 /* FALLTHRU */ 3912 case DTRACE_JSON_NUMBER_EXP: 3913 if (isdigit(cc) || cc == '+' || cc == '-') { 3914 *dd++ = cc; 3915 break; 3916 } 3917 3918 *dd = '\0'; 3919 dd = dest; /* reset string buffer */ 3920 if (found_key) { 3921 if (nelems > 1) { 3922 /* 3923 * ERROR: We expected an object, not 3924 * this number. 3925 */ 3926 return (NULL); 3927 } 3928 return (dest); 3929 } 3930 3931 cur--; 3932 state = DTRACE_JSON_COMMA; 3933 break; 3934 case DTRACE_JSON_VALUE: 3935 if (isspace(cc)) 3936 break; 3937 3938 if (cc == '{' || cc == '[') { 3939 if (nelems > 1 && found_key) { 3940 in_array = cc == '[' ? B_TRUE : B_FALSE; 3941 /* 3942 * If our element selector directs us 3943 * to descend into this nested object, 3944 * then move to the next selector 3945 * element in the list and restart the 3946 * state machine. 3947 */ 3948 while (*elem != '\0') 3949 elem++; 3950 elem++; /* skip the inter-element NUL */ 3951 nelems--; 3952 dd = dest; 3953 if (in_array) { 3954 state = DTRACE_JSON_VALUE; 3955 array_pos = 0; 3956 array_elem = dtrace_strtoll( 3957 elem, 10, size); 3958 found_key = array_elem == 0 ? 3959 B_TRUE : B_FALSE; 3960 } else { 3961 found_key = B_FALSE; 3962 state = DTRACE_JSON_OBJECT; 3963 } 3964 break; 3965 } 3966 3967 /* 3968 * Otherwise, we wish to either skip this 3969 * nested object or return it in full. 3970 */ 3971 if (cc == '[') 3972 brackets = 1; 3973 else 3974 braces = 1; 3975 *dd++ = cc; 3976 state = DTRACE_JSON_COLLECT_OBJECT; 3977 break; 3978 } 3979 3980 if (cc == '"') { 3981 state = DTRACE_JSON_STRING; 3982 break; 3983 } 3984 3985 if (islower(cc)) { 3986 /* 3987 * Here we deal with true, false and null. 3988 */ 3989 *dd++ = cc; 3990 state = DTRACE_JSON_IDENTIFIER; 3991 break; 3992 } 3993 3994 if (cc == '-' || isdigit(cc)) { 3995 *dd++ = cc; 3996 state = DTRACE_JSON_NUMBER; 3997 break; 3998 } 3999 4000 /* 4001 * ERROR: unexpected character at start of value. 4002 */ 4003 return (NULL); 4004 case DTRACE_JSON_COLLECT_OBJECT: 4005 if (cc == '\0') 4006 /* 4007 * ERROR: unexpected end of input. 4008 */ 4009 return (NULL); 4010 4011 *dd++ = cc; 4012 if (cc == '"') { 4013 collect_object = B_TRUE; 4014 state = DTRACE_JSON_STRING; 4015 break; 4016 } 4017 4018 if (cc == ']') { 4019 if (brackets-- == 0) { 4020 /* 4021 * ERROR: unbalanced brackets. 4022 */ 4023 return (NULL); 4024 } 4025 } else if (cc == '}') { 4026 if (braces-- == 0) { 4027 /* 4028 * ERROR: unbalanced braces. 4029 */ 4030 return (NULL); 4031 } 4032 } else if (cc == '{') { 4033 braces++; 4034 } else if (cc == '[') { 4035 brackets++; 4036 } 4037 4038 if (brackets == 0 && braces == 0) { 4039 if (found_key) { 4040 *dd = '\0'; 4041 return (dest); 4042 } 4043 dd = dest; /* reset string buffer */ 4044 state = DTRACE_JSON_COMMA; 4045 } 4046 break; 4047 } 4048 } 4049 return (NULL); 4050 } 4051 4052 /* 4053 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4054 * Notice that we don't bother validating the proper number of arguments or 4055 * their types in the tuple stack. This isn't needed because all argument 4056 * interpretation is safe because of our load safety -- the worst that can 4057 * happen is that a bogus program can obtain bogus results. 4058 */ 4059 static void 4060 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4061 dtrace_key_t *tupregs, int nargs, 4062 dtrace_mstate_t *mstate, dtrace_state_t *state) 4063 { 4064 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4065 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4066 dtrace_vstate_t *vstate = &state->dts_vstate; 4067 4068 union { 4069 mutex_impl_t mi; 4070 uint64_t mx; 4071 } m; 4072 4073 union { 4074 krwlock_t ri; 4075 uintptr_t rw; 4076 } r; 4077 4078 switch (subr) { 4079 case DIF_SUBR_RAND: 4080 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4081 break; 4082 4083 case DIF_SUBR_MUTEX_OWNED: 4084 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4085 mstate, vstate)) { 4086 regs[rd] = 0; 4087 break; 4088 } 4089 4090 m.mx = dtrace_load64(tupregs[0].dttk_value); 4091 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4092 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4093 else 4094 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4095 break; 4096 4097 case DIF_SUBR_MUTEX_OWNER: 4098 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4099 mstate, vstate)) { 4100 regs[rd] = 0; 4101 break; 4102 } 4103 4104 m.mx = dtrace_load64(tupregs[0].dttk_value); 4105 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4106 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4107 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4108 else 4109 regs[rd] = 0; 4110 break; 4111 4112 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4113 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4114 mstate, vstate)) { 4115 regs[rd] = 0; 4116 break; 4117 } 4118 4119 m.mx = dtrace_load64(tupregs[0].dttk_value); 4120 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4121 break; 4122 4123 case DIF_SUBR_MUTEX_TYPE_SPIN: 4124 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4125 mstate, vstate)) { 4126 regs[rd] = 0; 4127 break; 4128 } 4129 4130 m.mx = dtrace_load64(tupregs[0].dttk_value); 4131 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4132 break; 4133 4134 case DIF_SUBR_RW_READ_HELD: { 4135 uintptr_t tmp; 4136 4137 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4138 mstate, vstate)) { 4139 regs[rd] = 0; 4140 break; 4141 } 4142 4143 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4144 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4145 break; 4146 } 4147 4148 case DIF_SUBR_RW_WRITE_HELD: 4149 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4150 mstate, vstate)) { 4151 regs[rd] = 0; 4152 break; 4153 } 4154 4155 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4156 regs[rd] = _RW_WRITE_HELD(&r.ri); 4157 break; 4158 4159 case DIF_SUBR_RW_ISWRITER: 4160 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4161 mstate, vstate)) { 4162 regs[rd] = 0; 4163 break; 4164 } 4165 4166 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4167 regs[rd] = _RW_ISWRITER(&r.ri); 4168 break; 4169 4170 case DIF_SUBR_BCOPY: { 4171 /* 4172 * We need to be sure that the destination is in the scratch 4173 * region -- no other region is allowed. 4174 */ 4175 uintptr_t src = tupregs[0].dttk_value; 4176 uintptr_t dest = tupregs[1].dttk_value; 4177 size_t size = tupregs[2].dttk_value; 4178 4179 if (!dtrace_inscratch(dest, size, mstate)) { 4180 *flags |= CPU_DTRACE_BADADDR; 4181 *illval = regs[rd]; 4182 break; 4183 } 4184 4185 if (!dtrace_canload(src, size, mstate, vstate)) { 4186 regs[rd] = 0; 4187 break; 4188 } 4189 4190 dtrace_bcopy((void *)src, (void *)dest, size); 4191 break; 4192 } 4193 4194 case DIF_SUBR_ALLOCA: 4195 case DIF_SUBR_COPYIN: { 4196 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4197 uint64_t size = 4198 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4199 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4200 4201 /* 4202 * This action doesn't require any credential checks since 4203 * probes will not activate in user contexts to which the 4204 * enabling user does not have permissions. 4205 */ 4206 4207 /* 4208 * Rounding up the user allocation size could have overflowed 4209 * a large, bogus allocation (like -1ULL) to 0. 4210 */ 4211 if (scratch_size < size || 4212 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4213 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4214 regs[rd] = 0; 4215 break; 4216 } 4217 4218 if (subr == DIF_SUBR_COPYIN) { 4219 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4220 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4221 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4222 } 4223 4224 mstate->dtms_scratch_ptr += scratch_size; 4225 regs[rd] = dest; 4226 break; 4227 } 4228 4229 case DIF_SUBR_COPYINTO: { 4230 uint64_t size = tupregs[1].dttk_value; 4231 uintptr_t dest = tupregs[2].dttk_value; 4232 4233 /* 4234 * This action doesn't require any credential checks since 4235 * probes will not activate in user contexts to which the 4236 * enabling user does not have permissions. 4237 */ 4238 if (!dtrace_inscratch(dest, size, mstate)) { 4239 *flags |= CPU_DTRACE_BADADDR; 4240 *illval = regs[rd]; 4241 break; 4242 } 4243 4244 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4245 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4247 break; 4248 } 4249 4250 case DIF_SUBR_COPYINSTR: { 4251 uintptr_t dest = mstate->dtms_scratch_ptr; 4252 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4253 4254 if (nargs > 1 && tupregs[1].dttk_value < size) 4255 size = tupregs[1].dttk_value + 1; 4256 4257 /* 4258 * This action doesn't require any credential checks since 4259 * probes will not activate in user contexts to which the 4260 * enabling user does not have permissions. 4261 */ 4262 if (!DTRACE_INSCRATCH(mstate, size)) { 4263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4264 regs[rd] = 0; 4265 break; 4266 } 4267 4268 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4269 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4270 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4271 4272 ((char *)dest)[size - 1] = '\0'; 4273 mstate->dtms_scratch_ptr += size; 4274 regs[rd] = dest; 4275 break; 4276 } 4277 4278 case DIF_SUBR_MSGSIZE: 4279 case DIF_SUBR_MSGDSIZE: { 4280 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4281 uintptr_t wptr, rptr; 4282 size_t count = 0; 4283 int cont = 0; 4284 4285 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4286 4287 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4288 vstate)) { 4289 regs[rd] = 0; 4290 break; 4291 } 4292 4293 wptr = dtrace_loadptr(baddr + 4294 offsetof(mblk_t, b_wptr)); 4295 4296 rptr = dtrace_loadptr(baddr + 4297 offsetof(mblk_t, b_rptr)); 4298 4299 if (wptr < rptr) { 4300 *flags |= CPU_DTRACE_BADADDR; 4301 *illval = tupregs[0].dttk_value; 4302 break; 4303 } 4304 4305 daddr = dtrace_loadptr(baddr + 4306 offsetof(mblk_t, b_datap)); 4307 4308 baddr = dtrace_loadptr(baddr + 4309 offsetof(mblk_t, b_cont)); 4310 4311 /* 4312 * We want to prevent against denial-of-service here, 4313 * so we're only going to search the list for 4314 * dtrace_msgdsize_max mblks. 4315 */ 4316 if (cont++ > dtrace_msgdsize_max) { 4317 *flags |= CPU_DTRACE_ILLOP; 4318 break; 4319 } 4320 4321 if (subr == DIF_SUBR_MSGDSIZE) { 4322 if (dtrace_load8(daddr + 4323 offsetof(dblk_t, db_type)) != M_DATA) 4324 continue; 4325 } 4326 4327 count += wptr - rptr; 4328 } 4329 4330 if (!(*flags & CPU_DTRACE_FAULT)) 4331 regs[rd] = count; 4332 4333 break; 4334 } 4335 4336 case DIF_SUBR_PROGENYOF: { 4337 pid_t pid = tupregs[0].dttk_value; 4338 proc_t *p; 4339 int rval = 0; 4340 4341 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4342 4343 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4344 if (p->p_pidp->pid_id == pid) { 4345 rval = 1; 4346 break; 4347 } 4348 } 4349 4350 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4351 4352 regs[rd] = rval; 4353 break; 4354 } 4355 4356 case DIF_SUBR_SPECULATION: 4357 regs[rd] = dtrace_speculation(state); 4358 break; 4359 4360 case DIF_SUBR_COPYOUT: { 4361 uintptr_t kaddr = tupregs[0].dttk_value; 4362 uintptr_t uaddr = tupregs[1].dttk_value; 4363 uint64_t size = tupregs[2].dttk_value; 4364 4365 if (!dtrace_destructive_disallow && 4366 dtrace_priv_proc_control(state, mstate) && 4367 !dtrace_istoxic(kaddr, size) && 4368 dtrace_canload(kaddr, size, mstate, vstate)) { 4369 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4370 dtrace_copyout(kaddr, uaddr, size, flags); 4371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4372 } 4373 break; 4374 } 4375 4376 case DIF_SUBR_COPYOUTSTR: { 4377 uintptr_t kaddr = tupregs[0].dttk_value; 4378 uintptr_t uaddr = tupregs[1].dttk_value; 4379 uint64_t size = tupregs[2].dttk_value; 4380 size_t lim; 4381 4382 if (!dtrace_destructive_disallow && 4383 dtrace_priv_proc_control(state, mstate) && 4384 !dtrace_istoxic(kaddr, size) && 4385 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4386 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4387 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4388 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4389 } 4390 break; 4391 } 4392 4393 case DIF_SUBR_STRLEN: { 4394 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4395 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4396 size_t lim; 4397 4398 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4399 regs[rd] = 0; 4400 break; 4401 } 4402 regs[rd] = dtrace_strlen((char *)addr, lim); 4403 4404 break; 4405 } 4406 4407 case DIF_SUBR_STRCHR: 4408 case DIF_SUBR_STRRCHR: { 4409 /* 4410 * We're going to iterate over the string looking for the 4411 * specified character. We will iterate until we have reached 4412 * the string length or we have found the character. If this 4413 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4414 * of the specified character instead of the first. 4415 */ 4416 uintptr_t addr = tupregs[0].dttk_value; 4417 uintptr_t addr_limit; 4418 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4419 size_t lim; 4420 char c, target = (char)tupregs[1].dttk_value; 4421 4422 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4423 regs[rd] = 0; 4424 break; 4425 } 4426 addr_limit = addr + lim; 4427 4428 for (regs[rd] = 0; addr < addr_limit; addr++) { 4429 if ((c = dtrace_load8(addr)) == target) { 4430 regs[rd] = addr; 4431 4432 if (subr == DIF_SUBR_STRCHR) 4433 break; 4434 } 4435 if (c == '\0') 4436 break; 4437 } 4438 4439 break; 4440 } 4441 4442 case DIF_SUBR_STRSTR: 4443 case DIF_SUBR_INDEX: 4444 case DIF_SUBR_RINDEX: { 4445 /* 4446 * We're going to iterate over the string looking for the 4447 * specified string. We will iterate until we have reached 4448 * the string length or we have found the string. (Yes, this 4449 * is done in the most naive way possible -- but considering 4450 * that the string we're searching for is likely to be 4451 * relatively short, the complexity of Rabin-Karp or similar 4452 * hardly seems merited.) 4453 */ 4454 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4455 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4456 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4457 size_t len = dtrace_strlen(addr, size); 4458 size_t sublen = dtrace_strlen(substr, size); 4459 char *limit = addr + len, *orig = addr; 4460 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4461 int inc = 1; 4462 4463 regs[rd] = notfound; 4464 4465 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4466 regs[rd] = 0; 4467 break; 4468 } 4469 4470 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4471 vstate)) { 4472 regs[rd] = 0; 4473 break; 4474 } 4475 4476 /* 4477 * strstr() and index()/rindex() have similar semantics if 4478 * both strings are the empty string: strstr() returns a 4479 * pointer to the (empty) string, and index() and rindex() 4480 * both return index 0 (regardless of any position argument). 4481 */ 4482 if (sublen == 0 && len == 0) { 4483 if (subr == DIF_SUBR_STRSTR) 4484 regs[rd] = (uintptr_t)addr; 4485 else 4486 regs[rd] = 0; 4487 break; 4488 } 4489 4490 if (subr != DIF_SUBR_STRSTR) { 4491 if (subr == DIF_SUBR_RINDEX) { 4492 limit = orig - 1; 4493 addr += len; 4494 inc = -1; 4495 } 4496 4497 /* 4498 * Both index() and rindex() take an optional position 4499 * argument that denotes the starting position. 4500 */ 4501 if (nargs == 3) { 4502 int64_t pos = (int64_t)tupregs[2].dttk_value; 4503 4504 /* 4505 * If the position argument to index() is 4506 * negative, Perl implicitly clamps it at 4507 * zero. This semantic is a little surprising 4508 * given the special meaning of negative 4509 * positions to similar Perl functions like 4510 * substr(), but it appears to reflect a 4511 * notion that index() can start from a 4512 * negative index and increment its way up to 4513 * the string. Given this notion, Perl's 4514 * rindex() is at least self-consistent in 4515 * that it implicitly clamps positions greater 4516 * than the string length to be the string 4517 * length. Where Perl completely loses 4518 * coherence, however, is when the specified 4519 * substring is the empty string (""). In 4520 * this case, even if the position is 4521 * negative, rindex() returns 0 -- and even if 4522 * the position is greater than the length, 4523 * index() returns the string length. These 4524 * semantics violate the notion that index() 4525 * should never return a value less than the 4526 * specified position and that rindex() should 4527 * never return a value greater than the 4528 * specified position. (One assumes that 4529 * these semantics are artifacts of Perl's 4530 * implementation and not the results of 4531 * deliberate design -- it beggars belief that 4532 * even Larry Wall could desire such oddness.) 4533 * While in the abstract one would wish for 4534 * consistent position semantics across 4535 * substr(), index() and rindex() -- or at the 4536 * very least self-consistent position 4537 * semantics for index() and rindex() -- we 4538 * instead opt to keep with the extant Perl 4539 * semantics, in all their broken glory. (Do 4540 * we have more desire to maintain Perl's 4541 * semantics than Perl does? Probably.) 4542 */ 4543 if (subr == DIF_SUBR_RINDEX) { 4544 if (pos < 0) { 4545 if (sublen == 0) 4546 regs[rd] = 0; 4547 break; 4548 } 4549 4550 if (pos > len) 4551 pos = len; 4552 } else { 4553 if (pos < 0) 4554 pos = 0; 4555 4556 if (pos >= len) { 4557 if (sublen == 0) 4558 regs[rd] = len; 4559 break; 4560 } 4561 } 4562 4563 addr = orig + pos; 4564 } 4565 } 4566 4567 for (regs[rd] = notfound; addr != limit; addr += inc) { 4568 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4569 if (subr != DIF_SUBR_STRSTR) { 4570 /* 4571 * As D index() and rindex() are 4572 * modeled on Perl (and not on awk), 4573 * we return a zero-based (and not a 4574 * one-based) index. (For you Perl 4575 * weenies: no, we're not going to add 4576 * $[ -- and shouldn't you be at a con 4577 * or something?) 4578 */ 4579 regs[rd] = (uintptr_t)(addr - orig); 4580 break; 4581 } 4582 4583 ASSERT(subr == DIF_SUBR_STRSTR); 4584 regs[rd] = (uintptr_t)addr; 4585 break; 4586 } 4587 } 4588 4589 break; 4590 } 4591 4592 case DIF_SUBR_STRTOK: { 4593 uintptr_t addr = tupregs[0].dttk_value; 4594 uintptr_t tokaddr = tupregs[1].dttk_value; 4595 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4596 uintptr_t limit, toklimit; 4597 size_t clim; 4598 uint8_t c, tokmap[32]; /* 256 / 8 */ 4599 char *dest = (char *)mstate->dtms_scratch_ptr; 4600 int i; 4601 4602 /* 4603 * Check both the token buffer and (later) the input buffer, 4604 * since both could be non-scratch addresses. 4605 */ 4606 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4607 regs[rd] = 0; 4608 break; 4609 } 4610 toklimit = tokaddr + clim; 4611 4612 if (!DTRACE_INSCRATCH(mstate, size)) { 4613 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4614 regs[rd] = 0; 4615 break; 4616 } 4617 4618 if (addr == 0) { 4619 /* 4620 * If the address specified is NULL, we use our saved 4621 * strtok pointer from the mstate. Note that this 4622 * means that the saved strtok pointer is _only_ 4623 * valid within multiple enablings of the same probe -- 4624 * it behaves like an implicit clause-local variable. 4625 */ 4626 addr = mstate->dtms_strtok; 4627 limit = mstate->dtms_strtok_limit; 4628 } else { 4629 /* 4630 * If the user-specified address is non-NULL we must 4631 * access check it. This is the only time we have 4632 * a chance to do so, since this address may reside 4633 * in the string table of this clause-- future calls 4634 * (when we fetch addr from mstate->dtms_strtok) 4635 * would fail this access check. 4636 */ 4637 if (!dtrace_strcanload(addr, size, &clim, mstate, 4638 vstate)) { 4639 regs[rd] = 0; 4640 break; 4641 } 4642 limit = addr + clim; 4643 } 4644 4645 /* 4646 * First, zero the token map, and then process the token 4647 * string -- setting a bit in the map for every character 4648 * found in the token string. 4649 */ 4650 for (i = 0; i < sizeof (tokmap); i++) 4651 tokmap[i] = 0; 4652 4653 for (; tokaddr < toklimit; tokaddr++) { 4654 if ((c = dtrace_load8(tokaddr)) == '\0') 4655 break; 4656 4657 ASSERT((c >> 3) < sizeof (tokmap)); 4658 tokmap[c >> 3] |= (1 << (c & 0x7)); 4659 } 4660 4661 for (; addr < limit; addr++) { 4662 /* 4663 * We're looking for a character that is _not_ 4664 * contained in the token string. 4665 */ 4666 if ((c = dtrace_load8(addr)) == '\0') 4667 break; 4668 4669 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4670 break; 4671 } 4672 4673 if (c == '\0') { 4674 /* 4675 * We reached the end of the string without finding 4676 * any character that was not in the token string. 4677 * We return NULL in this case, and we set the saved 4678 * address to NULL as well. 4679 */ 4680 regs[rd] = 0; 4681 mstate->dtms_strtok = 0; 4682 mstate->dtms_strtok_limit = 0; 4683 break; 4684 } 4685 4686 /* 4687 * From here on, we're copying into the destination string. 4688 */ 4689 for (i = 0; addr < limit && i < size - 1; addr++) { 4690 if ((c = dtrace_load8(addr)) == '\0') 4691 break; 4692 4693 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4694 break; 4695 4696 ASSERT(i < size); 4697 dest[i++] = c; 4698 } 4699 4700 ASSERT(i < size); 4701 dest[i] = '\0'; 4702 regs[rd] = (uintptr_t)dest; 4703 mstate->dtms_scratch_ptr += size; 4704 mstate->dtms_strtok = addr; 4705 mstate->dtms_strtok_limit = limit; 4706 break; 4707 } 4708 4709 case DIF_SUBR_SUBSTR: { 4710 uintptr_t s = tupregs[0].dttk_value; 4711 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4712 char *d = (char *)mstate->dtms_scratch_ptr; 4713 int64_t index = (int64_t)tupregs[1].dttk_value; 4714 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4715 size_t len = dtrace_strlen((char *)s, size); 4716 int64_t i; 4717 4718 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4719 regs[rd] = 0; 4720 break; 4721 } 4722 4723 if (!DTRACE_INSCRATCH(mstate, size)) { 4724 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4725 regs[rd] = 0; 4726 break; 4727 } 4728 4729 if (nargs <= 2) 4730 remaining = (int64_t)size; 4731 4732 if (index < 0) { 4733 index += len; 4734 4735 if (index < 0 && index + remaining > 0) { 4736 remaining += index; 4737 index = 0; 4738 } 4739 } 4740 4741 if (index >= len || index < 0) { 4742 remaining = 0; 4743 } else if (remaining < 0) { 4744 remaining += len - index; 4745 } else if (index + remaining > size) { 4746 remaining = size - index; 4747 } 4748 4749 for (i = 0; i < remaining; i++) { 4750 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4751 break; 4752 } 4753 4754 d[i] = '\0'; 4755 4756 mstate->dtms_scratch_ptr += size; 4757 regs[rd] = (uintptr_t)d; 4758 break; 4759 } 4760 4761 case DIF_SUBR_JSON: { 4762 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4763 uintptr_t json = tupregs[0].dttk_value; 4764 size_t jsonlen = dtrace_strlen((char *)json, size); 4765 uintptr_t elem = tupregs[1].dttk_value; 4766 size_t elemlen = dtrace_strlen((char *)elem, size); 4767 4768 char *dest = (char *)mstate->dtms_scratch_ptr; 4769 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4770 char *ee = elemlist; 4771 int nelems = 1; 4772 uintptr_t cur; 4773 4774 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4775 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4776 regs[rd] = 0; 4777 break; 4778 } 4779 4780 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4782 regs[rd] = 0; 4783 break; 4784 } 4785 4786 /* 4787 * Read the element selector and split it up into a packed list 4788 * of strings. 4789 */ 4790 for (cur = elem; cur < elem + elemlen; cur++) { 4791 char cc = dtrace_load8(cur); 4792 4793 if (cur == elem && cc == '[') { 4794 /* 4795 * If the first element selector key is 4796 * actually an array index then ignore the 4797 * bracket. 4798 */ 4799 continue; 4800 } 4801 4802 if (cc == ']') 4803 continue; 4804 4805 if (cc == '.' || cc == '[') { 4806 nelems++; 4807 cc = '\0'; 4808 } 4809 4810 *ee++ = cc; 4811 } 4812 *ee++ = '\0'; 4813 4814 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4815 nelems, dest)) != 0) 4816 mstate->dtms_scratch_ptr += jsonlen + 1; 4817 break; 4818 } 4819 4820 case DIF_SUBR_TOUPPER: 4821 case DIF_SUBR_TOLOWER: { 4822 uintptr_t s = tupregs[0].dttk_value; 4823 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4824 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4825 size_t len = dtrace_strlen((char *)s, size); 4826 char lower, upper, convert; 4827 int64_t i; 4828 4829 if (subr == DIF_SUBR_TOUPPER) { 4830 lower = 'a'; 4831 upper = 'z'; 4832 convert = 'A'; 4833 } else { 4834 lower = 'A'; 4835 upper = 'Z'; 4836 convert = 'a'; 4837 } 4838 4839 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4840 regs[rd] = 0; 4841 break; 4842 } 4843 4844 if (!DTRACE_INSCRATCH(mstate, size)) { 4845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4846 regs[rd] = 0; 4847 break; 4848 } 4849 4850 for (i = 0; i < size - 1; i++) { 4851 if ((c = dtrace_load8(s + i)) == '\0') 4852 break; 4853 4854 if (c >= lower && c <= upper) 4855 c = convert + (c - lower); 4856 4857 dest[i] = c; 4858 } 4859 4860 ASSERT(i < size); 4861 dest[i] = '\0'; 4862 regs[rd] = (uintptr_t)dest; 4863 mstate->dtms_scratch_ptr += size; 4864 break; 4865 } 4866 4867 case DIF_SUBR_GETMAJOR: 4868 #ifdef _LP64 4869 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4870 #else 4871 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4872 #endif 4873 break; 4874 4875 case DIF_SUBR_GETMINOR: 4876 #ifdef _LP64 4877 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4878 #else 4879 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4880 #endif 4881 break; 4882 4883 case DIF_SUBR_DDI_PATHNAME: { 4884 /* 4885 * This one is a galactic mess. We are going to roughly 4886 * emulate ddi_pathname(), but it's made more complicated 4887 * by the fact that we (a) want to include the minor name and 4888 * (b) must proceed iteratively instead of recursively. 4889 */ 4890 uintptr_t dest = mstate->dtms_scratch_ptr; 4891 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4892 char *start = (char *)dest, *end = start + size - 1; 4893 uintptr_t daddr = tupregs[0].dttk_value; 4894 int64_t minor = (int64_t)tupregs[1].dttk_value; 4895 char *s; 4896 int i, len, depth = 0; 4897 4898 /* 4899 * Due to all the pointer jumping we do and context we must 4900 * rely upon, we just mandate that the user must have kernel 4901 * read privileges to use this routine. 4902 */ 4903 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4904 *flags |= CPU_DTRACE_KPRIV; 4905 *illval = daddr; 4906 regs[rd] = 0; 4907 } 4908 4909 if (!DTRACE_INSCRATCH(mstate, size)) { 4910 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4911 regs[rd] = 0; 4912 break; 4913 } 4914 4915 *end = '\0'; 4916 4917 /* 4918 * We want to have a name for the minor. In order to do this, 4919 * we need to walk the minor list from the devinfo. We want 4920 * to be sure that we don't infinitely walk a circular list, 4921 * so we check for circularity by sending a scout pointer 4922 * ahead two elements for every element that we iterate over; 4923 * if the list is circular, these will ultimately point to the 4924 * same element. You may recognize this little trick as the 4925 * answer to a stupid interview question -- one that always 4926 * seems to be asked by those who had to have it laboriously 4927 * explained to them, and who can't even concisely describe 4928 * the conditions under which one would be forced to resort to 4929 * this technique. Needless to say, those conditions are 4930 * found here -- and probably only here. Is this the only use 4931 * of this infamous trick in shipping, production code? If it 4932 * isn't, it probably should be... 4933 */ 4934 if (minor != -1) { 4935 uintptr_t maddr = dtrace_loadptr(daddr + 4936 offsetof(struct dev_info, devi_minor)); 4937 4938 uintptr_t next = offsetof(struct ddi_minor_data, next); 4939 uintptr_t name = offsetof(struct ddi_minor_data, 4940 d_minor) + offsetof(struct ddi_minor, name); 4941 uintptr_t dev = offsetof(struct ddi_minor_data, 4942 d_minor) + offsetof(struct ddi_minor, dev); 4943 uintptr_t scout; 4944 4945 if (maddr != 0) 4946 scout = dtrace_loadptr(maddr + next); 4947 4948 while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4949 uint64_t m; 4950 #ifdef _LP64 4951 m = dtrace_load64(maddr + dev) & MAXMIN64; 4952 #else 4953 m = dtrace_load32(maddr + dev) & MAXMIN; 4954 #endif 4955 if (m != minor) { 4956 maddr = dtrace_loadptr(maddr + next); 4957 4958 if (scout == 0) 4959 continue; 4960 4961 scout = dtrace_loadptr(scout + next); 4962 4963 if (scout == 0) 4964 continue; 4965 4966 scout = dtrace_loadptr(scout + next); 4967 4968 if (scout == 0) 4969 continue; 4970 4971 if (scout == maddr) { 4972 *flags |= CPU_DTRACE_ILLOP; 4973 break; 4974 } 4975 4976 continue; 4977 } 4978 4979 /* 4980 * We have the minor data. Now we need to 4981 * copy the minor's name into the end of the 4982 * pathname. 4983 */ 4984 s = (char *)dtrace_loadptr(maddr + name); 4985 len = dtrace_strlen(s, size); 4986 4987 if (*flags & CPU_DTRACE_FAULT) 4988 break; 4989 4990 if (len != 0) { 4991 if ((end -= (len + 1)) < start) 4992 break; 4993 4994 *end = ':'; 4995 } 4996 4997 for (i = 1; i <= len; i++) 4998 end[i] = dtrace_load8((uintptr_t)s++); 4999 break; 5000 } 5001 } 5002 5003 while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 5004 ddi_node_state_t devi_state; 5005 5006 devi_state = dtrace_load32(daddr + 5007 offsetof(struct dev_info, devi_node_state)); 5008 5009 if (*flags & CPU_DTRACE_FAULT) 5010 break; 5011 5012 if (devi_state >= DS_INITIALIZED) { 5013 s = (char *)dtrace_loadptr(daddr + 5014 offsetof(struct dev_info, devi_addr)); 5015 len = dtrace_strlen(s, size); 5016 5017 if (*flags & CPU_DTRACE_FAULT) 5018 break; 5019 5020 if (len != 0) { 5021 if ((end -= (len + 1)) < start) 5022 break; 5023 5024 *end = '@'; 5025 } 5026 5027 for (i = 1; i <= len; i++) 5028 end[i] = dtrace_load8((uintptr_t)s++); 5029 } 5030 5031 /* 5032 * Now for the node name... 5033 */ 5034 s = (char *)dtrace_loadptr(daddr + 5035 offsetof(struct dev_info, devi_node_name)); 5036 5037 daddr = dtrace_loadptr(daddr + 5038 offsetof(struct dev_info, devi_parent)); 5039 5040 /* 5041 * If our parent is NULL (that is, if we're the root 5042 * node), we're going to use the special path 5043 * "devices". 5044 */ 5045 if (daddr == 0) 5046 s = "devices"; 5047 5048 len = dtrace_strlen(s, size); 5049 if (*flags & CPU_DTRACE_FAULT) 5050 break; 5051 5052 if ((end -= (len + 1)) < start) 5053 break; 5054 5055 for (i = 1; i <= len; i++) 5056 end[i] = dtrace_load8((uintptr_t)s++); 5057 *end = '/'; 5058 5059 if (depth++ > dtrace_devdepth_max) { 5060 *flags |= CPU_DTRACE_ILLOP; 5061 break; 5062 } 5063 } 5064 5065 if (end < start) 5066 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5067 5068 if (daddr == 0) { 5069 regs[rd] = (uintptr_t)end; 5070 mstate->dtms_scratch_ptr += size; 5071 } 5072 5073 break; 5074 } 5075 5076 case DIF_SUBR_STRJOIN: { 5077 char *d = (char *)mstate->dtms_scratch_ptr; 5078 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5079 uintptr_t s1 = tupregs[0].dttk_value; 5080 uintptr_t s2 = tupregs[1].dttk_value; 5081 int i = 0, j = 0; 5082 size_t lim1, lim2; 5083 char c; 5084 5085 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5086 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5087 regs[rd] = 0; 5088 break; 5089 } 5090 5091 if (!DTRACE_INSCRATCH(mstate, size)) { 5092 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5093 regs[rd] = 0; 5094 break; 5095 } 5096 5097 for (;;) { 5098 if (i >= size) { 5099 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5100 regs[rd] = 0; 5101 break; 5102 } 5103 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5104 if ((d[i++] = c) == '\0') { 5105 i--; 5106 break; 5107 } 5108 } 5109 5110 for (;;) { 5111 if (i >= size) { 5112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5113 regs[rd] = 0; 5114 break; 5115 } 5116 5117 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5118 if ((d[i++] = c) == '\0') 5119 break; 5120 } 5121 5122 if (i < size) { 5123 mstate->dtms_scratch_ptr += i; 5124 regs[rd] = (uintptr_t)d; 5125 } 5126 5127 break; 5128 } 5129 5130 case DIF_SUBR_STRTOLL: { 5131 uintptr_t s = tupregs[0].dttk_value; 5132 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5133 size_t lim; 5134 int base = 10; 5135 5136 if (nargs > 1) { 5137 if ((base = tupregs[1].dttk_value) <= 1 || 5138 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5139 *flags |= CPU_DTRACE_ILLOP; 5140 break; 5141 } 5142 } 5143 5144 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5145 regs[rd] = INT64_MIN; 5146 break; 5147 } 5148 5149 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5150 break; 5151 } 5152 5153 case DIF_SUBR_LLTOSTR: { 5154 int64_t i = (int64_t)tupregs[0].dttk_value; 5155 uint64_t val, digit; 5156 uint64_t size = 65; /* enough room for 2^64 in binary */ 5157 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5158 int base = 10; 5159 5160 if (nargs > 1) { 5161 if ((base = tupregs[1].dttk_value) <= 1 || 5162 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5163 *flags |= CPU_DTRACE_ILLOP; 5164 break; 5165 } 5166 } 5167 5168 val = (base == 10 && i < 0) ? i * -1 : i; 5169 5170 if (!DTRACE_INSCRATCH(mstate, size)) { 5171 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5172 regs[rd] = 0; 5173 break; 5174 } 5175 5176 for (*end-- = '\0'; val; val /= base) { 5177 if ((digit = val % base) <= '9' - '0') { 5178 *end-- = '0' + digit; 5179 } else { 5180 *end-- = 'a' + (digit - ('9' - '0') - 1); 5181 } 5182 } 5183 5184 if (i == 0 && base == 16) 5185 *end-- = '0'; 5186 5187 if (base == 16) 5188 *end-- = 'x'; 5189 5190 if (i == 0 || base == 8 || base == 16) 5191 *end-- = '0'; 5192 5193 if (i < 0 && base == 10) 5194 *end-- = '-'; 5195 5196 regs[rd] = (uintptr_t)end + 1; 5197 mstate->dtms_scratch_ptr += size; 5198 break; 5199 } 5200 5201 case DIF_SUBR_HTONS: 5202 case DIF_SUBR_NTOHS: 5203 #ifdef _BIG_ENDIAN 5204 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5205 #else 5206 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5207 #endif 5208 break; 5209 5210 5211 case DIF_SUBR_HTONL: 5212 case DIF_SUBR_NTOHL: 5213 #ifdef _BIG_ENDIAN 5214 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5215 #else 5216 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5217 #endif 5218 break; 5219 5220 5221 case DIF_SUBR_HTONLL: 5222 case DIF_SUBR_NTOHLL: 5223 #ifdef _BIG_ENDIAN 5224 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5225 #else 5226 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5227 #endif 5228 break; 5229 5230 5231 case DIF_SUBR_DIRNAME: 5232 case DIF_SUBR_BASENAME: { 5233 char *dest = (char *)mstate->dtms_scratch_ptr; 5234 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5235 uintptr_t src = tupregs[0].dttk_value; 5236 int i, j, len = dtrace_strlen((char *)src, size); 5237 int lastbase = -1, firstbase = -1, lastdir = -1; 5238 int start, end; 5239 5240 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5241 regs[rd] = 0; 5242 break; 5243 } 5244 5245 if (!DTRACE_INSCRATCH(mstate, size)) { 5246 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5247 regs[rd] = 0; 5248 break; 5249 } 5250 5251 /* 5252 * The basename and dirname for a zero-length string is 5253 * defined to be "." 5254 */ 5255 if (len == 0) { 5256 len = 1; 5257 src = (uintptr_t)"."; 5258 } 5259 5260 /* 5261 * Start from the back of the string, moving back toward the 5262 * front until we see a character that isn't a slash. That 5263 * character is the last character in the basename. 5264 */ 5265 for (i = len - 1; i >= 0; i--) { 5266 if (dtrace_load8(src + i) != '/') 5267 break; 5268 } 5269 5270 if (i >= 0) 5271 lastbase = i; 5272 5273 /* 5274 * Starting from the last character in the basename, move 5275 * towards the front until we find a slash. The character 5276 * that we processed immediately before that is the first 5277 * character in the basename. 5278 */ 5279 for (; i >= 0; i--) { 5280 if (dtrace_load8(src + i) == '/') 5281 break; 5282 } 5283 5284 if (i >= 0) 5285 firstbase = i + 1; 5286 5287 /* 5288 * Now keep going until we find a non-slash character. That 5289 * character is the last character in the dirname. 5290 */ 5291 for (; i >= 0; i--) { 5292 if (dtrace_load8(src + i) != '/') 5293 break; 5294 } 5295 5296 if (i >= 0) 5297 lastdir = i; 5298 5299 ASSERT(!(lastbase == -1 && firstbase != -1)); 5300 ASSERT(!(firstbase == -1 && lastdir != -1)); 5301 5302 if (lastbase == -1) { 5303 /* 5304 * We didn't find a non-slash character. We know that 5305 * the length is non-zero, so the whole string must be 5306 * slashes. In either the dirname or the basename 5307 * case, we return '/'. 5308 */ 5309 ASSERT(firstbase == -1); 5310 firstbase = lastbase = lastdir = 0; 5311 } 5312 5313 if (firstbase == -1) { 5314 /* 5315 * The entire string consists only of a basename 5316 * component. If we're looking for dirname, we need 5317 * to change our string to be just "."; if we're 5318 * looking for a basename, we'll just set the first 5319 * character of the basename to be 0. 5320 */ 5321 if (subr == DIF_SUBR_DIRNAME) { 5322 ASSERT(lastdir == -1); 5323 src = (uintptr_t)"."; 5324 lastdir = 0; 5325 } else { 5326 firstbase = 0; 5327 } 5328 } 5329 5330 if (subr == DIF_SUBR_DIRNAME) { 5331 if (lastdir == -1) { 5332 /* 5333 * We know that we have a slash in the name -- 5334 * or lastdir would be set to 0, above. And 5335 * because lastdir is -1, we know that this 5336 * slash must be the first character. (That 5337 * is, the full string must be of the form 5338 * "/basename".) In this case, the last 5339 * character of the directory name is 0. 5340 */ 5341 lastdir = 0; 5342 } 5343 5344 start = 0; 5345 end = lastdir; 5346 } else { 5347 ASSERT(subr == DIF_SUBR_BASENAME); 5348 ASSERT(firstbase != -1 && lastbase != -1); 5349 start = firstbase; 5350 end = lastbase; 5351 } 5352 5353 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5354 dest[j] = dtrace_load8(src + i); 5355 5356 dest[j] = '\0'; 5357 regs[rd] = (uintptr_t)dest; 5358 mstate->dtms_scratch_ptr += size; 5359 break; 5360 } 5361 5362 case DIF_SUBR_GETF: { 5363 uintptr_t fd = tupregs[0].dttk_value; 5364 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5365 file_t *fp; 5366 5367 if (!dtrace_priv_proc(state, mstate)) { 5368 regs[rd] = 0; 5369 break; 5370 } 5371 5372 /* 5373 * This is safe because fi_nfiles only increases, and the 5374 * fi_list array is not freed when the array size doubles. 5375 * (See the comment in flist_grow() for details on the 5376 * management of the u_finfo structure.) 5377 */ 5378 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5379 5380 mstate->dtms_getf = fp; 5381 regs[rd] = (uintptr_t)fp; 5382 break; 5383 } 5384 5385 case DIF_SUBR_CLEANPATH: { 5386 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5387 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5388 uintptr_t src = tupregs[0].dttk_value; 5389 size_t lim; 5390 int i = 0, j = 0; 5391 zone_t *z; 5392 5393 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5394 regs[rd] = 0; 5395 break; 5396 } 5397 5398 if (!DTRACE_INSCRATCH(mstate, size)) { 5399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5400 regs[rd] = 0; 5401 break; 5402 } 5403 5404 /* 5405 * Move forward, loading each character. 5406 */ 5407 do { 5408 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5409 next: 5410 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5411 break; 5412 5413 if (c != '/') { 5414 dest[j++] = c; 5415 continue; 5416 } 5417 5418 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5419 5420 if (c == '/') { 5421 /* 5422 * We have two slashes -- we can just advance 5423 * to the next character. 5424 */ 5425 goto next; 5426 } 5427 5428 if (c != '.') { 5429 /* 5430 * This is not "." and it's not ".." -- we can 5431 * just store the "/" and this character and 5432 * drive on. 5433 */ 5434 dest[j++] = '/'; 5435 dest[j++] = c; 5436 continue; 5437 } 5438 5439 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5440 5441 if (c == '/') { 5442 /* 5443 * This is a "/./" component. We're not going 5444 * to store anything in the destination buffer; 5445 * we're just going to go to the next component. 5446 */ 5447 goto next; 5448 } 5449 5450 if (c != '.') { 5451 /* 5452 * This is not ".." -- we can just store the 5453 * "/." and this character and continue 5454 * processing. 5455 */ 5456 dest[j++] = '/'; 5457 dest[j++] = '.'; 5458 dest[j++] = c; 5459 continue; 5460 } 5461 5462 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5463 5464 if (c != '/' && c != '\0') { 5465 /* 5466 * This is not ".." -- it's "..[mumble]". 5467 * We'll store the "/.." and this character 5468 * and continue processing. 5469 */ 5470 dest[j++] = '/'; 5471 dest[j++] = '.'; 5472 dest[j++] = '.'; 5473 dest[j++] = c; 5474 continue; 5475 } 5476 5477 /* 5478 * This is "/../" or "/..\0". We need to back up 5479 * our destination pointer until we find a "/". 5480 */ 5481 i--; 5482 while (j != 0 && dest[--j] != '/') 5483 continue; 5484 5485 if (c == '\0') 5486 dest[++j] = '/'; 5487 } while (c != '\0'); 5488 5489 dest[j] = '\0'; 5490 5491 if (mstate->dtms_getf != NULL && 5492 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5493 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5494 /* 5495 * If we've done a getf() as a part of this ECB and we 5496 * don't have kernel access (and we're not in the global 5497 * zone), check if the path we cleaned up begins with 5498 * the zone's root path, and trim it off if so. Note 5499 * that this is an output cleanliness issue, not a 5500 * security issue: knowing one's zone root path does 5501 * not enable privilege escalation. 5502 */ 5503 if (strstr(dest, z->zone_rootpath) == dest) 5504 dest += strlen(z->zone_rootpath) - 1; 5505 } 5506 5507 regs[rd] = (uintptr_t)dest; 5508 mstate->dtms_scratch_ptr += size; 5509 break; 5510 } 5511 5512 case DIF_SUBR_INET_NTOA: 5513 case DIF_SUBR_INET_NTOA6: 5514 case DIF_SUBR_INET_NTOP: { 5515 size_t size; 5516 int af, argi, i; 5517 char *base, *end; 5518 5519 if (subr == DIF_SUBR_INET_NTOP) { 5520 af = (int)tupregs[0].dttk_value; 5521 argi = 1; 5522 } else { 5523 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5524 argi = 0; 5525 } 5526 5527 if (af == AF_INET) { 5528 ipaddr_t ip4; 5529 uint8_t *ptr8, val; 5530 5531 if (!dtrace_canload(tupregs[argi].dttk_value, 5532 sizeof (ipaddr_t), mstate, vstate)) { 5533 regs[rd] = 0; 5534 break; 5535 } 5536 5537 /* 5538 * Safely load the IPv4 address. 5539 */ 5540 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5541 5542 /* 5543 * Check an IPv4 string will fit in scratch. 5544 */ 5545 size = INET_ADDRSTRLEN; 5546 if (!DTRACE_INSCRATCH(mstate, size)) { 5547 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5548 regs[rd] = 0; 5549 break; 5550 } 5551 base = (char *)mstate->dtms_scratch_ptr; 5552 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5553 5554 /* 5555 * Stringify as a dotted decimal quad. 5556 */ 5557 *end-- = '\0'; 5558 ptr8 = (uint8_t *)&ip4; 5559 for (i = 3; i >= 0; i--) { 5560 val = ptr8[i]; 5561 5562 if (val == 0) { 5563 *end-- = '0'; 5564 } else { 5565 for (; val; val /= 10) { 5566 *end-- = '0' + (val % 10); 5567 } 5568 } 5569 5570 if (i > 0) 5571 *end-- = '.'; 5572 } 5573 ASSERT(end + 1 >= base); 5574 5575 } else if (af == AF_INET6) { 5576 struct in6_addr ip6; 5577 int firstzero, tryzero, numzero, v6end; 5578 uint16_t val; 5579 const char digits[] = "0123456789abcdef"; 5580 5581 /* 5582 * Stringify using RFC 1884 convention 2 - 16 bit 5583 * hexadecimal values with a zero-run compression. 5584 * Lower case hexadecimal digits are used. 5585 * eg, fe80::214:4fff:fe0b:76c8. 5586 * The IPv4 embedded form is returned for inet_ntop, 5587 * just the IPv4 string is returned for inet_ntoa6. 5588 */ 5589 5590 if (!dtrace_canload(tupregs[argi].dttk_value, 5591 sizeof (struct in6_addr), mstate, vstate)) { 5592 regs[rd] = 0; 5593 break; 5594 } 5595 5596 /* 5597 * Safely load the IPv6 address. 5598 */ 5599 dtrace_bcopy( 5600 (void *)(uintptr_t)tupregs[argi].dttk_value, 5601 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5602 5603 /* 5604 * Check an IPv6 string will fit in scratch. 5605 */ 5606 size = INET6_ADDRSTRLEN; 5607 if (!DTRACE_INSCRATCH(mstate, size)) { 5608 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5609 regs[rd] = 0; 5610 break; 5611 } 5612 base = (char *)mstate->dtms_scratch_ptr; 5613 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5614 *end-- = '\0'; 5615 5616 /* 5617 * Find the longest run of 16 bit zero values 5618 * for the single allowed zero compression - "::". 5619 */ 5620 firstzero = -1; 5621 tryzero = -1; 5622 numzero = 1; 5623 for (i = 0; i < sizeof (struct in6_addr); i++) { 5624 if (ip6._S6_un._S6_u8[i] == 0 && 5625 tryzero == -1 && i % 2 == 0) { 5626 tryzero = i; 5627 continue; 5628 } 5629 5630 if (tryzero != -1 && 5631 (ip6._S6_un._S6_u8[i] != 0 || 5632 i == sizeof (struct in6_addr) - 1)) { 5633 5634 if (i - tryzero <= numzero) { 5635 tryzero = -1; 5636 continue; 5637 } 5638 5639 firstzero = tryzero; 5640 numzero = i - i % 2 - tryzero; 5641 tryzero = -1; 5642 5643 if (ip6._S6_un._S6_u8[i] == 0 && 5644 i == sizeof (struct in6_addr) - 1) 5645 numzero += 2; 5646 } 5647 } 5648 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5649 5650 /* 5651 * Check for an IPv4 embedded address. 5652 */ 5653 v6end = sizeof (struct in6_addr) - 2; 5654 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5655 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5656 for (i = sizeof (struct in6_addr) - 1; 5657 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5658 ASSERT(end >= base); 5659 5660 val = ip6._S6_un._S6_u8[i]; 5661 5662 if (val == 0) { 5663 *end-- = '0'; 5664 } else { 5665 for (; val; val /= 10) { 5666 *end-- = '0' + val % 10; 5667 } 5668 } 5669 5670 if (i > DTRACE_V4MAPPED_OFFSET) 5671 *end-- = '.'; 5672 } 5673 5674 if (subr == DIF_SUBR_INET_NTOA6) 5675 goto inetout; 5676 5677 /* 5678 * Set v6end to skip the IPv4 address that 5679 * we have already stringified. 5680 */ 5681 v6end = 10; 5682 } 5683 5684 /* 5685 * Build the IPv6 string by working through the 5686 * address in reverse. 5687 */ 5688 for (i = v6end; i >= 0; i -= 2) { 5689 ASSERT(end >= base); 5690 5691 if (i == firstzero + numzero - 2) { 5692 *end-- = ':'; 5693 *end-- = ':'; 5694 i -= numzero - 2; 5695 continue; 5696 } 5697 5698 if (i < 14 && i != firstzero - 2) 5699 *end-- = ':'; 5700 5701 val = (ip6._S6_un._S6_u8[i] << 8) + 5702 ip6._S6_un._S6_u8[i + 1]; 5703 5704 if (val == 0) { 5705 *end-- = '0'; 5706 } else { 5707 for (; val; val /= 16) { 5708 *end-- = digits[val % 16]; 5709 } 5710 } 5711 } 5712 ASSERT(end + 1 >= base); 5713 5714 } else { 5715 /* 5716 * The user didn't use AH_INET or AH_INET6. 5717 */ 5718 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5719 regs[rd] = 0; 5720 break; 5721 } 5722 5723 inetout: regs[rd] = (uintptr_t)end + 1; 5724 mstate->dtms_scratch_ptr += size; 5725 break; 5726 } 5727 5728 } 5729 } 5730 5731 /* 5732 * Emulate the execution of DTrace IR instructions specified by the given 5733 * DIF object. This function is deliberately void of assertions as all of 5734 * the necessary checks are handled by a call to dtrace_difo_validate(). 5735 */ 5736 static uint64_t 5737 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5738 dtrace_vstate_t *vstate, dtrace_state_t *state) 5739 { 5740 const dif_instr_t *text = difo->dtdo_buf; 5741 const uint_t textlen = difo->dtdo_len; 5742 const char *strtab = difo->dtdo_strtab; 5743 const uint64_t *inttab = difo->dtdo_inttab; 5744 5745 uint64_t rval = 0; 5746 dtrace_statvar_t *svar; 5747 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5748 dtrace_difv_t *v; 5749 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5750 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5751 5752 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5753 uint64_t regs[DIF_DIR_NREGS]; 5754 uint64_t *tmp; 5755 5756 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5757 int64_t cc_r; 5758 uint_t pc = 0, id, opc; 5759 uint8_t ttop = 0; 5760 dif_instr_t instr; 5761 uint_t r1, r2, rd; 5762 5763 /* 5764 * We stash the current DIF object into the machine state: we need it 5765 * for subsequent access checking. 5766 */ 5767 mstate->dtms_difo = difo; 5768 5769 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5770 5771 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5772 opc = pc; 5773 5774 instr = text[pc++]; 5775 r1 = DIF_INSTR_R1(instr); 5776 r2 = DIF_INSTR_R2(instr); 5777 rd = DIF_INSTR_RD(instr); 5778 5779 switch (DIF_INSTR_OP(instr)) { 5780 case DIF_OP_OR: 5781 regs[rd] = regs[r1] | regs[r2]; 5782 break; 5783 case DIF_OP_XOR: 5784 regs[rd] = regs[r1] ^ regs[r2]; 5785 break; 5786 case DIF_OP_AND: 5787 regs[rd] = regs[r1] & regs[r2]; 5788 break; 5789 case DIF_OP_SLL: 5790 regs[rd] = regs[r1] << regs[r2]; 5791 break; 5792 case DIF_OP_SRL: 5793 regs[rd] = regs[r1] >> regs[r2]; 5794 break; 5795 case DIF_OP_SUB: 5796 regs[rd] = regs[r1] - regs[r2]; 5797 break; 5798 case DIF_OP_ADD: 5799 regs[rd] = regs[r1] + regs[r2]; 5800 break; 5801 case DIF_OP_MUL: 5802 regs[rd] = regs[r1] * regs[r2]; 5803 break; 5804 case DIF_OP_SDIV: 5805 if (regs[r2] == 0) { 5806 regs[rd] = 0; 5807 *flags |= CPU_DTRACE_DIVZERO; 5808 } else { 5809 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5810 regs[rd] = (int64_t)regs[r1] / 5811 (int64_t)regs[r2]; 5812 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5813 } 5814 break; 5815 5816 case DIF_OP_UDIV: 5817 if (regs[r2] == 0) { 5818 regs[rd] = 0; 5819 *flags |= CPU_DTRACE_DIVZERO; 5820 } else { 5821 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5822 regs[rd] = regs[r1] / regs[r2]; 5823 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5824 } 5825 break; 5826 5827 case DIF_OP_SREM: 5828 if (regs[r2] == 0) { 5829 regs[rd] = 0; 5830 *flags |= CPU_DTRACE_DIVZERO; 5831 } else { 5832 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5833 regs[rd] = (int64_t)regs[r1] % 5834 (int64_t)regs[r2]; 5835 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5836 } 5837 break; 5838 5839 case DIF_OP_UREM: 5840 if (regs[r2] == 0) { 5841 regs[rd] = 0; 5842 *flags |= CPU_DTRACE_DIVZERO; 5843 } else { 5844 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5845 regs[rd] = regs[r1] % regs[r2]; 5846 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5847 } 5848 break; 5849 5850 case DIF_OP_NOT: 5851 regs[rd] = ~regs[r1]; 5852 break; 5853 case DIF_OP_MOV: 5854 regs[rd] = regs[r1]; 5855 break; 5856 case DIF_OP_CMP: 5857 cc_r = regs[r1] - regs[r2]; 5858 cc_n = cc_r < 0; 5859 cc_z = cc_r == 0; 5860 cc_v = 0; 5861 cc_c = regs[r1] < regs[r2]; 5862 break; 5863 case DIF_OP_TST: 5864 cc_n = cc_v = cc_c = 0; 5865 cc_z = regs[r1] == 0; 5866 break; 5867 case DIF_OP_BA: 5868 pc = DIF_INSTR_LABEL(instr); 5869 break; 5870 case DIF_OP_BE: 5871 if (cc_z) 5872 pc = DIF_INSTR_LABEL(instr); 5873 break; 5874 case DIF_OP_BNE: 5875 if (cc_z == 0) 5876 pc = DIF_INSTR_LABEL(instr); 5877 break; 5878 case DIF_OP_BG: 5879 if ((cc_z | (cc_n ^ cc_v)) == 0) 5880 pc = DIF_INSTR_LABEL(instr); 5881 break; 5882 case DIF_OP_BGU: 5883 if ((cc_c | cc_z) == 0) 5884 pc = DIF_INSTR_LABEL(instr); 5885 break; 5886 case DIF_OP_BGE: 5887 if ((cc_n ^ cc_v) == 0) 5888 pc = DIF_INSTR_LABEL(instr); 5889 break; 5890 case DIF_OP_BGEU: 5891 if (cc_c == 0) 5892 pc = DIF_INSTR_LABEL(instr); 5893 break; 5894 case DIF_OP_BL: 5895 if (cc_n ^ cc_v) 5896 pc = DIF_INSTR_LABEL(instr); 5897 break; 5898 case DIF_OP_BLU: 5899 if (cc_c) 5900 pc = DIF_INSTR_LABEL(instr); 5901 break; 5902 case DIF_OP_BLE: 5903 if (cc_z | (cc_n ^ cc_v)) 5904 pc = DIF_INSTR_LABEL(instr); 5905 break; 5906 case DIF_OP_BLEU: 5907 if (cc_c | cc_z) 5908 pc = DIF_INSTR_LABEL(instr); 5909 break; 5910 case DIF_OP_RLDSB: 5911 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5912 break; 5913 /*FALLTHROUGH*/ 5914 case DIF_OP_LDSB: 5915 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5916 break; 5917 case DIF_OP_RLDSH: 5918 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5919 break; 5920 /*FALLTHROUGH*/ 5921 case DIF_OP_LDSH: 5922 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5923 break; 5924 case DIF_OP_RLDSW: 5925 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5926 break; 5927 /*FALLTHROUGH*/ 5928 case DIF_OP_LDSW: 5929 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5930 break; 5931 case DIF_OP_RLDUB: 5932 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5933 break; 5934 /*FALLTHROUGH*/ 5935 case DIF_OP_LDUB: 5936 regs[rd] = dtrace_load8(regs[r1]); 5937 break; 5938 case DIF_OP_RLDUH: 5939 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5940 break; 5941 /*FALLTHROUGH*/ 5942 case DIF_OP_LDUH: 5943 regs[rd] = dtrace_load16(regs[r1]); 5944 break; 5945 case DIF_OP_RLDUW: 5946 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5947 break; 5948 /*FALLTHROUGH*/ 5949 case DIF_OP_LDUW: 5950 regs[rd] = dtrace_load32(regs[r1]); 5951 break; 5952 case DIF_OP_RLDX: 5953 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5954 break; 5955 /*FALLTHROUGH*/ 5956 case DIF_OP_LDX: 5957 regs[rd] = dtrace_load64(regs[r1]); 5958 break; 5959 case DIF_OP_ULDSB: 5960 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5961 regs[rd] = (int8_t) 5962 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5963 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5964 break; 5965 case DIF_OP_ULDSH: 5966 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5967 regs[rd] = (int16_t) 5968 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5969 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5970 break; 5971 case DIF_OP_ULDSW: 5972 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5973 regs[rd] = (int32_t) 5974 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5975 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5976 break; 5977 case DIF_OP_ULDUB: 5978 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5979 regs[rd] = 5980 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5981 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5982 break; 5983 case DIF_OP_ULDUH: 5984 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5985 regs[rd] = 5986 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5987 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5988 break; 5989 case DIF_OP_ULDUW: 5990 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5991 regs[rd] = 5992 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5993 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5994 break; 5995 case DIF_OP_ULDX: 5996 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5997 regs[rd] = 5998 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5999 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6000 break; 6001 case DIF_OP_RET: 6002 rval = regs[rd]; 6003 pc = textlen; 6004 break; 6005 case DIF_OP_NOP: 6006 break; 6007 case DIF_OP_SETX: 6008 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6009 break; 6010 case DIF_OP_SETS: 6011 regs[rd] = (uint64_t)(uintptr_t) 6012 (strtab + DIF_INSTR_STRING(instr)); 6013 break; 6014 case DIF_OP_SCMP: { 6015 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6016 uintptr_t s1 = regs[r1]; 6017 uintptr_t s2 = regs[r2]; 6018 size_t lim1, lim2; 6019 6020 if (s1 != 0 && 6021 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6022 break; 6023 if (s2 != 0 && 6024 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6025 break; 6026 6027 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6028 MIN(lim1, lim2)); 6029 6030 cc_n = cc_r < 0; 6031 cc_z = cc_r == 0; 6032 cc_v = cc_c = 0; 6033 break; 6034 } 6035 case DIF_OP_LDGA: 6036 regs[rd] = dtrace_dif_variable(mstate, state, 6037 r1, regs[r2]); 6038 break; 6039 case DIF_OP_LDGS: 6040 id = DIF_INSTR_VAR(instr); 6041 6042 if (id >= DIF_VAR_OTHER_UBASE) { 6043 uintptr_t a; 6044 6045 id -= DIF_VAR_OTHER_UBASE; 6046 svar = vstate->dtvs_globals[id]; 6047 ASSERT(svar != NULL); 6048 v = &svar->dtsv_var; 6049 6050 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6051 regs[rd] = svar->dtsv_data; 6052 break; 6053 } 6054 6055 a = (uintptr_t)svar->dtsv_data; 6056 6057 if (*(uint8_t *)a == UINT8_MAX) { 6058 /* 6059 * If the 0th byte is set to UINT8_MAX 6060 * then this is to be treated as a 6061 * reference to a NULL variable. 6062 */ 6063 regs[rd] = 0; 6064 } else { 6065 regs[rd] = a + sizeof (uint64_t); 6066 } 6067 6068 break; 6069 } 6070 6071 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6072 break; 6073 6074 case DIF_OP_STGA: 6075 dtrace_dif_variable_write(mstate, state, r1, regs[r2], 6076 regs[rd]); 6077 break; 6078 6079 case DIF_OP_STGS: 6080 id = DIF_INSTR_VAR(instr); 6081 6082 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6083 id -= DIF_VAR_OTHER_UBASE; 6084 6085 VERIFY(id < vstate->dtvs_nglobals); 6086 svar = vstate->dtvs_globals[id]; 6087 ASSERT(svar != NULL); 6088 v = &svar->dtsv_var; 6089 6090 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6091 uintptr_t a = (uintptr_t)svar->dtsv_data; 6092 size_t lim; 6093 6094 ASSERT(a != (uintptr_t)NULL); 6095 ASSERT(svar->dtsv_size != 0); 6096 6097 if (regs[rd] == 0) { 6098 *(uint8_t *)a = UINT8_MAX; 6099 break; 6100 } else { 6101 *(uint8_t *)a = 0; 6102 a += sizeof (uint64_t); 6103 } 6104 if (!dtrace_vcanload( 6105 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6106 &lim, mstate, vstate)) 6107 break; 6108 6109 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6110 (void *)a, &v->dtdv_type, lim); 6111 break; 6112 } 6113 6114 svar->dtsv_data = regs[rd]; 6115 break; 6116 6117 case DIF_OP_LDTA: 6118 /* 6119 * There are no DTrace built-in thread-local arrays at 6120 * present. This opcode is saved for future work. 6121 */ 6122 *flags |= CPU_DTRACE_ILLOP; 6123 regs[rd] = 0; 6124 break; 6125 6126 case DIF_OP_LDLS: 6127 id = DIF_INSTR_VAR(instr); 6128 6129 if (id < DIF_VAR_OTHER_UBASE) { 6130 /* 6131 * For now, this has no meaning. 6132 */ 6133 regs[rd] = 0; 6134 break; 6135 } 6136 6137 id -= DIF_VAR_OTHER_UBASE; 6138 6139 ASSERT(id < vstate->dtvs_nlocals); 6140 ASSERT(vstate->dtvs_locals != NULL); 6141 6142 svar = vstate->dtvs_locals[id]; 6143 ASSERT(svar != NULL); 6144 v = &svar->dtsv_var; 6145 6146 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6147 uintptr_t a = (uintptr_t)svar->dtsv_data; 6148 size_t sz = v->dtdv_type.dtdt_size; 6149 6150 sz += sizeof (uint64_t); 6151 ASSERT(svar->dtsv_size == NCPU * sz); 6152 a += CPU->cpu_id * sz; 6153 6154 if (*(uint8_t *)a == UINT8_MAX) { 6155 /* 6156 * If the 0th byte is set to UINT8_MAX 6157 * then this is to be treated as a 6158 * reference to a NULL variable. 6159 */ 6160 regs[rd] = 0; 6161 } else { 6162 regs[rd] = a + sizeof (uint64_t); 6163 } 6164 6165 break; 6166 } 6167 6168 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6169 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6170 regs[rd] = tmp[CPU->cpu_id]; 6171 break; 6172 6173 case DIF_OP_STLS: 6174 id = DIF_INSTR_VAR(instr); 6175 6176 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6177 id -= DIF_VAR_OTHER_UBASE; 6178 VERIFY(id < vstate->dtvs_nlocals); 6179 6180 ASSERT(vstate->dtvs_locals != NULL); 6181 svar = vstate->dtvs_locals[id]; 6182 ASSERT(svar != NULL); 6183 v = &svar->dtsv_var; 6184 6185 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6186 uintptr_t a = (uintptr_t)svar->dtsv_data; 6187 size_t sz = v->dtdv_type.dtdt_size; 6188 size_t lim; 6189 6190 sz += sizeof (uint64_t); 6191 ASSERT(svar->dtsv_size == NCPU * sz); 6192 a += CPU->cpu_id * sz; 6193 6194 if (regs[rd] == 0) { 6195 *(uint8_t *)a = UINT8_MAX; 6196 break; 6197 } else { 6198 *(uint8_t *)a = 0; 6199 a += sizeof (uint64_t); 6200 } 6201 6202 if (!dtrace_vcanload( 6203 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6204 &lim, mstate, vstate)) 6205 break; 6206 6207 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6208 (void *)a, &v->dtdv_type, lim); 6209 break; 6210 } 6211 6212 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6213 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6214 tmp[CPU->cpu_id] = regs[rd]; 6215 break; 6216 6217 case DIF_OP_LDTS: { 6218 dtrace_dynvar_t *dvar; 6219 dtrace_key_t *key; 6220 6221 id = DIF_INSTR_VAR(instr); 6222 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6223 id -= DIF_VAR_OTHER_UBASE; 6224 v = &vstate->dtvs_tlocals[id]; 6225 6226 key = &tupregs[DIF_DTR_NREGS]; 6227 key[0].dttk_value = (uint64_t)id; 6228 key[0].dttk_size = 0; 6229 DTRACE_TLS_THRKEY(key[1].dttk_value); 6230 key[1].dttk_size = 0; 6231 6232 dvar = dtrace_dynvar(dstate, 2, key, 6233 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6234 mstate, vstate); 6235 6236 if (dvar == NULL) { 6237 regs[rd] = 0; 6238 break; 6239 } 6240 6241 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6242 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6243 } else { 6244 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6245 } 6246 6247 break; 6248 } 6249 6250 case DIF_OP_STTS: { 6251 dtrace_dynvar_t *dvar; 6252 dtrace_key_t *key; 6253 6254 id = DIF_INSTR_VAR(instr); 6255 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6256 id -= DIF_VAR_OTHER_UBASE; 6257 VERIFY(id < vstate->dtvs_ntlocals); 6258 6259 key = &tupregs[DIF_DTR_NREGS]; 6260 key[0].dttk_value = (uint64_t)id; 6261 key[0].dttk_size = 0; 6262 DTRACE_TLS_THRKEY(key[1].dttk_value); 6263 key[1].dttk_size = 0; 6264 v = &vstate->dtvs_tlocals[id]; 6265 6266 dvar = dtrace_dynvar(dstate, 2, key, 6267 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6268 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6269 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6270 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6271 6272 /* 6273 * Given that we're storing to thread-local data, 6274 * we need to flush our predicate cache. 6275 */ 6276 curthread->t_predcache = DTRACE_CACHEIDNONE; 6277 6278 if (dvar == NULL) 6279 break; 6280 6281 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6282 size_t lim; 6283 6284 if (!dtrace_vcanload( 6285 (void *)(uintptr_t)regs[rd], 6286 &v->dtdv_type, &lim, mstate, vstate)) 6287 break; 6288 6289 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6290 dvar->dtdv_data, &v->dtdv_type, lim); 6291 } else { 6292 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6293 } 6294 6295 break; 6296 } 6297 6298 case DIF_OP_SRA: 6299 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6300 break; 6301 6302 case DIF_OP_CALL: 6303 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6304 regs, tupregs, ttop, mstate, state); 6305 break; 6306 6307 case DIF_OP_PUSHTR: 6308 if (ttop == DIF_DTR_NREGS) { 6309 *flags |= CPU_DTRACE_TUPOFLOW; 6310 break; 6311 } 6312 6313 if (r1 == DIF_TYPE_STRING) { 6314 /* 6315 * If this is a string type and the size is 0, 6316 * we'll use the system-wide default string 6317 * size. Note that we are _not_ looking at 6318 * the value of the DTRACEOPT_STRSIZE option; 6319 * had this been set, we would expect to have 6320 * a non-zero size value in the "pushtr". 6321 */ 6322 tupregs[ttop].dttk_size = 6323 dtrace_strlen((char *)(uintptr_t)regs[rd], 6324 regs[r2] ? regs[r2] : 6325 dtrace_strsize_default) + 1; 6326 } else { 6327 if (regs[r2] > LONG_MAX) { 6328 *flags |= CPU_DTRACE_ILLOP; 6329 break; 6330 } 6331 6332 tupregs[ttop].dttk_size = regs[r2]; 6333 } 6334 6335 tupregs[ttop++].dttk_value = regs[rd]; 6336 break; 6337 6338 case DIF_OP_PUSHTV: 6339 if (ttop == DIF_DTR_NREGS) { 6340 *flags |= CPU_DTRACE_TUPOFLOW; 6341 break; 6342 } 6343 6344 tupregs[ttop].dttk_value = regs[rd]; 6345 tupregs[ttop++].dttk_size = 0; 6346 break; 6347 6348 case DIF_OP_POPTS: 6349 if (ttop != 0) 6350 ttop--; 6351 break; 6352 6353 case DIF_OP_FLUSHTS: 6354 ttop = 0; 6355 break; 6356 6357 case DIF_OP_LDGAA: 6358 case DIF_OP_LDTAA: { 6359 dtrace_dynvar_t *dvar; 6360 dtrace_key_t *key = tupregs; 6361 uint_t nkeys = ttop; 6362 6363 id = DIF_INSTR_VAR(instr); 6364 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6365 id -= DIF_VAR_OTHER_UBASE; 6366 6367 key[nkeys].dttk_value = (uint64_t)id; 6368 key[nkeys++].dttk_size = 0; 6369 6370 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6371 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6372 key[nkeys++].dttk_size = 0; 6373 VERIFY(id < vstate->dtvs_ntlocals); 6374 v = &vstate->dtvs_tlocals[id]; 6375 } else { 6376 VERIFY(id < vstate->dtvs_nglobals); 6377 v = &vstate->dtvs_globals[id]->dtsv_var; 6378 } 6379 6380 dvar = dtrace_dynvar(dstate, nkeys, key, 6381 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6382 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6383 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6384 6385 if (dvar == NULL) { 6386 regs[rd] = 0; 6387 break; 6388 } 6389 6390 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6391 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6392 } else { 6393 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6394 } 6395 6396 break; 6397 } 6398 6399 case DIF_OP_STGAA: 6400 case DIF_OP_STTAA: { 6401 dtrace_dynvar_t *dvar; 6402 dtrace_key_t *key = tupregs; 6403 uint_t nkeys = ttop; 6404 6405 id = DIF_INSTR_VAR(instr); 6406 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6407 id -= DIF_VAR_OTHER_UBASE; 6408 6409 key[nkeys].dttk_value = (uint64_t)id; 6410 key[nkeys++].dttk_size = 0; 6411 6412 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6413 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6414 key[nkeys++].dttk_size = 0; 6415 VERIFY(id < vstate->dtvs_ntlocals); 6416 v = &vstate->dtvs_tlocals[id]; 6417 } else { 6418 VERIFY(id < vstate->dtvs_nglobals); 6419 v = &vstate->dtvs_globals[id]->dtsv_var; 6420 } 6421 6422 dvar = dtrace_dynvar(dstate, nkeys, key, 6423 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6424 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6425 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6426 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6427 6428 if (dvar == NULL) 6429 break; 6430 6431 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6432 size_t lim; 6433 6434 if (!dtrace_vcanload( 6435 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6436 &lim, mstate, vstate)) 6437 break; 6438 6439 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6440 dvar->dtdv_data, &v->dtdv_type, lim); 6441 } else { 6442 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6443 } 6444 6445 break; 6446 } 6447 6448 case DIF_OP_ALLOCS: { 6449 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6450 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6451 6452 /* 6453 * Rounding up the user allocation size could have 6454 * overflowed large, bogus allocations (like -1ULL) to 6455 * 0. 6456 */ 6457 if (size < regs[r1] || 6458 !DTRACE_INSCRATCH(mstate, size)) { 6459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6460 regs[rd] = 0; 6461 break; 6462 } 6463 6464 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6465 mstate->dtms_scratch_ptr += size; 6466 regs[rd] = ptr; 6467 break; 6468 } 6469 6470 case DIF_OP_COPYS: 6471 if (!dtrace_canstore(regs[rd], regs[r2], 6472 mstate, vstate)) { 6473 *flags |= CPU_DTRACE_BADADDR; 6474 *illval = regs[rd]; 6475 break; 6476 } 6477 6478 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6479 break; 6480 6481 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6482 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6483 break; 6484 6485 case DIF_OP_STB: 6486 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6487 *flags |= CPU_DTRACE_BADADDR; 6488 *illval = regs[rd]; 6489 break; 6490 } 6491 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6492 break; 6493 6494 case DIF_OP_STH: 6495 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6496 *flags |= CPU_DTRACE_BADADDR; 6497 *illval = regs[rd]; 6498 break; 6499 } 6500 if (regs[rd] & 1) { 6501 *flags |= CPU_DTRACE_BADALIGN; 6502 *illval = regs[rd]; 6503 break; 6504 } 6505 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6506 break; 6507 6508 case DIF_OP_STW: 6509 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6510 *flags |= CPU_DTRACE_BADADDR; 6511 *illval = regs[rd]; 6512 break; 6513 } 6514 if (regs[rd] & 3) { 6515 *flags |= CPU_DTRACE_BADALIGN; 6516 *illval = regs[rd]; 6517 break; 6518 } 6519 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6520 break; 6521 6522 case DIF_OP_STX: 6523 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6524 *flags |= CPU_DTRACE_BADADDR; 6525 *illval = regs[rd]; 6526 break; 6527 } 6528 if (regs[rd] & 7) { 6529 *flags |= CPU_DTRACE_BADALIGN; 6530 *illval = regs[rd]; 6531 break; 6532 } 6533 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6534 break; 6535 } 6536 } 6537 6538 if (!(*flags & CPU_DTRACE_FAULT)) 6539 return (rval); 6540 6541 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6542 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6543 6544 return (0); 6545 } 6546 6547 static void 6548 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6549 { 6550 dtrace_probe_t *probe = ecb->dte_probe; 6551 dtrace_provider_t *prov = probe->dtpr_provider; 6552 char c[DTRACE_FULLNAMELEN + 80], *str; 6553 char *msg = "dtrace: breakpoint action at probe "; 6554 char *ecbmsg = " (ecb "; 6555 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6556 uintptr_t val = (uintptr_t)ecb; 6557 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6558 6559 if (dtrace_destructive_disallow) 6560 return; 6561 6562 /* 6563 * It's impossible to be taking action on the NULL probe. 6564 */ 6565 ASSERT(probe != NULL); 6566 6567 /* 6568 * This is a poor man's (destitute man's?) sprintf(): we want to 6569 * print the provider name, module name, function name and name of 6570 * the probe, along with the hex address of the ECB with the breakpoint 6571 * action -- all of which we must place in the character buffer by 6572 * hand. 6573 */ 6574 while (*msg != '\0') 6575 c[i++] = *msg++; 6576 6577 for (str = prov->dtpv_name; *str != '\0'; str++) 6578 c[i++] = *str; 6579 c[i++] = ':'; 6580 6581 for (str = probe->dtpr_mod; *str != '\0'; str++) 6582 c[i++] = *str; 6583 c[i++] = ':'; 6584 6585 for (str = probe->dtpr_func; *str != '\0'; str++) 6586 c[i++] = *str; 6587 c[i++] = ':'; 6588 6589 for (str = probe->dtpr_name; *str != '\0'; str++) 6590 c[i++] = *str; 6591 6592 while (*ecbmsg != '\0') 6593 c[i++] = *ecbmsg++; 6594 6595 while (shift >= 0) { 6596 mask = (uintptr_t)0xf << shift; 6597 6598 if (val >= ((uintptr_t)1 << shift)) 6599 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6600 shift -= 4; 6601 } 6602 6603 c[i++] = ')'; 6604 c[i] = '\0'; 6605 6606 debug_enter(c); 6607 } 6608 6609 static void 6610 dtrace_action_panic(dtrace_ecb_t *ecb) 6611 { 6612 dtrace_probe_t *probe = ecb->dte_probe; 6613 6614 /* 6615 * It's impossible to be taking action on the NULL probe. 6616 */ 6617 ASSERT(probe != NULL); 6618 6619 if (dtrace_destructive_disallow) 6620 return; 6621 6622 if (dtrace_panicked != NULL) 6623 return; 6624 6625 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6626 return; 6627 6628 /* 6629 * We won the right to panic. (We want to be sure that only one 6630 * thread calls panic() from dtrace_probe(), and that panic() is 6631 * called exactly once.) 6632 */ 6633 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6634 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6635 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6636 } 6637 6638 static void 6639 dtrace_action_raise(uint64_t sig) 6640 { 6641 if (dtrace_destructive_disallow) 6642 return; 6643 6644 if (sig >= NSIG) { 6645 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6646 return; 6647 } 6648 6649 /* 6650 * raise() has a queue depth of 1 -- we ignore all subsequent 6651 * invocations of the raise() action. 6652 */ 6653 if (curthread->t_dtrace_sig == 0) 6654 curthread->t_dtrace_sig = (uint8_t)sig; 6655 6656 curthread->t_sig_check = 1; 6657 aston(curthread); 6658 } 6659 6660 static void 6661 dtrace_action_stop(void) 6662 { 6663 if (dtrace_destructive_disallow) 6664 return; 6665 6666 if (!curthread->t_dtrace_stop) { 6667 curthread->t_dtrace_stop = 1; 6668 curthread->t_sig_check = 1; 6669 aston(curthread); 6670 } 6671 } 6672 6673 static void 6674 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6675 { 6676 hrtime_t now; 6677 volatile uint16_t *flags; 6678 cpu_t *cpu = CPU; 6679 6680 if (dtrace_destructive_disallow) 6681 return; 6682 6683 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6684 6685 now = dtrace_gethrtime(); 6686 6687 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6688 /* 6689 * We need to advance the mark to the current time. 6690 */ 6691 cpu->cpu_dtrace_chillmark = now; 6692 cpu->cpu_dtrace_chilled = 0; 6693 } 6694 6695 /* 6696 * Now check to see if the requested chill time would take us over 6697 * the maximum amount of time allowed in the chill interval. (Or 6698 * worse, if the calculation itself induces overflow.) 6699 */ 6700 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6701 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6702 *flags |= CPU_DTRACE_ILLOP; 6703 return; 6704 } 6705 6706 while (dtrace_gethrtime() - now < val) 6707 continue; 6708 6709 /* 6710 * Normally, we assure that the value of the variable "timestamp" does 6711 * not change within an ECB. The presence of chill() represents an 6712 * exception to this rule, however. 6713 */ 6714 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6715 cpu->cpu_dtrace_chilled += val; 6716 } 6717 6718 static void 6719 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6720 uint64_t *buf, uint64_t arg) 6721 { 6722 int nframes = DTRACE_USTACK_NFRAMES(arg); 6723 int strsize = DTRACE_USTACK_STRSIZE(arg); 6724 uint64_t *pcs = &buf[1], *fps; 6725 char *str = (char *)&pcs[nframes]; 6726 int size, offs = 0, i, j; 6727 size_t rem; 6728 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6729 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6730 char *sym; 6731 6732 /* 6733 * Should be taking a faster path if string space has not been 6734 * allocated. 6735 */ 6736 ASSERT(strsize != 0); 6737 6738 /* 6739 * We will first allocate some temporary space for the frame pointers. 6740 */ 6741 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6742 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6743 (nframes * sizeof (uint64_t)); 6744 6745 if (!DTRACE_INSCRATCH(mstate, size)) { 6746 /* 6747 * Not enough room for our frame pointers -- need to indicate 6748 * that we ran out of scratch space. 6749 */ 6750 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6751 return; 6752 } 6753 6754 mstate->dtms_scratch_ptr += size; 6755 saved = mstate->dtms_scratch_ptr; 6756 6757 /* 6758 * Now get a stack with both program counters and frame pointers. 6759 */ 6760 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6761 dtrace_getufpstack(buf, fps, nframes + 1); 6762 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6763 6764 /* 6765 * If that faulted, we're cooked. 6766 */ 6767 if (*flags & CPU_DTRACE_FAULT) 6768 goto out; 6769 6770 /* 6771 * Now we want to walk up the stack, calling the USTACK helper. For 6772 * each iteration, we restore the scratch pointer. 6773 */ 6774 for (i = 0; i < nframes; i++) { 6775 mstate->dtms_scratch_ptr = saved; 6776 6777 if (offs >= strsize) 6778 break; 6779 6780 sym = (char *)(uintptr_t)dtrace_helper( 6781 DTRACE_HELPER_ACTION_USTACK, 6782 mstate, state, pcs[i], fps[i]); 6783 6784 /* 6785 * If we faulted while running the helper, we're going to 6786 * clear the fault and null out the corresponding string. 6787 */ 6788 if (*flags & CPU_DTRACE_FAULT) { 6789 *flags &= ~CPU_DTRACE_FAULT; 6790 str[offs++] = '\0'; 6791 continue; 6792 } 6793 6794 if (sym == NULL) { 6795 str[offs++] = '\0'; 6796 continue; 6797 } 6798 6799 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6800 &(state->dts_vstate))) { 6801 str[offs++] = '\0'; 6802 continue; 6803 } 6804 6805 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6806 6807 /* 6808 * Now copy in the string that the helper returned to us. 6809 */ 6810 for (j = 0; offs + j < strsize && j < rem; j++) { 6811 if ((str[offs + j] = sym[j]) == '\0') 6812 break; 6813 } 6814 6815 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6816 6817 offs += j + 1; 6818 } 6819 6820 if (offs >= strsize) { 6821 /* 6822 * If we didn't have room for all of the strings, we don't 6823 * abort processing -- this needn't be a fatal error -- but we 6824 * still want to increment a counter (dts_stkstroverflows) to 6825 * allow this condition to be warned about. (If this is from 6826 * a jstack() action, it is easily tuned via jstackstrsize.) 6827 */ 6828 dtrace_error(&state->dts_stkstroverflows); 6829 } 6830 6831 while (offs < strsize) 6832 str[offs++] = '\0'; 6833 6834 out: 6835 mstate->dtms_scratch_ptr = old; 6836 } 6837 6838 static void 6839 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6840 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6841 { 6842 volatile uint16_t *flags; 6843 uint64_t val = *valp; 6844 size_t valoffs = *valoffsp; 6845 6846 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6847 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6848 6849 /* 6850 * If this is a string, we're going to only load until we find the zero 6851 * byte -- after which we'll store zero bytes. 6852 */ 6853 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6854 char c = '\0' + 1; 6855 size_t s; 6856 6857 for (s = 0; s < size; s++) { 6858 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6859 c = dtrace_load8(val++); 6860 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6861 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6862 c = dtrace_fuword8((void *)(uintptr_t)val++); 6863 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6864 if (*flags & CPU_DTRACE_FAULT) 6865 break; 6866 } 6867 6868 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6869 6870 if (c == '\0' && intuple) 6871 break; 6872 } 6873 } else { 6874 uint8_t c; 6875 while (valoffs < end) { 6876 if (dtkind == DIF_TF_BYREF) { 6877 c = dtrace_load8(val++); 6878 } else if (dtkind == DIF_TF_BYUREF) { 6879 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6880 c = dtrace_fuword8((void *)(uintptr_t)val++); 6881 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6882 if (*flags & CPU_DTRACE_FAULT) 6883 break; 6884 } 6885 6886 DTRACE_STORE(uint8_t, tomax, 6887 valoffs++, c); 6888 } 6889 } 6890 6891 *valp = val; 6892 *valoffsp = valoffs; 6893 } 6894 6895 /* 6896 * If you're looking for the epicenter of DTrace, you just found it. This 6897 * is the function called by the provider to fire a probe -- from which all 6898 * subsequent probe-context DTrace activity emanates. 6899 */ 6900 void 6901 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6902 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6903 { 6904 processorid_t cpuid; 6905 dtrace_icookie_t cookie; 6906 dtrace_probe_t *probe; 6907 dtrace_mstate_t mstate; 6908 dtrace_ecb_t *ecb; 6909 dtrace_action_t *act; 6910 intptr_t offs; 6911 size_t size; 6912 int vtime, onintr; 6913 volatile uint16_t *flags; 6914 hrtime_t now, end; 6915 6916 /* 6917 * Kick out immediately if this CPU is still being born (in which case 6918 * curthread will be set to -1) or the current thread can't allow 6919 * probes in its current context. 6920 */ 6921 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6922 return; 6923 6924 cookie = dtrace_interrupt_disable(); 6925 6926 /* 6927 * Also refuse to process any probe firings that might happen on a 6928 * disabled CPU. 6929 */ 6930 if (CPU->cpu_flags & CPU_DISABLED) { 6931 dtrace_interrupt_enable(cookie); 6932 return; 6933 } 6934 6935 probe = dtrace_probes[id - 1]; 6936 cpuid = CPU->cpu_id; 6937 onintr = CPU_ON_INTR(CPU); 6938 6939 CPU->cpu_dtrace_probes++; 6940 6941 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6942 probe->dtpr_predcache == curthread->t_predcache) { 6943 /* 6944 * We have hit in the predicate cache; we know that 6945 * this predicate would evaluate to be false. 6946 */ 6947 dtrace_interrupt_enable(cookie); 6948 return; 6949 } 6950 6951 if (panic_quiesce) { 6952 /* 6953 * We don't trace anything if we're panicking. 6954 */ 6955 dtrace_interrupt_enable(cookie); 6956 return; 6957 } 6958 6959 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6960 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6961 vtime = dtrace_vtime_references != 0; 6962 6963 if (vtime && curthread->t_dtrace_start) 6964 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6965 6966 mstate.dtms_difo = NULL; 6967 mstate.dtms_probe = probe; 6968 mstate.dtms_strtok = 0; 6969 mstate.dtms_arg[0] = arg0; 6970 mstate.dtms_arg[1] = arg1; 6971 mstate.dtms_arg[2] = arg2; 6972 mstate.dtms_arg[3] = arg3; 6973 mstate.dtms_arg[4] = arg4; 6974 6975 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6976 6977 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6978 dtrace_predicate_t *pred = ecb->dte_predicate; 6979 dtrace_state_t *state = ecb->dte_state; 6980 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6981 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6982 dtrace_vstate_t *vstate = &state->dts_vstate; 6983 dtrace_provider_t *prov = probe->dtpr_provider; 6984 uint64_t tracememsize = 0; 6985 int committed = 0; 6986 caddr_t tomax; 6987 6988 /* 6989 * A little subtlety with the following (seemingly innocuous) 6990 * declaration of the automatic 'val': by looking at the 6991 * code, you might think that it could be declared in the 6992 * action processing loop, below. (That is, it's only used in 6993 * the action processing loop.) However, it must be declared 6994 * out of that scope because in the case of DIF expression 6995 * arguments to aggregating actions, one iteration of the 6996 * action loop will use the last iteration's value. 6997 */ 6998 #ifdef lint 6999 uint64_t val = 0; 7000 #else 7001 uint64_t val; 7002 #endif 7003 7004 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7005 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 7006 mstate.dtms_getf = NULL; 7007 7008 *flags &= ~CPU_DTRACE_ERROR; 7009 7010 if (prov == dtrace_provider) { 7011 /* 7012 * If dtrace itself is the provider of this probe, 7013 * we're only going to continue processing the ECB if 7014 * arg0 (the dtrace_state_t) is equal to the ECB's 7015 * creating state. (This prevents disjoint consumers 7016 * from seeing one another's metaprobes.) 7017 */ 7018 if (arg0 != (uint64_t)(uintptr_t)state) 7019 continue; 7020 } 7021 7022 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7023 /* 7024 * We're not currently active. If our provider isn't 7025 * the dtrace pseudo provider, we're not interested. 7026 */ 7027 if (prov != dtrace_provider) 7028 continue; 7029 7030 /* 7031 * Now we must further check if we are in the BEGIN 7032 * probe. If we are, we will only continue processing 7033 * if we're still in WARMUP -- if one BEGIN enabling 7034 * has invoked the exit() action, we don't want to 7035 * evaluate subsequent BEGIN enablings. 7036 */ 7037 if (probe->dtpr_id == dtrace_probeid_begin && 7038 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7039 ASSERT(state->dts_activity == 7040 DTRACE_ACTIVITY_DRAINING); 7041 continue; 7042 } 7043 } 7044 7045 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 7046 continue; 7047 7048 if (now - state->dts_alive > dtrace_deadman_timeout) { 7049 /* 7050 * We seem to be dead. Unless we (a) have kernel 7051 * destructive permissions (b) have explicitly enabled 7052 * destructive actions and (c) destructive actions have 7053 * not been disabled, we're going to transition into 7054 * the KILLED state, from which no further processing 7055 * on this state will be performed. 7056 */ 7057 if (!dtrace_priv_kernel_destructive(state) || 7058 !state->dts_cred.dcr_destructive || 7059 dtrace_destructive_disallow) { 7060 void *activity = &state->dts_activity; 7061 dtrace_activity_t current; 7062 7063 do { 7064 current = state->dts_activity; 7065 } while (dtrace_cas32(activity, current, 7066 DTRACE_ACTIVITY_KILLED) != current); 7067 7068 continue; 7069 } 7070 } 7071 7072 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7073 ecb->dte_alignment, state, &mstate)) < 0) 7074 continue; 7075 7076 tomax = buf->dtb_tomax; 7077 ASSERT(tomax != NULL); 7078 7079 if (ecb->dte_size != 0) { 7080 dtrace_rechdr_t dtrh; 7081 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7082 mstate.dtms_timestamp = dtrace_gethrtime(); 7083 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7084 } 7085 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7086 dtrh.dtrh_epid = ecb->dte_epid; 7087 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7088 mstate.dtms_timestamp); 7089 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7090 } 7091 7092 mstate.dtms_epid = ecb->dte_epid; 7093 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7094 7095 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7096 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7097 7098 if (pred != NULL) { 7099 dtrace_difo_t *dp = pred->dtp_difo; 7100 int rval; 7101 7102 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7103 7104 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7105 dtrace_cacheid_t cid = probe->dtpr_predcache; 7106 7107 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7108 /* 7109 * Update the predicate cache... 7110 */ 7111 ASSERT(cid == pred->dtp_cacheid); 7112 curthread->t_predcache = cid; 7113 } 7114 7115 continue; 7116 } 7117 } 7118 7119 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7120 act != NULL; act = act->dta_next) { 7121 size_t valoffs; 7122 dtrace_difo_t *dp; 7123 dtrace_recdesc_t *rec = &act->dta_rec; 7124 7125 size = rec->dtrd_size; 7126 valoffs = offs + rec->dtrd_offset; 7127 7128 if (DTRACEACT_ISAGG(act->dta_kind)) { 7129 uint64_t v = 0xbad; 7130 dtrace_aggregation_t *agg; 7131 7132 agg = (dtrace_aggregation_t *)act; 7133 7134 if ((dp = act->dta_difo) != NULL) 7135 v = dtrace_dif_emulate(dp, 7136 &mstate, vstate, state); 7137 7138 if (*flags & CPU_DTRACE_ERROR) 7139 continue; 7140 7141 /* 7142 * Note that we always pass the expression 7143 * value from the previous iteration of the 7144 * action loop. This value will only be used 7145 * if there is an expression argument to the 7146 * aggregating action, denoted by the 7147 * dtag_hasarg field. 7148 */ 7149 dtrace_aggregate(agg, buf, 7150 offs, aggbuf, v, val); 7151 continue; 7152 } 7153 7154 switch (act->dta_kind) { 7155 case DTRACEACT_STOP: 7156 if (dtrace_priv_proc_destructive(state, 7157 &mstate)) 7158 dtrace_action_stop(); 7159 continue; 7160 7161 case DTRACEACT_BREAKPOINT: 7162 if (dtrace_priv_kernel_destructive(state)) 7163 dtrace_action_breakpoint(ecb); 7164 continue; 7165 7166 case DTRACEACT_PANIC: 7167 if (dtrace_priv_kernel_destructive(state)) 7168 dtrace_action_panic(ecb); 7169 continue; 7170 7171 case DTRACEACT_STACK: 7172 if (!dtrace_priv_kernel(state)) 7173 continue; 7174 7175 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7176 size / sizeof (pc_t), probe->dtpr_aframes, 7177 DTRACE_ANCHORED(probe) ? NULL : 7178 (uint32_t *)arg0); 7179 7180 continue; 7181 7182 case DTRACEACT_JSTACK: 7183 case DTRACEACT_USTACK: 7184 if (!dtrace_priv_proc(state, &mstate)) 7185 continue; 7186 7187 /* 7188 * See comment in DIF_VAR_PID. 7189 */ 7190 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7191 CPU_ON_INTR(CPU)) { 7192 int depth = DTRACE_USTACK_NFRAMES( 7193 rec->dtrd_arg) + 1; 7194 7195 dtrace_bzero((void *)(tomax + valoffs), 7196 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7197 + depth * sizeof (uint64_t)); 7198 7199 continue; 7200 } 7201 7202 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7203 curproc->p_dtrace_helpers != NULL) { 7204 /* 7205 * This is the slow path -- we have 7206 * allocated string space, and we're 7207 * getting the stack of a process that 7208 * has helpers. Call into a separate 7209 * routine to perform this processing. 7210 */ 7211 dtrace_action_ustack(&mstate, state, 7212 (uint64_t *)(tomax + valoffs), 7213 rec->dtrd_arg); 7214 continue; 7215 } 7216 7217 /* 7218 * Clear the string space, since there's no 7219 * helper to do it for us. 7220 */ 7221 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7222 int depth = DTRACE_USTACK_NFRAMES( 7223 rec->dtrd_arg); 7224 size_t strsize = DTRACE_USTACK_STRSIZE( 7225 rec->dtrd_arg); 7226 uint64_t *buf = (uint64_t *)(tomax + 7227 valoffs); 7228 void *strspace = &buf[depth + 1]; 7229 7230 dtrace_bzero(strspace, 7231 MIN(depth, strsize)); 7232 } 7233 7234 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7235 dtrace_getupcstack((uint64_t *) 7236 (tomax + valoffs), 7237 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7238 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7239 continue; 7240 7241 default: 7242 break; 7243 } 7244 7245 dp = act->dta_difo; 7246 ASSERT(dp != NULL); 7247 7248 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7249 7250 if (*flags & CPU_DTRACE_ERROR) 7251 continue; 7252 7253 switch (act->dta_kind) { 7254 case DTRACEACT_SPECULATE: { 7255 dtrace_rechdr_t *dtrh; 7256 7257 ASSERT(buf == &state->dts_buffer[cpuid]); 7258 buf = dtrace_speculation_buffer(state, 7259 cpuid, val); 7260 7261 if (buf == NULL) { 7262 *flags |= CPU_DTRACE_DROP; 7263 continue; 7264 } 7265 7266 offs = dtrace_buffer_reserve(buf, 7267 ecb->dte_needed, ecb->dte_alignment, 7268 state, NULL); 7269 7270 if (offs < 0) { 7271 *flags |= CPU_DTRACE_DROP; 7272 continue; 7273 } 7274 7275 tomax = buf->dtb_tomax; 7276 ASSERT(tomax != NULL); 7277 7278 if (ecb->dte_size == 0) 7279 continue; 7280 7281 ASSERT3U(ecb->dte_size, >=, 7282 sizeof (dtrace_rechdr_t)); 7283 dtrh = ((void *)(tomax + offs)); 7284 dtrh->dtrh_epid = ecb->dte_epid; 7285 /* 7286 * When the speculation is committed, all of 7287 * the records in the speculative buffer will 7288 * have their timestamps set to the commit 7289 * time. Until then, it is set to a sentinel 7290 * value, for debugability. 7291 */ 7292 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7293 continue; 7294 } 7295 7296 case DTRACEACT_CHILL: 7297 if (dtrace_priv_kernel_destructive(state)) 7298 dtrace_action_chill(&mstate, val); 7299 continue; 7300 7301 case DTRACEACT_RAISE: 7302 if (dtrace_priv_proc_destructive(state, 7303 &mstate)) 7304 dtrace_action_raise(val); 7305 continue; 7306 7307 case DTRACEACT_COMMIT: 7308 ASSERT(!committed); 7309 7310 /* 7311 * We need to commit our buffer state. 7312 */ 7313 if (ecb->dte_size) 7314 buf->dtb_offset = offs + ecb->dte_size; 7315 buf = &state->dts_buffer[cpuid]; 7316 dtrace_speculation_commit(state, cpuid, val); 7317 committed = 1; 7318 continue; 7319 7320 case DTRACEACT_DISCARD: 7321 dtrace_speculation_discard(state, cpuid, val); 7322 continue; 7323 7324 case DTRACEACT_DIFEXPR: 7325 case DTRACEACT_LIBACT: 7326 case DTRACEACT_PRINTF: 7327 case DTRACEACT_PRINTA: 7328 case DTRACEACT_SYSTEM: 7329 case DTRACEACT_FREOPEN: 7330 case DTRACEACT_TRACEMEM: 7331 break; 7332 7333 case DTRACEACT_TRACEMEM_DYNSIZE: 7334 tracememsize = val; 7335 break; 7336 7337 case DTRACEACT_SYM: 7338 case DTRACEACT_MOD: 7339 if (!dtrace_priv_kernel(state)) 7340 continue; 7341 break; 7342 7343 case DTRACEACT_USYM: 7344 case DTRACEACT_UMOD: 7345 case DTRACEACT_UADDR: { 7346 struct pid *pid = curthread->t_procp->p_pidp; 7347 7348 if (!dtrace_priv_proc(state, &mstate)) 7349 continue; 7350 7351 DTRACE_STORE(uint64_t, tomax, 7352 valoffs, (uint64_t)pid->pid_id); 7353 DTRACE_STORE(uint64_t, tomax, 7354 valoffs + sizeof (uint64_t), val); 7355 7356 continue; 7357 } 7358 7359 case DTRACEACT_EXIT: { 7360 /* 7361 * For the exit action, we are going to attempt 7362 * to atomically set our activity to be 7363 * draining. If this fails (either because 7364 * another CPU has beat us to the exit action, 7365 * or because our current activity is something 7366 * other than ACTIVE or WARMUP), we will 7367 * continue. This assures that the exit action 7368 * can be successfully recorded at most once 7369 * when we're in the ACTIVE state. If we're 7370 * encountering the exit() action while in 7371 * COOLDOWN, however, we want to honor the new 7372 * status code. (We know that we're the only 7373 * thread in COOLDOWN, so there is no race.) 7374 */ 7375 void *activity = &state->dts_activity; 7376 dtrace_activity_t current = state->dts_activity; 7377 7378 if (current == DTRACE_ACTIVITY_COOLDOWN) 7379 break; 7380 7381 if (current != DTRACE_ACTIVITY_WARMUP) 7382 current = DTRACE_ACTIVITY_ACTIVE; 7383 7384 if (dtrace_cas32(activity, current, 7385 DTRACE_ACTIVITY_DRAINING) != current) { 7386 *flags |= CPU_DTRACE_DROP; 7387 continue; 7388 } 7389 7390 break; 7391 } 7392 7393 default: 7394 ASSERT(0); 7395 } 7396 7397 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7398 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7399 uintptr_t end = valoffs + size; 7400 7401 if (tracememsize != 0 && 7402 valoffs + tracememsize < end) { 7403 end = valoffs + tracememsize; 7404 tracememsize = 0; 7405 } 7406 7407 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7408 !dtrace_vcanload((void *)(uintptr_t)val, 7409 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7410 continue; 7411 7412 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7413 &val, end, act->dta_intuple, 7414 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7415 DIF_TF_BYREF: DIF_TF_BYUREF); 7416 continue; 7417 } 7418 7419 switch (size) { 7420 case 0: 7421 break; 7422 7423 case sizeof (uint8_t): 7424 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7425 break; 7426 case sizeof (uint16_t): 7427 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7428 break; 7429 case sizeof (uint32_t): 7430 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7431 break; 7432 case sizeof (uint64_t): 7433 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7434 break; 7435 default: 7436 /* 7437 * Any other size should have been returned by 7438 * reference, not by value. 7439 */ 7440 ASSERT(0); 7441 break; 7442 } 7443 } 7444 7445 if (*flags & CPU_DTRACE_DROP) 7446 continue; 7447 7448 if (*flags & CPU_DTRACE_FAULT) { 7449 int ndx; 7450 dtrace_action_t *err; 7451 7452 buf->dtb_errors++; 7453 7454 if (probe->dtpr_id == dtrace_probeid_error) { 7455 /* 7456 * There's nothing we can do -- we had an 7457 * error on the error probe. We bump an 7458 * error counter to at least indicate that 7459 * this condition happened. 7460 */ 7461 dtrace_error(&state->dts_dblerrors); 7462 continue; 7463 } 7464 7465 if (vtime) { 7466 /* 7467 * Before recursing on dtrace_probe(), we 7468 * need to explicitly clear out our start 7469 * time to prevent it from being accumulated 7470 * into t_dtrace_vtime. 7471 */ 7472 curthread->t_dtrace_start = 0; 7473 } 7474 7475 /* 7476 * Iterate over the actions to figure out which action 7477 * we were processing when we experienced the error. 7478 * Note that act points _past_ the faulting action; if 7479 * act is ecb->dte_action, the fault was in the 7480 * predicate, if it's ecb->dte_action->dta_next it's 7481 * in action #1, and so on. 7482 */ 7483 for (err = ecb->dte_action, ndx = 0; 7484 err != act; err = err->dta_next, ndx++) 7485 continue; 7486 7487 dtrace_probe_error(state, ecb->dte_epid, ndx, 7488 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7489 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7490 cpu_core[cpuid].cpuc_dtrace_illval); 7491 7492 continue; 7493 } 7494 7495 if (!committed) 7496 buf->dtb_offset = offs + ecb->dte_size; 7497 } 7498 7499 end = dtrace_gethrtime(); 7500 if (vtime) 7501 curthread->t_dtrace_start = end; 7502 7503 CPU->cpu_dtrace_nsec += end - now; 7504 7505 dtrace_interrupt_enable(cookie); 7506 } 7507 7508 /* 7509 * DTrace Probe Hashing Functions 7510 * 7511 * The functions in this section (and indeed, the functions in remaining 7512 * sections) are not _called_ from probe context. (Any exceptions to this are 7513 * marked with a "Note:".) Rather, they are called from elsewhere in the 7514 * DTrace framework to look-up probes in, add probes to and remove probes from 7515 * the DTrace probe hashes. (Each probe is hashed by each element of the 7516 * probe tuple -- allowing for fast lookups, regardless of what was 7517 * specified.) 7518 */ 7519 static uint_t 7520 dtrace_hash_str(char *p) 7521 { 7522 unsigned int g; 7523 uint_t hval = 0; 7524 7525 while (*p) { 7526 hval = (hval << 4) + *p++; 7527 if ((g = (hval & 0xf0000000)) != 0) 7528 hval ^= g >> 24; 7529 hval &= ~g; 7530 } 7531 return (hval); 7532 } 7533 7534 static dtrace_hash_t * 7535 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7536 { 7537 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7538 7539 hash->dth_stroffs = stroffs; 7540 hash->dth_nextoffs = nextoffs; 7541 hash->dth_prevoffs = prevoffs; 7542 7543 hash->dth_size = 1; 7544 hash->dth_mask = hash->dth_size - 1; 7545 7546 hash->dth_tab = kmem_zalloc(hash->dth_size * 7547 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7548 7549 return (hash); 7550 } 7551 7552 static void 7553 dtrace_hash_destroy(dtrace_hash_t *hash) 7554 { 7555 #ifdef DEBUG 7556 int i; 7557 7558 for (i = 0; i < hash->dth_size; i++) 7559 ASSERT(hash->dth_tab[i] == NULL); 7560 #endif 7561 7562 kmem_free(hash->dth_tab, 7563 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7564 kmem_free(hash, sizeof (dtrace_hash_t)); 7565 } 7566 7567 static void 7568 dtrace_hash_resize(dtrace_hash_t *hash) 7569 { 7570 int size = hash->dth_size, i, ndx; 7571 int new_size = hash->dth_size << 1; 7572 int new_mask = new_size - 1; 7573 dtrace_hashbucket_t **new_tab, *bucket, *next; 7574 7575 ASSERT((new_size & new_mask) == 0); 7576 7577 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7578 7579 for (i = 0; i < size; i++) { 7580 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7581 dtrace_probe_t *probe = bucket->dthb_chain; 7582 7583 ASSERT(probe != NULL); 7584 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7585 7586 next = bucket->dthb_next; 7587 bucket->dthb_next = new_tab[ndx]; 7588 new_tab[ndx] = bucket; 7589 } 7590 } 7591 7592 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7593 hash->dth_tab = new_tab; 7594 hash->dth_size = new_size; 7595 hash->dth_mask = new_mask; 7596 } 7597 7598 static void 7599 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7600 { 7601 int hashval = DTRACE_HASHSTR(hash, new); 7602 int ndx = hashval & hash->dth_mask; 7603 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7604 dtrace_probe_t **nextp, **prevp; 7605 7606 for (; bucket != NULL; bucket = bucket->dthb_next) { 7607 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7608 goto add; 7609 } 7610 7611 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7612 dtrace_hash_resize(hash); 7613 dtrace_hash_add(hash, new); 7614 return; 7615 } 7616 7617 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7618 bucket->dthb_next = hash->dth_tab[ndx]; 7619 hash->dth_tab[ndx] = bucket; 7620 hash->dth_nbuckets++; 7621 7622 add: 7623 nextp = DTRACE_HASHNEXT(hash, new); 7624 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7625 *nextp = bucket->dthb_chain; 7626 7627 if (bucket->dthb_chain != NULL) { 7628 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7629 ASSERT(*prevp == NULL); 7630 *prevp = new; 7631 } 7632 7633 bucket->dthb_chain = new; 7634 bucket->dthb_len++; 7635 } 7636 7637 static dtrace_probe_t * 7638 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7639 { 7640 int hashval = DTRACE_HASHSTR(hash, template); 7641 int ndx = hashval & hash->dth_mask; 7642 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7643 7644 for (; bucket != NULL; bucket = bucket->dthb_next) { 7645 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7646 return (bucket->dthb_chain); 7647 } 7648 7649 return (NULL); 7650 } 7651 7652 static int 7653 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7654 { 7655 int hashval = DTRACE_HASHSTR(hash, template); 7656 int ndx = hashval & hash->dth_mask; 7657 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7658 7659 for (; bucket != NULL; bucket = bucket->dthb_next) { 7660 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7661 return (bucket->dthb_len); 7662 } 7663 7664 return (0); 7665 } 7666 7667 static void 7668 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7669 { 7670 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7671 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7672 7673 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7674 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7675 7676 /* 7677 * Find the bucket that we're removing this probe from. 7678 */ 7679 for (; bucket != NULL; bucket = bucket->dthb_next) { 7680 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7681 break; 7682 } 7683 7684 ASSERT(bucket != NULL); 7685 7686 if (*prevp == NULL) { 7687 if (*nextp == NULL) { 7688 /* 7689 * The removed probe was the only probe on this 7690 * bucket; we need to remove the bucket. 7691 */ 7692 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7693 7694 ASSERT(bucket->dthb_chain == probe); 7695 ASSERT(b != NULL); 7696 7697 if (b == bucket) { 7698 hash->dth_tab[ndx] = bucket->dthb_next; 7699 } else { 7700 while (b->dthb_next != bucket) 7701 b = b->dthb_next; 7702 b->dthb_next = bucket->dthb_next; 7703 } 7704 7705 ASSERT(hash->dth_nbuckets > 0); 7706 hash->dth_nbuckets--; 7707 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7708 return; 7709 } 7710 7711 bucket->dthb_chain = *nextp; 7712 } else { 7713 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7714 } 7715 7716 if (*nextp != NULL) 7717 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7718 } 7719 7720 /* 7721 * DTrace Utility Functions 7722 * 7723 * These are random utility functions that are _not_ called from probe context. 7724 */ 7725 static int 7726 dtrace_badattr(const dtrace_attribute_t *a) 7727 { 7728 return (a->dtat_name > DTRACE_STABILITY_MAX || 7729 a->dtat_data > DTRACE_STABILITY_MAX || 7730 a->dtat_class > DTRACE_CLASS_MAX); 7731 } 7732 7733 /* 7734 * Return a duplicate copy of a string. If the specified string is NULL, 7735 * this function returns a zero-length string. 7736 */ 7737 static char * 7738 dtrace_strdup(const char *str) 7739 { 7740 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7741 7742 if (str != NULL) 7743 (void) strcpy(new, str); 7744 7745 return (new); 7746 } 7747 7748 #define DTRACE_ISALPHA(c) \ 7749 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7750 7751 static int 7752 dtrace_badname(const char *s) 7753 { 7754 char c; 7755 7756 if (s == NULL || (c = *s++) == '\0') 7757 return (0); 7758 7759 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7760 return (1); 7761 7762 while ((c = *s++) != '\0') { 7763 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7764 c != '-' && c != '_' && c != '.' && c != '`') 7765 return (1); 7766 } 7767 7768 return (0); 7769 } 7770 7771 static void 7772 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7773 { 7774 uint32_t priv; 7775 7776 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7777 /* 7778 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7779 */ 7780 priv = DTRACE_PRIV_ALL; 7781 } else { 7782 *uidp = crgetuid(cr); 7783 *zoneidp = crgetzoneid(cr); 7784 7785 priv = 0; 7786 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7787 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7788 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7789 priv |= DTRACE_PRIV_USER; 7790 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7791 priv |= DTRACE_PRIV_PROC; 7792 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7793 priv |= DTRACE_PRIV_OWNER; 7794 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7795 priv |= DTRACE_PRIV_ZONEOWNER; 7796 } 7797 7798 *privp = priv; 7799 } 7800 7801 #ifdef DTRACE_ERRDEBUG 7802 static void 7803 dtrace_errdebug(const char *str) 7804 { 7805 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7806 int occupied = 0; 7807 7808 mutex_enter(&dtrace_errlock); 7809 dtrace_errlast = str; 7810 dtrace_errthread = curthread; 7811 7812 while (occupied++ < DTRACE_ERRHASHSZ) { 7813 if (dtrace_errhash[hval].dter_msg == str) { 7814 dtrace_errhash[hval].dter_count++; 7815 goto out; 7816 } 7817 7818 if (dtrace_errhash[hval].dter_msg != NULL) { 7819 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7820 continue; 7821 } 7822 7823 dtrace_errhash[hval].dter_msg = str; 7824 dtrace_errhash[hval].dter_count = 1; 7825 goto out; 7826 } 7827 7828 panic("dtrace: undersized error hash"); 7829 out: 7830 mutex_exit(&dtrace_errlock); 7831 } 7832 #endif 7833 7834 /* 7835 * DTrace Matching Functions 7836 * 7837 * These functions are used to match groups of probes, given some elements of 7838 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7839 */ 7840 static int 7841 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7842 zoneid_t zoneid) 7843 { 7844 if (priv != DTRACE_PRIV_ALL) { 7845 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7846 uint32_t match = priv & ppriv; 7847 7848 /* 7849 * No PRIV_DTRACE_* privileges... 7850 */ 7851 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7852 DTRACE_PRIV_KERNEL)) == 0) 7853 return (0); 7854 7855 /* 7856 * No matching bits, but there were bits to match... 7857 */ 7858 if (match == 0 && ppriv != 0) 7859 return (0); 7860 7861 /* 7862 * Need to have permissions to the process, but don't... 7863 */ 7864 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7865 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7866 return (0); 7867 } 7868 7869 /* 7870 * Need to be in the same zone unless we possess the 7871 * privilege to examine all zones. 7872 */ 7873 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7874 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7875 return (0); 7876 } 7877 } 7878 7879 return (1); 7880 } 7881 7882 /* 7883 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7884 * consists of input pattern strings and an ops-vector to evaluate them. 7885 * This function returns >0 for match, 0 for no match, and <0 for error. 7886 */ 7887 static int 7888 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7889 uint32_t priv, uid_t uid, zoneid_t zoneid) 7890 { 7891 dtrace_provider_t *pvp = prp->dtpr_provider; 7892 int rv; 7893 7894 if (pvp->dtpv_defunct) 7895 return (0); 7896 7897 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7898 return (rv); 7899 7900 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7901 return (rv); 7902 7903 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7904 return (rv); 7905 7906 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7907 return (rv); 7908 7909 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7910 return (0); 7911 7912 return (rv); 7913 } 7914 7915 /* 7916 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7917 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7918 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7919 * In addition, all of the recursion cases except for '*' matching have been 7920 * unwound. For '*', we still implement recursive evaluation, but a depth 7921 * counter is maintained and matching is aborted if we recurse too deep. 7922 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7923 */ 7924 static int 7925 dtrace_match_glob(const char *s, const char *p, int depth) 7926 { 7927 const char *olds; 7928 char s1, c; 7929 int gs; 7930 7931 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7932 return (-1); 7933 7934 if (s == NULL) 7935 s = ""; /* treat NULL as empty string */ 7936 7937 top: 7938 olds = s; 7939 s1 = *s++; 7940 7941 if (p == NULL) 7942 return (0); 7943 7944 if ((c = *p++) == '\0') 7945 return (s1 == '\0'); 7946 7947 switch (c) { 7948 case '[': { 7949 int ok = 0, notflag = 0; 7950 char lc = '\0'; 7951 7952 if (s1 == '\0') 7953 return (0); 7954 7955 if (*p == '!') { 7956 notflag = 1; 7957 p++; 7958 } 7959 7960 if ((c = *p++) == '\0') 7961 return (0); 7962 7963 do { 7964 if (c == '-' && lc != '\0' && *p != ']') { 7965 if ((c = *p++) == '\0') 7966 return (0); 7967 if (c == '\\' && (c = *p++) == '\0') 7968 return (0); 7969 7970 if (notflag) { 7971 if (s1 < lc || s1 > c) 7972 ok++; 7973 else 7974 return (0); 7975 } else if (lc <= s1 && s1 <= c) 7976 ok++; 7977 7978 } else if (c == '\\' && (c = *p++) == '\0') 7979 return (0); 7980 7981 lc = c; /* save left-hand 'c' for next iteration */ 7982 7983 if (notflag) { 7984 if (s1 != c) 7985 ok++; 7986 else 7987 return (0); 7988 } else if (s1 == c) 7989 ok++; 7990 7991 if ((c = *p++) == '\0') 7992 return (0); 7993 7994 } while (c != ']'); 7995 7996 if (ok) 7997 goto top; 7998 7999 return (0); 8000 } 8001 8002 case '\\': 8003 if ((c = *p++) == '\0') 8004 return (0); 8005 /*FALLTHRU*/ 8006 8007 default: 8008 if (c != s1) 8009 return (0); 8010 /*FALLTHRU*/ 8011 8012 case '?': 8013 if (s1 != '\0') 8014 goto top; 8015 return (0); 8016 8017 case '*': 8018 while (*p == '*') 8019 p++; /* consecutive *'s are identical to a single one */ 8020 8021 if (*p == '\0') 8022 return (1); 8023 8024 for (s = olds; *s != '\0'; s++) { 8025 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8026 return (gs); 8027 } 8028 8029 return (0); 8030 } 8031 } 8032 8033 /*ARGSUSED*/ 8034 static int 8035 dtrace_match_string(const char *s, const char *p, int depth) 8036 { 8037 return (s != NULL && strcmp(s, p) == 0); 8038 } 8039 8040 /*ARGSUSED*/ 8041 static int 8042 dtrace_match_nul(const char *s, const char *p, int depth) 8043 { 8044 return (1); /* always match the empty pattern */ 8045 } 8046 8047 /*ARGSUSED*/ 8048 static int 8049 dtrace_match_nonzero(const char *s, const char *p, int depth) 8050 { 8051 return (s != NULL && s[0] != '\0'); 8052 } 8053 8054 static int 8055 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8056 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8057 { 8058 dtrace_probe_t template, *probe; 8059 dtrace_hash_t *hash = NULL; 8060 int len, rc, best = INT_MAX, nmatched = 0; 8061 dtrace_id_t i; 8062 8063 ASSERT(MUTEX_HELD(&dtrace_lock)); 8064 8065 /* 8066 * If the probe ID is specified in the key, just lookup by ID and 8067 * invoke the match callback once if a matching probe is found. 8068 */ 8069 if (pkp->dtpk_id != DTRACE_IDNONE) { 8070 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8071 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8072 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8073 return (DTRACE_MATCH_FAIL); 8074 nmatched++; 8075 } 8076 return (nmatched); 8077 } 8078 8079 template.dtpr_mod = (char *)pkp->dtpk_mod; 8080 template.dtpr_func = (char *)pkp->dtpk_func; 8081 template.dtpr_name = (char *)pkp->dtpk_name; 8082 8083 /* 8084 * We want to find the most distinct of the module name, function 8085 * name, and name. So for each one that is not a glob pattern or 8086 * empty string, we perform a lookup in the corresponding hash and 8087 * use the hash table with the fewest collisions to do our search. 8088 */ 8089 if (pkp->dtpk_mmatch == &dtrace_match_string && 8090 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8091 best = len; 8092 hash = dtrace_bymod; 8093 } 8094 8095 if (pkp->dtpk_fmatch == &dtrace_match_string && 8096 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8097 best = len; 8098 hash = dtrace_byfunc; 8099 } 8100 8101 if (pkp->dtpk_nmatch == &dtrace_match_string && 8102 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8103 best = len; 8104 hash = dtrace_byname; 8105 } 8106 8107 /* 8108 * If we did not select a hash table, iterate over every probe and 8109 * invoke our callback for each one that matches our input probe key. 8110 */ 8111 if (hash == NULL) { 8112 for (i = 0; i < dtrace_nprobes; i++) { 8113 if ((probe = dtrace_probes[i]) == NULL || 8114 dtrace_match_probe(probe, pkp, priv, uid, 8115 zoneid) <= 0) 8116 continue; 8117 8118 nmatched++; 8119 8120 if ((rc = (*matched)(probe, arg)) != 8121 DTRACE_MATCH_NEXT) { 8122 if (rc == DTRACE_MATCH_FAIL) 8123 return (DTRACE_MATCH_FAIL); 8124 break; 8125 } 8126 } 8127 8128 return (nmatched); 8129 } 8130 8131 /* 8132 * If we selected a hash table, iterate over each probe of the same key 8133 * name and invoke the callback for every probe that matches the other 8134 * attributes of our input probe key. 8135 */ 8136 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8137 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8138 8139 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8140 continue; 8141 8142 nmatched++; 8143 8144 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8145 if (rc == DTRACE_MATCH_FAIL) 8146 return (DTRACE_MATCH_FAIL); 8147 break; 8148 } 8149 } 8150 8151 return (nmatched); 8152 } 8153 8154 /* 8155 * Return the function pointer dtrace_probecmp() should use to compare the 8156 * specified pattern with a string. For NULL or empty patterns, we select 8157 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8158 * For non-empty non-glob strings, we use dtrace_match_string(). 8159 */ 8160 static dtrace_probekey_f * 8161 dtrace_probekey_func(const char *p) 8162 { 8163 char c; 8164 8165 if (p == NULL || *p == '\0') 8166 return (&dtrace_match_nul); 8167 8168 while ((c = *p++) != '\0') { 8169 if (c == '[' || c == '?' || c == '*' || c == '\\') 8170 return (&dtrace_match_glob); 8171 } 8172 8173 return (&dtrace_match_string); 8174 } 8175 8176 /* 8177 * Build a probe comparison key for use with dtrace_match_probe() from the 8178 * given probe description. By convention, a null key only matches anchored 8179 * probes: if each field is the empty string, reset dtpk_fmatch to 8180 * dtrace_match_nonzero(). 8181 */ 8182 static void 8183 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8184 { 8185 pkp->dtpk_prov = pdp->dtpd_provider; 8186 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8187 8188 pkp->dtpk_mod = pdp->dtpd_mod; 8189 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8190 8191 pkp->dtpk_func = pdp->dtpd_func; 8192 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8193 8194 pkp->dtpk_name = pdp->dtpd_name; 8195 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8196 8197 pkp->dtpk_id = pdp->dtpd_id; 8198 8199 if (pkp->dtpk_id == DTRACE_IDNONE && 8200 pkp->dtpk_pmatch == &dtrace_match_nul && 8201 pkp->dtpk_mmatch == &dtrace_match_nul && 8202 pkp->dtpk_fmatch == &dtrace_match_nul && 8203 pkp->dtpk_nmatch == &dtrace_match_nul) 8204 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8205 } 8206 8207 /* 8208 * DTrace Provider-to-Framework API Functions 8209 * 8210 * These functions implement much of the Provider-to-Framework API, as 8211 * described in <sys/dtrace.h>. The parts of the API not in this section are 8212 * the functions in the API for probe management (found below), and 8213 * dtrace_probe() itself (found above). 8214 */ 8215 8216 /* 8217 * Register the calling provider with the DTrace framework. This should 8218 * generally be called by DTrace providers in their attach(9E) entry point. 8219 */ 8220 int 8221 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8222 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8223 { 8224 dtrace_provider_t *provider; 8225 8226 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8227 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8228 "arguments", name ? name : "<NULL>"); 8229 return (EINVAL); 8230 } 8231 8232 if (name[0] == '\0' || dtrace_badname(name)) { 8233 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8234 "provider name", name); 8235 return (EINVAL); 8236 } 8237 8238 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8239 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8240 pops->dtps_destroy == NULL || 8241 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8242 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8243 "provider ops", name); 8244 return (EINVAL); 8245 } 8246 8247 if (dtrace_badattr(&pap->dtpa_provider) || 8248 dtrace_badattr(&pap->dtpa_mod) || 8249 dtrace_badattr(&pap->dtpa_func) || 8250 dtrace_badattr(&pap->dtpa_name) || 8251 dtrace_badattr(&pap->dtpa_args)) { 8252 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8253 "provider attributes", name); 8254 return (EINVAL); 8255 } 8256 8257 if (priv & ~DTRACE_PRIV_ALL) { 8258 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8259 "privilege attributes", name); 8260 return (EINVAL); 8261 } 8262 8263 if ((priv & DTRACE_PRIV_KERNEL) && 8264 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8265 pops->dtps_mode == NULL) { 8266 cmn_err(CE_WARN, "failed to register provider '%s': need " 8267 "dtps_mode() op for given privilege attributes", name); 8268 return (EINVAL); 8269 } 8270 8271 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8272 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8273 (void) strcpy(provider->dtpv_name, name); 8274 8275 provider->dtpv_attr = *pap; 8276 provider->dtpv_priv.dtpp_flags = priv; 8277 if (cr != NULL) { 8278 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8279 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8280 } 8281 provider->dtpv_pops = *pops; 8282 8283 if (pops->dtps_provide == NULL) { 8284 ASSERT(pops->dtps_provide_module != NULL); 8285 provider->dtpv_pops.dtps_provide = 8286 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8287 } 8288 8289 if (pops->dtps_provide_module == NULL) { 8290 ASSERT(pops->dtps_provide != NULL); 8291 provider->dtpv_pops.dtps_provide_module = 8292 (void (*)(void *, struct modctl *))dtrace_nullop; 8293 } 8294 8295 if (pops->dtps_suspend == NULL) { 8296 ASSERT(pops->dtps_resume == NULL); 8297 provider->dtpv_pops.dtps_suspend = 8298 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8299 provider->dtpv_pops.dtps_resume = 8300 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8301 } 8302 8303 provider->dtpv_arg = arg; 8304 *idp = (dtrace_provider_id_t)provider; 8305 8306 if (pops == &dtrace_provider_ops) { 8307 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8308 ASSERT(MUTEX_HELD(&dtrace_lock)); 8309 ASSERT(dtrace_anon.dta_enabling == NULL); 8310 8311 /* 8312 * We make sure that the DTrace provider is at the head of 8313 * the provider chain. 8314 */ 8315 provider->dtpv_next = dtrace_provider; 8316 dtrace_provider = provider; 8317 return (0); 8318 } 8319 8320 mutex_enter(&dtrace_provider_lock); 8321 mutex_enter(&dtrace_lock); 8322 8323 /* 8324 * If there is at least one provider registered, we'll add this 8325 * provider after the first provider. 8326 */ 8327 if (dtrace_provider != NULL) { 8328 provider->dtpv_next = dtrace_provider->dtpv_next; 8329 dtrace_provider->dtpv_next = provider; 8330 } else { 8331 dtrace_provider = provider; 8332 } 8333 8334 if (dtrace_retained != NULL) { 8335 dtrace_enabling_provide(provider); 8336 8337 /* 8338 * Now we need to call dtrace_enabling_matchall() -- which 8339 * will acquire cpu_lock and dtrace_lock. We therefore need 8340 * to drop all of our locks before calling into it... 8341 */ 8342 mutex_exit(&dtrace_lock); 8343 mutex_exit(&dtrace_provider_lock); 8344 dtrace_enabling_matchall(); 8345 8346 return (0); 8347 } 8348 8349 mutex_exit(&dtrace_lock); 8350 mutex_exit(&dtrace_provider_lock); 8351 8352 return (0); 8353 } 8354 8355 /* 8356 * Unregister the specified provider from the DTrace framework. This should 8357 * generally be called by DTrace providers in their detach(9E) entry point. 8358 */ 8359 int 8360 dtrace_unregister(dtrace_provider_id_t id) 8361 { 8362 dtrace_provider_t *old = (dtrace_provider_t *)id; 8363 dtrace_provider_t *prev = NULL; 8364 int i, self = 0, noreap = 0; 8365 dtrace_probe_t *probe, *first = NULL; 8366 8367 if (old->dtpv_pops.dtps_enable == 8368 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8369 /* 8370 * If DTrace itself is the provider, we're called with locks 8371 * already held. 8372 */ 8373 ASSERT(old == dtrace_provider); 8374 ASSERT(dtrace_devi != NULL); 8375 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8376 ASSERT(MUTEX_HELD(&dtrace_lock)); 8377 self = 1; 8378 8379 if (dtrace_provider->dtpv_next != NULL) { 8380 /* 8381 * There's another provider here; return failure. 8382 */ 8383 return (EBUSY); 8384 } 8385 } else { 8386 mutex_enter(&dtrace_provider_lock); 8387 mutex_enter(&mod_lock); 8388 mutex_enter(&dtrace_lock); 8389 } 8390 8391 /* 8392 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8393 * probes, we refuse to let providers slither away, unless this 8394 * provider has already been explicitly invalidated. 8395 */ 8396 if (!old->dtpv_defunct && 8397 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8398 dtrace_anon.dta_state->dts_necbs > 0))) { 8399 if (!self) { 8400 mutex_exit(&dtrace_lock); 8401 mutex_exit(&mod_lock); 8402 mutex_exit(&dtrace_provider_lock); 8403 } 8404 return (EBUSY); 8405 } 8406 8407 /* 8408 * Attempt to destroy the probes associated with this provider. 8409 */ 8410 for (i = 0; i < dtrace_nprobes; i++) { 8411 if ((probe = dtrace_probes[i]) == NULL) 8412 continue; 8413 8414 if (probe->dtpr_provider != old) 8415 continue; 8416 8417 if (probe->dtpr_ecb == NULL) 8418 continue; 8419 8420 /* 8421 * If we are trying to unregister a defunct provider, and the 8422 * provider was made defunct within the interval dictated by 8423 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8424 * attempt to reap our enablings. To denote that the provider 8425 * should reattempt to unregister itself at some point in the 8426 * future, we will return a differentiable error code (EAGAIN 8427 * instead of EBUSY) in this case. 8428 */ 8429 if (dtrace_gethrtime() - old->dtpv_defunct > 8430 dtrace_unregister_defunct_reap) 8431 noreap = 1; 8432 8433 if (!self) { 8434 mutex_exit(&dtrace_lock); 8435 mutex_exit(&mod_lock); 8436 mutex_exit(&dtrace_provider_lock); 8437 } 8438 8439 if (noreap) 8440 return (EBUSY); 8441 8442 (void) taskq_dispatch(dtrace_taskq, 8443 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8444 8445 return (EAGAIN); 8446 } 8447 8448 /* 8449 * All of the probes for this provider are disabled; we can safely 8450 * remove all of them from their hash chains and from the probe array. 8451 */ 8452 for (i = 0; i < dtrace_nprobes; i++) { 8453 if ((probe = dtrace_probes[i]) == NULL) 8454 continue; 8455 8456 if (probe->dtpr_provider != old) 8457 continue; 8458 8459 dtrace_probes[i] = NULL; 8460 8461 dtrace_hash_remove(dtrace_bymod, probe); 8462 dtrace_hash_remove(dtrace_byfunc, probe); 8463 dtrace_hash_remove(dtrace_byname, probe); 8464 8465 if (first == NULL) { 8466 first = probe; 8467 probe->dtpr_nextmod = NULL; 8468 } else { 8469 probe->dtpr_nextmod = first; 8470 first = probe; 8471 } 8472 } 8473 8474 /* 8475 * The provider's probes have been removed from the hash chains and 8476 * from the probe array. Now issue a dtrace_sync() to be sure that 8477 * everyone has cleared out from any probe array processing. 8478 */ 8479 dtrace_sync(); 8480 8481 for (probe = first; probe != NULL; probe = first) { 8482 first = probe->dtpr_nextmod; 8483 8484 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8485 probe->dtpr_arg); 8486 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8487 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8488 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8489 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8490 kmem_free(probe, sizeof (dtrace_probe_t)); 8491 } 8492 8493 if ((prev = dtrace_provider) == old) { 8494 ASSERT(self || dtrace_devi == NULL); 8495 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8496 dtrace_provider = old->dtpv_next; 8497 } else { 8498 while (prev != NULL && prev->dtpv_next != old) 8499 prev = prev->dtpv_next; 8500 8501 if (prev == NULL) { 8502 panic("attempt to unregister non-existent " 8503 "dtrace provider %p\n", (void *)id); 8504 } 8505 8506 prev->dtpv_next = old->dtpv_next; 8507 } 8508 8509 if (!self) { 8510 mutex_exit(&dtrace_lock); 8511 mutex_exit(&mod_lock); 8512 mutex_exit(&dtrace_provider_lock); 8513 } 8514 8515 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8516 kmem_free(old, sizeof (dtrace_provider_t)); 8517 8518 return (0); 8519 } 8520 8521 /* 8522 * Invalidate the specified provider. All subsequent probe lookups for the 8523 * specified provider will fail, but its probes will not be removed. 8524 */ 8525 void 8526 dtrace_invalidate(dtrace_provider_id_t id) 8527 { 8528 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8529 8530 ASSERT(pvp->dtpv_pops.dtps_enable != 8531 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8532 8533 mutex_enter(&dtrace_provider_lock); 8534 mutex_enter(&dtrace_lock); 8535 8536 pvp->dtpv_defunct = dtrace_gethrtime(); 8537 8538 mutex_exit(&dtrace_lock); 8539 mutex_exit(&dtrace_provider_lock); 8540 } 8541 8542 /* 8543 * Indicate whether or not DTrace has attached. 8544 */ 8545 int 8546 dtrace_attached(void) 8547 { 8548 /* 8549 * dtrace_provider will be non-NULL iff the DTrace driver has 8550 * attached. (It's non-NULL because DTrace is always itself a 8551 * provider.) 8552 */ 8553 return (dtrace_provider != NULL); 8554 } 8555 8556 /* 8557 * Remove all the unenabled probes for the given provider. This function is 8558 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8559 * -- just as many of its associated probes as it can. 8560 */ 8561 int 8562 dtrace_condense(dtrace_provider_id_t id) 8563 { 8564 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8565 int i; 8566 dtrace_probe_t *probe; 8567 8568 /* 8569 * Make sure this isn't the dtrace provider itself. 8570 */ 8571 ASSERT(prov->dtpv_pops.dtps_enable != 8572 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8573 8574 mutex_enter(&dtrace_provider_lock); 8575 mutex_enter(&dtrace_lock); 8576 8577 /* 8578 * Attempt to destroy the probes associated with this provider. 8579 */ 8580 for (i = 0; i < dtrace_nprobes; i++) { 8581 if ((probe = dtrace_probes[i]) == NULL) 8582 continue; 8583 8584 if (probe->dtpr_provider != prov) 8585 continue; 8586 8587 if (probe->dtpr_ecb != NULL) 8588 continue; 8589 8590 dtrace_probes[i] = NULL; 8591 8592 dtrace_hash_remove(dtrace_bymod, probe); 8593 dtrace_hash_remove(dtrace_byfunc, probe); 8594 dtrace_hash_remove(dtrace_byname, probe); 8595 8596 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8597 probe->dtpr_arg); 8598 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8599 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8600 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8601 kmem_free(probe, sizeof (dtrace_probe_t)); 8602 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8603 } 8604 8605 mutex_exit(&dtrace_lock); 8606 mutex_exit(&dtrace_provider_lock); 8607 8608 return (0); 8609 } 8610 8611 /* 8612 * DTrace Probe Management Functions 8613 * 8614 * The functions in this section perform the DTrace probe management, 8615 * including functions to create probes, look-up probes, and call into the 8616 * providers to request that probes be provided. Some of these functions are 8617 * in the Provider-to-Framework API; these functions can be identified by the 8618 * fact that they are not declared "static". 8619 */ 8620 8621 /* 8622 * Create a probe with the specified module name, function name, and name. 8623 */ 8624 dtrace_id_t 8625 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8626 const char *func, const char *name, int aframes, void *arg) 8627 { 8628 dtrace_probe_t *probe, **probes; 8629 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8630 dtrace_id_t id; 8631 8632 if (provider == dtrace_provider) { 8633 ASSERT(MUTEX_HELD(&dtrace_lock)); 8634 } else { 8635 mutex_enter(&dtrace_lock); 8636 } 8637 8638 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8639 VM_BESTFIT | VM_SLEEP); 8640 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8641 8642 probe->dtpr_id = id; 8643 probe->dtpr_gen = dtrace_probegen++; 8644 probe->dtpr_mod = dtrace_strdup(mod); 8645 probe->dtpr_func = dtrace_strdup(func); 8646 probe->dtpr_name = dtrace_strdup(name); 8647 probe->dtpr_arg = arg; 8648 probe->dtpr_aframes = aframes; 8649 probe->dtpr_provider = provider; 8650 8651 dtrace_hash_add(dtrace_bymod, probe); 8652 dtrace_hash_add(dtrace_byfunc, probe); 8653 dtrace_hash_add(dtrace_byname, probe); 8654 8655 if (id - 1 >= dtrace_nprobes) { 8656 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8657 size_t nsize = osize << 1; 8658 8659 if (nsize == 0) { 8660 ASSERT(osize == 0); 8661 ASSERT(dtrace_probes == NULL); 8662 nsize = sizeof (dtrace_probe_t *); 8663 } 8664 8665 probes = kmem_zalloc(nsize, KM_SLEEP); 8666 8667 if (dtrace_probes == NULL) { 8668 ASSERT(osize == 0); 8669 dtrace_probes = probes; 8670 dtrace_nprobes = 1; 8671 } else { 8672 dtrace_probe_t **oprobes = dtrace_probes; 8673 8674 bcopy(oprobes, probes, osize); 8675 dtrace_membar_producer(); 8676 dtrace_probes = probes; 8677 8678 dtrace_sync(); 8679 8680 /* 8681 * All CPUs are now seeing the new probes array; we can 8682 * safely free the old array. 8683 */ 8684 kmem_free(oprobes, osize); 8685 dtrace_nprobes <<= 1; 8686 } 8687 8688 ASSERT(id - 1 < dtrace_nprobes); 8689 } 8690 8691 ASSERT(dtrace_probes[id - 1] == NULL); 8692 dtrace_probes[id - 1] = probe; 8693 8694 if (provider != dtrace_provider) 8695 mutex_exit(&dtrace_lock); 8696 8697 return (id); 8698 } 8699 8700 static dtrace_probe_t * 8701 dtrace_probe_lookup_id(dtrace_id_t id) 8702 { 8703 ASSERT(MUTEX_HELD(&dtrace_lock)); 8704 8705 if (id == 0 || id > dtrace_nprobes) 8706 return (NULL); 8707 8708 return (dtrace_probes[id - 1]); 8709 } 8710 8711 static int 8712 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8713 { 8714 *((dtrace_id_t *)arg) = probe->dtpr_id; 8715 8716 return (DTRACE_MATCH_DONE); 8717 } 8718 8719 /* 8720 * Look up a probe based on provider and one or more of module name, function 8721 * name and probe name. 8722 */ 8723 dtrace_id_t 8724 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8725 const char *func, const char *name) 8726 { 8727 dtrace_probekey_t pkey; 8728 dtrace_id_t id; 8729 int match; 8730 8731 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8732 pkey.dtpk_pmatch = &dtrace_match_string; 8733 pkey.dtpk_mod = mod; 8734 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8735 pkey.dtpk_func = func; 8736 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8737 pkey.dtpk_name = name; 8738 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8739 pkey.dtpk_id = DTRACE_IDNONE; 8740 8741 mutex_enter(&dtrace_lock); 8742 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8743 dtrace_probe_lookup_match, &id); 8744 mutex_exit(&dtrace_lock); 8745 8746 ASSERT(match == 1 || match == 0); 8747 return (match ? id : 0); 8748 } 8749 8750 /* 8751 * Returns the probe argument associated with the specified probe. 8752 */ 8753 void * 8754 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8755 { 8756 dtrace_probe_t *probe; 8757 void *rval = NULL; 8758 8759 mutex_enter(&dtrace_lock); 8760 8761 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8762 probe->dtpr_provider == (dtrace_provider_t *)id) 8763 rval = probe->dtpr_arg; 8764 8765 mutex_exit(&dtrace_lock); 8766 8767 return (rval); 8768 } 8769 8770 /* 8771 * Copy a probe into a probe description. 8772 */ 8773 static void 8774 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8775 { 8776 bzero(pdp, sizeof (dtrace_probedesc_t)); 8777 pdp->dtpd_id = prp->dtpr_id; 8778 8779 (void) strncpy(pdp->dtpd_provider, 8780 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8781 8782 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8783 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8784 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8785 } 8786 8787 /* 8788 * Called to indicate that a probe -- or probes -- should be provided by a 8789 * specfied provider. If the specified description is NULL, the provider will 8790 * be told to provide all of its probes. (This is done whenever a new 8791 * consumer comes along, or whenever a retained enabling is to be matched.) If 8792 * the specified description is non-NULL, the provider is given the 8793 * opportunity to dynamically provide the specified probe, allowing providers 8794 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8795 * probes.) If the provider is NULL, the operations will be applied to all 8796 * providers; if the provider is non-NULL the operations will only be applied 8797 * to the specified provider. The dtrace_provider_lock must be held, and the 8798 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8799 * will need to grab the dtrace_lock when it reenters the framework through 8800 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8801 */ 8802 static void 8803 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8804 { 8805 struct modctl *ctl; 8806 int all = 0; 8807 8808 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8809 8810 if (prv == NULL) { 8811 all = 1; 8812 prv = dtrace_provider; 8813 } 8814 8815 do { 8816 /* 8817 * First, call the blanket provide operation. 8818 */ 8819 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8820 8821 /* 8822 * Now call the per-module provide operation. We will grab 8823 * mod_lock to prevent the list from being modified. Note 8824 * that this also prevents the mod_busy bits from changing. 8825 * (mod_busy can only be changed with mod_lock held.) 8826 */ 8827 mutex_enter(&mod_lock); 8828 8829 ctl = &modules; 8830 do { 8831 if (ctl->mod_busy || ctl->mod_mp == NULL) 8832 continue; 8833 8834 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8835 8836 } while ((ctl = ctl->mod_next) != &modules); 8837 8838 mutex_exit(&mod_lock); 8839 } while (all && (prv = prv->dtpv_next) != NULL); 8840 } 8841 8842 /* 8843 * Iterate over each probe, and call the Framework-to-Provider API function 8844 * denoted by offs. 8845 */ 8846 static void 8847 dtrace_probe_foreach(uintptr_t offs) 8848 { 8849 dtrace_provider_t *prov; 8850 void (*func)(void *, dtrace_id_t, void *); 8851 dtrace_probe_t *probe; 8852 dtrace_icookie_t cookie; 8853 int i; 8854 8855 /* 8856 * We disable interrupts to walk through the probe array. This is 8857 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8858 * won't see stale data. 8859 */ 8860 cookie = dtrace_interrupt_disable(); 8861 8862 for (i = 0; i < dtrace_nprobes; i++) { 8863 if ((probe = dtrace_probes[i]) == NULL) 8864 continue; 8865 8866 if (probe->dtpr_ecb == NULL) { 8867 /* 8868 * This probe isn't enabled -- don't call the function. 8869 */ 8870 continue; 8871 } 8872 8873 prov = probe->dtpr_provider; 8874 func = *((void(**)(void *, dtrace_id_t, void *)) 8875 ((uintptr_t)&prov->dtpv_pops + offs)); 8876 8877 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8878 } 8879 8880 dtrace_interrupt_enable(cookie); 8881 } 8882 8883 static int 8884 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8885 { 8886 dtrace_probekey_t pkey; 8887 uint32_t priv; 8888 uid_t uid; 8889 zoneid_t zoneid; 8890 8891 ASSERT(MUTEX_HELD(&dtrace_lock)); 8892 dtrace_ecb_create_cache = NULL; 8893 8894 if (desc == NULL) { 8895 /* 8896 * If we're passed a NULL description, we're being asked to 8897 * create an ECB with a NULL probe. 8898 */ 8899 (void) dtrace_ecb_create_enable(NULL, enab); 8900 return (0); 8901 } 8902 8903 dtrace_probekey(desc, &pkey); 8904 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8905 &priv, &uid, &zoneid); 8906 8907 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8908 enab)); 8909 } 8910 8911 /* 8912 * DTrace Helper Provider Functions 8913 */ 8914 static void 8915 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8916 { 8917 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8918 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8919 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8920 } 8921 8922 static void 8923 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8924 const dof_provider_t *dofprov, char *strtab) 8925 { 8926 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8927 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8928 dofprov->dofpv_provattr); 8929 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8930 dofprov->dofpv_modattr); 8931 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8932 dofprov->dofpv_funcattr); 8933 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8934 dofprov->dofpv_nameattr); 8935 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8936 dofprov->dofpv_argsattr); 8937 } 8938 8939 static void 8940 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8941 { 8942 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8943 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8944 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8945 dof_provider_t *provider; 8946 dof_probe_t *probe; 8947 uint32_t *off, *enoff; 8948 uint8_t *arg; 8949 char *strtab; 8950 uint_t i, nprobes; 8951 dtrace_helper_provdesc_t dhpv; 8952 dtrace_helper_probedesc_t dhpb; 8953 dtrace_meta_t *meta = dtrace_meta_pid; 8954 dtrace_mops_t *mops = &meta->dtm_mops; 8955 void *parg; 8956 8957 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8958 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8959 provider->dofpv_strtab * dof->dofh_secsize); 8960 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8961 provider->dofpv_probes * dof->dofh_secsize); 8962 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8963 provider->dofpv_prargs * dof->dofh_secsize); 8964 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8965 provider->dofpv_proffs * dof->dofh_secsize); 8966 8967 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8968 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8969 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8970 enoff = NULL; 8971 8972 /* 8973 * See dtrace_helper_provider_validate(). 8974 */ 8975 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8976 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8977 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8978 provider->dofpv_prenoffs * dof->dofh_secsize); 8979 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8980 } 8981 8982 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8983 8984 /* 8985 * Create the provider. 8986 */ 8987 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8988 8989 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8990 return; 8991 8992 meta->dtm_count++; 8993 8994 /* 8995 * Create the probes. 8996 */ 8997 for (i = 0; i < nprobes; i++) { 8998 probe = (dof_probe_t *)(uintptr_t)(daddr + 8999 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9000 9001 dhpb.dthpb_mod = dhp->dofhp_mod; 9002 dhpb.dthpb_func = strtab + probe->dofpr_func; 9003 dhpb.dthpb_name = strtab + probe->dofpr_name; 9004 dhpb.dthpb_base = probe->dofpr_addr; 9005 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9006 dhpb.dthpb_noffs = probe->dofpr_noffs; 9007 if (enoff != NULL) { 9008 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9009 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9010 } else { 9011 dhpb.dthpb_enoffs = NULL; 9012 dhpb.dthpb_nenoffs = 0; 9013 } 9014 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9015 dhpb.dthpb_nargc = probe->dofpr_nargc; 9016 dhpb.dthpb_xargc = probe->dofpr_xargc; 9017 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9018 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9019 9020 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9021 } 9022 } 9023 9024 static void 9025 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9026 { 9027 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9028 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9029 int i; 9030 9031 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9032 9033 for (i = 0; i < dof->dofh_secnum; i++) { 9034 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9035 dof->dofh_secoff + i * dof->dofh_secsize); 9036 9037 if (sec->dofs_type != DOF_SECT_PROVIDER) 9038 continue; 9039 9040 dtrace_helper_provide_one(dhp, sec, pid); 9041 } 9042 9043 /* 9044 * We may have just created probes, so we must now rematch against 9045 * any retained enablings. Note that this call will acquire both 9046 * cpu_lock and dtrace_lock; the fact that we are holding 9047 * dtrace_meta_lock now is what defines the ordering with respect to 9048 * these three locks. 9049 */ 9050 dtrace_enabling_matchall(); 9051 } 9052 9053 static void 9054 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9055 { 9056 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9057 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9058 dof_sec_t *str_sec; 9059 dof_provider_t *provider; 9060 char *strtab; 9061 dtrace_helper_provdesc_t dhpv; 9062 dtrace_meta_t *meta = dtrace_meta_pid; 9063 dtrace_mops_t *mops = &meta->dtm_mops; 9064 9065 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9066 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9067 provider->dofpv_strtab * dof->dofh_secsize); 9068 9069 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9070 9071 /* 9072 * Create the provider. 9073 */ 9074 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9075 9076 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9077 9078 meta->dtm_count--; 9079 } 9080 9081 static void 9082 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9083 { 9084 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9085 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9086 int i; 9087 9088 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9089 9090 for (i = 0; i < dof->dofh_secnum; i++) { 9091 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9092 dof->dofh_secoff + i * dof->dofh_secsize); 9093 9094 if (sec->dofs_type != DOF_SECT_PROVIDER) 9095 continue; 9096 9097 dtrace_helper_provider_remove_one(dhp, sec, pid); 9098 } 9099 } 9100 9101 /* 9102 * DTrace Meta Provider-to-Framework API Functions 9103 * 9104 * These functions implement the Meta Provider-to-Framework API, as described 9105 * in <sys/dtrace.h>. 9106 */ 9107 int 9108 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9109 dtrace_meta_provider_id_t *idp) 9110 { 9111 dtrace_meta_t *meta; 9112 dtrace_helpers_t *help, *next; 9113 int i; 9114 9115 *idp = DTRACE_METAPROVNONE; 9116 9117 /* 9118 * We strictly don't need the name, but we hold onto it for 9119 * debuggability. All hail error queues! 9120 */ 9121 if (name == NULL) { 9122 cmn_err(CE_WARN, "failed to register meta-provider: " 9123 "invalid name"); 9124 return (EINVAL); 9125 } 9126 9127 if (mops == NULL || 9128 mops->dtms_create_probe == NULL || 9129 mops->dtms_provide_pid == NULL || 9130 mops->dtms_remove_pid == NULL) { 9131 cmn_err(CE_WARN, "failed to register meta-register %s: " 9132 "invalid ops", name); 9133 return (EINVAL); 9134 } 9135 9136 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9137 meta->dtm_mops = *mops; 9138 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9139 (void) strcpy(meta->dtm_name, name); 9140 meta->dtm_arg = arg; 9141 9142 mutex_enter(&dtrace_meta_lock); 9143 mutex_enter(&dtrace_lock); 9144 9145 if (dtrace_meta_pid != NULL) { 9146 mutex_exit(&dtrace_lock); 9147 mutex_exit(&dtrace_meta_lock); 9148 cmn_err(CE_WARN, "failed to register meta-register %s: " 9149 "user-land meta-provider exists", name); 9150 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9151 kmem_free(meta, sizeof (dtrace_meta_t)); 9152 return (EINVAL); 9153 } 9154 9155 dtrace_meta_pid = meta; 9156 *idp = (dtrace_meta_provider_id_t)meta; 9157 9158 /* 9159 * If there are providers and probes ready to go, pass them 9160 * off to the new meta provider now. 9161 */ 9162 9163 help = dtrace_deferred_pid; 9164 dtrace_deferred_pid = NULL; 9165 9166 mutex_exit(&dtrace_lock); 9167 9168 while (help != NULL) { 9169 for (i = 0; i < help->dthps_nprovs; i++) { 9170 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9171 help->dthps_pid); 9172 } 9173 9174 next = help->dthps_next; 9175 help->dthps_next = NULL; 9176 help->dthps_prev = NULL; 9177 help->dthps_deferred = 0; 9178 help = next; 9179 } 9180 9181 mutex_exit(&dtrace_meta_lock); 9182 9183 return (0); 9184 } 9185 9186 int 9187 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9188 { 9189 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9190 9191 mutex_enter(&dtrace_meta_lock); 9192 mutex_enter(&dtrace_lock); 9193 9194 if (old == dtrace_meta_pid) { 9195 pp = &dtrace_meta_pid; 9196 } else { 9197 panic("attempt to unregister non-existent " 9198 "dtrace meta-provider %p\n", (void *)old); 9199 } 9200 9201 if (old->dtm_count != 0) { 9202 mutex_exit(&dtrace_lock); 9203 mutex_exit(&dtrace_meta_lock); 9204 return (EBUSY); 9205 } 9206 9207 *pp = NULL; 9208 9209 mutex_exit(&dtrace_lock); 9210 mutex_exit(&dtrace_meta_lock); 9211 9212 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9213 kmem_free(old, sizeof (dtrace_meta_t)); 9214 9215 return (0); 9216 } 9217 9218 9219 /* 9220 * DTrace DIF Object Functions 9221 */ 9222 static int 9223 dtrace_difo_err(uint_t pc, const char *format, ...) 9224 { 9225 if (dtrace_err_verbose) { 9226 va_list alist; 9227 9228 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9229 va_start(alist, format); 9230 (void) vuprintf(format, alist); 9231 va_end(alist); 9232 } 9233 9234 #ifdef DTRACE_ERRDEBUG 9235 dtrace_errdebug(format); 9236 #endif 9237 return (1); 9238 } 9239 9240 /* 9241 * Validate a DTrace DIF object by checking the IR instructions. The following 9242 * rules are currently enforced by dtrace_difo_validate(): 9243 * 9244 * 1. Each instruction must have a valid opcode 9245 * 2. Each register, string, variable, or subroutine reference must be valid 9246 * 3. No instruction can modify register %r0 (must be zero) 9247 * 4. All instruction reserved bits must be set to zero 9248 * 5. The last instruction must be a "ret" instruction 9249 * 6. All branch targets must reference a valid instruction _after_ the branch 9250 */ 9251 static int 9252 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9253 cred_t *cr) 9254 { 9255 int err = 0, i; 9256 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9257 int kcheckload; 9258 uint_t pc; 9259 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9260 9261 kcheckload = cr == NULL || 9262 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9263 9264 dp->dtdo_destructive = 0; 9265 9266 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9267 dif_instr_t instr = dp->dtdo_buf[pc]; 9268 9269 uint_t r1 = DIF_INSTR_R1(instr); 9270 uint_t r2 = DIF_INSTR_R2(instr); 9271 uint_t rd = DIF_INSTR_RD(instr); 9272 uint_t rs = DIF_INSTR_RS(instr); 9273 uint_t label = DIF_INSTR_LABEL(instr); 9274 uint_t v = DIF_INSTR_VAR(instr); 9275 uint_t subr = DIF_INSTR_SUBR(instr); 9276 uint_t type = DIF_INSTR_TYPE(instr); 9277 uint_t op = DIF_INSTR_OP(instr); 9278 9279 switch (op) { 9280 case DIF_OP_OR: 9281 case DIF_OP_XOR: 9282 case DIF_OP_AND: 9283 case DIF_OP_SLL: 9284 case DIF_OP_SRL: 9285 case DIF_OP_SRA: 9286 case DIF_OP_SUB: 9287 case DIF_OP_ADD: 9288 case DIF_OP_MUL: 9289 case DIF_OP_SDIV: 9290 case DIF_OP_UDIV: 9291 case DIF_OP_SREM: 9292 case DIF_OP_UREM: 9293 case DIF_OP_COPYS: 9294 if (r1 >= nregs) 9295 err += efunc(pc, "invalid register %u\n", r1); 9296 if (r2 >= nregs) 9297 err += efunc(pc, "invalid register %u\n", r2); 9298 if (rd >= nregs) 9299 err += efunc(pc, "invalid register %u\n", rd); 9300 if (rd == 0) 9301 err += efunc(pc, "cannot write to %r0\n"); 9302 break; 9303 case DIF_OP_NOT: 9304 case DIF_OP_MOV: 9305 case DIF_OP_ALLOCS: 9306 if (r1 >= nregs) 9307 err += efunc(pc, "invalid register %u\n", r1); 9308 if (r2 != 0) 9309 err += efunc(pc, "non-zero reserved bits\n"); 9310 if (rd >= nregs) 9311 err += efunc(pc, "invalid register %u\n", rd); 9312 if (rd == 0) 9313 err += efunc(pc, "cannot write to %r0\n"); 9314 break; 9315 case DIF_OP_LDSB: 9316 case DIF_OP_LDSH: 9317 case DIF_OP_LDSW: 9318 case DIF_OP_LDUB: 9319 case DIF_OP_LDUH: 9320 case DIF_OP_LDUW: 9321 case DIF_OP_LDX: 9322 if (r1 >= nregs) 9323 err += efunc(pc, "invalid register %u\n", r1); 9324 if (r2 != 0) 9325 err += efunc(pc, "non-zero reserved bits\n"); 9326 if (rd >= nregs) 9327 err += efunc(pc, "invalid register %u\n", rd); 9328 if (rd == 0) 9329 err += efunc(pc, "cannot write to %r0\n"); 9330 if (kcheckload) 9331 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9332 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9333 break; 9334 case DIF_OP_RLDSB: 9335 case DIF_OP_RLDSH: 9336 case DIF_OP_RLDSW: 9337 case DIF_OP_RLDUB: 9338 case DIF_OP_RLDUH: 9339 case DIF_OP_RLDUW: 9340 case DIF_OP_RLDX: 9341 if (r1 >= nregs) 9342 err += efunc(pc, "invalid register %u\n", r1); 9343 if (r2 != 0) 9344 err += efunc(pc, "non-zero reserved bits\n"); 9345 if (rd >= nregs) 9346 err += efunc(pc, "invalid register %u\n", rd); 9347 if (rd == 0) 9348 err += efunc(pc, "cannot write to %r0\n"); 9349 break; 9350 case DIF_OP_ULDSB: 9351 case DIF_OP_ULDSH: 9352 case DIF_OP_ULDSW: 9353 case DIF_OP_ULDUB: 9354 case DIF_OP_ULDUH: 9355 case DIF_OP_ULDUW: 9356 case DIF_OP_ULDX: 9357 if (r1 >= nregs) 9358 err += efunc(pc, "invalid register %u\n", r1); 9359 if (r2 != 0) 9360 err += efunc(pc, "non-zero reserved bits\n"); 9361 if (rd >= nregs) 9362 err += efunc(pc, "invalid register %u\n", rd); 9363 if (rd == 0) 9364 err += efunc(pc, "cannot write to %r0\n"); 9365 break; 9366 case DIF_OP_STB: 9367 case DIF_OP_STH: 9368 case DIF_OP_STW: 9369 case DIF_OP_STX: 9370 if (r1 >= nregs) 9371 err += efunc(pc, "invalid register %u\n", r1); 9372 if (r2 != 0) 9373 err += efunc(pc, "non-zero reserved bits\n"); 9374 if (rd >= nregs) 9375 err += efunc(pc, "invalid register %u\n", rd); 9376 if (rd == 0) 9377 err += efunc(pc, "cannot write to 0 address\n"); 9378 break; 9379 case DIF_OP_CMP: 9380 case DIF_OP_SCMP: 9381 if (r1 >= nregs) 9382 err += efunc(pc, "invalid register %u\n", r1); 9383 if (r2 >= nregs) 9384 err += efunc(pc, "invalid register %u\n", r2); 9385 if (rd != 0) 9386 err += efunc(pc, "non-zero reserved bits\n"); 9387 break; 9388 case DIF_OP_TST: 9389 if (r1 >= nregs) 9390 err += efunc(pc, "invalid register %u\n", r1); 9391 if (r2 != 0 || rd != 0) 9392 err += efunc(pc, "non-zero reserved bits\n"); 9393 break; 9394 case DIF_OP_BA: 9395 case DIF_OP_BE: 9396 case DIF_OP_BNE: 9397 case DIF_OP_BG: 9398 case DIF_OP_BGU: 9399 case DIF_OP_BGE: 9400 case DIF_OP_BGEU: 9401 case DIF_OP_BL: 9402 case DIF_OP_BLU: 9403 case DIF_OP_BLE: 9404 case DIF_OP_BLEU: 9405 if (label >= dp->dtdo_len) { 9406 err += efunc(pc, "invalid branch target %u\n", 9407 label); 9408 } 9409 if (label <= pc) { 9410 err += efunc(pc, "backward branch to %u\n", 9411 label); 9412 } 9413 break; 9414 case DIF_OP_RET: 9415 if (r1 != 0 || r2 != 0) 9416 err += efunc(pc, "non-zero reserved bits\n"); 9417 if (rd >= nregs) 9418 err += efunc(pc, "invalid register %u\n", rd); 9419 break; 9420 case DIF_OP_NOP: 9421 case DIF_OP_POPTS: 9422 case DIF_OP_FLUSHTS: 9423 if (r1 != 0 || r2 != 0 || rd != 0) 9424 err += efunc(pc, "non-zero reserved bits\n"); 9425 break; 9426 case DIF_OP_SETX: 9427 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9428 err += efunc(pc, "invalid integer ref %u\n", 9429 DIF_INSTR_INTEGER(instr)); 9430 } 9431 if (rd >= nregs) 9432 err += efunc(pc, "invalid register %u\n", rd); 9433 if (rd == 0) 9434 err += efunc(pc, "cannot write to %r0\n"); 9435 break; 9436 case DIF_OP_SETS: 9437 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9438 err += efunc(pc, "invalid string ref %u\n", 9439 DIF_INSTR_STRING(instr)); 9440 } 9441 if (rd >= nregs) 9442 err += efunc(pc, "invalid register %u\n", rd); 9443 if (rd == 0) 9444 err += efunc(pc, "cannot write to %r0\n"); 9445 break; 9446 case DIF_OP_LDGA: 9447 case DIF_OP_LDTA: 9448 if (r1 > DIF_VAR_ARRAY_MAX) 9449 err += efunc(pc, "invalid array %u\n", r1); 9450 if (r2 >= nregs) 9451 err += efunc(pc, "invalid register %u\n", r2); 9452 if (rd >= nregs) 9453 err += efunc(pc, "invalid register %u\n", rd); 9454 if (rd == 0) 9455 err += efunc(pc, "cannot write to %r0\n"); 9456 break; 9457 case DIF_OP_STGA: 9458 if (r1 > DIF_VAR_ARRAY_MAX) 9459 err += efunc(pc, "invalid array %u\n", r1); 9460 if (r2 >= nregs) 9461 err += efunc(pc, "invalid register %u\n", r2); 9462 if (rd >= nregs) 9463 err += efunc(pc, "invalid register %u\n", rd); 9464 dp->dtdo_destructive = 1; 9465 break; 9466 case DIF_OP_LDGS: 9467 case DIF_OP_LDTS: 9468 case DIF_OP_LDLS: 9469 case DIF_OP_LDGAA: 9470 case DIF_OP_LDTAA: 9471 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9472 err += efunc(pc, "invalid variable %u\n", v); 9473 if (rd >= nregs) 9474 err += efunc(pc, "invalid register %u\n", rd); 9475 if (rd == 0) 9476 err += efunc(pc, "cannot write to %r0\n"); 9477 break; 9478 case DIF_OP_STGS: 9479 case DIF_OP_STTS: 9480 case DIF_OP_STLS: 9481 case DIF_OP_STGAA: 9482 case DIF_OP_STTAA: 9483 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9484 err += efunc(pc, "invalid variable %u\n", v); 9485 if (rs >= nregs) 9486 err += efunc(pc, "invalid register %u\n", rd); 9487 break; 9488 case DIF_OP_CALL: 9489 if (subr > DIF_SUBR_MAX) 9490 err += efunc(pc, "invalid subr %u\n", subr); 9491 if (rd >= nregs) 9492 err += efunc(pc, "invalid register %u\n", rd); 9493 if (rd == 0) 9494 err += efunc(pc, "cannot write to %r0\n"); 9495 9496 if (subr == DIF_SUBR_COPYOUT || 9497 subr == DIF_SUBR_COPYOUTSTR) { 9498 dp->dtdo_destructive = 1; 9499 } 9500 9501 if (subr == DIF_SUBR_GETF) { 9502 /* 9503 * If we have a getf() we need to record that 9504 * in our state. Note that our state can be 9505 * NULL if this is a helper -- but in that 9506 * case, the call to getf() is itself illegal, 9507 * and will be caught (slightly later) when 9508 * the helper is validated. 9509 */ 9510 if (vstate->dtvs_state != NULL) 9511 vstate->dtvs_state->dts_getf++; 9512 } 9513 9514 break; 9515 case DIF_OP_PUSHTR: 9516 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9517 err += efunc(pc, "invalid ref type %u\n", type); 9518 if (r2 >= nregs) 9519 err += efunc(pc, "invalid register %u\n", r2); 9520 if (rs >= nregs) 9521 err += efunc(pc, "invalid register %u\n", rs); 9522 break; 9523 case DIF_OP_PUSHTV: 9524 if (type != DIF_TYPE_CTF) 9525 err += efunc(pc, "invalid val type %u\n", type); 9526 if (r2 >= nregs) 9527 err += efunc(pc, "invalid register %u\n", r2); 9528 if (rs >= nregs) 9529 err += efunc(pc, "invalid register %u\n", rs); 9530 break; 9531 default: 9532 err += efunc(pc, "invalid opcode %u\n", 9533 DIF_INSTR_OP(instr)); 9534 } 9535 } 9536 9537 if (dp->dtdo_len != 0 && 9538 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9539 err += efunc(dp->dtdo_len - 1, 9540 "expected 'ret' as last DIF instruction\n"); 9541 } 9542 9543 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9544 /* 9545 * If we're not returning by reference, the size must be either 9546 * 0 or the size of one of the base types. 9547 */ 9548 switch (dp->dtdo_rtype.dtdt_size) { 9549 case 0: 9550 case sizeof (uint8_t): 9551 case sizeof (uint16_t): 9552 case sizeof (uint32_t): 9553 case sizeof (uint64_t): 9554 break; 9555 9556 default: 9557 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9558 } 9559 } 9560 9561 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9562 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9563 dtrace_diftype_t *vt, *et; 9564 uint_t id, ndx; 9565 9566 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9567 v->dtdv_scope != DIFV_SCOPE_THREAD && 9568 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9569 err += efunc(i, "unrecognized variable scope %d\n", 9570 v->dtdv_scope); 9571 break; 9572 } 9573 9574 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9575 v->dtdv_kind != DIFV_KIND_SCALAR) { 9576 err += efunc(i, "unrecognized variable type %d\n", 9577 v->dtdv_kind); 9578 break; 9579 } 9580 9581 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9582 err += efunc(i, "%d exceeds variable id limit\n", id); 9583 break; 9584 } 9585 9586 if (id < DIF_VAR_OTHER_UBASE) 9587 continue; 9588 9589 /* 9590 * For user-defined variables, we need to check that this 9591 * definition is identical to any previous definition that we 9592 * encountered. 9593 */ 9594 ndx = id - DIF_VAR_OTHER_UBASE; 9595 9596 switch (v->dtdv_scope) { 9597 case DIFV_SCOPE_GLOBAL: 9598 if (maxglobal == -1 || ndx > maxglobal) 9599 maxglobal = ndx; 9600 9601 if (ndx < vstate->dtvs_nglobals) { 9602 dtrace_statvar_t *svar; 9603 9604 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9605 existing = &svar->dtsv_var; 9606 } 9607 9608 break; 9609 9610 case DIFV_SCOPE_THREAD: 9611 if (maxtlocal == -1 || ndx > maxtlocal) 9612 maxtlocal = ndx; 9613 9614 if (ndx < vstate->dtvs_ntlocals) 9615 existing = &vstate->dtvs_tlocals[ndx]; 9616 break; 9617 9618 case DIFV_SCOPE_LOCAL: 9619 if (maxlocal == -1 || ndx > maxlocal) 9620 maxlocal = ndx; 9621 9622 if (ndx < vstate->dtvs_nlocals) { 9623 dtrace_statvar_t *svar; 9624 9625 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9626 existing = &svar->dtsv_var; 9627 } 9628 9629 break; 9630 } 9631 9632 vt = &v->dtdv_type; 9633 9634 if (vt->dtdt_flags & DIF_TF_BYREF) { 9635 if (vt->dtdt_size == 0) { 9636 err += efunc(i, "zero-sized variable\n"); 9637 break; 9638 } 9639 9640 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9641 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9642 vt->dtdt_size > dtrace_statvar_maxsize) { 9643 err += efunc(i, "oversized by-ref static\n"); 9644 break; 9645 } 9646 } 9647 9648 if (existing == NULL || existing->dtdv_id == 0) 9649 continue; 9650 9651 ASSERT(existing->dtdv_id == v->dtdv_id); 9652 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9653 9654 if (existing->dtdv_kind != v->dtdv_kind) 9655 err += efunc(i, "%d changed variable kind\n", id); 9656 9657 et = &existing->dtdv_type; 9658 9659 if (vt->dtdt_flags != et->dtdt_flags) { 9660 err += efunc(i, "%d changed variable type flags\n", id); 9661 break; 9662 } 9663 9664 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9665 err += efunc(i, "%d changed variable type size\n", id); 9666 break; 9667 } 9668 } 9669 9670 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9671 dif_instr_t instr = dp->dtdo_buf[pc]; 9672 9673 uint_t v = DIF_INSTR_VAR(instr); 9674 uint_t op = DIF_INSTR_OP(instr); 9675 9676 switch (op) { 9677 case DIF_OP_LDGS: 9678 case DIF_OP_LDGAA: 9679 case DIF_OP_STGS: 9680 case DIF_OP_STGAA: 9681 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9682 err += efunc(pc, "invalid variable %u\n", v); 9683 break; 9684 case DIF_OP_LDTS: 9685 case DIF_OP_LDTAA: 9686 case DIF_OP_STTS: 9687 case DIF_OP_STTAA: 9688 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9689 err += efunc(pc, "invalid variable %u\n", v); 9690 break; 9691 case DIF_OP_LDLS: 9692 case DIF_OP_STLS: 9693 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9694 err += efunc(pc, "invalid variable %u\n", v); 9695 break; 9696 default: 9697 break; 9698 } 9699 } 9700 9701 return (err); 9702 } 9703 9704 /* 9705 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9706 * are much more constrained than normal DIFOs. Specifically, they may 9707 * not: 9708 * 9709 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9710 * miscellaneous string routines 9711 * 2. Access DTrace variables other than the args[] array, and the 9712 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9713 * 3. Have thread-local variables. 9714 * 4. Have dynamic variables. 9715 */ 9716 static int 9717 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9718 { 9719 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9720 int err = 0; 9721 uint_t pc; 9722 9723 for (pc = 0; pc < dp->dtdo_len; pc++) { 9724 dif_instr_t instr = dp->dtdo_buf[pc]; 9725 9726 uint_t v = DIF_INSTR_VAR(instr); 9727 uint_t subr = DIF_INSTR_SUBR(instr); 9728 uint_t op = DIF_INSTR_OP(instr); 9729 9730 switch (op) { 9731 case DIF_OP_OR: 9732 case DIF_OP_XOR: 9733 case DIF_OP_AND: 9734 case DIF_OP_SLL: 9735 case DIF_OP_SRL: 9736 case DIF_OP_SRA: 9737 case DIF_OP_SUB: 9738 case DIF_OP_ADD: 9739 case DIF_OP_MUL: 9740 case DIF_OP_SDIV: 9741 case DIF_OP_UDIV: 9742 case DIF_OP_SREM: 9743 case DIF_OP_UREM: 9744 case DIF_OP_COPYS: 9745 case DIF_OP_NOT: 9746 case DIF_OP_MOV: 9747 case DIF_OP_RLDSB: 9748 case DIF_OP_RLDSH: 9749 case DIF_OP_RLDSW: 9750 case DIF_OP_RLDUB: 9751 case DIF_OP_RLDUH: 9752 case DIF_OP_RLDUW: 9753 case DIF_OP_RLDX: 9754 case DIF_OP_ULDSB: 9755 case DIF_OP_ULDSH: 9756 case DIF_OP_ULDSW: 9757 case DIF_OP_ULDUB: 9758 case DIF_OP_ULDUH: 9759 case DIF_OP_ULDUW: 9760 case DIF_OP_ULDX: 9761 case DIF_OP_STB: 9762 case DIF_OP_STH: 9763 case DIF_OP_STW: 9764 case DIF_OP_STX: 9765 case DIF_OP_ALLOCS: 9766 case DIF_OP_CMP: 9767 case DIF_OP_SCMP: 9768 case DIF_OP_TST: 9769 case DIF_OP_BA: 9770 case DIF_OP_BE: 9771 case DIF_OP_BNE: 9772 case DIF_OP_BG: 9773 case DIF_OP_BGU: 9774 case DIF_OP_BGE: 9775 case DIF_OP_BGEU: 9776 case DIF_OP_BL: 9777 case DIF_OP_BLU: 9778 case DIF_OP_BLE: 9779 case DIF_OP_BLEU: 9780 case DIF_OP_RET: 9781 case DIF_OP_NOP: 9782 case DIF_OP_POPTS: 9783 case DIF_OP_FLUSHTS: 9784 case DIF_OP_SETX: 9785 case DIF_OP_SETS: 9786 case DIF_OP_LDGA: 9787 case DIF_OP_LDLS: 9788 case DIF_OP_STGS: 9789 case DIF_OP_STLS: 9790 case DIF_OP_PUSHTR: 9791 case DIF_OP_PUSHTV: 9792 break; 9793 9794 case DIF_OP_LDGS: 9795 if (v >= DIF_VAR_OTHER_UBASE) 9796 break; 9797 9798 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9799 break; 9800 9801 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9802 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9803 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9804 v == DIF_VAR_UID || v == DIF_VAR_GID) 9805 break; 9806 9807 err += efunc(pc, "illegal variable %u\n", v); 9808 break; 9809 9810 case DIF_OP_LDTA: 9811 if (v < DIF_VAR_OTHER_UBASE) { 9812 err += efunc(pc, "illegal variable load\n"); 9813 break; 9814 } 9815 /* FALLTHROUGH */ 9816 case DIF_OP_LDTS: 9817 case DIF_OP_LDGAA: 9818 case DIF_OP_LDTAA: 9819 err += efunc(pc, "illegal dynamic variable load\n"); 9820 break; 9821 9822 case DIF_OP_STGA: 9823 if (v < DIF_VAR_OTHER_UBASE) { 9824 err += efunc(pc, "illegal variable store\n"); 9825 break; 9826 } 9827 /* FALLTHROUGH */ 9828 case DIF_OP_STTS: 9829 case DIF_OP_STGAA: 9830 case DIF_OP_STTAA: 9831 err += efunc(pc, "illegal dynamic variable store\n"); 9832 break; 9833 9834 case DIF_OP_CALL: 9835 if (subr == DIF_SUBR_ALLOCA || 9836 subr == DIF_SUBR_BCOPY || 9837 subr == DIF_SUBR_COPYIN || 9838 subr == DIF_SUBR_COPYINTO || 9839 subr == DIF_SUBR_COPYINSTR || 9840 subr == DIF_SUBR_INDEX || 9841 subr == DIF_SUBR_INET_NTOA || 9842 subr == DIF_SUBR_INET_NTOA6 || 9843 subr == DIF_SUBR_INET_NTOP || 9844 subr == DIF_SUBR_JSON || 9845 subr == DIF_SUBR_LLTOSTR || 9846 subr == DIF_SUBR_STRTOLL || 9847 subr == DIF_SUBR_RINDEX || 9848 subr == DIF_SUBR_STRCHR || 9849 subr == DIF_SUBR_STRJOIN || 9850 subr == DIF_SUBR_STRRCHR || 9851 subr == DIF_SUBR_STRSTR || 9852 subr == DIF_SUBR_HTONS || 9853 subr == DIF_SUBR_HTONL || 9854 subr == DIF_SUBR_HTONLL || 9855 subr == DIF_SUBR_NTOHS || 9856 subr == DIF_SUBR_NTOHL || 9857 subr == DIF_SUBR_NTOHLL) 9858 break; 9859 9860 err += efunc(pc, "invalid subr %u\n", subr); 9861 break; 9862 9863 default: 9864 err += efunc(pc, "invalid opcode %u\n", 9865 DIF_INSTR_OP(instr)); 9866 } 9867 } 9868 9869 return (err); 9870 } 9871 9872 /* 9873 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9874 * basis; 0 if not. 9875 */ 9876 static int 9877 dtrace_difo_cacheable(dtrace_difo_t *dp) 9878 { 9879 int i; 9880 9881 if (dp == NULL) 9882 return (0); 9883 9884 for (i = 0; i < dp->dtdo_varlen; i++) { 9885 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9886 9887 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9888 continue; 9889 9890 switch (v->dtdv_id) { 9891 case DIF_VAR_CURTHREAD: 9892 case DIF_VAR_PID: 9893 case DIF_VAR_TID: 9894 case DIF_VAR_EXECNAME: 9895 case DIF_VAR_ZONENAME: 9896 break; 9897 9898 default: 9899 return (0); 9900 } 9901 } 9902 9903 /* 9904 * This DIF object may be cacheable. Now we need to look for any 9905 * array loading instructions, any memory loading instructions, or 9906 * any stores to thread-local variables. 9907 */ 9908 for (i = 0; i < dp->dtdo_len; i++) { 9909 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9910 9911 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9912 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9913 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9914 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9915 return (0); 9916 } 9917 9918 return (1); 9919 } 9920 9921 static void 9922 dtrace_difo_hold(dtrace_difo_t *dp) 9923 { 9924 int i; 9925 9926 ASSERT(MUTEX_HELD(&dtrace_lock)); 9927 9928 dp->dtdo_refcnt++; 9929 ASSERT(dp->dtdo_refcnt != 0); 9930 9931 /* 9932 * We need to check this DIF object for references to the variable 9933 * DIF_VAR_VTIMESTAMP. 9934 */ 9935 for (i = 0; i < dp->dtdo_varlen; i++) { 9936 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9937 9938 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9939 continue; 9940 9941 if (dtrace_vtime_references++ == 0) 9942 dtrace_vtime_enable(); 9943 } 9944 } 9945 9946 /* 9947 * This routine calculates the dynamic variable chunksize for a given DIF 9948 * object. The calculation is not fool-proof, and can probably be tricked by 9949 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9950 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9951 * if a dynamic variable size exceeds the chunksize. 9952 */ 9953 static void 9954 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9955 { 9956 uint64_t sval; 9957 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9958 const dif_instr_t *text = dp->dtdo_buf; 9959 uint_t pc, srd = 0; 9960 uint_t ttop = 0; 9961 size_t size, ksize; 9962 uint_t id, i; 9963 9964 for (pc = 0; pc < dp->dtdo_len; pc++) { 9965 dif_instr_t instr = text[pc]; 9966 uint_t op = DIF_INSTR_OP(instr); 9967 uint_t rd = DIF_INSTR_RD(instr); 9968 uint_t r1 = DIF_INSTR_R1(instr); 9969 uint_t nkeys = 0; 9970 uchar_t scope; 9971 9972 dtrace_key_t *key = tupregs; 9973 9974 switch (op) { 9975 case DIF_OP_SETX: 9976 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9977 srd = rd; 9978 continue; 9979 9980 case DIF_OP_STTS: 9981 key = &tupregs[DIF_DTR_NREGS]; 9982 key[0].dttk_size = 0; 9983 key[1].dttk_size = 0; 9984 nkeys = 2; 9985 scope = DIFV_SCOPE_THREAD; 9986 break; 9987 9988 case DIF_OP_STGAA: 9989 case DIF_OP_STTAA: 9990 nkeys = ttop; 9991 9992 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9993 key[nkeys++].dttk_size = 0; 9994 9995 key[nkeys++].dttk_size = 0; 9996 9997 if (op == DIF_OP_STTAA) { 9998 scope = DIFV_SCOPE_THREAD; 9999 } else { 10000 scope = DIFV_SCOPE_GLOBAL; 10001 } 10002 10003 break; 10004 10005 case DIF_OP_PUSHTR: 10006 if (ttop == DIF_DTR_NREGS) 10007 return; 10008 10009 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10010 /* 10011 * If the register for the size of the "pushtr" 10012 * is %r0 (or the value is 0) and the type is 10013 * a string, we'll use the system-wide default 10014 * string size. 10015 */ 10016 tupregs[ttop++].dttk_size = 10017 dtrace_strsize_default; 10018 } else { 10019 if (srd == 0) 10020 return; 10021 10022 if (sval > LONG_MAX) 10023 return; 10024 10025 tupregs[ttop++].dttk_size = sval; 10026 } 10027 10028 break; 10029 10030 case DIF_OP_PUSHTV: 10031 if (ttop == DIF_DTR_NREGS) 10032 return; 10033 10034 tupregs[ttop++].dttk_size = 0; 10035 break; 10036 10037 case DIF_OP_FLUSHTS: 10038 ttop = 0; 10039 break; 10040 10041 case DIF_OP_POPTS: 10042 if (ttop != 0) 10043 ttop--; 10044 break; 10045 } 10046 10047 sval = 0; 10048 srd = 0; 10049 10050 if (nkeys == 0) 10051 continue; 10052 10053 /* 10054 * We have a dynamic variable allocation; calculate its size. 10055 */ 10056 for (ksize = 0, i = 0; i < nkeys; i++) 10057 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10058 10059 size = sizeof (dtrace_dynvar_t); 10060 size += sizeof (dtrace_key_t) * (nkeys - 1); 10061 size += ksize; 10062 10063 /* 10064 * Now we need to determine the size of the stored data. 10065 */ 10066 id = DIF_INSTR_VAR(instr); 10067 10068 for (i = 0; i < dp->dtdo_varlen; i++) { 10069 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10070 10071 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10072 size += v->dtdv_type.dtdt_size; 10073 break; 10074 } 10075 } 10076 10077 if (i == dp->dtdo_varlen) 10078 return; 10079 10080 /* 10081 * We have the size. If this is larger than the chunk size 10082 * for our dynamic variable state, reset the chunk size. 10083 */ 10084 size = P2ROUNDUP(size, sizeof (uint64_t)); 10085 10086 /* 10087 * Before setting the chunk size, check that we're not going 10088 * to set it to a negative value... 10089 */ 10090 if (size > LONG_MAX) 10091 return; 10092 10093 /* 10094 * ...and make certain that we didn't badly overflow. 10095 */ 10096 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10097 return; 10098 10099 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10100 vstate->dtvs_dynvars.dtds_chunksize = size; 10101 } 10102 } 10103 10104 static void 10105 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10106 { 10107 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10108 uint_t id; 10109 10110 ASSERT(MUTEX_HELD(&dtrace_lock)); 10111 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10112 10113 for (i = 0; i < dp->dtdo_varlen; i++) { 10114 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10115 dtrace_statvar_t *svar, ***svarp; 10116 size_t dsize = 0; 10117 uint8_t scope = v->dtdv_scope; 10118 int *np; 10119 10120 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10121 continue; 10122 10123 id -= DIF_VAR_OTHER_UBASE; 10124 10125 switch (scope) { 10126 case DIFV_SCOPE_THREAD: 10127 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10128 dtrace_difv_t *tlocals; 10129 10130 if ((ntlocals = (otlocals << 1)) == 0) 10131 ntlocals = 1; 10132 10133 osz = otlocals * sizeof (dtrace_difv_t); 10134 nsz = ntlocals * sizeof (dtrace_difv_t); 10135 10136 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10137 10138 if (osz != 0) { 10139 bcopy(vstate->dtvs_tlocals, 10140 tlocals, osz); 10141 kmem_free(vstate->dtvs_tlocals, osz); 10142 } 10143 10144 vstate->dtvs_tlocals = tlocals; 10145 vstate->dtvs_ntlocals = ntlocals; 10146 } 10147 10148 vstate->dtvs_tlocals[id] = *v; 10149 continue; 10150 10151 case DIFV_SCOPE_LOCAL: 10152 np = &vstate->dtvs_nlocals; 10153 svarp = &vstate->dtvs_locals; 10154 10155 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10156 dsize = NCPU * (v->dtdv_type.dtdt_size + 10157 sizeof (uint64_t)); 10158 else 10159 dsize = NCPU * sizeof (uint64_t); 10160 10161 break; 10162 10163 case DIFV_SCOPE_GLOBAL: 10164 np = &vstate->dtvs_nglobals; 10165 svarp = &vstate->dtvs_globals; 10166 10167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10168 dsize = v->dtdv_type.dtdt_size + 10169 sizeof (uint64_t); 10170 10171 break; 10172 10173 default: 10174 ASSERT(0); 10175 } 10176 10177 while (id >= (oldsvars = *np)) { 10178 dtrace_statvar_t **statics; 10179 int newsvars, oldsize, newsize; 10180 10181 if ((newsvars = (oldsvars << 1)) == 0) 10182 newsvars = 1; 10183 10184 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10185 newsize = newsvars * sizeof (dtrace_statvar_t *); 10186 10187 statics = kmem_zalloc(newsize, KM_SLEEP); 10188 10189 if (oldsize != 0) { 10190 bcopy(*svarp, statics, oldsize); 10191 kmem_free(*svarp, oldsize); 10192 } 10193 10194 *svarp = statics; 10195 *np = newsvars; 10196 } 10197 10198 if ((svar = (*svarp)[id]) == NULL) { 10199 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10200 svar->dtsv_var = *v; 10201 10202 if ((svar->dtsv_size = dsize) != 0) { 10203 svar->dtsv_data = (uint64_t)(uintptr_t) 10204 kmem_zalloc(dsize, KM_SLEEP); 10205 } 10206 10207 (*svarp)[id] = svar; 10208 } 10209 10210 svar->dtsv_refcnt++; 10211 } 10212 10213 dtrace_difo_chunksize(dp, vstate); 10214 dtrace_difo_hold(dp); 10215 } 10216 10217 static dtrace_difo_t * 10218 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10219 { 10220 dtrace_difo_t *new; 10221 size_t sz; 10222 10223 ASSERT(dp->dtdo_buf != NULL); 10224 ASSERT(dp->dtdo_refcnt != 0); 10225 10226 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10227 10228 ASSERT(dp->dtdo_buf != NULL); 10229 sz = dp->dtdo_len * sizeof (dif_instr_t); 10230 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10231 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10232 new->dtdo_len = dp->dtdo_len; 10233 10234 if (dp->dtdo_strtab != NULL) { 10235 ASSERT(dp->dtdo_strlen != 0); 10236 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10237 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10238 new->dtdo_strlen = dp->dtdo_strlen; 10239 } 10240 10241 if (dp->dtdo_inttab != NULL) { 10242 ASSERT(dp->dtdo_intlen != 0); 10243 sz = dp->dtdo_intlen * sizeof (uint64_t); 10244 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10245 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10246 new->dtdo_intlen = dp->dtdo_intlen; 10247 } 10248 10249 if (dp->dtdo_vartab != NULL) { 10250 ASSERT(dp->dtdo_varlen != 0); 10251 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10252 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10253 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10254 new->dtdo_varlen = dp->dtdo_varlen; 10255 } 10256 10257 dtrace_difo_init(new, vstate); 10258 return (new); 10259 } 10260 10261 static void 10262 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10263 { 10264 int i; 10265 10266 ASSERT(dp->dtdo_refcnt == 0); 10267 10268 for (i = 0; i < dp->dtdo_varlen; i++) { 10269 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10270 dtrace_statvar_t *svar, **svarp; 10271 uint_t id; 10272 uint8_t scope = v->dtdv_scope; 10273 int *np; 10274 10275 switch (scope) { 10276 case DIFV_SCOPE_THREAD: 10277 continue; 10278 10279 case DIFV_SCOPE_LOCAL: 10280 np = &vstate->dtvs_nlocals; 10281 svarp = vstate->dtvs_locals; 10282 break; 10283 10284 case DIFV_SCOPE_GLOBAL: 10285 np = &vstate->dtvs_nglobals; 10286 svarp = vstate->dtvs_globals; 10287 break; 10288 10289 default: 10290 ASSERT(0); 10291 } 10292 10293 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10294 continue; 10295 10296 id -= DIF_VAR_OTHER_UBASE; 10297 ASSERT(id < *np); 10298 10299 svar = svarp[id]; 10300 ASSERT(svar != NULL); 10301 ASSERT(svar->dtsv_refcnt > 0); 10302 10303 if (--svar->dtsv_refcnt > 0) 10304 continue; 10305 10306 if (svar->dtsv_size != 0) { 10307 ASSERT(svar->dtsv_data != 0); 10308 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10309 svar->dtsv_size); 10310 } 10311 10312 kmem_free(svar, sizeof (dtrace_statvar_t)); 10313 svarp[id] = NULL; 10314 } 10315 10316 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10317 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10318 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10319 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10320 10321 kmem_free(dp, sizeof (dtrace_difo_t)); 10322 } 10323 10324 static void 10325 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10326 { 10327 int i; 10328 10329 ASSERT(MUTEX_HELD(&dtrace_lock)); 10330 ASSERT(dp->dtdo_refcnt != 0); 10331 10332 for (i = 0; i < dp->dtdo_varlen; i++) { 10333 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10334 10335 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10336 continue; 10337 10338 ASSERT(dtrace_vtime_references > 0); 10339 if (--dtrace_vtime_references == 0) 10340 dtrace_vtime_disable(); 10341 } 10342 10343 if (--dp->dtdo_refcnt == 0) 10344 dtrace_difo_destroy(dp, vstate); 10345 } 10346 10347 /* 10348 * DTrace Format Functions 10349 */ 10350 static uint16_t 10351 dtrace_format_add(dtrace_state_t *state, char *str) 10352 { 10353 char *fmt, **new; 10354 uint16_t ndx, len = strlen(str) + 1; 10355 10356 fmt = kmem_zalloc(len, KM_SLEEP); 10357 bcopy(str, fmt, len); 10358 10359 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10360 if (state->dts_formats[ndx] == NULL) { 10361 state->dts_formats[ndx] = fmt; 10362 return (ndx + 1); 10363 } 10364 } 10365 10366 if (state->dts_nformats == USHRT_MAX) { 10367 /* 10368 * This is only likely if a denial-of-service attack is being 10369 * attempted. As such, it's okay to fail silently here. 10370 */ 10371 kmem_free(fmt, len); 10372 return (0); 10373 } 10374 10375 /* 10376 * For simplicity, we always resize the formats array to be exactly the 10377 * number of formats. 10378 */ 10379 ndx = state->dts_nformats++; 10380 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10381 10382 if (state->dts_formats != NULL) { 10383 ASSERT(ndx != 0); 10384 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10385 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10386 } 10387 10388 state->dts_formats = new; 10389 state->dts_formats[ndx] = fmt; 10390 10391 return (ndx + 1); 10392 } 10393 10394 static void 10395 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10396 { 10397 char *fmt; 10398 10399 ASSERT(state->dts_formats != NULL); 10400 ASSERT(format <= state->dts_nformats); 10401 ASSERT(state->dts_formats[format - 1] != NULL); 10402 10403 fmt = state->dts_formats[format - 1]; 10404 kmem_free(fmt, strlen(fmt) + 1); 10405 state->dts_formats[format - 1] = NULL; 10406 } 10407 10408 static void 10409 dtrace_format_destroy(dtrace_state_t *state) 10410 { 10411 int i; 10412 10413 if (state->dts_nformats == 0) { 10414 ASSERT(state->dts_formats == NULL); 10415 return; 10416 } 10417 10418 ASSERT(state->dts_formats != NULL); 10419 10420 for (i = 0; i < state->dts_nformats; i++) { 10421 char *fmt = state->dts_formats[i]; 10422 10423 if (fmt == NULL) 10424 continue; 10425 10426 kmem_free(fmt, strlen(fmt) + 1); 10427 } 10428 10429 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10430 state->dts_nformats = 0; 10431 state->dts_formats = NULL; 10432 } 10433 10434 /* 10435 * DTrace Predicate Functions 10436 */ 10437 static dtrace_predicate_t * 10438 dtrace_predicate_create(dtrace_difo_t *dp) 10439 { 10440 dtrace_predicate_t *pred; 10441 10442 ASSERT(MUTEX_HELD(&dtrace_lock)); 10443 ASSERT(dp->dtdo_refcnt != 0); 10444 10445 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10446 pred->dtp_difo = dp; 10447 pred->dtp_refcnt = 1; 10448 10449 if (!dtrace_difo_cacheable(dp)) 10450 return (pred); 10451 10452 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10453 /* 10454 * This is only theoretically possible -- we have had 2^32 10455 * cacheable predicates on this machine. We cannot allow any 10456 * more predicates to become cacheable: as unlikely as it is, 10457 * there may be a thread caching a (now stale) predicate cache 10458 * ID. (N.B.: the temptation is being successfully resisted to 10459 * have this cmn_err() "Holy shit -- we executed this code!") 10460 */ 10461 return (pred); 10462 } 10463 10464 pred->dtp_cacheid = dtrace_predcache_id++; 10465 10466 return (pred); 10467 } 10468 10469 static void 10470 dtrace_predicate_hold(dtrace_predicate_t *pred) 10471 { 10472 ASSERT(MUTEX_HELD(&dtrace_lock)); 10473 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10474 ASSERT(pred->dtp_refcnt > 0); 10475 10476 pred->dtp_refcnt++; 10477 } 10478 10479 static void 10480 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10481 { 10482 dtrace_difo_t *dp = pred->dtp_difo; 10483 10484 ASSERT(MUTEX_HELD(&dtrace_lock)); 10485 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10486 ASSERT(pred->dtp_refcnt > 0); 10487 10488 if (--pred->dtp_refcnt == 0) { 10489 dtrace_difo_release(pred->dtp_difo, vstate); 10490 kmem_free(pred, sizeof (dtrace_predicate_t)); 10491 } 10492 } 10493 10494 /* 10495 * DTrace Action Description Functions 10496 */ 10497 static dtrace_actdesc_t * 10498 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10499 uint64_t uarg, uint64_t arg) 10500 { 10501 dtrace_actdesc_t *act; 10502 10503 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 && 10504 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA)); 10505 10506 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10507 act->dtad_kind = kind; 10508 act->dtad_ntuple = ntuple; 10509 act->dtad_uarg = uarg; 10510 act->dtad_arg = arg; 10511 act->dtad_refcnt = 1; 10512 10513 return (act); 10514 } 10515 10516 static void 10517 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10518 { 10519 ASSERT(act->dtad_refcnt >= 1); 10520 act->dtad_refcnt++; 10521 } 10522 10523 static void 10524 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10525 { 10526 dtrace_actkind_t kind = act->dtad_kind; 10527 dtrace_difo_t *dp; 10528 10529 ASSERT(act->dtad_refcnt >= 1); 10530 10531 if (--act->dtad_refcnt != 0) 10532 return; 10533 10534 if ((dp = act->dtad_difo) != NULL) 10535 dtrace_difo_release(dp, vstate); 10536 10537 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10538 char *str = (char *)(uintptr_t)act->dtad_arg; 10539 10540 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10541 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10542 10543 if (str != NULL) 10544 kmem_free(str, strlen(str) + 1); 10545 } 10546 10547 kmem_free(act, sizeof (dtrace_actdesc_t)); 10548 } 10549 10550 /* 10551 * DTrace ECB Functions 10552 */ 10553 static dtrace_ecb_t * 10554 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10555 { 10556 dtrace_ecb_t *ecb; 10557 dtrace_epid_t epid; 10558 10559 ASSERT(MUTEX_HELD(&dtrace_lock)); 10560 10561 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10562 ecb->dte_predicate = NULL; 10563 ecb->dte_probe = probe; 10564 10565 /* 10566 * The default size is the size of the default action: recording 10567 * the header. 10568 */ 10569 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10570 ecb->dte_alignment = sizeof (dtrace_epid_t); 10571 10572 epid = state->dts_epid++; 10573 10574 if (epid - 1 >= state->dts_necbs) { 10575 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10576 int necbs = state->dts_necbs << 1; 10577 10578 ASSERT(epid == state->dts_necbs + 1); 10579 10580 if (necbs == 0) { 10581 ASSERT(oecbs == NULL); 10582 necbs = 1; 10583 } 10584 10585 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10586 10587 if (oecbs != NULL) 10588 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10589 10590 dtrace_membar_producer(); 10591 state->dts_ecbs = ecbs; 10592 10593 if (oecbs != NULL) { 10594 /* 10595 * If this state is active, we must dtrace_sync() 10596 * before we can free the old dts_ecbs array: we're 10597 * coming in hot, and there may be active ring 10598 * buffer processing (which indexes into the dts_ecbs 10599 * array) on another CPU. 10600 */ 10601 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10602 dtrace_sync(); 10603 10604 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10605 } 10606 10607 dtrace_membar_producer(); 10608 state->dts_necbs = necbs; 10609 } 10610 10611 ecb->dte_state = state; 10612 10613 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10614 dtrace_membar_producer(); 10615 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10616 10617 return (ecb); 10618 } 10619 10620 static int 10621 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10622 { 10623 dtrace_probe_t *probe = ecb->dte_probe; 10624 10625 ASSERT(MUTEX_HELD(&cpu_lock)); 10626 ASSERT(MUTEX_HELD(&dtrace_lock)); 10627 ASSERT(ecb->dte_next == NULL); 10628 10629 if (probe == NULL) { 10630 /* 10631 * This is the NULL probe -- there's nothing to do. 10632 */ 10633 return (0); 10634 } 10635 10636 if (probe->dtpr_ecb == NULL) { 10637 dtrace_provider_t *prov = probe->dtpr_provider; 10638 10639 /* 10640 * We're the first ECB on this probe. 10641 */ 10642 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10643 10644 if (ecb->dte_predicate != NULL) 10645 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10646 10647 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10648 probe->dtpr_id, probe->dtpr_arg)); 10649 } else { 10650 /* 10651 * This probe is already active. Swing the last pointer to 10652 * point to the new ECB, and issue a dtrace_sync() to assure 10653 * that all CPUs have seen the change. 10654 */ 10655 ASSERT(probe->dtpr_ecb_last != NULL); 10656 probe->dtpr_ecb_last->dte_next = ecb; 10657 probe->dtpr_ecb_last = ecb; 10658 probe->dtpr_predcache = 0; 10659 10660 dtrace_sync(); 10661 return (0); 10662 } 10663 } 10664 10665 static int 10666 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10667 { 10668 dtrace_action_t *act; 10669 uint32_t curneeded = UINT32_MAX; 10670 uint32_t aggbase = UINT32_MAX; 10671 10672 /* 10673 * If we record anything, we always record the dtrace_rechdr_t. (And 10674 * we always record it first.) 10675 */ 10676 ecb->dte_size = sizeof (dtrace_rechdr_t); 10677 ecb->dte_alignment = sizeof (dtrace_epid_t); 10678 10679 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10680 dtrace_recdesc_t *rec = &act->dta_rec; 10681 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10682 10683 ecb->dte_alignment = MAX(ecb->dte_alignment, 10684 rec->dtrd_alignment); 10685 10686 if (DTRACEACT_ISAGG(act->dta_kind)) { 10687 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10688 10689 ASSERT(rec->dtrd_size != 0); 10690 ASSERT(agg->dtag_first != NULL); 10691 ASSERT(act->dta_prev->dta_intuple); 10692 ASSERT(aggbase != UINT32_MAX); 10693 ASSERT(curneeded != UINT32_MAX); 10694 10695 agg->dtag_base = aggbase; 10696 10697 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10698 rec->dtrd_offset = curneeded; 10699 if (curneeded + rec->dtrd_size < curneeded) 10700 return (EINVAL); 10701 curneeded += rec->dtrd_size; 10702 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10703 10704 aggbase = UINT32_MAX; 10705 curneeded = UINT32_MAX; 10706 } else if (act->dta_intuple) { 10707 if (curneeded == UINT32_MAX) { 10708 /* 10709 * This is the first record in a tuple. Align 10710 * curneeded to be at offset 4 in an 8-byte 10711 * aligned block. 10712 */ 10713 ASSERT(act->dta_prev == NULL || 10714 !act->dta_prev->dta_intuple); 10715 ASSERT3U(aggbase, ==, UINT32_MAX); 10716 curneeded = P2PHASEUP(ecb->dte_size, 10717 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10718 10719 aggbase = curneeded - sizeof (dtrace_aggid_t); 10720 ASSERT(IS_P2ALIGNED(aggbase, 10721 sizeof (uint64_t))); 10722 } 10723 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10724 rec->dtrd_offset = curneeded; 10725 if (curneeded + rec->dtrd_size < curneeded) 10726 return (EINVAL); 10727 curneeded += rec->dtrd_size; 10728 } else { 10729 /* tuples must be followed by an aggregation */ 10730 ASSERT(act->dta_prev == NULL || 10731 !act->dta_prev->dta_intuple); 10732 10733 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10734 rec->dtrd_alignment); 10735 rec->dtrd_offset = ecb->dte_size; 10736 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10737 return (EINVAL); 10738 ecb->dte_size += rec->dtrd_size; 10739 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10740 } 10741 } 10742 10743 if ((act = ecb->dte_action) != NULL && 10744 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10745 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10746 /* 10747 * If the size is still sizeof (dtrace_rechdr_t), then all 10748 * actions store no data; set the size to 0. 10749 */ 10750 ecb->dte_size = 0; 10751 } 10752 10753 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10754 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10755 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10756 ecb->dte_needed); 10757 return (0); 10758 } 10759 10760 static dtrace_action_t * 10761 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10762 { 10763 dtrace_aggregation_t *agg; 10764 size_t size = sizeof (uint64_t); 10765 int ntuple = desc->dtad_ntuple; 10766 dtrace_action_t *act; 10767 dtrace_recdesc_t *frec; 10768 dtrace_aggid_t aggid; 10769 dtrace_state_t *state = ecb->dte_state; 10770 10771 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10772 agg->dtag_ecb = ecb; 10773 10774 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10775 10776 switch (desc->dtad_kind) { 10777 case DTRACEAGG_MIN: 10778 agg->dtag_initial = INT64_MAX; 10779 agg->dtag_aggregate = dtrace_aggregate_min; 10780 break; 10781 10782 case DTRACEAGG_MAX: 10783 agg->dtag_initial = INT64_MIN; 10784 agg->dtag_aggregate = dtrace_aggregate_max; 10785 break; 10786 10787 case DTRACEAGG_COUNT: 10788 agg->dtag_aggregate = dtrace_aggregate_count; 10789 break; 10790 10791 case DTRACEAGG_QUANTIZE: 10792 agg->dtag_aggregate = dtrace_aggregate_quantize; 10793 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10794 sizeof (uint64_t); 10795 break; 10796 10797 case DTRACEAGG_LQUANTIZE: { 10798 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10799 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10800 10801 agg->dtag_initial = desc->dtad_arg; 10802 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10803 10804 if (step == 0 || levels == 0) 10805 goto err; 10806 10807 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10808 break; 10809 } 10810 10811 case DTRACEAGG_LLQUANTIZE: { 10812 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10813 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10814 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10815 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10816 int64_t v; 10817 10818 agg->dtag_initial = desc->dtad_arg; 10819 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10820 10821 if (factor < 2 || low >= high || nsteps < factor) 10822 goto err; 10823 10824 /* 10825 * Now check that the number of steps evenly divides a power 10826 * of the factor. (This assures both integer bucket size and 10827 * linearity within each magnitude.) 10828 */ 10829 for (v = factor; v < nsteps; v *= factor) 10830 continue; 10831 10832 if ((v % nsteps) || (nsteps % factor)) 10833 goto err; 10834 10835 size = (dtrace_aggregate_llquantize_bucket(factor, 10836 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10837 break; 10838 } 10839 10840 case DTRACEAGG_AVG: 10841 agg->dtag_aggregate = dtrace_aggregate_avg; 10842 size = sizeof (uint64_t) * 2; 10843 break; 10844 10845 case DTRACEAGG_STDDEV: 10846 agg->dtag_aggregate = dtrace_aggregate_stddev; 10847 size = sizeof (uint64_t) * 4; 10848 break; 10849 10850 case DTRACEAGG_SUM: 10851 agg->dtag_aggregate = dtrace_aggregate_sum; 10852 break; 10853 10854 default: 10855 goto err; 10856 } 10857 10858 agg->dtag_action.dta_rec.dtrd_size = size; 10859 10860 if (ntuple == 0) 10861 goto err; 10862 10863 /* 10864 * We must make sure that we have enough actions for the n-tuple. 10865 */ 10866 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10867 if (DTRACEACT_ISAGG(act->dta_kind)) 10868 break; 10869 10870 if (--ntuple == 0) { 10871 /* 10872 * This is the action with which our n-tuple begins. 10873 */ 10874 agg->dtag_first = act; 10875 goto success; 10876 } 10877 } 10878 10879 /* 10880 * This n-tuple is short by ntuple elements. Return failure. 10881 */ 10882 ASSERT(ntuple != 0); 10883 err: 10884 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10885 return (NULL); 10886 10887 success: 10888 /* 10889 * If the last action in the tuple has a size of zero, it's actually 10890 * an expression argument for the aggregating action. 10891 */ 10892 ASSERT(ecb->dte_action_last != NULL); 10893 act = ecb->dte_action_last; 10894 10895 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10896 ASSERT(act->dta_difo != NULL); 10897 10898 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10899 agg->dtag_hasarg = 1; 10900 } 10901 10902 /* 10903 * We need to allocate an id for this aggregation. 10904 */ 10905 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10906 VM_BESTFIT | VM_SLEEP); 10907 10908 if (aggid - 1 >= state->dts_naggregations) { 10909 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10910 dtrace_aggregation_t **aggs; 10911 int naggs = state->dts_naggregations << 1; 10912 int onaggs = state->dts_naggregations; 10913 10914 ASSERT(aggid == state->dts_naggregations + 1); 10915 10916 if (naggs == 0) { 10917 ASSERT(oaggs == NULL); 10918 naggs = 1; 10919 } 10920 10921 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10922 10923 if (oaggs != NULL) { 10924 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10925 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10926 } 10927 10928 state->dts_aggregations = aggs; 10929 state->dts_naggregations = naggs; 10930 } 10931 10932 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10933 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10934 10935 frec = &agg->dtag_first->dta_rec; 10936 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10937 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10938 10939 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10940 ASSERT(!act->dta_intuple); 10941 act->dta_intuple = 1; 10942 } 10943 10944 return (&agg->dtag_action); 10945 } 10946 10947 static void 10948 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10949 { 10950 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10951 dtrace_state_t *state = ecb->dte_state; 10952 dtrace_aggid_t aggid = agg->dtag_id; 10953 10954 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10955 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10956 10957 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10958 state->dts_aggregations[aggid - 1] = NULL; 10959 10960 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10961 } 10962 10963 static int 10964 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10965 { 10966 dtrace_action_t *action, *last; 10967 dtrace_difo_t *dp = desc->dtad_difo; 10968 uint32_t size = 0, align = sizeof (uint8_t), mask; 10969 uint16_t format = 0; 10970 dtrace_recdesc_t *rec; 10971 dtrace_state_t *state = ecb->dte_state; 10972 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10973 uint64_t arg = desc->dtad_arg; 10974 10975 ASSERT(MUTEX_HELD(&dtrace_lock)); 10976 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10977 10978 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10979 /* 10980 * If this is an aggregating action, there must be neither 10981 * a speculate nor a commit on the action chain. 10982 */ 10983 dtrace_action_t *act; 10984 10985 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10986 if (act->dta_kind == DTRACEACT_COMMIT) 10987 return (EINVAL); 10988 10989 if (act->dta_kind == DTRACEACT_SPECULATE) 10990 return (EINVAL); 10991 } 10992 10993 action = dtrace_ecb_aggregation_create(ecb, desc); 10994 10995 if (action == NULL) 10996 return (EINVAL); 10997 } else { 10998 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10999 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11000 dp != NULL && dp->dtdo_destructive)) { 11001 state->dts_destructive = 1; 11002 } 11003 11004 switch (desc->dtad_kind) { 11005 case DTRACEACT_PRINTF: 11006 case DTRACEACT_PRINTA: 11007 case DTRACEACT_SYSTEM: 11008 case DTRACEACT_FREOPEN: 11009 case DTRACEACT_DIFEXPR: 11010 /* 11011 * We know that our arg is a string -- turn it into a 11012 * format. 11013 */ 11014 if (arg == 0) { 11015 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11016 desc->dtad_kind == DTRACEACT_DIFEXPR); 11017 format = 0; 11018 } else { 11019 ASSERT(arg != 0); 11020 ASSERT(arg > KERNELBASE); 11021 format = dtrace_format_add(state, 11022 (char *)(uintptr_t)arg); 11023 } 11024 11025 /*FALLTHROUGH*/ 11026 case DTRACEACT_LIBACT: 11027 case DTRACEACT_TRACEMEM: 11028 case DTRACEACT_TRACEMEM_DYNSIZE: 11029 if (dp == NULL) 11030 return (EINVAL); 11031 11032 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11033 break; 11034 11035 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11036 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11037 return (EINVAL); 11038 11039 size = opt[DTRACEOPT_STRSIZE]; 11040 } 11041 11042 break; 11043 11044 case DTRACEACT_STACK: 11045 if ((nframes = arg) == 0) { 11046 nframes = opt[DTRACEOPT_STACKFRAMES]; 11047 ASSERT(nframes > 0); 11048 arg = nframes; 11049 } 11050 11051 size = nframes * sizeof (pc_t); 11052 break; 11053 11054 case DTRACEACT_JSTACK: 11055 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11056 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11057 11058 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11059 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11060 11061 arg = DTRACE_USTACK_ARG(nframes, strsize); 11062 11063 /*FALLTHROUGH*/ 11064 case DTRACEACT_USTACK: 11065 if (desc->dtad_kind != DTRACEACT_JSTACK && 11066 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11067 strsize = DTRACE_USTACK_STRSIZE(arg); 11068 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11069 ASSERT(nframes > 0); 11070 arg = DTRACE_USTACK_ARG(nframes, strsize); 11071 } 11072 11073 /* 11074 * Save a slot for the pid. 11075 */ 11076 size = (nframes + 1) * sizeof (uint64_t); 11077 size += DTRACE_USTACK_STRSIZE(arg); 11078 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11079 11080 break; 11081 11082 case DTRACEACT_SYM: 11083 case DTRACEACT_MOD: 11084 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11085 sizeof (uint64_t)) || 11086 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11087 return (EINVAL); 11088 break; 11089 11090 case DTRACEACT_USYM: 11091 case DTRACEACT_UMOD: 11092 case DTRACEACT_UADDR: 11093 if (dp == NULL || 11094 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11095 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11096 return (EINVAL); 11097 11098 /* 11099 * We have a slot for the pid, plus a slot for the 11100 * argument. To keep things simple (aligned with 11101 * bitness-neutral sizing), we store each as a 64-bit 11102 * quantity. 11103 */ 11104 size = 2 * sizeof (uint64_t); 11105 break; 11106 11107 case DTRACEACT_STOP: 11108 case DTRACEACT_BREAKPOINT: 11109 case DTRACEACT_PANIC: 11110 break; 11111 11112 case DTRACEACT_CHILL: 11113 case DTRACEACT_DISCARD: 11114 case DTRACEACT_RAISE: 11115 if (dp == NULL) 11116 return (EINVAL); 11117 break; 11118 11119 case DTRACEACT_EXIT: 11120 if (dp == NULL || 11121 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11122 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11123 return (EINVAL); 11124 break; 11125 11126 case DTRACEACT_SPECULATE: 11127 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11128 return (EINVAL); 11129 11130 if (dp == NULL) 11131 return (EINVAL); 11132 11133 state->dts_speculates = 1; 11134 break; 11135 11136 case DTRACEACT_COMMIT: { 11137 dtrace_action_t *act = ecb->dte_action; 11138 11139 for (; act != NULL; act = act->dta_next) { 11140 if (act->dta_kind == DTRACEACT_COMMIT) 11141 return (EINVAL); 11142 } 11143 11144 if (dp == NULL) 11145 return (EINVAL); 11146 break; 11147 } 11148 11149 default: 11150 return (EINVAL); 11151 } 11152 11153 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11154 /* 11155 * If this is a data-storing action or a speculate, 11156 * we must be sure that there isn't a commit on the 11157 * action chain. 11158 */ 11159 dtrace_action_t *act = ecb->dte_action; 11160 11161 for (; act != NULL; act = act->dta_next) { 11162 if (act->dta_kind == DTRACEACT_COMMIT) 11163 return (EINVAL); 11164 } 11165 } 11166 11167 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11168 action->dta_rec.dtrd_size = size; 11169 } 11170 11171 action->dta_refcnt = 1; 11172 rec = &action->dta_rec; 11173 size = rec->dtrd_size; 11174 11175 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11176 if (!(size & mask)) { 11177 align = mask + 1; 11178 break; 11179 } 11180 } 11181 11182 action->dta_kind = desc->dtad_kind; 11183 11184 if ((action->dta_difo = dp) != NULL) 11185 dtrace_difo_hold(dp); 11186 11187 rec->dtrd_action = action->dta_kind; 11188 rec->dtrd_arg = arg; 11189 rec->dtrd_uarg = desc->dtad_uarg; 11190 rec->dtrd_alignment = (uint16_t)align; 11191 rec->dtrd_format = format; 11192 11193 if ((last = ecb->dte_action_last) != NULL) { 11194 ASSERT(ecb->dte_action != NULL); 11195 action->dta_prev = last; 11196 last->dta_next = action; 11197 } else { 11198 ASSERT(ecb->dte_action == NULL); 11199 ecb->dte_action = action; 11200 } 11201 11202 ecb->dte_action_last = action; 11203 11204 return (0); 11205 } 11206 11207 static void 11208 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11209 { 11210 dtrace_action_t *act = ecb->dte_action, *next; 11211 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11212 dtrace_difo_t *dp; 11213 uint16_t format; 11214 11215 if (act != NULL && act->dta_refcnt > 1) { 11216 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11217 act->dta_refcnt--; 11218 } else { 11219 for (; act != NULL; act = next) { 11220 next = act->dta_next; 11221 ASSERT(next != NULL || act == ecb->dte_action_last); 11222 ASSERT(act->dta_refcnt == 1); 11223 11224 if ((format = act->dta_rec.dtrd_format) != 0) 11225 dtrace_format_remove(ecb->dte_state, format); 11226 11227 if ((dp = act->dta_difo) != NULL) 11228 dtrace_difo_release(dp, vstate); 11229 11230 if (DTRACEACT_ISAGG(act->dta_kind)) { 11231 dtrace_ecb_aggregation_destroy(ecb, act); 11232 } else { 11233 kmem_free(act, sizeof (dtrace_action_t)); 11234 } 11235 } 11236 } 11237 11238 ecb->dte_action = NULL; 11239 ecb->dte_action_last = NULL; 11240 ecb->dte_size = 0; 11241 } 11242 11243 static void 11244 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11245 { 11246 /* 11247 * We disable the ECB by removing it from its probe. 11248 */ 11249 dtrace_ecb_t *pecb, *prev = NULL; 11250 dtrace_probe_t *probe = ecb->dte_probe; 11251 11252 ASSERT(MUTEX_HELD(&dtrace_lock)); 11253 11254 if (probe == NULL) { 11255 /* 11256 * This is the NULL probe; there is nothing to disable. 11257 */ 11258 return; 11259 } 11260 11261 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11262 if (pecb == ecb) 11263 break; 11264 prev = pecb; 11265 } 11266 11267 ASSERT(pecb != NULL); 11268 11269 if (prev == NULL) { 11270 probe->dtpr_ecb = ecb->dte_next; 11271 } else { 11272 prev->dte_next = ecb->dte_next; 11273 } 11274 11275 if (ecb == probe->dtpr_ecb_last) { 11276 ASSERT(ecb->dte_next == NULL); 11277 probe->dtpr_ecb_last = prev; 11278 } 11279 11280 /* 11281 * The ECB has been disconnected from the probe; now sync to assure 11282 * that all CPUs have seen the change before returning. 11283 */ 11284 dtrace_sync(); 11285 11286 if (probe->dtpr_ecb == NULL) { 11287 /* 11288 * That was the last ECB on the probe; clear the predicate 11289 * cache ID for the probe, disable it and sync one more time 11290 * to assure that we'll never hit it again. 11291 */ 11292 dtrace_provider_t *prov = probe->dtpr_provider; 11293 11294 ASSERT(ecb->dte_next == NULL); 11295 ASSERT(probe->dtpr_ecb_last == NULL); 11296 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11297 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11298 probe->dtpr_id, probe->dtpr_arg); 11299 dtrace_sync(); 11300 } else { 11301 /* 11302 * There is at least one ECB remaining on the probe. If there 11303 * is _exactly_ one, set the probe's predicate cache ID to be 11304 * the predicate cache ID of the remaining ECB. 11305 */ 11306 ASSERT(probe->dtpr_ecb_last != NULL); 11307 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11308 11309 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11310 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11311 11312 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11313 11314 if (p != NULL) 11315 probe->dtpr_predcache = p->dtp_cacheid; 11316 } 11317 11318 ecb->dte_next = NULL; 11319 } 11320 } 11321 11322 static void 11323 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11324 { 11325 dtrace_state_t *state = ecb->dte_state; 11326 dtrace_vstate_t *vstate = &state->dts_vstate; 11327 dtrace_predicate_t *pred; 11328 dtrace_epid_t epid = ecb->dte_epid; 11329 11330 ASSERT(MUTEX_HELD(&dtrace_lock)); 11331 ASSERT(ecb->dte_next == NULL); 11332 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11333 11334 if ((pred = ecb->dte_predicate) != NULL) 11335 dtrace_predicate_release(pred, vstate); 11336 11337 dtrace_ecb_action_remove(ecb); 11338 11339 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11340 state->dts_ecbs[epid - 1] = NULL; 11341 11342 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11343 } 11344 11345 static dtrace_ecb_t * 11346 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11347 dtrace_enabling_t *enab) 11348 { 11349 dtrace_ecb_t *ecb; 11350 dtrace_predicate_t *pred; 11351 dtrace_actdesc_t *act; 11352 dtrace_provider_t *prov; 11353 dtrace_ecbdesc_t *desc = enab->dten_current; 11354 11355 ASSERT(MUTEX_HELD(&dtrace_lock)); 11356 ASSERT(state != NULL); 11357 11358 ecb = dtrace_ecb_add(state, probe); 11359 ecb->dte_uarg = desc->dted_uarg; 11360 11361 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11362 dtrace_predicate_hold(pred); 11363 ecb->dte_predicate = pred; 11364 } 11365 11366 if (probe != NULL) { 11367 /* 11368 * If the provider shows more leg than the consumer is old 11369 * enough to see, we need to enable the appropriate implicit 11370 * predicate bits to prevent the ecb from activating at 11371 * revealing times. 11372 * 11373 * Providers specifying DTRACE_PRIV_USER at register time 11374 * are stating that they need the /proc-style privilege 11375 * model to be enforced, and this is what DTRACE_COND_OWNER 11376 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11377 */ 11378 prov = probe->dtpr_provider; 11379 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11380 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11381 ecb->dte_cond |= DTRACE_COND_OWNER; 11382 11383 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11384 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11385 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11386 11387 /* 11388 * If the provider shows us kernel innards and the user 11389 * is lacking sufficient privilege, enable the 11390 * DTRACE_COND_USERMODE implicit predicate. 11391 */ 11392 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11393 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11394 ecb->dte_cond |= DTRACE_COND_USERMODE; 11395 } 11396 11397 if (dtrace_ecb_create_cache != NULL) { 11398 /* 11399 * If we have a cached ecb, we'll use its action list instead 11400 * of creating our own (saving both time and space). 11401 */ 11402 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11403 dtrace_action_t *act = cached->dte_action; 11404 11405 if (act != NULL) { 11406 ASSERT(act->dta_refcnt > 0); 11407 act->dta_refcnt++; 11408 ecb->dte_action = act; 11409 ecb->dte_action_last = cached->dte_action_last; 11410 ecb->dte_needed = cached->dte_needed; 11411 ecb->dte_size = cached->dte_size; 11412 ecb->dte_alignment = cached->dte_alignment; 11413 } 11414 11415 return (ecb); 11416 } 11417 11418 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11419 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11420 dtrace_ecb_destroy(ecb); 11421 return (NULL); 11422 } 11423 } 11424 11425 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11426 dtrace_ecb_destroy(ecb); 11427 return (NULL); 11428 } 11429 11430 return (dtrace_ecb_create_cache = ecb); 11431 } 11432 11433 static int 11434 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11435 { 11436 dtrace_ecb_t *ecb; 11437 dtrace_enabling_t *enab = arg; 11438 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11439 11440 ASSERT(state != NULL); 11441 11442 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11443 /* 11444 * This probe was created in a generation for which this 11445 * enabling has previously created ECBs; we don't want to 11446 * enable it again, so just kick out. 11447 */ 11448 return (DTRACE_MATCH_NEXT); 11449 } 11450 11451 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11452 return (DTRACE_MATCH_DONE); 11453 11454 if (dtrace_ecb_enable(ecb) < 0) 11455 return (DTRACE_MATCH_FAIL); 11456 11457 return (DTRACE_MATCH_NEXT); 11458 } 11459 11460 static dtrace_ecb_t * 11461 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11462 { 11463 dtrace_ecb_t *ecb; 11464 11465 ASSERT(MUTEX_HELD(&dtrace_lock)); 11466 11467 if (id == 0 || id > state->dts_necbs) 11468 return (NULL); 11469 11470 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11471 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11472 11473 return (state->dts_ecbs[id - 1]); 11474 } 11475 11476 static dtrace_aggregation_t * 11477 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11478 { 11479 dtrace_aggregation_t *agg; 11480 11481 ASSERT(MUTEX_HELD(&dtrace_lock)); 11482 11483 if (id == 0 || id > state->dts_naggregations) 11484 return (NULL); 11485 11486 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11487 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11488 agg->dtag_id == id); 11489 11490 return (state->dts_aggregations[id - 1]); 11491 } 11492 11493 /* 11494 * DTrace Buffer Functions 11495 * 11496 * The following functions manipulate DTrace buffers. Most of these functions 11497 * are called in the context of establishing or processing consumer state; 11498 * exceptions are explicitly noted. 11499 */ 11500 11501 /* 11502 * Note: called from cross call context. This function switches the two 11503 * buffers on a given CPU. The atomicity of this operation is assured by 11504 * disabling interrupts while the actual switch takes place; the disabling of 11505 * interrupts serializes the execution with any execution of dtrace_probe() on 11506 * the same CPU. 11507 */ 11508 static void 11509 dtrace_buffer_switch(dtrace_buffer_t *buf) 11510 { 11511 caddr_t tomax = buf->dtb_tomax; 11512 caddr_t xamot = buf->dtb_xamot; 11513 dtrace_icookie_t cookie; 11514 hrtime_t now; 11515 11516 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11517 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11518 11519 cookie = dtrace_interrupt_disable(); 11520 now = dtrace_gethrtime(); 11521 buf->dtb_tomax = xamot; 11522 buf->dtb_xamot = tomax; 11523 buf->dtb_xamot_drops = buf->dtb_drops; 11524 buf->dtb_xamot_offset = buf->dtb_offset; 11525 buf->dtb_xamot_errors = buf->dtb_errors; 11526 buf->dtb_xamot_flags = buf->dtb_flags; 11527 buf->dtb_offset = 0; 11528 buf->dtb_drops = 0; 11529 buf->dtb_errors = 0; 11530 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11531 buf->dtb_interval = now - buf->dtb_switched; 11532 buf->dtb_switched = now; 11533 dtrace_interrupt_enable(cookie); 11534 } 11535 11536 /* 11537 * Note: called from cross call context. This function activates a buffer 11538 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11539 * is guaranteed by the disabling of interrupts. 11540 */ 11541 static void 11542 dtrace_buffer_activate(dtrace_state_t *state) 11543 { 11544 dtrace_buffer_t *buf; 11545 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11546 11547 buf = &state->dts_buffer[CPU->cpu_id]; 11548 11549 if (buf->dtb_tomax != NULL) { 11550 /* 11551 * We might like to assert that the buffer is marked inactive, 11552 * but this isn't necessarily true: the buffer for the CPU 11553 * that processes the BEGIN probe has its buffer activated 11554 * manually. In this case, we take the (harmless) action 11555 * re-clearing the bit INACTIVE bit. 11556 */ 11557 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11558 } 11559 11560 dtrace_interrupt_enable(cookie); 11561 } 11562 11563 static int 11564 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11565 processorid_t cpu, int *factor) 11566 { 11567 cpu_t *cp; 11568 dtrace_buffer_t *buf; 11569 int allocated = 0, desired = 0; 11570 11571 ASSERT(MUTEX_HELD(&cpu_lock)); 11572 ASSERT(MUTEX_HELD(&dtrace_lock)); 11573 11574 *factor = 1; 11575 11576 if (size > dtrace_nonroot_maxsize && 11577 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11578 return (EFBIG); 11579 11580 cp = cpu_list; 11581 11582 do { 11583 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11584 continue; 11585 11586 buf = &bufs[cp->cpu_id]; 11587 11588 /* 11589 * If there is already a buffer allocated for this CPU, it 11590 * is only possible that this is a DR event. In this case, 11591 * the buffer size must match our specified size. 11592 */ 11593 if (buf->dtb_tomax != NULL) { 11594 ASSERT(buf->dtb_size == size); 11595 continue; 11596 } 11597 11598 ASSERT(buf->dtb_xamot == NULL); 11599 11600 if ((buf->dtb_tomax = kmem_zalloc(size, 11601 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11602 goto err; 11603 11604 buf->dtb_size = size; 11605 buf->dtb_flags = flags; 11606 buf->dtb_offset = 0; 11607 buf->dtb_drops = 0; 11608 11609 if (flags & DTRACEBUF_NOSWITCH) 11610 continue; 11611 11612 if ((buf->dtb_xamot = kmem_zalloc(size, 11613 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11614 goto err; 11615 } while ((cp = cp->cpu_next) != cpu_list); 11616 11617 return (0); 11618 11619 err: 11620 cp = cpu_list; 11621 11622 do { 11623 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11624 continue; 11625 11626 buf = &bufs[cp->cpu_id]; 11627 desired += 2; 11628 11629 if (buf->dtb_xamot != NULL) { 11630 ASSERT(buf->dtb_tomax != NULL); 11631 ASSERT(buf->dtb_size == size); 11632 kmem_free(buf->dtb_xamot, size); 11633 allocated++; 11634 } 11635 11636 if (buf->dtb_tomax != NULL) { 11637 ASSERT(buf->dtb_size == size); 11638 kmem_free(buf->dtb_tomax, size); 11639 allocated++; 11640 } 11641 11642 buf->dtb_tomax = NULL; 11643 buf->dtb_xamot = NULL; 11644 buf->dtb_size = 0; 11645 } while ((cp = cp->cpu_next) != cpu_list); 11646 11647 *factor = desired / (allocated > 0 ? allocated : 1); 11648 11649 return (ENOMEM); 11650 } 11651 11652 /* 11653 * Note: called from probe context. This function just increments the drop 11654 * count on a buffer. It has been made a function to allow for the 11655 * possibility of understanding the source of mysterious drop counts. (A 11656 * problem for which one may be particularly disappointed that DTrace cannot 11657 * be used to understand DTrace.) 11658 */ 11659 static void 11660 dtrace_buffer_drop(dtrace_buffer_t *buf) 11661 { 11662 buf->dtb_drops++; 11663 } 11664 11665 /* 11666 * Note: called from probe context. This function is called to reserve space 11667 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11668 * mstate. Returns the new offset in the buffer, or a negative value if an 11669 * error has occurred. 11670 */ 11671 static intptr_t 11672 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11673 dtrace_state_t *state, dtrace_mstate_t *mstate) 11674 { 11675 intptr_t offs = buf->dtb_offset, soffs; 11676 intptr_t woffs; 11677 caddr_t tomax; 11678 size_t total; 11679 11680 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11681 return (-1); 11682 11683 if ((tomax = buf->dtb_tomax) == NULL) { 11684 dtrace_buffer_drop(buf); 11685 return (-1); 11686 } 11687 11688 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11689 while (offs & (align - 1)) { 11690 /* 11691 * Assert that our alignment is off by a number which 11692 * is itself sizeof (uint32_t) aligned. 11693 */ 11694 ASSERT(!((align - (offs & (align - 1))) & 11695 (sizeof (uint32_t) - 1))); 11696 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11697 offs += sizeof (uint32_t); 11698 } 11699 11700 if ((soffs = offs + needed) > buf->dtb_size) { 11701 dtrace_buffer_drop(buf); 11702 return (-1); 11703 } 11704 11705 if (mstate == NULL) 11706 return (offs); 11707 11708 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11709 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11710 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11711 11712 return (offs); 11713 } 11714 11715 if (buf->dtb_flags & DTRACEBUF_FILL) { 11716 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11717 (buf->dtb_flags & DTRACEBUF_FULL)) 11718 return (-1); 11719 goto out; 11720 } 11721 11722 total = needed + (offs & (align - 1)); 11723 11724 /* 11725 * For a ring buffer, life is quite a bit more complicated. Before 11726 * we can store any padding, we need to adjust our wrapping offset. 11727 * (If we've never before wrapped or we're not about to, no adjustment 11728 * is required.) 11729 */ 11730 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11731 offs + total > buf->dtb_size) { 11732 woffs = buf->dtb_xamot_offset; 11733 11734 if (offs + total > buf->dtb_size) { 11735 /* 11736 * We can't fit in the end of the buffer. First, a 11737 * sanity check that we can fit in the buffer at all. 11738 */ 11739 if (total > buf->dtb_size) { 11740 dtrace_buffer_drop(buf); 11741 return (-1); 11742 } 11743 11744 /* 11745 * We're going to be storing at the top of the buffer, 11746 * so now we need to deal with the wrapped offset. We 11747 * only reset our wrapped offset to 0 if it is 11748 * currently greater than the current offset. If it 11749 * is less than the current offset, it is because a 11750 * previous allocation induced a wrap -- but the 11751 * allocation didn't subsequently take the space due 11752 * to an error or false predicate evaluation. In this 11753 * case, we'll just leave the wrapped offset alone: if 11754 * the wrapped offset hasn't been advanced far enough 11755 * for this allocation, it will be adjusted in the 11756 * lower loop. 11757 */ 11758 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11759 if (woffs >= offs) 11760 woffs = 0; 11761 } else { 11762 woffs = 0; 11763 } 11764 11765 /* 11766 * Now we know that we're going to be storing to the 11767 * top of the buffer and that there is room for us 11768 * there. We need to clear the buffer from the current 11769 * offset to the end (there may be old gunk there). 11770 */ 11771 while (offs < buf->dtb_size) 11772 tomax[offs++] = 0; 11773 11774 /* 11775 * We need to set our offset to zero. And because we 11776 * are wrapping, we need to set the bit indicating as 11777 * much. We can also adjust our needed space back 11778 * down to the space required by the ECB -- we know 11779 * that the top of the buffer is aligned. 11780 */ 11781 offs = 0; 11782 total = needed; 11783 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11784 } else { 11785 /* 11786 * There is room for us in the buffer, so we simply 11787 * need to check the wrapped offset. 11788 */ 11789 if (woffs < offs) { 11790 /* 11791 * The wrapped offset is less than the offset. 11792 * This can happen if we allocated buffer space 11793 * that induced a wrap, but then we didn't 11794 * subsequently take the space due to an error 11795 * or false predicate evaluation. This is 11796 * okay; we know that _this_ allocation isn't 11797 * going to induce a wrap. We still can't 11798 * reset the wrapped offset to be zero, 11799 * however: the space may have been trashed in 11800 * the previous failed probe attempt. But at 11801 * least the wrapped offset doesn't need to 11802 * be adjusted at all... 11803 */ 11804 goto out; 11805 } 11806 } 11807 11808 while (offs + total > woffs) { 11809 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11810 size_t size; 11811 11812 if (epid == DTRACE_EPIDNONE) { 11813 size = sizeof (uint32_t); 11814 } else { 11815 ASSERT3U(epid, <=, state->dts_necbs); 11816 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11817 11818 size = state->dts_ecbs[epid - 1]->dte_size; 11819 } 11820 11821 ASSERT(woffs + size <= buf->dtb_size); 11822 ASSERT(size != 0); 11823 11824 if (woffs + size == buf->dtb_size) { 11825 /* 11826 * We've reached the end of the buffer; we want 11827 * to set the wrapped offset to 0 and break 11828 * out. However, if the offs is 0, then we're 11829 * in a strange edge-condition: the amount of 11830 * space that we want to reserve plus the size 11831 * of the record that we're overwriting is 11832 * greater than the size of the buffer. This 11833 * is problematic because if we reserve the 11834 * space but subsequently don't consume it (due 11835 * to a failed predicate or error) the wrapped 11836 * offset will be 0 -- yet the EPID at offset 0 11837 * will not be committed. This situation is 11838 * relatively easy to deal with: if we're in 11839 * this case, the buffer is indistinguishable 11840 * from one that hasn't wrapped; we need only 11841 * finish the job by clearing the wrapped bit, 11842 * explicitly setting the offset to be 0, and 11843 * zero'ing out the old data in the buffer. 11844 */ 11845 if (offs == 0) { 11846 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11847 buf->dtb_offset = 0; 11848 woffs = total; 11849 11850 while (woffs < buf->dtb_size) 11851 tomax[woffs++] = 0; 11852 } 11853 11854 woffs = 0; 11855 break; 11856 } 11857 11858 woffs += size; 11859 } 11860 11861 /* 11862 * We have a wrapped offset. It may be that the wrapped offset 11863 * has become zero -- that's okay. 11864 */ 11865 buf->dtb_xamot_offset = woffs; 11866 } 11867 11868 out: 11869 /* 11870 * Now we can plow the buffer with any necessary padding. 11871 */ 11872 while (offs & (align - 1)) { 11873 /* 11874 * Assert that our alignment is off by a number which 11875 * is itself sizeof (uint32_t) aligned. 11876 */ 11877 ASSERT(!((align - (offs & (align - 1))) & 11878 (sizeof (uint32_t) - 1))); 11879 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11880 offs += sizeof (uint32_t); 11881 } 11882 11883 if (buf->dtb_flags & DTRACEBUF_FILL) { 11884 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11885 buf->dtb_flags |= DTRACEBUF_FULL; 11886 return (-1); 11887 } 11888 } 11889 11890 if (mstate == NULL) 11891 return (offs); 11892 11893 /* 11894 * For ring buffers and fill buffers, the scratch space is always 11895 * the inactive buffer. 11896 */ 11897 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11898 mstate->dtms_scratch_size = buf->dtb_size; 11899 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11900 11901 return (offs); 11902 } 11903 11904 static void 11905 dtrace_buffer_polish(dtrace_buffer_t *buf) 11906 { 11907 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11908 ASSERT(MUTEX_HELD(&dtrace_lock)); 11909 11910 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11911 return; 11912 11913 /* 11914 * We need to polish the ring buffer. There are three cases: 11915 * 11916 * - The first (and presumably most common) is that there is no gap 11917 * between the buffer offset and the wrapped offset. In this case, 11918 * there is nothing in the buffer that isn't valid data; we can 11919 * mark the buffer as polished and return. 11920 * 11921 * - The second (less common than the first but still more common 11922 * than the third) is that there is a gap between the buffer offset 11923 * and the wrapped offset, and the wrapped offset is larger than the 11924 * buffer offset. This can happen because of an alignment issue, or 11925 * can happen because of a call to dtrace_buffer_reserve() that 11926 * didn't subsequently consume the buffer space. In this case, 11927 * we need to zero the data from the buffer offset to the wrapped 11928 * offset. 11929 * 11930 * - The third (and least common) is that there is a gap between the 11931 * buffer offset and the wrapped offset, but the wrapped offset is 11932 * _less_ than the buffer offset. This can only happen because a 11933 * call to dtrace_buffer_reserve() induced a wrap, but the space 11934 * was not subsequently consumed. In this case, we need to zero the 11935 * space from the offset to the end of the buffer _and_ from the 11936 * top of the buffer to the wrapped offset. 11937 */ 11938 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11939 bzero(buf->dtb_tomax + buf->dtb_offset, 11940 buf->dtb_xamot_offset - buf->dtb_offset); 11941 } 11942 11943 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11944 bzero(buf->dtb_tomax + buf->dtb_offset, 11945 buf->dtb_size - buf->dtb_offset); 11946 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11947 } 11948 } 11949 11950 /* 11951 * This routine determines if data generated at the specified time has likely 11952 * been entirely consumed at user-level. This routine is called to determine 11953 * if an ECB on a defunct probe (but for an active enabling) can be safely 11954 * disabled and destroyed. 11955 */ 11956 static int 11957 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11958 { 11959 int i; 11960 11961 for (i = 0; i < NCPU; i++) { 11962 dtrace_buffer_t *buf = &bufs[i]; 11963 11964 if (buf->dtb_size == 0) 11965 continue; 11966 11967 if (buf->dtb_flags & DTRACEBUF_RING) 11968 return (0); 11969 11970 if (!buf->dtb_switched && buf->dtb_offset != 0) 11971 return (0); 11972 11973 if (buf->dtb_switched - buf->dtb_interval < when) 11974 return (0); 11975 } 11976 11977 return (1); 11978 } 11979 11980 static void 11981 dtrace_buffer_free(dtrace_buffer_t *bufs) 11982 { 11983 int i; 11984 11985 for (i = 0; i < NCPU; i++) { 11986 dtrace_buffer_t *buf = &bufs[i]; 11987 11988 if (buf->dtb_tomax == NULL) { 11989 ASSERT(buf->dtb_xamot == NULL); 11990 ASSERT(buf->dtb_size == 0); 11991 continue; 11992 } 11993 11994 if (buf->dtb_xamot != NULL) { 11995 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11996 kmem_free(buf->dtb_xamot, buf->dtb_size); 11997 } 11998 11999 kmem_free(buf->dtb_tomax, buf->dtb_size); 12000 buf->dtb_size = 0; 12001 buf->dtb_tomax = NULL; 12002 buf->dtb_xamot = NULL; 12003 } 12004 } 12005 12006 /* 12007 * DTrace Enabling Functions 12008 */ 12009 static dtrace_enabling_t * 12010 dtrace_enabling_create(dtrace_vstate_t *vstate) 12011 { 12012 dtrace_enabling_t *enab; 12013 12014 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12015 enab->dten_vstate = vstate; 12016 12017 return (enab); 12018 } 12019 12020 static void 12021 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12022 { 12023 dtrace_ecbdesc_t **ndesc; 12024 size_t osize, nsize; 12025 12026 /* 12027 * We can't add to enablings after we've enabled them, or after we've 12028 * retained them. 12029 */ 12030 ASSERT(enab->dten_probegen == 0); 12031 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12032 12033 if (enab->dten_ndesc < enab->dten_maxdesc) { 12034 enab->dten_desc[enab->dten_ndesc++] = ecb; 12035 return; 12036 } 12037 12038 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12039 12040 if (enab->dten_maxdesc == 0) { 12041 enab->dten_maxdesc = 1; 12042 } else { 12043 enab->dten_maxdesc <<= 1; 12044 } 12045 12046 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12047 12048 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12049 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12050 bcopy(enab->dten_desc, ndesc, osize); 12051 kmem_free(enab->dten_desc, osize); 12052 12053 enab->dten_desc = ndesc; 12054 enab->dten_desc[enab->dten_ndesc++] = ecb; 12055 } 12056 12057 static void 12058 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12059 dtrace_probedesc_t *pd) 12060 { 12061 dtrace_ecbdesc_t *new; 12062 dtrace_predicate_t *pred; 12063 dtrace_actdesc_t *act; 12064 12065 /* 12066 * We're going to create a new ECB description that matches the 12067 * specified ECB in every way, but has the specified probe description. 12068 */ 12069 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12070 12071 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12072 dtrace_predicate_hold(pred); 12073 12074 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12075 dtrace_actdesc_hold(act); 12076 12077 new->dted_action = ecb->dted_action; 12078 new->dted_pred = ecb->dted_pred; 12079 new->dted_probe = *pd; 12080 new->dted_uarg = ecb->dted_uarg; 12081 12082 dtrace_enabling_add(enab, new); 12083 } 12084 12085 static void 12086 dtrace_enabling_dump(dtrace_enabling_t *enab) 12087 { 12088 int i; 12089 12090 for (i = 0; i < enab->dten_ndesc; i++) { 12091 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12092 12093 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12094 desc->dtpd_provider, desc->dtpd_mod, 12095 desc->dtpd_func, desc->dtpd_name); 12096 } 12097 } 12098 12099 static void 12100 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12101 { 12102 int i; 12103 dtrace_ecbdesc_t *ep; 12104 dtrace_vstate_t *vstate = enab->dten_vstate; 12105 12106 ASSERT(MUTEX_HELD(&dtrace_lock)); 12107 12108 for (i = 0; i < enab->dten_ndesc; i++) { 12109 dtrace_actdesc_t *act, *next; 12110 dtrace_predicate_t *pred; 12111 12112 ep = enab->dten_desc[i]; 12113 12114 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12115 dtrace_predicate_release(pred, vstate); 12116 12117 for (act = ep->dted_action; act != NULL; act = next) { 12118 next = act->dtad_next; 12119 dtrace_actdesc_release(act, vstate); 12120 } 12121 12122 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12123 } 12124 12125 kmem_free(enab->dten_desc, 12126 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12127 12128 /* 12129 * If this was a retained enabling, decrement the dts_nretained count 12130 * and take it off of the dtrace_retained list. 12131 */ 12132 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12133 dtrace_retained == enab) { 12134 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12135 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12136 enab->dten_vstate->dtvs_state->dts_nretained--; 12137 dtrace_retained_gen++; 12138 } 12139 12140 if (enab->dten_prev == NULL) { 12141 if (dtrace_retained == enab) { 12142 dtrace_retained = enab->dten_next; 12143 12144 if (dtrace_retained != NULL) 12145 dtrace_retained->dten_prev = NULL; 12146 } 12147 } else { 12148 ASSERT(enab != dtrace_retained); 12149 ASSERT(dtrace_retained != NULL); 12150 enab->dten_prev->dten_next = enab->dten_next; 12151 } 12152 12153 if (enab->dten_next != NULL) { 12154 ASSERT(dtrace_retained != NULL); 12155 enab->dten_next->dten_prev = enab->dten_prev; 12156 } 12157 12158 kmem_free(enab, sizeof (dtrace_enabling_t)); 12159 } 12160 12161 static int 12162 dtrace_enabling_retain(dtrace_enabling_t *enab) 12163 { 12164 dtrace_state_t *state; 12165 12166 ASSERT(MUTEX_HELD(&dtrace_lock)); 12167 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12168 ASSERT(enab->dten_vstate != NULL); 12169 12170 state = enab->dten_vstate->dtvs_state; 12171 ASSERT(state != NULL); 12172 12173 /* 12174 * We only allow each state to retain dtrace_retain_max enablings. 12175 */ 12176 if (state->dts_nretained >= dtrace_retain_max) 12177 return (ENOSPC); 12178 12179 state->dts_nretained++; 12180 dtrace_retained_gen++; 12181 12182 if (dtrace_retained == NULL) { 12183 dtrace_retained = enab; 12184 return (0); 12185 } 12186 12187 enab->dten_next = dtrace_retained; 12188 dtrace_retained->dten_prev = enab; 12189 dtrace_retained = enab; 12190 12191 return (0); 12192 } 12193 12194 static int 12195 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12196 dtrace_probedesc_t *create) 12197 { 12198 dtrace_enabling_t *new, *enab; 12199 int found = 0, err = ENOENT; 12200 12201 ASSERT(MUTEX_HELD(&dtrace_lock)); 12202 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12203 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12204 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12205 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12206 12207 new = dtrace_enabling_create(&state->dts_vstate); 12208 12209 /* 12210 * Iterate over all retained enablings, looking for enablings that 12211 * match the specified state. 12212 */ 12213 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12214 int i; 12215 12216 /* 12217 * dtvs_state can only be NULL for helper enablings -- and 12218 * helper enablings can't be retained. 12219 */ 12220 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12221 12222 if (enab->dten_vstate->dtvs_state != state) 12223 continue; 12224 12225 /* 12226 * Now iterate over each probe description; we're looking for 12227 * an exact match to the specified probe description. 12228 */ 12229 for (i = 0; i < enab->dten_ndesc; i++) { 12230 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12231 dtrace_probedesc_t *pd = &ep->dted_probe; 12232 12233 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12234 continue; 12235 12236 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12237 continue; 12238 12239 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12240 continue; 12241 12242 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12243 continue; 12244 12245 /* 12246 * We have a winning probe! Add it to our growing 12247 * enabling. 12248 */ 12249 found = 1; 12250 dtrace_enabling_addlike(new, ep, create); 12251 } 12252 } 12253 12254 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12255 dtrace_enabling_destroy(new); 12256 return (err); 12257 } 12258 12259 return (0); 12260 } 12261 12262 static void 12263 dtrace_enabling_retract(dtrace_state_t *state) 12264 { 12265 dtrace_enabling_t *enab, *next; 12266 12267 ASSERT(MUTEX_HELD(&dtrace_lock)); 12268 12269 /* 12270 * Iterate over all retained enablings, destroy the enablings retained 12271 * for the specified state. 12272 */ 12273 for (enab = dtrace_retained; enab != NULL; enab = next) { 12274 next = enab->dten_next; 12275 12276 /* 12277 * dtvs_state can only be NULL for helper enablings -- and 12278 * helper enablings can't be retained. 12279 */ 12280 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12281 12282 if (enab->dten_vstate->dtvs_state == state) { 12283 ASSERT(state->dts_nretained > 0); 12284 dtrace_enabling_destroy(enab); 12285 } 12286 } 12287 12288 ASSERT(state->dts_nretained == 0); 12289 } 12290 12291 static int 12292 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12293 { 12294 int i = 0; 12295 int total_matched = 0, matched = 0; 12296 12297 ASSERT(MUTEX_HELD(&cpu_lock)); 12298 ASSERT(MUTEX_HELD(&dtrace_lock)); 12299 12300 for (i = 0; i < enab->dten_ndesc; i++) { 12301 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12302 12303 enab->dten_current = ep; 12304 enab->dten_error = 0; 12305 12306 /* 12307 * If a provider failed to enable a probe then get out and 12308 * let the consumer know we failed. 12309 */ 12310 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12311 return (EBUSY); 12312 12313 total_matched += matched; 12314 12315 if (enab->dten_error != 0) { 12316 /* 12317 * If we get an error half-way through enabling the 12318 * probes, we kick out -- perhaps with some number of 12319 * them enabled. Leaving enabled probes enabled may 12320 * be slightly confusing for user-level, but we expect 12321 * that no one will attempt to actually drive on in 12322 * the face of such errors. If this is an anonymous 12323 * enabling (indicated with a NULL nmatched pointer), 12324 * we cmn_err() a message. We aren't expecting to 12325 * get such an error -- such as it can exist at all, 12326 * it would be a result of corrupted DOF in the driver 12327 * properties. 12328 */ 12329 if (nmatched == NULL) { 12330 cmn_err(CE_WARN, "dtrace_enabling_match() " 12331 "error on %p: %d", (void *)ep, 12332 enab->dten_error); 12333 } 12334 12335 return (enab->dten_error); 12336 } 12337 } 12338 12339 enab->dten_probegen = dtrace_probegen; 12340 if (nmatched != NULL) 12341 *nmatched = total_matched; 12342 12343 return (0); 12344 } 12345 12346 static void 12347 dtrace_enabling_matchall(void) 12348 { 12349 dtrace_enabling_t *enab; 12350 12351 mutex_enter(&cpu_lock); 12352 mutex_enter(&dtrace_lock); 12353 12354 /* 12355 * Iterate over all retained enablings to see if any probes match 12356 * against them. We only perform this operation on enablings for which 12357 * we have sufficient permissions by virtue of being in the global zone 12358 * or in the same zone as the DTrace client. Because we can be called 12359 * after dtrace_detach() has been called, we cannot assert that there 12360 * are retained enablings. We can safely load from dtrace_retained, 12361 * however: the taskq_destroy() at the end of dtrace_detach() will 12362 * block pending our completion. 12363 */ 12364 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12365 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12366 cred_t *cr = dcr->dcr_cred; 12367 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12368 12369 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12370 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12371 (void) dtrace_enabling_match(enab, NULL); 12372 } 12373 12374 mutex_exit(&dtrace_lock); 12375 mutex_exit(&cpu_lock); 12376 } 12377 12378 /* 12379 * If an enabling is to be enabled without having matched probes (that is, if 12380 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12381 * enabling must be _primed_ by creating an ECB for every ECB description. 12382 * This must be done to assure that we know the number of speculations, the 12383 * number of aggregations, the minimum buffer size needed, etc. before we 12384 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12385 * enabling any probes, we create ECBs for every ECB decription, but with a 12386 * NULL probe -- which is exactly what this function does. 12387 */ 12388 static void 12389 dtrace_enabling_prime(dtrace_state_t *state) 12390 { 12391 dtrace_enabling_t *enab; 12392 int i; 12393 12394 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12395 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12396 12397 if (enab->dten_vstate->dtvs_state != state) 12398 continue; 12399 12400 /* 12401 * We don't want to prime an enabling more than once, lest 12402 * we allow a malicious user to induce resource exhaustion. 12403 * (The ECBs that result from priming an enabling aren't 12404 * leaked -- but they also aren't deallocated until the 12405 * consumer state is destroyed.) 12406 */ 12407 if (enab->dten_primed) 12408 continue; 12409 12410 for (i = 0; i < enab->dten_ndesc; i++) { 12411 enab->dten_current = enab->dten_desc[i]; 12412 (void) dtrace_probe_enable(NULL, enab); 12413 } 12414 12415 enab->dten_primed = 1; 12416 } 12417 } 12418 12419 /* 12420 * Called to indicate that probes should be provided due to retained 12421 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12422 * must take an initial lap through the enabling calling the dtps_provide() 12423 * entry point explicitly to allow for autocreated probes. 12424 */ 12425 static void 12426 dtrace_enabling_provide(dtrace_provider_t *prv) 12427 { 12428 int i, all = 0; 12429 dtrace_probedesc_t desc; 12430 dtrace_genid_t gen; 12431 12432 ASSERT(MUTEX_HELD(&dtrace_lock)); 12433 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12434 12435 if (prv == NULL) { 12436 all = 1; 12437 prv = dtrace_provider; 12438 } 12439 12440 do { 12441 dtrace_enabling_t *enab; 12442 void *parg = prv->dtpv_arg; 12443 12444 retry: 12445 gen = dtrace_retained_gen; 12446 for (enab = dtrace_retained; enab != NULL; 12447 enab = enab->dten_next) { 12448 for (i = 0; i < enab->dten_ndesc; i++) { 12449 desc = enab->dten_desc[i]->dted_probe; 12450 mutex_exit(&dtrace_lock); 12451 prv->dtpv_pops.dtps_provide(parg, &desc); 12452 mutex_enter(&dtrace_lock); 12453 /* 12454 * Process the retained enablings again if 12455 * they have changed while we weren't holding 12456 * dtrace_lock. 12457 */ 12458 if (gen != dtrace_retained_gen) 12459 goto retry; 12460 } 12461 } 12462 } while (all && (prv = prv->dtpv_next) != NULL); 12463 12464 mutex_exit(&dtrace_lock); 12465 dtrace_probe_provide(NULL, all ? NULL : prv); 12466 mutex_enter(&dtrace_lock); 12467 } 12468 12469 /* 12470 * Called to reap ECBs that are attached to probes from defunct providers. 12471 */ 12472 static void 12473 dtrace_enabling_reap(void) 12474 { 12475 dtrace_provider_t *prov; 12476 dtrace_probe_t *probe; 12477 dtrace_ecb_t *ecb; 12478 hrtime_t when; 12479 int i; 12480 12481 mutex_enter(&cpu_lock); 12482 mutex_enter(&dtrace_lock); 12483 12484 for (i = 0; i < dtrace_nprobes; i++) { 12485 if ((probe = dtrace_probes[i]) == NULL) 12486 continue; 12487 12488 if (probe->dtpr_ecb == NULL) 12489 continue; 12490 12491 prov = probe->dtpr_provider; 12492 12493 if ((when = prov->dtpv_defunct) == 0) 12494 continue; 12495 12496 /* 12497 * We have ECBs on a defunct provider: we want to reap these 12498 * ECBs to allow the provider to unregister. The destruction 12499 * of these ECBs must be done carefully: if we destroy the ECB 12500 * and the consumer later wishes to consume an EPID that 12501 * corresponds to the destroyed ECB (and if the EPID metadata 12502 * has not been previously consumed), the consumer will abort 12503 * processing on the unknown EPID. To reduce (but not, sadly, 12504 * eliminate) the possibility of this, we will only destroy an 12505 * ECB for a defunct provider if, for the state that 12506 * corresponds to the ECB: 12507 * 12508 * (a) There is no speculative tracing (which can effectively 12509 * cache an EPID for an arbitrary amount of time). 12510 * 12511 * (b) The principal buffers have been switched twice since the 12512 * provider became defunct. 12513 * 12514 * (c) The aggregation buffers are of zero size or have been 12515 * switched twice since the provider became defunct. 12516 * 12517 * We use dts_speculates to determine (a) and call a function 12518 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12519 * that as soon as we've been unable to destroy one of the ECBs 12520 * associated with the probe, we quit trying -- reaping is only 12521 * fruitful in as much as we can destroy all ECBs associated 12522 * with the defunct provider's probes. 12523 */ 12524 while ((ecb = probe->dtpr_ecb) != NULL) { 12525 dtrace_state_t *state = ecb->dte_state; 12526 dtrace_buffer_t *buf = state->dts_buffer; 12527 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12528 12529 if (state->dts_speculates) 12530 break; 12531 12532 if (!dtrace_buffer_consumed(buf, when)) 12533 break; 12534 12535 if (!dtrace_buffer_consumed(aggbuf, when)) 12536 break; 12537 12538 dtrace_ecb_disable(ecb); 12539 ASSERT(probe->dtpr_ecb != ecb); 12540 dtrace_ecb_destroy(ecb); 12541 } 12542 } 12543 12544 mutex_exit(&dtrace_lock); 12545 mutex_exit(&cpu_lock); 12546 } 12547 12548 /* 12549 * DTrace DOF Functions 12550 */ 12551 /*ARGSUSED*/ 12552 static void 12553 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12554 { 12555 if (dtrace_err_verbose) 12556 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12557 12558 #ifdef DTRACE_ERRDEBUG 12559 dtrace_errdebug(str); 12560 #endif 12561 } 12562 12563 /* 12564 * Create DOF out of a currently enabled state. Right now, we only create 12565 * DOF containing the run-time options -- but this could be expanded to create 12566 * complete DOF representing the enabled state. 12567 */ 12568 static dof_hdr_t * 12569 dtrace_dof_create(dtrace_state_t *state) 12570 { 12571 dof_hdr_t *dof; 12572 dof_sec_t *sec; 12573 dof_optdesc_t *opt; 12574 int i, len = sizeof (dof_hdr_t) + 12575 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12576 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12577 12578 ASSERT(MUTEX_HELD(&dtrace_lock)); 12579 12580 dof = kmem_zalloc(len, KM_SLEEP); 12581 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12582 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12583 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12584 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12585 12586 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12587 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12588 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12589 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12590 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12591 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12592 12593 dof->dofh_flags = 0; 12594 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12595 dof->dofh_secsize = sizeof (dof_sec_t); 12596 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12597 dof->dofh_secoff = sizeof (dof_hdr_t); 12598 dof->dofh_loadsz = len; 12599 dof->dofh_filesz = len; 12600 dof->dofh_pad = 0; 12601 12602 /* 12603 * Fill in the option section header... 12604 */ 12605 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12606 sec->dofs_type = DOF_SECT_OPTDESC; 12607 sec->dofs_align = sizeof (uint64_t); 12608 sec->dofs_flags = DOF_SECF_LOAD; 12609 sec->dofs_entsize = sizeof (dof_optdesc_t); 12610 12611 opt = (dof_optdesc_t *)((uintptr_t)sec + 12612 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12613 12614 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12615 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12616 12617 for (i = 0; i < DTRACEOPT_MAX; i++) { 12618 opt[i].dofo_option = i; 12619 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12620 opt[i].dofo_value = state->dts_options[i]; 12621 } 12622 12623 return (dof); 12624 } 12625 12626 static dof_hdr_t * 12627 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12628 { 12629 dof_hdr_t hdr, *dof; 12630 12631 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12632 12633 /* 12634 * First, we're going to copyin() the sizeof (dof_hdr_t). 12635 */ 12636 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12637 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12638 *errp = EFAULT; 12639 return (NULL); 12640 } 12641 12642 /* 12643 * Now we'll allocate the entire DOF and copy it in -- provided 12644 * that the length isn't outrageous. 12645 */ 12646 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12647 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12648 *errp = E2BIG; 12649 return (NULL); 12650 } 12651 12652 if (hdr.dofh_loadsz < sizeof (hdr)) { 12653 dtrace_dof_error(&hdr, "invalid load size"); 12654 *errp = EINVAL; 12655 return (NULL); 12656 } 12657 12658 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12659 12660 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12661 dof->dofh_loadsz != hdr.dofh_loadsz) { 12662 kmem_free(dof, hdr.dofh_loadsz); 12663 *errp = EFAULT; 12664 return (NULL); 12665 } 12666 12667 return (dof); 12668 } 12669 12670 static dof_hdr_t * 12671 dtrace_dof_property(const char *name) 12672 { 12673 uchar_t *buf; 12674 uint64_t loadsz; 12675 unsigned int len, i; 12676 dof_hdr_t *dof; 12677 12678 /* 12679 * Unfortunately, array of values in .conf files are always (and 12680 * only) interpreted to be integer arrays. We must read our DOF 12681 * as an integer array, and then squeeze it into a byte array. 12682 */ 12683 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12684 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12685 return (NULL); 12686 12687 for (i = 0; i < len; i++) 12688 buf[i] = (uchar_t)(((int *)buf)[i]); 12689 12690 if (len < sizeof (dof_hdr_t)) { 12691 ddi_prop_free(buf); 12692 dtrace_dof_error(NULL, "truncated header"); 12693 return (NULL); 12694 } 12695 12696 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12697 ddi_prop_free(buf); 12698 dtrace_dof_error(NULL, "truncated DOF"); 12699 return (NULL); 12700 } 12701 12702 if (loadsz >= dtrace_dof_maxsize) { 12703 ddi_prop_free(buf); 12704 dtrace_dof_error(NULL, "oversized DOF"); 12705 return (NULL); 12706 } 12707 12708 dof = kmem_alloc(loadsz, KM_SLEEP); 12709 bcopy(buf, dof, loadsz); 12710 ddi_prop_free(buf); 12711 12712 return (dof); 12713 } 12714 12715 static void 12716 dtrace_dof_destroy(dof_hdr_t *dof) 12717 { 12718 kmem_free(dof, dof->dofh_loadsz); 12719 } 12720 12721 /* 12722 * Return the dof_sec_t pointer corresponding to a given section index. If the 12723 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12724 * a type other than DOF_SECT_NONE is specified, the header is checked against 12725 * this type and NULL is returned if the types do not match. 12726 */ 12727 static dof_sec_t * 12728 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12729 { 12730 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12731 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12732 12733 if (i >= dof->dofh_secnum) { 12734 dtrace_dof_error(dof, "referenced section index is invalid"); 12735 return (NULL); 12736 } 12737 12738 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12739 dtrace_dof_error(dof, "referenced section is not loadable"); 12740 return (NULL); 12741 } 12742 12743 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12744 dtrace_dof_error(dof, "referenced section is the wrong type"); 12745 return (NULL); 12746 } 12747 12748 return (sec); 12749 } 12750 12751 static dtrace_probedesc_t * 12752 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12753 { 12754 dof_probedesc_t *probe; 12755 dof_sec_t *strtab; 12756 uintptr_t daddr = (uintptr_t)dof; 12757 uintptr_t str; 12758 size_t size; 12759 12760 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12761 dtrace_dof_error(dof, "invalid probe section"); 12762 return (NULL); 12763 } 12764 12765 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12766 dtrace_dof_error(dof, "bad alignment in probe description"); 12767 return (NULL); 12768 } 12769 12770 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12771 dtrace_dof_error(dof, "truncated probe description"); 12772 return (NULL); 12773 } 12774 12775 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12776 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12777 12778 if (strtab == NULL) 12779 return (NULL); 12780 12781 str = daddr + strtab->dofs_offset; 12782 size = strtab->dofs_size; 12783 12784 if (probe->dofp_provider >= strtab->dofs_size) { 12785 dtrace_dof_error(dof, "corrupt probe provider"); 12786 return (NULL); 12787 } 12788 12789 (void) strncpy(desc->dtpd_provider, 12790 (char *)(str + probe->dofp_provider), 12791 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12792 12793 if (probe->dofp_mod >= strtab->dofs_size) { 12794 dtrace_dof_error(dof, "corrupt probe module"); 12795 return (NULL); 12796 } 12797 12798 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12799 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12800 12801 if (probe->dofp_func >= strtab->dofs_size) { 12802 dtrace_dof_error(dof, "corrupt probe function"); 12803 return (NULL); 12804 } 12805 12806 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12807 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12808 12809 if (probe->dofp_name >= strtab->dofs_size) { 12810 dtrace_dof_error(dof, "corrupt probe name"); 12811 return (NULL); 12812 } 12813 12814 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12815 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12816 12817 return (desc); 12818 } 12819 12820 static dtrace_difo_t * 12821 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12822 cred_t *cr) 12823 { 12824 dtrace_difo_t *dp; 12825 size_t ttl = 0; 12826 dof_difohdr_t *dofd; 12827 uintptr_t daddr = (uintptr_t)dof; 12828 size_t max = dtrace_difo_maxsize; 12829 int i, l, n; 12830 12831 static const struct { 12832 int section; 12833 int bufoffs; 12834 int lenoffs; 12835 int entsize; 12836 int align; 12837 const char *msg; 12838 } difo[] = { 12839 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12840 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12841 sizeof (dif_instr_t), "multiple DIF sections" }, 12842 12843 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12844 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12845 sizeof (uint64_t), "multiple integer tables" }, 12846 12847 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12848 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12849 sizeof (char), "multiple string tables" }, 12850 12851 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12852 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12853 sizeof (uint_t), "multiple variable tables" }, 12854 12855 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 12856 }; 12857 12858 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12859 dtrace_dof_error(dof, "invalid DIFO header section"); 12860 return (NULL); 12861 } 12862 12863 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12864 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12865 return (NULL); 12866 } 12867 12868 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12869 sec->dofs_size % sizeof (dof_secidx_t)) { 12870 dtrace_dof_error(dof, "bad size in DIFO header"); 12871 return (NULL); 12872 } 12873 12874 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12875 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12876 12877 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12878 dp->dtdo_rtype = dofd->dofd_rtype; 12879 12880 for (l = 0; l < n; l++) { 12881 dof_sec_t *subsec; 12882 void **bufp; 12883 uint32_t *lenp; 12884 12885 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12886 dofd->dofd_links[l])) == NULL) 12887 goto err; /* invalid section link */ 12888 12889 if (ttl + subsec->dofs_size > max) { 12890 dtrace_dof_error(dof, "exceeds maximum size"); 12891 goto err; 12892 } 12893 12894 ttl += subsec->dofs_size; 12895 12896 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12897 if (subsec->dofs_type != difo[i].section) 12898 continue; 12899 12900 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12901 dtrace_dof_error(dof, "section not loaded"); 12902 goto err; 12903 } 12904 12905 if (subsec->dofs_align != difo[i].align) { 12906 dtrace_dof_error(dof, "bad alignment"); 12907 goto err; 12908 } 12909 12910 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12911 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12912 12913 if (*bufp != NULL) { 12914 dtrace_dof_error(dof, difo[i].msg); 12915 goto err; 12916 } 12917 12918 if (difo[i].entsize != subsec->dofs_entsize) { 12919 dtrace_dof_error(dof, "entry size mismatch"); 12920 goto err; 12921 } 12922 12923 if (subsec->dofs_entsize != 0 && 12924 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12925 dtrace_dof_error(dof, "corrupt entry size"); 12926 goto err; 12927 } 12928 12929 *lenp = subsec->dofs_size; 12930 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12931 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12932 *bufp, subsec->dofs_size); 12933 12934 if (subsec->dofs_entsize != 0) 12935 *lenp /= subsec->dofs_entsize; 12936 12937 break; 12938 } 12939 12940 /* 12941 * If we encounter a loadable DIFO sub-section that is not 12942 * known to us, assume this is a broken program and fail. 12943 */ 12944 if (difo[i].section == DOF_SECT_NONE && 12945 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12946 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12947 goto err; 12948 } 12949 } 12950 12951 if (dp->dtdo_buf == NULL) { 12952 /* 12953 * We can't have a DIF object without DIF text. 12954 */ 12955 dtrace_dof_error(dof, "missing DIF text"); 12956 goto err; 12957 } 12958 12959 /* 12960 * Before we validate the DIF object, run through the variable table 12961 * looking for the strings -- if any of their size are under, we'll set 12962 * their size to be the system-wide default string size. Note that 12963 * this should _not_ happen if the "strsize" option has been set -- 12964 * in this case, the compiler should have set the size to reflect the 12965 * setting of the option. 12966 */ 12967 for (i = 0; i < dp->dtdo_varlen; i++) { 12968 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12969 dtrace_diftype_t *t = &v->dtdv_type; 12970 12971 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12972 continue; 12973 12974 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12975 t->dtdt_size = dtrace_strsize_default; 12976 } 12977 12978 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12979 goto err; 12980 12981 dtrace_difo_init(dp, vstate); 12982 return (dp); 12983 12984 err: 12985 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12986 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12987 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12988 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12989 12990 kmem_free(dp, sizeof (dtrace_difo_t)); 12991 return (NULL); 12992 } 12993 12994 static dtrace_predicate_t * 12995 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12996 cred_t *cr) 12997 { 12998 dtrace_difo_t *dp; 12999 13000 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13001 return (NULL); 13002 13003 return (dtrace_predicate_create(dp)); 13004 } 13005 13006 static dtrace_actdesc_t * 13007 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13008 cred_t *cr) 13009 { 13010 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13011 dof_actdesc_t *desc; 13012 dof_sec_t *difosec; 13013 size_t offs; 13014 uintptr_t daddr = (uintptr_t)dof; 13015 uint64_t arg; 13016 dtrace_actkind_t kind; 13017 13018 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13019 dtrace_dof_error(dof, "invalid action section"); 13020 return (NULL); 13021 } 13022 13023 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13024 dtrace_dof_error(dof, "truncated action description"); 13025 return (NULL); 13026 } 13027 13028 if (sec->dofs_align != sizeof (uint64_t)) { 13029 dtrace_dof_error(dof, "bad alignment in action description"); 13030 return (NULL); 13031 } 13032 13033 if (sec->dofs_size < sec->dofs_entsize) { 13034 dtrace_dof_error(dof, "section entry size exceeds total size"); 13035 return (NULL); 13036 } 13037 13038 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13039 dtrace_dof_error(dof, "bad entry size in action description"); 13040 return (NULL); 13041 } 13042 13043 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13044 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13045 return (NULL); 13046 } 13047 13048 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13049 desc = (dof_actdesc_t *)(daddr + 13050 (uintptr_t)sec->dofs_offset + offs); 13051 kind = (dtrace_actkind_t)desc->dofa_kind; 13052 13053 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13054 (kind != DTRACEACT_PRINTA || 13055 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13056 (kind == DTRACEACT_DIFEXPR && 13057 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13058 dof_sec_t *strtab; 13059 char *str, *fmt; 13060 uint64_t i; 13061 13062 /* 13063 * The argument to these actions is an index into the 13064 * DOF string table. For printf()-like actions, this 13065 * is the format string. For print(), this is the 13066 * CTF type of the expression result. 13067 */ 13068 if ((strtab = dtrace_dof_sect(dof, 13069 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13070 goto err; 13071 13072 str = (char *)((uintptr_t)dof + 13073 (uintptr_t)strtab->dofs_offset); 13074 13075 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13076 if (str[i] == '\0') 13077 break; 13078 } 13079 13080 if (i >= strtab->dofs_size) { 13081 dtrace_dof_error(dof, "bogus format string"); 13082 goto err; 13083 } 13084 13085 if (i == desc->dofa_arg) { 13086 dtrace_dof_error(dof, "empty format string"); 13087 goto err; 13088 } 13089 13090 i -= desc->dofa_arg; 13091 fmt = kmem_alloc(i + 1, KM_SLEEP); 13092 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13093 arg = (uint64_t)(uintptr_t)fmt; 13094 } else { 13095 if (kind == DTRACEACT_PRINTA) { 13096 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13097 arg = 0; 13098 } else { 13099 arg = desc->dofa_arg; 13100 } 13101 } 13102 13103 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13104 desc->dofa_uarg, arg); 13105 13106 if (last != NULL) { 13107 last->dtad_next = act; 13108 } else { 13109 first = act; 13110 } 13111 13112 last = act; 13113 13114 if (desc->dofa_difo == DOF_SECIDX_NONE) 13115 continue; 13116 13117 if ((difosec = dtrace_dof_sect(dof, 13118 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13119 goto err; 13120 13121 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13122 13123 if (act->dtad_difo == NULL) 13124 goto err; 13125 } 13126 13127 ASSERT(first != NULL); 13128 return (first); 13129 13130 err: 13131 for (act = first; act != NULL; act = next) { 13132 next = act->dtad_next; 13133 dtrace_actdesc_release(act, vstate); 13134 } 13135 13136 return (NULL); 13137 } 13138 13139 static dtrace_ecbdesc_t * 13140 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13141 cred_t *cr) 13142 { 13143 dtrace_ecbdesc_t *ep; 13144 dof_ecbdesc_t *ecb; 13145 dtrace_probedesc_t *desc; 13146 dtrace_predicate_t *pred = NULL; 13147 13148 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13149 dtrace_dof_error(dof, "truncated ECB description"); 13150 return (NULL); 13151 } 13152 13153 if (sec->dofs_align != sizeof (uint64_t)) { 13154 dtrace_dof_error(dof, "bad alignment in ECB description"); 13155 return (NULL); 13156 } 13157 13158 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13159 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13160 13161 if (sec == NULL) 13162 return (NULL); 13163 13164 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13165 ep->dted_uarg = ecb->dofe_uarg; 13166 desc = &ep->dted_probe; 13167 13168 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13169 goto err; 13170 13171 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13172 if ((sec = dtrace_dof_sect(dof, 13173 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13174 goto err; 13175 13176 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13177 goto err; 13178 13179 ep->dted_pred.dtpdd_predicate = pred; 13180 } 13181 13182 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13183 if ((sec = dtrace_dof_sect(dof, 13184 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13185 goto err; 13186 13187 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13188 13189 if (ep->dted_action == NULL) 13190 goto err; 13191 } 13192 13193 return (ep); 13194 13195 err: 13196 if (pred != NULL) 13197 dtrace_predicate_release(pred, vstate); 13198 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13199 return (NULL); 13200 } 13201 13202 /* 13203 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13204 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13205 * site of any user SETX relocations to account for load object base address. 13206 * In the future, if we need other relocations, this function can be extended. 13207 */ 13208 static int 13209 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13210 { 13211 uintptr_t daddr = (uintptr_t)dof; 13212 uintptr_t ts_end; 13213 dof_relohdr_t *dofr = 13214 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13215 dof_sec_t *ss, *rs, *ts; 13216 dof_relodesc_t *r; 13217 uint_t i, n; 13218 13219 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13220 sec->dofs_align != sizeof (dof_secidx_t)) { 13221 dtrace_dof_error(dof, "invalid relocation header"); 13222 return (-1); 13223 } 13224 13225 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13226 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13227 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13228 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 13229 13230 if (ss == NULL || rs == NULL || ts == NULL) 13231 return (-1); /* dtrace_dof_error() has been called already */ 13232 13233 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13234 rs->dofs_align != sizeof (uint64_t)) { 13235 dtrace_dof_error(dof, "invalid relocation section"); 13236 return (-1); 13237 } 13238 13239 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13240 n = rs->dofs_size / rs->dofs_entsize; 13241 13242 for (i = 0; i < n; i++) { 13243 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13244 13245 switch (r->dofr_type) { 13246 case DOF_RELO_NONE: 13247 break; 13248 case DOF_RELO_SETX: 13249 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13250 sizeof (uint64_t) > ts->dofs_size) { 13251 dtrace_dof_error(dof, "bad relocation offset"); 13252 return (-1); 13253 } 13254 13255 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 13256 dtrace_dof_error(dof, "bad relocation offset"); 13257 return (-1); 13258 } 13259 13260 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13261 dtrace_dof_error(dof, "misaligned setx relo"); 13262 return (-1); 13263 } 13264 13265 *(uint64_t *)taddr += ubase; 13266 break; 13267 default: 13268 dtrace_dof_error(dof, "invalid relocation type"); 13269 return (-1); 13270 } 13271 13272 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13273 } 13274 13275 return (0); 13276 } 13277 13278 /* 13279 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13280 * header: it should be at the front of a memory region that is at least 13281 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13282 * size. It need not be validated in any other way. 13283 */ 13284 static int 13285 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13286 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13287 { 13288 uint64_t len = dof->dofh_loadsz, seclen; 13289 uintptr_t daddr = (uintptr_t)dof; 13290 dtrace_ecbdesc_t *ep; 13291 dtrace_enabling_t *enab; 13292 uint_t i; 13293 13294 ASSERT(MUTEX_HELD(&dtrace_lock)); 13295 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13296 13297 /* 13298 * Check the DOF header identification bytes. In addition to checking 13299 * valid settings, we also verify that unused bits/bytes are zeroed so 13300 * we can use them later without fear of regressing existing binaries. 13301 */ 13302 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13303 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13304 dtrace_dof_error(dof, "DOF magic string mismatch"); 13305 return (-1); 13306 } 13307 13308 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13309 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13310 dtrace_dof_error(dof, "DOF has invalid data model"); 13311 return (-1); 13312 } 13313 13314 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13315 dtrace_dof_error(dof, "DOF encoding mismatch"); 13316 return (-1); 13317 } 13318 13319 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13320 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13321 dtrace_dof_error(dof, "DOF version mismatch"); 13322 return (-1); 13323 } 13324 13325 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13326 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13327 return (-1); 13328 } 13329 13330 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13331 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13332 return (-1); 13333 } 13334 13335 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13336 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13337 return (-1); 13338 } 13339 13340 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13341 if (dof->dofh_ident[i] != 0) { 13342 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13343 return (-1); 13344 } 13345 } 13346 13347 if (dof->dofh_flags & ~DOF_FL_VALID) { 13348 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13349 return (-1); 13350 } 13351 13352 if (dof->dofh_secsize == 0) { 13353 dtrace_dof_error(dof, "zero section header size"); 13354 return (-1); 13355 } 13356 13357 /* 13358 * Check that the section headers don't exceed the amount of DOF 13359 * data. Note that we cast the section size and number of sections 13360 * to uint64_t's to prevent possible overflow in the multiplication. 13361 */ 13362 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13363 13364 if (dof->dofh_secoff > len || seclen > len || 13365 dof->dofh_secoff + seclen > len) { 13366 dtrace_dof_error(dof, "truncated section headers"); 13367 return (-1); 13368 } 13369 13370 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13371 dtrace_dof_error(dof, "misaligned section headers"); 13372 return (-1); 13373 } 13374 13375 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13376 dtrace_dof_error(dof, "misaligned section size"); 13377 return (-1); 13378 } 13379 13380 /* 13381 * Take an initial pass through the section headers to be sure that 13382 * the headers don't have stray offsets. If the 'noprobes' flag is 13383 * set, do not permit sections relating to providers, probes, or args. 13384 */ 13385 for (i = 0; i < dof->dofh_secnum; i++) { 13386 dof_sec_t *sec = (dof_sec_t *)(daddr + 13387 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13388 13389 if (noprobes) { 13390 switch (sec->dofs_type) { 13391 case DOF_SECT_PROVIDER: 13392 case DOF_SECT_PROBES: 13393 case DOF_SECT_PRARGS: 13394 case DOF_SECT_PROFFS: 13395 dtrace_dof_error(dof, "illegal sections " 13396 "for enabling"); 13397 return (-1); 13398 } 13399 } 13400 13401 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13402 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13403 dtrace_dof_error(dof, "loadable section with load " 13404 "flag unset"); 13405 return (-1); 13406 } 13407 13408 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13409 continue; /* just ignore non-loadable sections */ 13410 13411 if (!ISP2(sec->dofs_align)) { 13412 dtrace_dof_error(dof, "bad section alignment"); 13413 return (-1); 13414 } 13415 13416 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13417 dtrace_dof_error(dof, "misaligned section"); 13418 return (-1); 13419 } 13420 13421 if (sec->dofs_offset > len || sec->dofs_size > len || 13422 sec->dofs_offset + sec->dofs_size > len) { 13423 dtrace_dof_error(dof, "corrupt section header"); 13424 return (-1); 13425 } 13426 13427 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13428 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13429 dtrace_dof_error(dof, "non-terminating string table"); 13430 return (-1); 13431 } 13432 } 13433 13434 /* 13435 * Take a second pass through the sections and locate and perform any 13436 * relocations that are present. We do this after the first pass to 13437 * be sure that all sections have had their headers validated. 13438 */ 13439 for (i = 0; i < dof->dofh_secnum; i++) { 13440 dof_sec_t *sec = (dof_sec_t *)(daddr + 13441 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13442 13443 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13444 continue; /* skip sections that are not loadable */ 13445 13446 switch (sec->dofs_type) { 13447 case DOF_SECT_URELHDR: 13448 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13449 return (-1); 13450 break; 13451 } 13452 } 13453 13454 if ((enab = *enabp) == NULL) 13455 enab = *enabp = dtrace_enabling_create(vstate); 13456 13457 for (i = 0; i < dof->dofh_secnum; i++) { 13458 dof_sec_t *sec = (dof_sec_t *)(daddr + 13459 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13460 13461 if (sec->dofs_type != DOF_SECT_ECBDESC) 13462 continue; 13463 13464 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13465 dtrace_enabling_destroy(enab); 13466 *enabp = NULL; 13467 return (-1); 13468 } 13469 13470 dtrace_enabling_add(enab, ep); 13471 } 13472 13473 return (0); 13474 } 13475 13476 /* 13477 * Process DOF for any options. This routine assumes that the DOF has been 13478 * at least processed by dtrace_dof_slurp(). 13479 */ 13480 static int 13481 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13482 { 13483 int i, rval; 13484 uint32_t entsize; 13485 size_t offs; 13486 dof_optdesc_t *desc; 13487 13488 for (i = 0; i < dof->dofh_secnum; i++) { 13489 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13490 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13491 13492 if (sec->dofs_type != DOF_SECT_OPTDESC) 13493 continue; 13494 13495 if (sec->dofs_align != sizeof (uint64_t)) { 13496 dtrace_dof_error(dof, "bad alignment in " 13497 "option description"); 13498 return (EINVAL); 13499 } 13500 13501 if ((entsize = sec->dofs_entsize) == 0) { 13502 dtrace_dof_error(dof, "zeroed option entry size"); 13503 return (EINVAL); 13504 } 13505 13506 if (entsize < sizeof (dof_optdesc_t)) { 13507 dtrace_dof_error(dof, "bad option entry size"); 13508 return (EINVAL); 13509 } 13510 13511 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13512 desc = (dof_optdesc_t *)((uintptr_t)dof + 13513 (uintptr_t)sec->dofs_offset + offs); 13514 13515 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13516 dtrace_dof_error(dof, "non-zero option string"); 13517 return (EINVAL); 13518 } 13519 13520 if (desc->dofo_value == DTRACEOPT_UNSET) { 13521 dtrace_dof_error(dof, "unset option"); 13522 return (EINVAL); 13523 } 13524 13525 if ((rval = dtrace_state_option(state, 13526 desc->dofo_option, desc->dofo_value)) != 0) { 13527 dtrace_dof_error(dof, "rejected option"); 13528 return (rval); 13529 } 13530 } 13531 } 13532 13533 return (0); 13534 } 13535 13536 /* 13537 * DTrace Consumer State Functions 13538 */ 13539 int 13540 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13541 { 13542 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13543 void *base; 13544 uintptr_t limit; 13545 dtrace_dynvar_t *dvar, *next, *start; 13546 int i; 13547 13548 ASSERT(MUTEX_HELD(&dtrace_lock)); 13549 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13550 13551 bzero(dstate, sizeof (dtrace_dstate_t)); 13552 13553 if ((dstate->dtds_chunksize = chunksize) == 0) 13554 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13555 13556 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13557 13558 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13559 size = min; 13560 13561 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13562 return (ENOMEM); 13563 13564 dstate->dtds_size = size; 13565 dstate->dtds_base = base; 13566 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13567 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13568 13569 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13570 13571 if (hashsize != 1 && (hashsize & 1)) 13572 hashsize--; 13573 13574 dstate->dtds_hashsize = hashsize; 13575 dstate->dtds_hash = dstate->dtds_base; 13576 13577 /* 13578 * Set all of our hash buckets to point to the single sink, and (if 13579 * it hasn't already been set), set the sink's hash value to be the 13580 * sink sentinel value. The sink is needed for dynamic variable 13581 * lookups to know that they have iterated over an entire, valid hash 13582 * chain. 13583 */ 13584 for (i = 0; i < hashsize; i++) 13585 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13586 13587 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13588 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13589 13590 /* 13591 * Determine number of active CPUs. Divide free list evenly among 13592 * active CPUs. 13593 */ 13594 start = (dtrace_dynvar_t *) 13595 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13596 limit = (uintptr_t)base + size; 13597 13598 VERIFY((uintptr_t)start < limit); 13599 VERIFY((uintptr_t)start >= (uintptr_t)base); 13600 13601 maxper = (limit - (uintptr_t)start) / NCPU; 13602 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13603 13604 for (i = 0; i < NCPU; i++) { 13605 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13606 13607 /* 13608 * If we don't even have enough chunks to make it once through 13609 * NCPUs, we're just going to allocate everything to the first 13610 * CPU. And if we're on the last CPU, we're going to allocate 13611 * whatever is left over. In either case, we set the limit to 13612 * be the limit of the dynamic variable space. 13613 */ 13614 if (maxper == 0 || i == NCPU - 1) { 13615 limit = (uintptr_t)base + size; 13616 start = NULL; 13617 } else { 13618 limit = (uintptr_t)start + maxper; 13619 start = (dtrace_dynvar_t *)limit; 13620 } 13621 13622 VERIFY(limit <= (uintptr_t)base + size); 13623 13624 for (;;) { 13625 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13626 dstate->dtds_chunksize); 13627 13628 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13629 break; 13630 13631 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13632 (uintptr_t)dvar <= (uintptr_t)base + size); 13633 dvar->dtdv_next = next; 13634 dvar = next; 13635 } 13636 13637 if (maxper == 0) 13638 break; 13639 } 13640 13641 return (0); 13642 } 13643 13644 void 13645 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13646 { 13647 ASSERT(MUTEX_HELD(&cpu_lock)); 13648 13649 if (dstate->dtds_base == NULL) 13650 return; 13651 13652 kmem_free(dstate->dtds_base, dstate->dtds_size); 13653 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13654 } 13655 13656 static void 13657 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13658 { 13659 /* 13660 * Logical XOR, where are you? 13661 */ 13662 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13663 13664 if (vstate->dtvs_nglobals > 0) { 13665 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13666 sizeof (dtrace_statvar_t *)); 13667 } 13668 13669 if (vstate->dtvs_ntlocals > 0) { 13670 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13671 sizeof (dtrace_difv_t)); 13672 } 13673 13674 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13675 13676 if (vstate->dtvs_nlocals > 0) { 13677 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13678 sizeof (dtrace_statvar_t *)); 13679 } 13680 } 13681 13682 static void 13683 dtrace_state_clean(dtrace_state_t *state) 13684 { 13685 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13686 return; 13687 13688 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13689 dtrace_speculation_clean(state); 13690 } 13691 13692 static void 13693 dtrace_state_deadman(dtrace_state_t *state) 13694 { 13695 hrtime_t now; 13696 13697 dtrace_sync(); 13698 13699 now = dtrace_gethrtime(); 13700 13701 if (state != dtrace_anon.dta_state && 13702 now - state->dts_laststatus >= dtrace_deadman_user) 13703 return; 13704 13705 /* 13706 * We must be sure that dts_alive never appears to be less than the 13707 * value upon entry to dtrace_state_deadman(), and because we lack a 13708 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13709 * store INT64_MAX to it, followed by a memory barrier, followed by 13710 * the new value. This assures that dts_alive never appears to be 13711 * less than its true value, regardless of the order in which the 13712 * stores to the underlying storage are issued. 13713 */ 13714 state->dts_alive = INT64_MAX; 13715 dtrace_membar_producer(); 13716 state->dts_alive = now; 13717 } 13718 13719 dtrace_state_t * 13720 dtrace_state_create(dev_t *devp, cred_t *cr) 13721 { 13722 minor_t minor; 13723 major_t major; 13724 char c[30]; 13725 dtrace_state_t *state; 13726 dtrace_optval_t *opt; 13727 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13728 13729 ASSERT(MUTEX_HELD(&dtrace_lock)); 13730 ASSERT(MUTEX_HELD(&cpu_lock)); 13731 13732 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13733 VM_BESTFIT | VM_SLEEP); 13734 13735 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13736 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13737 return (NULL); 13738 } 13739 13740 state = ddi_get_soft_state(dtrace_softstate, minor); 13741 state->dts_epid = DTRACE_EPIDNONE + 1; 13742 13743 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13744 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13745 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13746 13747 if (devp != NULL) { 13748 major = getemajor(*devp); 13749 } else { 13750 major = ddi_driver_major(dtrace_devi); 13751 } 13752 13753 state->dts_dev = makedevice(major, minor); 13754 13755 if (devp != NULL) 13756 *devp = state->dts_dev; 13757 13758 /* 13759 * We allocate NCPU buffers. On the one hand, this can be quite 13760 * a bit of memory per instance (nearly 36K on a Starcat). On the 13761 * other hand, it saves an additional memory reference in the probe 13762 * path. 13763 */ 13764 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13765 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13766 state->dts_cleaner = CYCLIC_NONE; 13767 state->dts_deadman = CYCLIC_NONE; 13768 state->dts_vstate.dtvs_state = state; 13769 13770 for (i = 0; i < DTRACEOPT_MAX; i++) 13771 state->dts_options[i] = DTRACEOPT_UNSET; 13772 13773 /* 13774 * Set the default options. 13775 */ 13776 opt = state->dts_options; 13777 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13778 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13779 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13780 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13781 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13782 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13783 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13784 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13785 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13786 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13787 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13788 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13789 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13790 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13791 13792 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13793 13794 /* 13795 * Depending on the user credentials, we set flag bits which alter probe 13796 * visibility or the amount of destructiveness allowed. In the case of 13797 * actual anonymous tracing, or the possession of all privileges, all of 13798 * the normal checks are bypassed. 13799 */ 13800 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13801 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13802 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13803 } else { 13804 /* 13805 * Set up the credentials for this instantiation. We take a 13806 * hold on the credential to prevent it from disappearing on 13807 * us; this in turn prevents the zone_t referenced by this 13808 * credential from disappearing. This means that we can 13809 * examine the credential and the zone from probe context. 13810 */ 13811 crhold(cr); 13812 state->dts_cred.dcr_cred = cr; 13813 13814 /* 13815 * CRA_PROC means "we have *some* privilege for dtrace" and 13816 * unlocks the use of variables like pid, zonename, etc. 13817 */ 13818 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13819 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13820 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13821 } 13822 13823 /* 13824 * dtrace_user allows use of syscall and profile providers. 13825 * If the user also has proc_owner and/or proc_zone, we 13826 * extend the scope to include additional visibility and 13827 * destructive power. 13828 */ 13829 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13830 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13831 state->dts_cred.dcr_visible |= 13832 DTRACE_CRV_ALLPROC; 13833 13834 state->dts_cred.dcr_action |= 13835 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13836 } 13837 13838 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13839 state->dts_cred.dcr_visible |= 13840 DTRACE_CRV_ALLZONE; 13841 13842 state->dts_cred.dcr_action |= 13843 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13844 } 13845 13846 /* 13847 * If we have all privs in whatever zone this is, 13848 * we can do destructive things to processes which 13849 * have altered credentials. 13850 */ 13851 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13852 cr->cr_zone->zone_privset)) { 13853 state->dts_cred.dcr_action |= 13854 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13855 } 13856 } 13857 13858 /* 13859 * Holding the dtrace_kernel privilege also implies that 13860 * the user has the dtrace_user privilege from a visibility 13861 * perspective. But without further privileges, some 13862 * destructive actions are not available. 13863 */ 13864 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13865 /* 13866 * Make all probes in all zones visible. However, 13867 * this doesn't mean that all actions become available 13868 * to all zones. 13869 */ 13870 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13871 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13872 13873 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13874 DTRACE_CRA_PROC; 13875 /* 13876 * Holding proc_owner means that destructive actions 13877 * for *this* zone are allowed. 13878 */ 13879 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13880 state->dts_cred.dcr_action |= 13881 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13882 13883 /* 13884 * Holding proc_zone means that destructive actions 13885 * for this user/group ID in all zones is allowed. 13886 */ 13887 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13888 state->dts_cred.dcr_action |= 13889 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13890 13891 /* 13892 * If we have all privs in whatever zone this is, 13893 * we can do destructive things to processes which 13894 * have altered credentials. 13895 */ 13896 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13897 cr->cr_zone->zone_privset)) { 13898 state->dts_cred.dcr_action |= 13899 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13900 } 13901 } 13902 13903 /* 13904 * Holding the dtrace_proc privilege gives control over fasttrap 13905 * and pid providers. We need to grant wider destructive 13906 * privileges in the event that the user has proc_owner and/or 13907 * proc_zone. 13908 */ 13909 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13910 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13911 state->dts_cred.dcr_action |= 13912 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13913 13914 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13915 state->dts_cred.dcr_action |= 13916 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13917 } 13918 } 13919 13920 return (state); 13921 } 13922 13923 static int 13924 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13925 { 13926 dtrace_optval_t *opt = state->dts_options, size; 13927 processorid_t cpu; 13928 int flags = 0, rval, factor, divisor = 1; 13929 13930 ASSERT(MUTEX_HELD(&dtrace_lock)); 13931 ASSERT(MUTEX_HELD(&cpu_lock)); 13932 ASSERT(which < DTRACEOPT_MAX); 13933 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13934 (state == dtrace_anon.dta_state && 13935 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13936 13937 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13938 return (0); 13939 13940 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13941 cpu = opt[DTRACEOPT_CPU]; 13942 13943 if (which == DTRACEOPT_SPECSIZE) 13944 flags |= DTRACEBUF_NOSWITCH; 13945 13946 if (which == DTRACEOPT_BUFSIZE) { 13947 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13948 flags |= DTRACEBUF_RING; 13949 13950 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13951 flags |= DTRACEBUF_FILL; 13952 13953 if (state != dtrace_anon.dta_state || 13954 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13955 flags |= DTRACEBUF_INACTIVE; 13956 } 13957 13958 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13959 /* 13960 * The size must be 8-byte aligned. If the size is not 8-byte 13961 * aligned, drop it down by the difference. 13962 */ 13963 if (size & (sizeof (uint64_t) - 1)) 13964 size -= size & (sizeof (uint64_t) - 1); 13965 13966 if (size < state->dts_reserve) { 13967 /* 13968 * Buffers always must be large enough to accommodate 13969 * their prereserved space. We return E2BIG instead 13970 * of ENOMEM in this case to allow for user-level 13971 * software to differentiate the cases. 13972 */ 13973 return (E2BIG); 13974 } 13975 13976 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13977 13978 if (rval != ENOMEM) { 13979 opt[which] = size; 13980 return (rval); 13981 } 13982 13983 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13984 return (rval); 13985 13986 for (divisor = 2; divisor < factor; divisor <<= 1) 13987 continue; 13988 } 13989 13990 return (ENOMEM); 13991 } 13992 13993 static int 13994 dtrace_state_buffers(dtrace_state_t *state) 13995 { 13996 dtrace_speculation_t *spec = state->dts_speculations; 13997 int rval, i; 13998 13999 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14000 DTRACEOPT_BUFSIZE)) != 0) 14001 return (rval); 14002 14003 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14004 DTRACEOPT_AGGSIZE)) != 0) 14005 return (rval); 14006 14007 for (i = 0; i < state->dts_nspeculations; i++) { 14008 if ((rval = dtrace_state_buffer(state, 14009 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14010 return (rval); 14011 } 14012 14013 return (0); 14014 } 14015 14016 static void 14017 dtrace_state_prereserve(dtrace_state_t *state) 14018 { 14019 dtrace_ecb_t *ecb; 14020 dtrace_probe_t *probe; 14021 14022 state->dts_reserve = 0; 14023 14024 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14025 return; 14026 14027 /* 14028 * If our buffer policy is a "fill" buffer policy, we need to set the 14029 * prereserved space to be the space required by the END probes. 14030 */ 14031 probe = dtrace_probes[dtrace_probeid_end - 1]; 14032 ASSERT(probe != NULL); 14033 14034 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14035 if (ecb->dte_state != state) 14036 continue; 14037 14038 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14039 } 14040 } 14041 14042 static int 14043 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14044 { 14045 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14046 dtrace_speculation_t *spec; 14047 dtrace_buffer_t *buf; 14048 cyc_handler_t hdlr; 14049 cyc_time_t when; 14050 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14051 dtrace_icookie_t cookie; 14052 14053 mutex_enter(&cpu_lock); 14054 mutex_enter(&dtrace_lock); 14055 14056 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14057 rval = EBUSY; 14058 goto out; 14059 } 14060 14061 /* 14062 * Before we can perform any checks, we must prime all of the 14063 * retained enablings that correspond to this state. 14064 */ 14065 dtrace_enabling_prime(state); 14066 14067 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14068 rval = EACCES; 14069 goto out; 14070 } 14071 14072 dtrace_state_prereserve(state); 14073 14074 /* 14075 * Now we want to do is try to allocate our speculations. 14076 * We do not automatically resize the number of speculations; if 14077 * this fails, we will fail the operation. 14078 */ 14079 nspec = opt[DTRACEOPT_NSPEC]; 14080 ASSERT(nspec != DTRACEOPT_UNSET); 14081 14082 if (nspec > INT_MAX) { 14083 rval = ENOMEM; 14084 goto out; 14085 } 14086 14087 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14088 KM_NOSLEEP | KM_NORMALPRI); 14089 14090 if (spec == NULL) { 14091 rval = ENOMEM; 14092 goto out; 14093 } 14094 14095 state->dts_speculations = spec; 14096 state->dts_nspeculations = (int)nspec; 14097 14098 for (i = 0; i < nspec; i++) { 14099 if ((buf = kmem_zalloc(bufsize, 14100 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14101 rval = ENOMEM; 14102 goto err; 14103 } 14104 14105 spec[i].dtsp_buffer = buf; 14106 } 14107 14108 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14109 if (dtrace_anon.dta_state == NULL) { 14110 rval = ENOENT; 14111 goto out; 14112 } 14113 14114 if (state->dts_necbs != 0) { 14115 rval = EALREADY; 14116 goto out; 14117 } 14118 14119 state->dts_anon = dtrace_anon_grab(); 14120 ASSERT(state->dts_anon != NULL); 14121 state = state->dts_anon; 14122 14123 /* 14124 * We want "grabanon" to be set in the grabbed state, so we'll 14125 * copy that option value from the grabbing state into the 14126 * grabbed state. 14127 */ 14128 state->dts_options[DTRACEOPT_GRABANON] = 14129 opt[DTRACEOPT_GRABANON]; 14130 14131 *cpu = dtrace_anon.dta_beganon; 14132 14133 /* 14134 * If the anonymous state is active (as it almost certainly 14135 * is if the anonymous enabling ultimately matched anything), 14136 * we don't allow any further option processing -- but we 14137 * don't return failure. 14138 */ 14139 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14140 goto out; 14141 } 14142 14143 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14144 opt[DTRACEOPT_AGGSIZE] != 0) { 14145 if (state->dts_aggregations == NULL) { 14146 /* 14147 * We're not going to create an aggregation buffer 14148 * because we don't have any ECBs that contain 14149 * aggregations -- set this option to 0. 14150 */ 14151 opt[DTRACEOPT_AGGSIZE] = 0; 14152 } else { 14153 /* 14154 * If we have an aggregation buffer, we must also have 14155 * a buffer to use as scratch. 14156 */ 14157 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14158 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14159 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14160 } 14161 } 14162 } 14163 14164 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14165 opt[DTRACEOPT_SPECSIZE] != 0) { 14166 if (!state->dts_speculates) { 14167 /* 14168 * We're not going to create speculation buffers 14169 * because we don't have any ECBs that actually 14170 * speculate -- set the speculation size to 0. 14171 */ 14172 opt[DTRACEOPT_SPECSIZE] = 0; 14173 } 14174 } 14175 14176 /* 14177 * The bare minimum size for any buffer that we're actually going to 14178 * do anything to is sizeof (uint64_t). 14179 */ 14180 sz = sizeof (uint64_t); 14181 14182 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14183 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14184 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14185 /* 14186 * A buffer size has been explicitly set to 0 (or to a size 14187 * that will be adjusted to 0) and we need the space -- we 14188 * need to return failure. We return ENOSPC to differentiate 14189 * it from failing to allocate a buffer due to failure to meet 14190 * the reserve (for which we return E2BIG). 14191 */ 14192 rval = ENOSPC; 14193 goto out; 14194 } 14195 14196 if ((rval = dtrace_state_buffers(state)) != 0) 14197 goto err; 14198 14199 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14200 sz = dtrace_dstate_defsize; 14201 14202 do { 14203 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14204 14205 if (rval == 0) 14206 break; 14207 14208 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14209 goto err; 14210 } while (sz >>= 1); 14211 14212 opt[DTRACEOPT_DYNVARSIZE] = sz; 14213 14214 if (rval != 0) 14215 goto err; 14216 14217 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14218 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14219 14220 if (opt[DTRACEOPT_CLEANRATE] == 0) 14221 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14222 14223 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14224 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14225 14226 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14227 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14228 14229 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14230 hdlr.cyh_arg = state; 14231 hdlr.cyh_level = CY_LOW_LEVEL; 14232 14233 when.cyt_when = 0; 14234 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14235 14236 state->dts_cleaner = cyclic_add(&hdlr, &when); 14237 14238 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14239 hdlr.cyh_arg = state; 14240 hdlr.cyh_level = CY_LOW_LEVEL; 14241 14242 when.cyt_when = 0; 14243 when.cyt_interval = dtrace_deadman_interval; 14244 14245 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14246 state->dts_deadman = cyclic_add(&hdlr, &when); 14247 14248 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14249 14250 if (state->dts_getf != 0 && 14251 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14252 /* 14253 * We don't have kernel privs but we have at least one call 14254 * to getf(); we need to bump our zone's count, and (if 14255 * this is the first enabling to have an unprivileged call 14256 * to getf()) we need to hook into closef(). 14257 */ 14258 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14259 14260 if (dtrace_getf++ == 0) { 14261 ASSERT(dtrace_closef == NULL); 14262 dtrace_closef = dtrace_getf_barrier; 14263 } 14264 } 14265 14266 /* 14267 * Now it's time to actually fire the BEGIN probe. We need to disable 14268 * interrupts here both to record the CPU on which we fired the BEGIN 14269 * probe (the data from this CPU will be processed first at user 14270 * level) and to manually activate the buffer for this CPU. 14271 */ 14272 cookie = dtrace_interrupt_disable(); 14273 *cpu = CPU->cpu_id; 14274 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14275 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14276 14277 dtrace_probe(dtrace_probeid_begin, 14278 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14279 dtrace_interrupt_enable(cookie); 14280 /* 14281 * We may have had an exit action from a BEGIN probe; only change our 14282 * state to ACTIVE if we're still in WARMUP. 14283 */ 14284 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14285 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14286 14287 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14288 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14289 14290 /* 14291 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14292 * want each CPU to transition its principal buffer out of the 14293 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14294 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14295 * atomically transition from processing none of a state's ECBs to 14296 * processing all of them. 14297 */ 14298 dtrace_xcall(DTRACE_CPUALL, 14299 (dtrace_xcall_t)dtrace_buffer_activate, state); 14300 goto out; 14301 14302 err: 14303 dtrace_buffer_free(state->dts_buffer); 14304 dtrace_buffer_free(state->dts_aggbuffer); 14305 14306 if ((nspec = state->dts_nspeculations) == 0) { 14307 ASSERT(state->dts_speculations == NULL); 14308 goto out; 14309 } 14310 14311 spec = state->dts_speculations; 14312 ASSERT(spec != NULL); 14313 14314 for (i = 0; i < state->dts_nspeculations; i++) { 14315 if ((buf = spec[i].dtsp_buffer) == NULL) 14316 break; 14317 14318 dtrace_buffer_free(buf); 14319 kmem_free(buf, bufsize); 14320 } 14321 14322 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14323 state->dts_nspeculations = 0; 14324 state->dts_speculations = NULL; 14325 14326 out: 14327 mutex_exit(&dtrace_lock); 14328 mutex_exit(&cpu_lock); 14329 14330 return (rval); 14331 } 14332 14333 static int 14334 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14335 { 14336 dtrace_icookie_t cookie; 14337 14338 ASSERT(MUTEX_HELD(&dtrace_lock)); 14339 14340 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14341 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14342 return (EINVAL); 14343 14344 /* 14345 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14346 * to be sure that every CPU has seen it. See below for the details 14347 * on why this is done. 14348 */ 14349 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14350 dtrace_sync(); 14351 14352 /* 14353 * By this point, it is impossible for any CPU to be still processing 14354 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14355 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14356 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14357 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14358 * iff we're in the END probe. 14359 */ 14360 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14361 dtrace_sync(); 14362 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14363 14364 /* 14365 * Finally, we can release the reserve and call the END probe. We 14366 * disable interrupts across calling the END probe to allow us to 14367 * return the CPU on which we actually called the END probe. This 14368 * allows user-land to be sure that this CPU's principal buffer is 14369 * processed last. 14370 */ 14371 state->dts_reserve = 0; 14372 14373 cookie = dtrace_interrupt_disable(); 14374 *cpu = CPU->cpu_id; 14375 dtrace_probe(dtrace_probeid_end, 14376 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14377 dtrace_interrupt_enable(cookie); 14378 14379 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14380 dtrace_sync(); 14381 14382 if (state->dts_getf != 0 && 14383 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14384 /* 14385 * We don't have kernel privs but we have at least one call 14386 * to getf(); we need to lower our zone's count, and (if 14387 * this is the last enabling to have an unprivileged call 14388 * to getf()) we need to clear the closef() hook. 14389 */ 14390 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14391 ASSERT(dtrace_closef == dtrace_getf_barrier); 14392 ASSERT(dtrace_getf > 0); 14393 14394 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14395 14396 if (--dtrace_getf == 0) 14397 dtrace_closef = NULL; 14398 } 14399 14400 return (0); 14401 } 14402 14403 static int 14404 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14405 dtrace_optval_t val) 14406 { 14407 ASSERT(MUTEX_HELD(&dtrace_lock)); 14408 14409 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14410 return (EBUSY); 14411 14412 if (option >= DTRACEOPT_MAX) 14413 return (EINVAL); 14414 14415 if (option != DTRACEOPT_CPU && val < 0) 14416 return (EINVAL); 14417 14418 switch (option) { 14419 case DTRACEOPT_DESTRUCTIVE: 14420 if (dtrace_destructive_disallow) 14421 return (EACCES); 14422 14423 state->dts_cred.dcr_destructive = 1; 14424 break; 14425 14426 case DTRACEOPT_BUFSIZE: 14427 case DTRACEOPT_DYNVARSIZE: 14428 case DTRACEOPT_AGGSIZE: 14429 case DTRACEOPT_SPECSIZE: 14430 case DTRACEOPT_STRSIZE: 14431 if (val < 0) 14432 return (EINVAL); 14433 14434 if (val >= LONG_MAX) { 14435 /* 14436 * If this is an otherwise negative value, set it to 14437 * the highest multiple of 128m less than LONG_MAX. 14438 * Technically, we're adjusting the size without 14439 * regard to the buffer resizing policy, but in fact, 14440 * this has no effect -- if we set the buffer size to 14441 * ~LONG_MAX and the buffer policy is ultimately set to 14442 * be "manual", the buffer allocation is guaranteed to 14443 * fail, if only because the allocation requires two 14444 * buffers. (We set the the size to the highest 14445 * multiple of 128m because it ensures that the size 14446 * will remain a multiple of a megabyte when 14447 * repeatedly halved -- all the way down to 15m.) 14448 */ 14449 val = LONG_MAX - (1 << 27) + 1; 14450 } 14451 } 14452 14453 state->dts_options[option] = val; 14454 14455 return (0); 14456 } 14457 14458 static void 14459 dtrace_state_destroy(dtrace_state_t *state) 14460 { 14461 dtrace_ecb_t *ecb; 14462 dtrace_vstate_t *vstate = &state->dts_vstate; 14463 minor_t minor = getminor(state->dts_dev); 14464 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14465 dtrace_speculation_t *spec = state->dts_speculations; 14466 int nspec = state->dts_nspeculations; 14467 uint32_t match; 14468 14469 ASSERT(MUTEX_HELD(&dtrace_lock)); 14470 ASSERT(MUTEX_HELD(&cpu_lock)); 14471 14472 /* 14473 * First, retract any retained enablings for this state. 14474 */ 14475 dtrace_enabling_retract(state); 14476 ASSERT(state->dts_nretained == 0); 14477 14478 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14479 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14480 /* 14481 * We have managed to come into dtrace_state_destroy() on a 14482 * hot enabling -- almost certainly because of a disorderly 14483 * shutdown of a consumer. (That is, a consumer that is 14484 * exiting without having called dtrace_stop().) In this case, 14485 * we're going to set our activity to be KILLED, and then 14486 * issue a sync to be sure that everyone is out of probe 14487 * context before we start blowing away ECBs. 14488 */ 14489 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14490 dtrace_sync(); 14491 } 14492 14493 /* 14494 * Release the credential hold we took in dtrace_state_create(). 14495 */ 14496 if (state->dts_cred.dcr_cred != NULL) 14497 crfree(state->dts_cred.dcr_cred); 14498 14499 /* 14500 * Now we can safely disable and destroy any enabled probes. Because 14501 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14502 * (especially if they're all enabled), we take two passes through the 14503 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14504 * in the second we disable whatever is left over. 14505 */ 14506 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14507 for (i = 0; i < state->dts_necbs; i++) { 14508 if ((ecb = state->dts_ecbs[i]) == NULL) 14509 continue; 14510 14511 if (match && ecb->dte_probe != NULL) { 14512 dtrace_probe_t *probe = ecb->dte_probe; 14513 dtrace_provider_t *prov = probe->dtpr_provider; 14514 14515 if (!(prov->dtpv_priv.dtpp_flags & match)) 14516 continue; 14517 } 14518 14519 dtrace_ecb_disable(ecb); 14520 dtrace_ecb_destroy(ecb); 14521 } 14522 14523 if (!match) 14524 break; 14525 } 14526 14527 /* 14528 * Before we free the buffers, perform one more sync to assure that 14529 * every CPU is out of probe context. 14530 */ 14531 dtrace_sync(); 14532 14533 dtrace_buffer_free(state->dts_buffer); 14534 dtrace_buffer_free(state->dts_aggbuffer); 14535 14536 for (i = 0; i < nspec; i++) 14537 dtrace_buffer_free(spec[i].dtsp_buffer); 14538 14539 if (state->dts_cleaner != CYCLIC_NONE) 14540 cyclic_remove(state->dts_cleaner); 14541 14542 if (state->dts_deadman != CYCLIC_NONE) 14543 cyclic_remove(state->dts_deadman); 14544 14545 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14546 dtrace_vstate_fini(vstate); 14547 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14548 14549 if (state->dts_aggregations != NULL) { 14550 #ifdef DEBUG 14551 for (i = 0; i < state->dts_naggregations; i++) 14552 ASSERT(state->dts_aggregations[i] == NULL); 14553 #endif 14554 ASSERT(state->dts_naggregations > 0); 14555 kmem_free(state->dts_aggregations, 14556 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14557 } 14558 14559 kmem_free(state->dts_buffer, bufsize); 14560 kmem_free(state->dts_aggbuffer, bufsize); 14561 14562 for (i = 0; i < nspec; i++) 14563 kmem_free(spec[i].dtsp_buffer, bufsize); 14564 14565 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14566 14567 dtrace_format_destroy(state); 14568 14569 vmem_destroy(state->dts_aggid_arena); 14570 ddi_soft_state_free(dtrace_softstate, minor); 14571 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14572 } 14573 14574 /* 14575 * DTrace Anonymous Enabling Functions 14576 */ 14577 static dtrace_state_t * 14578 dtrace_anon_grab(void) 14579 { 14580 dtrace_state_t *state; 14581 14582 ASSERT(MUTEX_HELD(&dtrace_lock)); 14583 14584 if ((state = dtrace_anon.dta_state) == NULL) { 14585 ASSERT(dtrace_anon.dta_enabling == NULL); 14586 return (NULL); 14587 } 14588 14589 ASSERT(dtrace_anon.dta_enabling != NULL); 14590 ASSERT(dtrace_retained != NULL); 14591 14592 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14593 dtrace_anon.dta_enabling = NULL; 14594 dtrace_anon.dta_state = NULL; 14595 14596 return (state); 14597 } 14598 14599 static void 14600 dtrace_anon_property(void) 14601 { 14602 int i, rv; 14603 dtrace_state_t *state; 14604 dof_hdr_t *dof; 14605 char c[32]; /* enough for "dof-data-" + digits */ 14606 14607 ASSERT(MUTEX_HELD(&dtrace_lock)); 14608 ASSERT(MUTEX_HELD(&cpu_lock)); 14609 14610 for (i = 0; ; i++) { 14611 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14612 14613 dtrace_err_verbose = 1; 14614 14615 if ((dof = dtrace_dof_property(c)) == NULL) { 14616 dtrace_err_verbose = 0; 14617 break; 14618 } 14619 14620 /* 14621 * We want to create anonymous state, so we need to transition 14622 * the kernel debugger to indicate that DTrace is active. If 14623 * this fails (e.g. because the debugger has modified text in 14624 * some way), we won't continue with the processing. 14625 */ 14626 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14627 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14628 "enabling ignored."); 14629 dtrace_dof_destroy(dof); 14630 break; 14631 } 14632 14633 /* 14634 * If we haven't allocated an anonymous state, we'll do so now. 14635 */ 14636 if ((state = dtrace_anon.dta_state) == NULL) { 14637 state = dtrace_state_create(NULL, NULL); 14638 dtrace_anon.dta_state = state; 14639 14640 if (state == NULL) { 14641 /* 14642 * This basically shouldn't happen: the only 14643 * failure mode from dtrace_state_create() is a 14644 * failure of ddi_soft_state_zalloc() that 14645 * itself should never happen. Still, the 14646 * interface allows for a failure mode, and 14647 * we want to fail as gracefully as possible: 14648 * we'll emit an error message and cease 14649 * processing anonymous state in this case. 14650 */ 14651 cmn_err(CE_WARN, "failed to create " 14652 "anonymous state"); 14653 dtrace_dof_destroy(dof); 14654 break; 14655 } 14656 } 14657 14658 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14659 &dtrace_anon.dta_enabling, 0, B_TRUE); 14660 14661 if (rv == 0) 14662 rv = dtrace_dof_options(dof, state); 14663 14664 dtrace_err_verbose = 0; 14665 dtrace_dof_destroy(dof); 14666 14667 if (rv != 0) { 14668 /* 14669 * This is malformed DOF; chuck any anonymous state 14670 * that we created. 14671 */ 14672 ASSERT(dtrace_anon.dta_enabling == NULL); 14673 dtrace_state_destroy(state); 14674 dtrace_anon.dta_state = NULL; 14675 break; 14676 } 14677 14678 ASSERT(dtrace_anon.dta_enabling != NULL); 14679 } 14680 14681 if (dtrace_anon.dta_enabling != NULL) { 14682 int rval; 14683 14684 /* 14685 * dtrace_enabling_retain() can only fail because we are 14686 * trying to retain more enablings than are allowed -- but 14687 * we only have one anonymous enabling, and we are guaranteed 14688 * to be allowed at least one retained enabling; we assert 14689 * that dtrace_enabling_retain() returns success. 14690 */ 14691 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14692 ASSERT(rval == 0); 14693 14694 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14695 } 14696 } 14697 14698 /* 14699 * DTrace Helper Functions 14700 */ 14701 static void 14702 dtrace_helper_trace(dtrace_helper_action_t *helper, 14703 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14704 { 14705 uint32_t size, next, nnext, i; 14706 dtrace_helptrace_t *ent, *buffer; 14707 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14708 14709 if ((buffer = dtrace_helptrace_buffer) == NULL) 14710 return; 14711 14712 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14713 14714 /* 14715 * What would a tracing framework be without its own tracing 14716 * framework? (Well, a hell of a lot simpler, for starters...) 14717 */ 14718 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14719 sizeof (uint64_t) - sizeof (uint64_t); 14720 14721 /* 14722 * Iterate until we can allocate a slot in the trace buffer. 14723 */ 14724 do { 14725 next = dtrace_helptrace_next; 14726 14727 if (next + size < dtrace_helptrace_bufsize) { 14728 nnext = next + size; 14729 } else { 14730 nnext = size; 14731 } 14732 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14733 14734 /* 14735 * We have our slot; fill it in. 14736 */ 14737 if (nnext == size) { 14738 dtrace_helptrace_wrapped++; 14739 next = 0; 14740 } 14741 14742 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14743 ent->dtht_helper = helper; 14744 ent->dtht_where = where; 14745 ent->dtht_nlocals = vstate->dtvs_nlocals; 14746 14747 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14748 mstate->dtms_fltoffs : -1; 14749 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14750 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14751 14752 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14753 dtrace_statvar_t *svar; 14754 14755 if ((svar = vstate->dtvs_locals[i]) == NULL) 14756 continue; 14757 14758 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14759 ent->dtht_locals[i] = 14760 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14761 } 14762 } 14763 14764 static uint64_t 14765 dtrace_helper(int which, dtrace_mstate_t *mstate, 14766 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14767 { 14768 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14769 uint64_t sarg0 = mstate->dtms_arg[0]; 14770 uint64_t sarg1 = mstate->dtms_arg[1]; 14771 uint64_t rval; 14772 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14773 dtrace_helper_action_t *helper; 14774 dtrace_vstate_t *vstate; 14775 dtrace_difo_t *pred; 14776 int i, trace = dtrace_helptrace_buffer != NULL; 14777 14778 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14779 14780 if (helpers == NULL) 14781 return (0); 14782 14783 if ((helper = helpers->dthps_actions[which]) == NULL) 14784 return (0); 14785 14786 vstate = &helpers->dthps_vstate; 14787 mstate->dtms_arg[0] = arg0; 14788 mstate->dtms_arg[1] = arg1; 14789 14790 /* 14791 * Now iterate over each helper. If its predicate evaluates to 'true', 14792 * we'll call the corresponding actions. Note that the below calls 14793 * to dtrace_dif_emulate() may set faults in machine state. This is 14794 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14795 * the stored DIF offset with its own (which is the desired behavior). 14796 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14797 * from machine state; this is okay, too. 14798 */ 14799 for (; helper != NULL; helper = helper->dtha_next) { 14800 if ((pred = helper->dtha_predicate) != NULL) { 14801 if (trace) 14802 dtrace_helper_trace(helper, mstate, vstate, 0); 14803 14804 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14805 goto next; 14806 14807 if (*flags & CPU_DTRACE_FAULT) 14808 goto err; 14809 } 14810 14811 for (i = 0; i < helper->dtha_nactions; i++) { 14812 if (trace) 14813 dtrace_helper_trace(helper, 14814 mstate, vstate, i + 1); 14815 14816 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14817 mstate, vstate, state); 14818 14819 if (*flags & CPU_DTRACE_FAULT) 14820 goto err; 14821 } 14822 14823 next: 14824 if (trace) 14825 dtrace_helper_trace(helper, mstate, vstate, 14826 DTRACE_HELPTRACE_NEXT); 14827 } 14828 14829 if (trace) 14830 dtrace_helper_trace(helper, mstate, vstate, 14831 DTRACE_HELPTRACE_DONE); 14832 14833 /* 14834 * Restore the arg0 that we saved upon entry. 14835 */ 14836 mstate->dtms_arg[0] = sarg0; 14837 mstate->dtms_arg[1] = sarg1; 14838 14839 return (rval); 14840 14841 err: 14842 if (trace) 14843 dtrace_helper_trace(helper, mstate, vstate, 14844 DTRACE_HELPTRACE_ERR); 14845 14846 /* 14847 * Restore the arg0 that we saved upon entry. 14848 */ 14849 mstate->dtms_arg[0] = sarg0; 14850 mstate->dtms_arg[1] = sarg1; 14851 14852 return (0); 14853 } 14854 14855 static void 14856 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14857 dtrace_vstate_t *vstate) 14858 { 14859 int i; 14860 14861 if (helper->dtha_predicate != NULL) 14862 dtrace_difo_release(helper->dtha_predicate, vstate); 14863 14864 for (i = 0; i < helper->dtha_nactions; i++) { 14865 ASSERT(helper->dtha_actions[i] != NULL); 14866 dtrace_difo_release(helper->dtha_actions[i], vstate); 14867 } 14868 14869 kmem_free(helper->dtha_actions, 14870 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14871 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14872 } 14873 14874 static int 14875 dtrace_helper_destroygen(int gen) 14876 { 14877 proc_t *p = curproc; 14878 dtrace_helpers_t *help = p->p_dtrace_helpers; 14879 dtrace_vstate_t *vstate; 14880 int i; 14881 14882 ASSERT(MUTEX_HELD(&dtrace_lock)); 14883 14884 if (help == NULL || gen > help->dthps_generation) 14885 return (EINVAL); 14886 14887 vstate = &help->dthps_vstate; 14888 14889 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14890 dtrace_helper_action_t *last = NULL, *h, *next; 14891 14892 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14893 next = h->dtha_next; 14894 14895 if (h->dtha_generation == gen) { 14896 if (last != NULL) { 14897 last->dtha_next = next; 14898 } else { 14899 help->dthps_actions[i] = next; 14900 } 14901 14902 dtrace_helper_action_destroy(h, vstate); 14903 } else { 14904 last = h; 14905 } 14906 } 14907 } 14908 14909 /* 14910 * Interate until we've cleared out all helper providers with the 14911 * given generation number. 14912 */ 14913 for (;;) { 14914 dtrace_helper_provider_t *prov; 14915 14916 /* 14917 * Look for a helper provider with the right generation. We 14918 * have to start back at the beginning of the list each time 14919 * because we drop dtrace_lock. It's unlikely that we'll make 14920 * more than two passes. 14921 */ 14922 for (i = 0; i < help->dthps_nprovs; i++) { 14923 prov = help->dthps_provs[i]; 14924 14925 if (prov->dthp_generation == gen) 14926 break; 14927 } 14928 14929 /* 14930 * If there were no matches, we're done. 14931 */ 14932 if (i == help->dthps_nprovs) 14933 break; 14934 14935 /* 14936 * Move the last helper provider into this slot. 14937 */ 14938 help->dthps_nprovs--; 14939 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14940 help->dthps_provs[help->dthps_nprovs] = NULL; 14941 14942 mutex_exit(&dtrace_lock); 14943 14944 /* 14945 * If we have a meta provider, remove this helper provider. 14946 */ 14947 mutex_enter(&dtrace_meta_lock); 14948 if (dtrace_meta_pid != NULL) { 14949 ASSERT(dtrace_deferred_pid == NULL); 14950 dtrace_helper_provider_remove(&prov->dthp_prov, 14951 p->p_pid); 14952 } 14953 mutex_exit(&dtrace_meta_lock); 14954 14955 dtrace_helper_provider_destroy(prov); 14956 14957 mutex_enter(&dtrace_lock); 14958 } 14959 14960 return (0); 14961 } 14962 14963 static int 14964 dtrace_helper_validate(dtrace_helper_action_t *helper) 14965 { 14966 int err = 0, i; 14967 dtrace_difo_t *dp; 14968 14969 if ((dp = helper->dtha_predicate) != NULL) 14970 err += dtrace_difo_validate_helper(dp); 14971 14972 for (i = 0; i < helper->dtha_nactions; i++) 14973 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14974 14975 return (err == 0); 14976 } 14977 14978 static int 14979 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14980 { 14981 dtrace_helpers_t *help; 14982 dtrace_helper_action_t *helper, *last; 14983 dtrace_actdesc_t *act; 14984 dtrace_vstate_t *vstate; 14985 dtrace_predicate_t *pred; 14986 int count = 0, nactions = 0, i; 14987 14988 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14989 return (EINVAL); 14990 14991 help = curproc->p_dtrace_helpers; 14992 last = help->dthps_actions[which]; 14993 vstate = &help->dthps_vstate; 14994 14995 for (count = 0; last != NULL; last = last->dtha_next) { 14996 count++; 14997 if (last->dtha_next == NULL) 14998 break; 14999 } 15000 15001 /* 15002 * If we already have dtrace_helper_actions_max helper actions for this 15003 * helper action type, we'll refuse to add a new one. 15004 */ 15005 if (count >= dtrace_helper_actions_max) 15006 return (ENOSPC); 15007 15008 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15009 helper->dtha_generation = help->dthps_generation; 15010 15011 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15012 ASSERT(pred->dtp_difo != NULL); 15013 dtrace_difo_hold(pred->dtp_difo); 15014 helper->dtha_predicate = pred->dtp_difo; 15015 } 15016 15017 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15018 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15019 goto err; 15020 15021 if (act->dtad_difo == NULL) 15022 goto err; 15023 15024 nactions++; 15025 } 15026 15027 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15028 (helper->dtha_nactions = nactions), KM_SLEEP); 15029 15030 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15031 dtrace_difo_hold(act->dtad_difo); 15032 helper->dtha_actions[i++] = act->dtad_difo; 15033 } 15034 15035 if (!dtrace_helper_validate(helper)) 15036 goto err; 15037 15038 if (last == NULL) { 15039 help->dthps_actions[which] = helper; 15040 } else { 15041 last->dtha_next = helper; 15042 } 15043 15044 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15045 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15046 dtrace_helptrace_next = 0; 15047 } 15048 15049 return (0); 15050 err: 15051 dtrace_helper_action_destroy(helper, vstate); 15052 return (EINVAL); 15053 } 15054 15055 static void 15056 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15057 dof_helper_t *dofhp) 15058 { 15059 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15060 15061 mutex_enter(&dtrace_meta_lock); 15062 mutex_enter(&dtrace_lock); 15063 15064 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15065 /* 15066 * If the dtrace module is loaded but not attached, or if 15067 * there aren't isn't a meta provider registered to deal with 15068 * these provider descriptions, we need to postpone creating 15069 * the actual providers until later. 15070 */ 15071 15072 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15073 dtrace_deferred_pid != help) { 15074 help->dthps_deferred = 1; 15075 help->dthps_pid = p->p_pid; 15076 help->dthps_next = dtrace_deferred_pid; 15077 help->dthps_prev = NULL; 15078 if (dtrace_deferred_pid != NULL) 15079 dtrace_deferred_pid->dthps_prev = help; 15080 dtrace_deferred_pid = help; 15081 } 15082 15083 mutex_exit(&dtrace_lock); 15084 15085 } else if (dofhp != NULL) { 15086 /* 15087 * If the dtrace module is loaded and we have a particular 15088 * helper provider description, pass that off to the 15089 * meta provider. 15090 */ 15091 15092 mutex_exit(&dtrace_lock); 15093 15094 dtrace_helper_provide(dofhp, p->p_pid); 15095 15096 } else { 15097 /* 15098 * Otherwise, just pass all the helper provider descriptions 15099 * off to the meta provider. 15100 */ 15101 15102 int i; 15103 mutex_exit(&dtrace_lock); 15104 15105 for (i = 0; i < help->dthps_nprovs; i++) { 15106 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15107 p->p_pid); 15108 } 15109 } 15110 15111 mutex_exit(&dtrace_meta_lock); 15112 } 15113 15114 static int 15115 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15116 { 15117 dtrace_helpers_t *help; 15118 dtrace_helper_provider_t *hprov, **tmp_provs; 15119 uint_t tmp_maxprovs, i; 15120 15121 ASSERT(MUTEX_HELD(&dtrace_lock)); 15122 15123 help = curproc->p_dtrace_helpers; 15124 ASSERT(help != NULL); 15125 15126 /* 15127 * If we already have dtrace_helper_providers_max helper providers, 15128 * we're refuse to add a new one. 15129 */ 15130 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15131 return (ENOSPC); 15132 15133 /* 15134 * Check to make sure this isn't a duplicate. 15135 */ 15136 for (i = 0; i < help->dthps_nprovs; i++) { 15137 if (dofhp->dofhp_addr == 15138 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15139 return (EALREADY); 15140 } 15141 15142 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15143 hprov->dthp_prov = *dofhp; 15144 hprov->dthp_ref = 1; 15145 hprov->dthp_generation = gen; 15146 15147 /* 15148 * Allocate a bigger table for helper providers if it's already full. 15149 */ 15150 if (help->dthps_maxprovs == help->dthps_nprovs) { 15151 tmp_maxprovs = help->dthps_maxprovs; 15152 tmp_provs = help->dthps_provs; 15153 15154 if (help->dthps_maxprovs == 0) 15155 help->dthps_maxprovs = 2; 15156 else 15157 help->dthps_maxprovs *= 2; 15158 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15159 help->dthps_maxprovs = dtrace_helper_providers_max; 15160 15161 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15162 15163 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15164 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15165 15166 if (tmp_provs != NULL) { 15167 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15168 sizeof (dtrace_helper_provider_t *)); 15169 kmem_free(tmp_provs, tmp_maxprovs * 15170 sizeof (dtrace_helper_provider_t *)); 15171 } 15172 } 15173 15174 help->dthps_provs[help->dthps_nprovs] = hprov; 15175 help->dthps_nprovs++; 15176 15177 return (0); 15178 } 15179 15180 static void 15181 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15182 { 15183 mutex_enter(&dtrace_lock); 15184 15185 if (--hprov->dthp_ref == 0) { 15186 dof_hdr_t *dof; 15187 mutex_exit(&dtrace_lock); 15188 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15189 dtrace_dof_destroy(dof); 15190 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15191 } else { 15192 mutex_exit(&dtrace_lock); 15193 } 15194 } 15195 15196 static int 15197 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15198 { 15199 uintptr_t daddr = (uintptr_t)dof; 15200 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15201 dof_provider_t *provider; 15202 dof_probe_t *probe; 15203 uint8_t *arg; 15204 char *strtab, *typestr; 15205 dof_stridx_t typeidx; 15206 size_t typesz; 15207 uint_t nprobes, j, k; 15208 15209 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15210 15211 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15212 dtrace_dof_error(dof, "misaligned section offset"); 15213 return (-1); 15214 } 15215 15216 /* 15217 * The section needs to be large enough to contain the DOF provider 15218 * structure appropriate for the given version. 15219 */ 15220 if (sec->dofs_size < 15221 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15222 offsetof(dof_provider_t, dofpv_prenoffs) : 15223 sizeof (dof_provider_t))) { 15224 dtrace_dof_error(dof, "provider section too small"); 15225 return (-1); 15226 } 15227 15228 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15229 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15230 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15231 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15232 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15233 15234 if (str_sec == NULL || prb_sec == NULL || 15235 arg_sec == NULL || off_sec == NULL) 15236 return (-1); 15237 15238 enoff_sec = NULL; 15239 15240 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15241 provider->dofpv_prenoffs != DOF_SECT_NONE && 15242 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15243 provider->dofpv_prenoffs)) == NULL) 15244 return (-1); 15245 15246 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15247 15248 if (provider->dofpv_name >= str_sec->dofs_size || 15249 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15250 dtrace_dof_error(dof, "invalid provider name"); 15251 return (-1); 15252 } 15253 15254 if (prb_sec->dofs_entsize == 0 || 15255 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15256 dtrace_dof_error(dof, "invalid entry size"); 15257 return (-1); 15258 } 15259 15260 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15261 dtrace_dof_error(dof, "misaligned entry size"); 15262 return (-1); 15263 } 15264 15265 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15266 dtrace_dof_error(dof, "invalid entry size"); 15267 return (-1); 15268 } 15269 15270 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15271 dtrace_dof_error(dof, "misaligned section offset"); 15272 return (-1); 15273 } 15274 15275 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15276 dtrace_dof_error(dof, "invalid entry size"); 15277 return (-1); 15278 } 15279 15280 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15281 15282 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15283 15284 /* 15285 * Take a pass through the probes to check for errors. 15286 */ 15287 for (j = 0; j < nprobes; j++) { 15288 probe = (dof_probe_t *)(uintptr_t)(daddr + 15289 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15290 15291 if (probe->dofpr_func >= str_sec->dofs_size) { 15292 dtrace_dof_error(dof, "invalid function name"); 15293 return (-1); 15294 } 15295 15296 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15297 dtrace_dof_error(dof, "function name too long"); 15298 return (-1); 15299 } 15300 15301 if (probe->dofpr_name >= str_sec->dofs_size || 15302 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15303 dtrace_dof_error(dof, "invalid probe name"); 15304 return (-1); 15305 } 15306 15307 /* 15308 * The offset count must not wrap the index, and the offsets 15309 * must also not overflow the section's data. 15310 */ 15311 if (probe->dofpr_offidx + probe->dofpr_noffs < 15312 probe->dofpr_offidx || 15313 (probe->dofpr_offidx + probe->dofpr_noffs) * 15314 off_sec->dofs_entsize > off_sec->dofs_size) { 15315 dtrace_dof_error(dof, "invalid probe offset"); 15316 return (-1); 15317 } 15318 15319 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15320 /* 15321 * If there's no is-enabled offset section, make sure 15322 * there aren't any is-enabled offsets. Otherwise 15323 * perform the same checks as for probe offsets 15324 * (immediately above). 15325 */ 15326 if (enoff_sec == NULL) { 15327 if (probe->dofpr_enoffidx != 0 || 15328 probe->dofpr_nenoffs != 0) { 15329 dtrace_dof_error(dof, "is-enabled " 15330 "offsets with null section"); 15331 return (-1); 15332 } 15333 } else if (probe->dofpr_enoffidx + 15334 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15335 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15336 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15337 dtrace_dof_error(dof, "invalid is-enabled " 15338 "offset"); 15339 return (-1); 15340 } 15341 15342 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15343 dtrace_dof_error(dof, "zero probe and " 15344 "is-enabled offsets"); 15345 return (-1); 15346 } 15347 } else if (probe->dofpr_noffs == 0) { 15348 dtrace_dof_error(dof, "zero probe offsets"); 15349 return (-1); 15350 } 15351 15352 if (probe->dofpr_argidx + probe->dofpr_xargc < 15353 probe->dofpr_argidx || 15354 (probe->dofpr_argidx + probe->dofpr_xargc) * 15355 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15356 dtrace_dof_error(dof, "invalid args"); 15357 return (-1); 15358 } 15359 15360 typeidx = probe->dofpr_nargv; 15361 typestr = strtab + probe->dofpr_nargv; 15362 for (k = 0; k < probe->dofpr_nargc; k++) { 15363 if (typeidx >= str_sec->dofs_size) { 15364 dtrace_dof_error(dof, "bad " 15365 "native argument type"); 15366 return (-1); 15367 } 15368 15369 typesz = strlen(typestr) + 1; 15370 if (typesz > DTRACE_ARGTYPELEN) { 15371 dtrace_dof_error(dof, "native " 15372 "argument type too long"); 15373 return (-1); 15374 } 15375 typeidx += typesz; 15376 typestr += typesz; 15377 } 15378 15379 typeidx = probe->dofpr_xargv; 15380 typestr = strtab + probe->dofpr_xargv; 15381 for (k = 0; k < probe->dofpr_xargc; k++) { 15382 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15383 dtrace_dof_error(dof, "bad " 15384 "native argument index"); 15385 return (-1); 15386 } 15387 15388 if (typeidx >= str_sec->dofs_size) { 15389 dtrace_dof_error(dof, "bad " 15390 "translated argument type"); 15391 return (-1); 15392 } 15393 15394 typesz = strlen(typestr) + 1; 15395 if (typesz > DTRACE_ARGTYPELEN) { 15396 dtrace_dof_error(dof, "translated argument " 15397 "type too long"); 15398 return (-1); 15399 } 15400 15401 typeidx += typesz; 15402 typestr += typesz; 15403 } 15404 } 15405 15406 return (0); 15407 } 15408 15409 static int 15410 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15411 { 15412 dtrace_helpers_t *help; 15413 dtrace_vstate_t *vstate; 15414 dtrace_enabling_t *enab = NULL; 15415 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15416 uintptr_t daddr = (uintptr_t)dof; 15417 15418 ASSERT(MUTEX_HELD(&dtrace_lock)); 15419 15420 if ((help = curproc->p_dtrace_helpers) == NULL) 15421 help = dtrace_helpers_create(curproc); 15422 15423 vstate = &help->dthps_vstate; 15424 15425 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15426 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15427 dtrace_dof_destroy(dof); 15428 return (rv); 15429 } 15430 15431 /* 15432 * Look for helper providers and validate their descriptions. 15433 */ 15434 if (dhp != NULL) { 15435 for (i = 0; i < dof->dofh_secnum; i++) { 15436 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15437 dof->dofh_secoff + i * dof->dofh_secsize); 15438 15439 if (sec->dofs_type != DOF_SECT_PROVIDER) 15440 continue; 15441 15442 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15443 dtrace_enabling_destroy(enab); 15444 dtrace_dof_destroy(dof); 15445 return (-1); 15446 } 15447 15448 nprovs++; 15449 } 15450 } 15451 15452 /* 15453 * Now we need to walk through the ECB descriptions in the enabling. 15454 */ 15455 for (i = 0; i < enab->dten_ndesc; i++) { 15456 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15457 dtrace_probedesc_t *desc = &ep->dted_probe; 15458 15459 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15460 continue; 15461 15462 if (strcmp(desc->dtpd_mod, "helper") != 0) 15463 continue; 15464 15465 if (strcmp(desc->dtpd_func, "ustack") != 0) 15466 continue; 15467 15468 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15469 ep)) != 0) { 15470 /* 15471 * Adding this helper action failed -- we are now going 15472 * to rip out the entire generation and return failure. 15473 */ 15474 (void) dtrace_helper_destroygen(help->dthps_generation); 15475 dtrace_enabling_destroy(enab); 15476 dtrace_dof_destroy(dof); 15477 return (-1); 15478 } 15479 15480 nhelpers++; 15481 } 15482 15483 if (nhelpers < enab->dten_ndesc) 15484 dtrace_dof_error(dof, "unmatched helpers"); 15485 15486 gen = help->dthps_generation++; 15487 dtrace_enabling_destroy(enab); 15488 15489 if (dhp != NULL && nprovs > 0) { 15490 /* 15491 * Now that this is in-kernel, we change the sense of the 15492 * members: dofhp_dof denotes the in-kernel copy of the DOF 15493 * and dofhp_addr denotes the address at user-level. 15494 */ 15495 dhp->dofhp_addr = dhp->dofhp_dof; 15496 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15497 15498 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15499 mutex_exit(&dtrace_lock); 15500 dtrace_helper_provider_register(curproc, help, dhp); 15501 mutex_enter(&dtrace_lock); 15502 15503 destroy = 0; 15504 } 15505 } 15506 15507 if (destroy) 15508 dtrace_dof_destroy(dof); 15509 15510 return (gen); 15511 } 15512 15513 static dtrace_helpers_t * 15514 dtrace_helpers_create(proc_t *p) 15515 { 15516 dtrace_helpers_t *help; 15517 15518 ASSERT(MUTEX_HELD(&dtrace_lock)); 15519 ASSERT(p->p_dtrace_helpers == NULL); 15520 15521 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15522 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15523 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15524 15525 p->p_dtrace_helpers = help; 15526 dtrace_helpers++; 15527 15528 return (help); 15529 } 15530 15531 static void 15532 dtrace_helpers_destroy(proc_t *p) 15533 { 15534 dtrace_helpers_t *help; 15535 dtrace_vstate_t *vstate; 15536 int i; 15537 15538 mutex_enter(&dtrace_lock); 15539 15540 ASSERT(p->p_dtrace_helpers != NULL); 15541 ASSERT(dtrace_helpers > 0); 15542 15543 help = p->p_dtrace_helpers; 15544 vstate = &help->dthps_vstate; 15545 15546 /* 15547 * We're now going to lose the help from this process. 15548 */ 15549 p->p_dtrace_helpers = NULL; 15550 if (p == curproc) { 15551 dtrace_sync(); 15552 } else { 15553 /* 15554 * It is sometimes necessary to clean up dtrace helpers from a 15555 * an incomplete child process as part of a failed fork 15556 * operation. In such situations, a dtrace_sync() call should 15557 * be unnecessary as the process should be devoid of threads, 15558 * much less any in probe context. 15559 */ 15560 VERIFY(p->p_stat == SIDL); 15561 } 15562 15563 /* 15564 * Destroy the helper actions. 15565 */ 15566 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15567 dtrace_helper_action_t *h, *next; 15568 15569 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15570 next = h->dtha_next; 15571 dtrace_helper_action_destroy(h, vstate); 15572 h = next; 15573 } 15574 } 15575 15576 mutex_exit(&dtrace_lock); 15577 15578 /* 15579 * Destroy the helper providers. 15580 */ 15581 if (help->dthps_maxprovs > 0) { 15582 mutex_enter(&dtrace_meta_lock); 15583 if (dtrace_meta_pid != NULL) { 15584 ASSERT(dtrace_deferred_pid == NULL); 15585 15586 for (i = 0; i < help->dthps_nprovs; i++) { 15587 dtrace_helper_provider_remove( 15588 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15589 } 15590 } else { 15591 mutex_enter(&dtrace_lock); 15592 ASSERT(help->dthps_deferred == 0 || 15593 help->dthps_next != NULL || 15594 help->dthps_prev != NULL || 15595 help == dtrace_deferred_pid); 15596 15597 /* 15598 * Remove the helper from the deferred list. 15599 */ 15600 if (help->dthps_next != NULL) 15601 help->dthps_next->dthps_prev = help->dthps_prev; 15602 if (help->dthps_prev != NULL) 15603 help->dthps_prev->dthps_next = help->dthps_next; 15604 if (dtrace_deferred_pid == help) { 15605 dtrace_deferred_pid = help->dthps_next; 15606 ASSERT(help->dthps_prev == NULL); 15607 } 15608 15609 mutex_exit(&dtrace_lock); 15610 } 15611 15612 mutex_exit(&dtrace_meta_lock); 15613 15614 for (i = 0; i < help->dthps_nprovs; i++) { 15615 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15616 } 15617 15618 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15619 sizeof (dtrace_helper_provider_t *)); 15620 } 15621 15622 mutex_enter(&dtrace_lock); 15623 15624 dtrace_vstate_fini(&help->dthps_vstate); 15625 kmem_free(help->dthps_actions, 15626 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15627 kmem_free(help, sizeof (dtrace_helpers_t)); 15628 15629 --dtrace_helpers; 15630 mutex_exit(&dtrace_lock); 15631 } 15632 15633 static void 15634 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15635 { 15636 dtrace_helpers_t *help, *newhelp; 15637 dtrace_helper_action_t *helper, *new, *last; 15638 dtrace_difo_t *dp; 15639 dtrace_vstate_t *vstate; 15640 int i, j, sz, hasprovs = 0; 15641 15642 mutex_enter(&dtrace_lock); 15643 ASSERT(from->p_dtrace_helpers != NULL); 15644 ASSERT(dtrace_helpers > 0); 15645 15646 help = from->p_dtrace_helpers; 15647 newhelp = dtrace_helpers_create(to); 15648 ASSERT(to->p_dtrace_helpers != NULL); 15649 15650 newhelp->dthps_generation = help->dthps_generation; 15651 vstate = &newhelp->dthps_vstate; 15652 15653 /* 15654 * Duplicate the helper actions. 15655 */ 15656 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15657 if ((helper = help->dthps_actions[i]) == NULL) 15658 continue; 15659 15660 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15661 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15662 KM_SLEEP); 15663 new->dtha_generation = helper->dtha_generation; 15664 15665 if ((dp = helper->dtha_predicate) != NULL) { 15666 dp = dtrace_difo_duplicate(dp, vstate); 15667 new->dtha_predicate = dp; 15668 } 15669 15670 new->dtha_nactions = helper->dtha_nactions; 15671 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15672 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15673 15674 for (j = 0; j < new->dtha_nactions; j++) { 15675 dtrace_difo_t *dp = helper->dtha_actions[j]; 15676 15677 ASSERT(dp != NULL); 15678 dp = dtrace_difo_duplicate(dp, vstate); 15679 new->dtha_actions[j] = dp; 15680 } 15681 15682 if (last != NULL) { 15683 last->dtha_next = new; 15684 } else { 15685 newhelp->dthps_actions[i] = new; 15686 } 15687 15688 last = new; 15689 } 15690 } 15691 15692 /* 15693 * Duplicate the helper providers and register them with the 15694 * DTrace framework. 15695 */ 15696 if (help->dthps_nprovs > 0) { 15697 newhelp->dthps_nprovs = help->dthps_nprovs; 15698 newhelp->dthps_maxprovs = help->dthps_nprovs; 15699 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15700 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15701 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15702 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15703 newhelp->dthps_provs[i]->dthp_ref++; 15704 } 15705 15706 hasprovs = 1; 15707 } 15708 15709 mutex_exit(&dtrace_lock); 15710 15711 if (hasprovs) 15712 dtrace_helper_provider_register(to, newhelp, NULL); 15713 } 15714 15715 /* 15716 * DTrace Hook Functions 15717 */ 15718 static void 15719 dtrace_module_loaded(struct modctl *ctl) 15720 { 15721 dtrace_provider_t *prv; 15722 15723 mutex_enter(&dtrace_provider_lock); 15724 mutex_enter(&mod_lock); 15725 15726 ASSERT(ctl->mod_busy); 15727 15728 /* 15729 * We're going to call each providers per-module provide operation 15730 * specifying only this module. 15731 */ 15732 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15733 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15734 15735 mutex_exit(&mod_lock); 15736 mutex_exit(&dtrace_provider_lock); 15737 15738 /* 15739 * If we have any retained enablings, we need to match against them. 15740 * Enabling probes requires that cpu_lock be held, and we cannot hold 15741 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15742 * module. (In particular, this happens when loading scheduling 15743 * classes.) So if we have any retained enablings, we need to dispatch 15744 * our task queue to do the match for us. 15745 */ 15746 mutex_enter(&dtrace_lock); 15747 15748 if (dtrace_retained == NULL) { 15749 mutex_exit(&dtrace_lock); 15750 return; 15751 } 15752 15753 (void) taskq_dispatch(dtrace_taskq, 15754 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15755 15756 mutex_exit(&dtrace_lock); 15757 15758 /* 15759 * And now, for a little heuristic sleaze: in general, we want to 15760 * match modules as soon as they load. However, we cannot guarantee 15761 * this, because it would lead us to the lock ordering violation 15762 * outlined above. The common case, of course, is that cpu_lock is 15763 * _not_ held -- so we delay here for a clock tick, hoping that that's 15764 * long enough for the task queue to do its work. If it's not, it's 15765 * not a serious problem -- it just means that the module that we 15766 * just loaded may not be immediately instrumentable. 15767 */ 15768 delay(1); 15769 } 15770 15771 static void 15772 dtrace_module_unloaded(struct modctl *ctl) 15773 { 15774 dtrace_probe_t template, *probe, *first, *next; 15775 dtrace_provider_t *prov; 15776 15777 template.dtpr_mod = ctl->mod_modname; 15778 15779 mutex_enter(&dtrace_provider_lock); 15780 mutex_enter(&mod_lock); 15781 mutex_enter(&dtrace_lock); 15782 15783 if (dtrace_bymod == NULL) { 15784 /* 15785 * The DTrace module is loaded (obviously) but not attached; 15786 * we don't have any work to do. 15787 */ 15788 mutex_exit(&dtrace_provider_lock); 15789 mutex_exit(&mod_lock); 15790 mutex_exit(&dtrace_lock); 15791 return; 15792 } 15793 15794 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15795 probe != NULL; probe = probe->dtpr_nextmod) { 15796 if (probe->dtpr_ecb != NULL) { 15797 mutex_exit(&dtrace_provider_lock); 15798 mutex_exit(&mod_lock); 15799 mutex_exit(&dtrace_lock); 15800 15801 /* 15802 * This shouldn't _actually_ be possible -- we're 15803 * unloading a module that has an enabled probe in it. 15804 * (It's normally up to the provider to make sure that 15805 * this can't happen.) However, because dtps_enable() 15806 * doesn't have a failure mode, there can be an 15807 * enable/unload race. Upshot: we don't want to 15808 * assert, but we're not going to disable the 15809 * probe, either. 15810 */ 15811 if (dtrace_err_verbose) { 15812 cmn_err(CE_WARN, "unloaded module '%s' had " 15813 "enabled probes", ctl->mod_modname); 15814 } 15815 15816 return; 15817 } 15818 } 15819 15820 probe = first; 15821 15822 for (first = NULL; probe != NULL; probe = next) { 15823 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15824 15825 dtrace_probes[probe->dtpr_id - 1] = NULL; 15826 15827 next = probe->dtpr_nextmod; 15828 dtrace_hash_remove(dtrace_bymod, probe); 15829 dtrace_hash_remove(dtrace_byfunc, probe); 15830 dtrace_hash_remove(dtrace_byname, probe); 15831 15832 if (first == NULL) { 15833 first = probe; 15834 probe->dtpr_nextmod = NULL; 15835 } else { 15836 probe->dtpr_nextmod = first; 15837 first = probe; 15838 } 15839 } 15840 15841 /* 15842 * We've removed all of the module's probes from the hash chains and 15843 * from the probe array. Now issue a dtrace_sync() to be sure that 15844 * everyone has cleared out from any probe array processing. 15845 */ 15846 dtrace_sync(); 15847 15848 for (probe = first; probe != NULL; probe = first) { 15849 first = probe->dtpr_nextmod; 15850 prov = probe->dtpr_provider; 15851 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15852 probe->dtpr_arg); 15853 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15854 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15855 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15856 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15857 kmem_free(probe, sizeof (dtrace_probe_t)); 15858 } 15859 15860 mutex_exit(&dtrace_lock); 15861 mutex_exit(&mod_lock); 15862 mutex_exit(&dtrace_provider_lock); 15863 } 15864 15865 void 15866 dtrace_suspend(void) 15867 { 15868 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15869 } 15870 15871 void 15872 dtrace_resume(void) 15873 { 15874 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15875 } 15876 15877 static int 15878 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15879 { 15880 ASSERT(MUTEX_HELD(&cpu_lock)); 15881 mutex_enter(&dtrace_lock); 15882 15883 switch (what) { 15884 case CPU_CONFIG: { 15885 dtrace_state_t *state; 15886 dtrace_optval_t *opt, rs, c; 15887 15888 /* 15889 * For now, we only allocate a new buffer for anonymous state. 15890 */ 15891 if ((state = dtrace_anon.dta_state) == NULL) 15892 break; 15893 15894 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15895 break; 15896 15897 opt = state->dts_options; 15898 c = opt[DTRACEOPT_CPU]; 15899 15900 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15901 break; 15902 15903 /* 15904 * Regardless of what the actual policy is, we're going to 15905 * temporarily set our resize policy to be manual. We're 15906 * also going to temporarily set our CPU option to denote 15907 * the newly configured CPU. 15908 */ 15909 rs = opt[DTRACEOPT_BUFRESIZE]; 15910 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15911 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15912 15913 (void) dtrace_state_buffers(state); 15914 15915 opt[DTRACEOPT_BUFRESIZE] = rs; 15916 opt[DTRACEOPT_CPU] = c; 15917 15918 break; 15919 } 15920 15921 case CPU_UNCONFIG: 15922 /* 15923 * We don't free the buffer in the CPU_UNCONFIG case. (The 15924 * buffer will be freed when the consumer exits.) 15925 */ 15926 break; 15927 15928 default: 15929 break; 15930 } 15931 15932 mutex_exit(&dtrace_lock); 15933 return (0); 15934 } 15935 15936 static void 15937 dtrace_cpu_setup_initial(processorid_t cpu) 15938 { 15939 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15940 } 15941 15942 static void 15943 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15944 { 15945 if (dtrace_toxranges >= dtrace_toxranges_max) { 15946 int osize, nsize; 15947 dtrace_toxrange_t *range; 15948 15949 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15950 15951 if (osize == 0) { 15952 ASSERT(dtrace_toxrange == NULL); 15953 ASSERT(dtrace_toxranges_max == 0); 15954 dtrace_toxranges_max = 1; 15955 } else { 15956 dtrace_toxranges_max <<= 1; 15957 } 15958 15959 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15960 range = kmem_zalloc(nsize, KM_SLEEP); 15961 15962 if (dtrace_toxrange != NULL) { 15963 ASSERT(osize != 0); 15964 bcopy(dtrace_toxrange, range, osize); 15965 kmem_free(dtrace_toxrange, osize); 15966 } 15967 15968 dtrace_toxrange = range; 15969 } 15970 15971 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == (uintptr_t)NULL); 15972 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == (uintptr_t)NULL); 15973 15974 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15975 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15976 dtrace_toxranges++; 15977 } 15978 15979 static void 15980 dtrace_getf_barrier() 15981 { 15982 /* 15983 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15984 * that contain calls to getf(), this routine will be called on every 15985 * closef() before either the underlying vnode is released or the 15986 * file_t itself is freed. By the time we are here, it is essential 15987 * that the file_t can no longer be accessed from a call to getf() 15988 * in probe context -- that assures that a dtrace_sync() can be used 15989 * to clear out any enablings referring to the old structures. 15990 */ 15991 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15992 kcred->cr_zone->zone_dtrace_getf != 0) 15993 dtrace_sync(); 15994 } 15995 15996 /* 15997 * DTrace Driver Cookbook Functions 15998 */ 15999 /*ARGSUSED*/ 16000 static int 16001 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 16002 { 16003 dtrace_provider_id_t id; 16004 dtrace_state_t *state = NULL; 16005 dtrace_enabling_t *enab; 16006 16007 mutex_enter(&cpu_lock); 16008 mutex_enter(&dtrace_provider_lock); 16009 mutex_enter(&dtrace_lock); 16010 16011 if (ddi_soft_state_init(&dtrace_softstate, 16012 sizeof (dtrace_state_t), 0) != 0) { 16013 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16014 mutex_exit(&cpu_lock); 16015 mutex_exit(&dtrace_provider_lock); 16016 mutex_exit(&dtrace_lock); 16017 return (DDI_FAILURE); 16018 } 16019 16020 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16021 DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE || 16022 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16023 DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) { 16024 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16025 ddi_remove_minor_node(devi, NULL); 16026 ddi_soft_state_fini(&dtrace_softstate); 16027 mutex_exit(&cpu_lock); 16028 mutex_exit(&dtrace_provider_lock); 16029 mutex_exit(&dtrace_lock); 16030 return (DDI_FAILURE); 16031 } 16032 16033 ddi_report_dev(devi); 16034 dtrace_devi = devi; 16035 16036 dtrace_modload = dtrace_module_loaded; 16037 dtrace_modunload = dtrace_module_unloaded; 16038 dtrace_cpu_init = dtrace_cpu_setup_initial; 16039 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16040 dtrace_helpers_fork = dtrace_helpers_duplicate; 16041 dtrace_cpustart_init = dtrace_suspend; 16042 dtrace_cpustart_fini = dtrace_resume; 16043 dtrace_debugger_init = dtrace_suspend; 16044 dtrace_debugger_fini = dtrace_resume; 16045 16046 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16047 16048 ASSERT(MUTEX_HELD(&cpu_lock)); 16049 16050 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16051 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16052 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16053 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16054 VM_SLEEP | VMC_IDENTIFIER); 16055 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16056 1, INT_MAX, 0); 16057 16058 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16059 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16060 NULL, NULL, NULL, NULL, NULL, 0); 16061 16062 ASSERT(MUTEX_HELD(&cpu_lock)); 16063 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16064 offsetof(dtrace_probe_t, dtpr_nextmod), 16065 offsetof(dtrace_probe_t, dtpr_prevmod)); 16066 16067 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16068 offsetof(dtrace_probe_t, dtpr_nextfunc), 16069 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16070 16071 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16072 offsetof(dtrace_probe_t, dtpr_nextname), 16073 offsetof(dtrace_probe_t, dtpr_prevname)); 16074 16075 if (dtrace_retain_max < 1) { 16076 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16077 "setting to 1", dtrace_retain_max); 16078 dtrace_retain_max = 1; 16079 } 16080 16081 /* 16082 * Now discover our toxic ranges. 16083 */ 16084 dtrace_toxic_ranges(dtrace_toxrange_add); 16085 16086 /* 16087 * Before we register ourselves as a provider to our own framework, 16088 * we would like to assert that dtrace_provider is NULL -- but that's 16089 * not true if we were loaded as a dependency of a DTrace provider. 16090 * Once we've registered, we can assert that dtrace_provider is our 16091 * pseudo provider. 16092 */ 16093 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16094 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16095 16096 ASSERT(dtrace_provider != NULL); 16097 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16098 16099 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16100 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16101 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16102 dtrace_provider, NULL, NULL, "END", 0, NULL); 16103 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16104 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16105 16106 dtrace_anon_property(); 16107 mutex_exit(&cpu_lock); 16108 16109 /* 16110 * If there are already providers, we must ask them to provide their 16111 * probes, and then match any anonymous enabling against them. Note 16112 * that there should be no other retained enablings at this time: 16113 * the only retained enablings at this time should be the anonymous 16114 * enabling. 16115 */ 16116 if (dtrace_anon.dta_enabling != NULL) { 16117 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16118 16119 dtrace_enabling_provide(NULL); 16120 state = dtrace_anon.dta_state; 16121 16122 /* 16123 * We couldn't hold cpu_lock across the above call to 16124 * dtrace_enabling_provide(), but we must hold it to actually 16125 * enable the probes. We have to drop all of our locks, pick 16126 * up cpu_lock, and regain our locks before matching the 16127 * retained anonymous enabling. 16128 */ 16129 mutex_exit(&dtrace_lock); 16130 mutex_exit(&dtrace_provider_lock); 16131 16132 mutex_enter(&cpu_lock); 16133 mutex_enter(&dtrace_provider_lock); 16134 mutex_enter(&dtrace_lock); 16135 16136 if ((enab = dtrace_anon.dta_enabling) != NULL) 16137 (void) dtrace_enabling_match(enab, NULL); 16138 16139 mutex_exit(&cpu_lock); 16140 } 16141 16142 mutex_exit(&dtrace_lock); 16143 mutex_exit(&dtrace_provider_lock); 16144 16145 if (state != NULL) { 16146 /* 16147 * If we created any anonymous state, set it going now. 16148 */ 16149 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16150 } 16151 16152 return (DDI_SUCCESS); 16153 } 16154 16155 /*ARGSUSED*/ 16156 static int 16157 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16158 { 16159 dtrace_state_t *state; 16160 uint32_t priv; 16161 uid_t uid; 16162 zoneid_t zoneid; 16163 16164 if (getminor(*devp) == DTRACEMNRN_HELPER) 16165 return (0); 16166 16167 /* 16168 * If this wasn't an open with the "helper" minor, then it must be 16169 * the "dtrace" minor. 16170 */ 16171 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16172 return (ENXIO); 16173 16174 /* 16175 * If no DTRACE_PRIV_* bits are set in the credential, then the 16176 * caller lacks sufficient permission to do anything with DTrace. 16177 */ 16178 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16179 if (priv == DTRACE_PRIV_NONE) 16180 return (EACCES); 16181 16182 /* 16183 * Ask all providers to provide all their probes. 16184 */ 16185 mutex_enter(&dtrace_provider_lock); 16186 dtrace_probe_provide(NULL, NULL); 16187 mutex_exit(&dtrace_provider_lock); 16188 16189 mutex_enter(&cpu_lock); 16190 mutex_enter(&dtrace_lock); 16191 dtrace_opens++; 16192 dtrace_membar_producer(); 16193 16194 /* 16195 * If the kernel debugger is active (that is, if the kernel debugger 16196 * modified text in some way), we won't allow the open. 16197 */ 16198 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16199 dtrace_opens--; 16200 mutex_exit(&cpu_lock); 16201 mutex_exit(&dtrace_lock); 16202 return (EBUSY); 16203 } 16204 16205 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16206 /* 16207 * If DTrace helper tracing is enabled, we need to allocate the 16208 * trace buffer and initialize the values. 16209 */ 16210 dtrace_helptrace_buffer = 16211 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16212 dtrace_helptrace_next = 0; 16213 dtrace_helptrace_wrapped = 0; 16214 dtrace_helptrace_enable = 0; 16215 } 16216 16217 state = dtrace_state_create(devp, cred_p); 16218 mutex_exit(&cpu_lock); 16219 16220 if (state == NULL) { 16221 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16222 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16223 mutex_exit(&dtrace_lock); 16224 return (EAGAIN); 16225 } 16226 16227 mutex_exit(&dtrace_lock); 16228 16229 return (0); 16230 } 16231 16232 /*ARGSUSED*/ 16233 static int 16234 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16235 { 16236 minor_t minor = getminor(dev); 16237 dtrace_state_t *state; 16238 dtrace_helptrace_t *buf = NULL; 16239 16240 if (minor == DTRACEMNRN_HELPER) 16241 return (0); 16242 16243 state = ddi_get_soft_state(dtrace_softstate, minor); 16244 16245 mutex_enter(&cpu_lock); 16246 mutex_enter(&dtrace_lock); 16247 16248 if (state->dts_anon) { 16249 /* 16250 * There is anonymous state. Destroy that first. 16251 */ 16252 ASSERT(dtrace_anon.dta_state == NULL); 16253 dtrace_state_destroy(state->dts_anon); 16254 } 16255 16256 if (dtrace_helptrace_disable) { 16257 /* 16258 * If we have been told to disable helper tracing, set the 16259 * buffer to NULL before calling into dtrace_state_destroy(); 16260 * we take advantage of its dtrace_sync() to know that no 16261 * CPU is in probe context with enabled helper tracing 16262 * after it returns. 16263 */ 16264 buf = dtrace_helptrace_buffer; 16265 dtrace_helptrace_buffer = NULL; 16266 } 16267 16268 dtrace_state_destroy(state); 16269 ASSERT(dtrace_opens > 0); 16270 16271 /* 16272 * Only relinquish control of the kernel debugger interface when there 16273 * are no consumers and no anonymous enablings. 16274 */ 16275 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16276 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16277 16278 if (buf != NULL) { 16279 kmem_free(buf, dtrace_helptrace_bufsize); 16280 dtrace_helptrace_disable = 0; 16281 } 16282 16283 mutex_exit(&dtrace_lock); 16284 mutex_exit(&cpu_lock); 16285 16286 return (0); 16287 } 16288 16289 /*ARGSUSED*/ 16290 static int 16291 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16292 { 16293 int rval; 16294 dof_helper_t help, *dhp = NULL; 16295 16296 switch (cmd) { 16297 case DTRACEHIOC_ADDDOF: 16298 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16299 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16300 return (EFAULT); 16301 } 16302 16303 dhp = &help; 16304 arg = (intptr_t)help.dofhp_dof; 16305 /*FALLTHROUGH*/ 16306 16307 case DTRACEHIOC_ADD: { 16308 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16309 16310 if (dof == NULL) 16311 return (rval); 16312 16313 mutex_enter(&dtrace_lock); 16314 16315 /* 16316 * dtrace_helper_slurp() takes responsibility for the dof -- 16317 * it may free it now or it may save it and free it later. 16318 */ 16319 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16320 *rv = rval; 16321 rval = 0; 16322 } else { 16323 rval = EINVAL; 16324 } 16325 16326 mutex_exit(&dtrace_lock); 16327 return (rval); 16328 } 16329 16330 case DTRACEHIOC_REMOVE: { 16331 mutex_enter(&dtrace_lock); 16332 rval = dtrace_helper_destroygen(arg); 16333 mutex_exit(&dtrace_lock); 16334 16335 return (rval); 16336 } 16337 16338 default: 16339 break; 16340 } 16341 16342 return (ENOTTY); 16343 } 16344 16345 /*ARGSUSED*/ 16346 static int 16347 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16348 { 16349 minor_t minor = getminor(dev); 16350 dtrace_state_t *state; 16351 int rval; 16352 16353 if (minor == DTRACEMNRN_HELPER) 16354 return (dtrace_ioctl_helper(cmd, arg, rv)); 16355 16356 state = ddi_get_soft_state(dtrace_softstate, minor); 16357 16358 if (state->dts_anon) { 16359 ASSERT(dtrace_anon.dta_state == NULL); 16360 state = state->dts_anon; 16361 } 16362 16363 switch (cmd) { 16364 case DTRACEIOC_PROVIDER: { 16365 dtrace_providerdesc_t pvd; 16366 dtrace_provider_t *pvp; 16367 16368 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16369 return (EFAULT); 16370 16371 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16372 mutex_enter(&dtrace_provider_lock); 16373 16374 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16375 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16376 break; 16377 } 16378 16379 mutex_exit(&dtrace_provider_lock); 16380 16381 if (pvp == NULL) 16382 return (ESRCH); 16383 16384 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16385 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16386 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16387 return (EFAULT); 16388 16389 return (0); 16390 } 16391 16392 case DTRACEIOC_EPROBE: { 16393 dtrace_eprobedesc_t epdesc; 16394 dtrace_ecb_t *ecb; 16395 dtrace_action_t *act; 16396 void *buf; 16397 size_t size; 16398 uintptr_t dest; 16399 int nrecs; 16400 16401 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16402 return (EFAULT); 16403 16404 mutex_enter(&dtrace_lock); 16405 16406 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16407 mutex_exit(&dtrace_lock); 16408 return (EINVAL); 16409 } 16410 16411 if (ecb->dte_probe == NULL) { 16412 mutex_exit(&dtrace_lock); 16413 return (EINVAL); 16414 } 16415 16416 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16417 epdesc.dtepd_uarg = ecb->dte_uarg; 16418 epdesc.dtepd_size = ecb->dte_size; 16419 16420 nrecs = epdesc.dtepd_nrecs; 16421 epdesc.dtepd_nrecs = 0; 16422 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16423 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16424 continue; 16425 16426 epdesc.dtepd_nrecs++; 16427 } 16428 16429 /* 16430 * Now that we have the size, we need to allocate a temporary 16431 * buffer in which to store the complete description. We need 16432 * the temporary buffer to be able to drop dtrace_lock() 16433 * across the copyout(), below. 16434 */ 16435 size = sizeof (dtrace_eprobedesc_t) + 16436 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16437 16438 buf = kmem_alloc(size, KM_SLEEP); 16439 dest = (uintptr_t)buf; 16440 16441 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16442 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16443 16444 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16445 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16446 continue; 16447 16448 if (nrecs-- == 0) 16449 break; 16450 16451 bcopy(&act->dta_rec, (void *)dest, 16452 sizeof (dtrace_recdesc_t)); 16453 dest += sizeof (dtrace_recdesc_t); 16454 } 16455 16456 mutex_exit(&dtrace_lock); 16457 16458 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16459 kmem_free(buf, size); 16460 return (EFAULT); 16461 } 16462 16463 kmem_free(buf, size); 16464 return (0); 16465 } 16466 16467 case DTRACEIOC_AGGDESC: { 16468 dtrace_aggdesc_t aggdesc; 16469 dtrace_action_t *act; 16470 dtrace_aggregation_t *agg; 16471 int nrecs; 16472 uint32_t offs; 16473 dtrace_recdesc_t *lrec; 16474 void *buf; 16475 size_t size; 16476 uintptr_t dest; 16477 16478 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16479 return (EFAULT); 16480 16481 mutex_enter(&dtrace_lock); 16482 16483 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16484 mutex_exit(&dtrace_lock); 16485 return (EINVAL); 16486 } 16487 16488 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16489 16490 nrecs = aggdesc.dtagd_nrecs; 16491 aggdesc.dtagd_nrecs = 0; 16492 16493 offs = agg->dtag_base; 16494 lrec = &agg->dtag_action.dta_rec; 16495 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16496 16497 for (act = agg->dtag_first; ; act = act->dta_next) { 16498 ASSERT(act->dta_intuple || 16499 DTRACEACT_ISAGG(act->dta_kind)); 16500 16501 /* 16502 * If this action has a record size of zero, it 16503 * denotes an argument to the aggregating action. 16504 * Because the presence of this record doesn't (or 16505 * shouldn't) affect the way the data is interpreted, 16506 * we don't copy it out to save user-level the 16507 * confusion of dealing with a zero-length record. 16508 */ 16509 if (act->dta_rec.dtrd_size == 0) { 16510 ASSERT(agg->dtag_hasarg); 16511 continue; 16512 } 16513 16514 aggdesc.dtagd_nrecs++; 16515 16516 if (act == &agg->dtag_action) 16517 break; 16518 } 16519 16520 /* 16521 * Now that we have the size, we need to allocate a temporary 16522 * buffer in which to store the complete description. We need 16523 * the temporary buffer to be able to drop dtrace_lock() 16524 * across the copyout(), below. 16525 */ 16526 size = sizeof (dtrace_aggdesc_t) + 16527 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16528 16529 buf = kmem_alloc(size, KM_SLEEP); 16530 dest = (uintptr_t)buf; 16531 16532 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16533 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16534 16535 for (act = agg->dtag_first; ; act = act->dta_next) { 16536 dtrace_recdesc_t rec = act->dta_rec; 16537 16538 /* 16539 * See the comment in the above loop for why we pass 16540 * over zero-length records. 16541 */ 16542 if (rec.dtrd_size == 0) { 16543 ASSERT(agg->dtag_hasarg); 16544 continue; 16545 } 16546 16547 if (nrecs-- == 0) 16548 break; 16549 16550 rec.dtrd_offset -= offs; 16551 bcopy(&rec, (void *)dest, sizeof (rec)); 16552 dest += sizeof (dtrace_recdesc_t); 16553 16554 if (act == &agg->dtag_action) 16555 break; 16556 } 16557 16558 mutex_exit(&dtrace_lock); 16559 16560 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16561 kmem_free(buf, size); 16562 return (EFAULT); 16563 } 16564 16565 kmem_free(buf, size); 16566 return (0); 16567 } 16568 16569 case DTRACEIOC_ENABLE: { 16570 dof_hdr_t *dof; 16571 dtrace_enabling_t *enab = NULL; 16572 dtrace_vstate_t *vstate; 16573 int err = 0; 16574 16575 *rv = 0; 16576 16577 /* 16578 * If a NULL argument has been passed, we take this as our 16579 * cue to reevaluate our enablings. 16580 */ 16581 if (arg == 0) { 16582 dtrace_enabling_matchall(); 16583 16584 return (0); 16585 } 16586 16587 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16588 return (rval); 16589 16590 mutex_enter(&cpu_lock); 16591 mutex_enter(&dtrace_lock); 16592 vstate = &state->dts_vstate; 16593 16594 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16595 mutex_exit(&dtrace_lock); 16596 mutex_exit(&cpu_lock); 16597 dtrace_dof_destroy(dof); 16598 return (EBUSY); 16599 } 16600 16601 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16602 mutex_exit(&dtrace_lock); 16603 mutex_exit(&cpu_lock); 16604 dtrace_dof_destroy(dof); 16605 return (EINVAL); 16606 } 16607 16608 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16609 dtrace_enabling_destroy(enab); 16610 mutex_exit(&dtrace_lock); 16611 mutex_exit(&cpu_lock); 16612 dtrace_dof_destroy(dof); 16613 return (rval); 16614 } 16615 16616 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16617 err = dtrace_enabling_retain(enab); 16618 } else { 16619 dtrace_enabling_destroy(enab); 16620 } 16621 16622 mutex_exit(&cpu_lock); 16623 mutex_exit(&dtrace_lock); 16624 dtrace_dof_destroy(dof); 16625 16626 return (err); 16627 } 16628 16629 case DTRACEIOC_REPLICATE: { 16630 dtrace_repldesc_t desc; 16631 dtrace_probedesc_t *match = &desc.dtrpd_match; 16632 dtrace_probedesc_t *create = &desc.dtrpd_create; 16633 int err; 16634 16635 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16636 return (EFAULT); 16637 16638 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16639 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16640 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16641 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16642 16643 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16644 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16645 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16646 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16647 16648 mutex_enter(&dtrace_lock); 16649 err = dtrace_enabling_replicate(state, match, create); 16650 mutex_exit(&dtrace_lock); 16651 16652 return (err); 16653 } 16654 16655 case DTRACEIOC_PROBEMATCH: 16656 case DTRACEIOC_PROBES: { 16657 dtrace_probe_t *probe = NULL; 16658 dtrace_probedesc_t desc; 16659 dtrace_probekey_t pkey; 16660 dtrace_id_t i; 16661 int m = 0; 16662 uint32_t priv; 16663 uid_t uid; 16664 zoneid_t zoneid; 16665 16666 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16667 return (EFAULT); 16668 16669 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16670 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16671 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16672 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16673 16674 /* 16675 * Before we attempt to match this probe, we want to give 16676 * all providers the opportunity to provide it. 16677 */ 16678 if (desc.dtpd_id == DTRACE_IDNONE) { 16679 mutex_enter(&dtrace_provider_lock); 16680 dtrace_probe_provide(&desc, NULL); 16681 mutex_exit(&dtrace_provider_lock); 16682 desc.dtpd_id++; 16683 } 16684 16685 if (cmd == DTRACEIOC_PROBEMATCH) { 16686 dtrace_probekey(&desc, &pkey); 16687 pkey.dtpk_id = DTRACE_IDNONE; 16688 } 16689 16690 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16691 16692 mutex_enter(&dtrace_lock); 16693 16694 if (cmd == DTRACEIOC_PROBEMATCH) { 16695 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16696 if ((probe = dtrace_probes[i - 1]) != NULL && 16697 (m = dtrace_match_probe(probe, &pkey, 16698 priv, uid, zoneid)) != 0) 16699 break; 16700 } 16701 16702 if (m < 0) { 16703 mutex_exit(&dtrace_lock); 16704 return (EINVAL); 16705 } 16706 16707 } else { 16708 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16709 if ((probe = dtrace_probes[i - 1]) != NULL && 16710 dtrace_match_priv(probe, priv, uid, zoneid)) 16711 break; 16712 } 16713 } 16714 16715 if (probe == NULL) { 16716 mutex_exit(&dtrace_lock); 16717 return (ESRCH); 16718 } 16719 16720 dtrace_probe_description(probe, &desc); 16721 mutex_exit(&dtrace_lock); 16722 16723 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16724 return (EFAULT); 16725 16726 return (0); 16727 } 16728 16729 case DTRACEIOC_PROBEARG: { 16730 dtrace_argdesc_t desc; 16731 dtrace_probe_t *probe; 16732 dtrace_provider_t *prov; 16733 16734 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16735 return (EFAULT); 16736 16737 if (desc.dtargd_id == DTRACE_IDNONE) 16738 return (EINVAL); 16739 16740 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16741 return (EINVAL); 16742 16743 mutex_enter(&dtrace_provider_lock); 16744 mutex_enter(&mod_lock); 16745 mutex_enter(&dtrace_lock); 16746 16747 if (desc.dtargd_id > dtrace_nprobes) { 16748 mutex_exit(&dtrace_lock); 16749 mutex_exit(&mod_lock); 16750 mutex_exit(&dtrace_provider_lock); 16751 return (EINVAL); 16752 } 16753 16754 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16755 mutex_exit(&dtrace_lock); 16756 mutex_exit(&mod_lock); 16757 mutex_exit(&dtrace_provider_lock); 16758 return (EINVAL); 16759 } 16760 16761 mutex_exit(&dtrace_lock); 16762 16763 prov = probe->dtpr_provider; 16764 16765 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16766 /* 16767 * There isn't any typed information for this probe. 16768 * Set the argument number to DTRACE_ARGNONE. 16769 */ 16770 desc.dtargd_ndx = DTRACE_ARGNONE; 16771 } else { 16772 desc.dtargd_native[0] = '\0'; 16773 desc.dtargd_xlate[0] = '\0'; 16774 desc.dtargd_mapping = desc.dtargd_ndx; 16775 16776 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16777 probe->dtpr_id, probe->dtpr_arg, &desc); 16778 } 16779 16780 mutex_exit(&mod_lock); 16781 mutex_exit(&dtrace_provider_lock); 16782 16783 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16784 return (EFAULT); 16785 16786 return (0); 16787 } 16788 16789 case DTRACEIOC_GO: { 16790 processorid_t cpuid; 16791 rval = dtrace_state_go(state, &cpuid); 16792 16793 if (rval != 0) 16794 return (rval); 16795 16796 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16797 return (EFAULT); 16798 16799 return (0); 16800 } 16801 16802 case DTRACEIOC_STOP: { 16803 processorid_t cpuid; 16804 16805 mutex_enter(&dtrace_lock); 16806 rval = dtrace_state_stop(state, &cpuid); 16807 mutex_exit(&dtrace_lock); 16808 16809 if (rval != 0) 16810 return (rval); 16811 16812 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16813 return (EFAULT); 16814 16815 return (0); 16816 } 16817 16818 case DTRACEIOC_DOFGET: { 16819 dof_hdr_t hdr, *dof; 16820 uint64_t len; 16821 16822 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16823 return (EFAULT); 16824 16825 mutex_enter(&dtrace_lock); 16826 dof = dtrace_dof_create(state); 16827 mutex_exit(&dtrace_lock); 16828 16829 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16830 rval = copyout(dof, (void *)arg, len); 16831 dtrace_dof_destroy(dof); 16832 16833 return (rval == 0 ? 0 : EFAULT); 16834 } 16835 16836 case DTRACEIOC_AGGSNAP: 16837 case DTRACEIOC_BUFSNAP: { 16838 dtrace_bufdesc_t desc; 16839 caddr_t cached; 16840 dtrace_buffer_t *buf; 16841 16842 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16843 return (EFAULT); 16844 16845 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16846 return (EINVAL); 16847 16848 mutex_enter(&dtrace_lock); 16849 16850 if (cmd == DTRACEIOC_BUFSNAP) { 16851 buf = &state->dts_buffer[desc.dtbd_cpu]; 16852 } else { 16853 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16854 } 16855 16856 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16857 size_t sz = buf->dtb_offset; 16858 16859 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16860 mutex_exit(&dtrace_lock); 16861 return (EBUSY); 16862 } 16863 16864 /* 16865 * If this buffer has already been consumed, we're 16866 * going to indicate that there's nothing left here 16867 * to consume. 16868 */ 16869 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16870 mutex_exit(&dtrace_lock); 16871 16872 desc.dtbd_size = 0; 16873 desc.dtbd_drops = 0; 16874 desc.dtbd_errors = 0; 16875 desc.dtbd_oldest = 0; 16876 sz = sizeof (desc); 16877 16878 if (copyout(&desc, (void *)arg, sz) != 0) 16879 return (EFAULT); 16880 16881 return (0); 16882 } 16883 16884 /* 16885 * If this is a ring buffer that has wrapped, we want 16886 * to copy the whole thing out. 16887 */ 16888 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16889 dtrace_buffer_polish(buf); 16890 sz = buf->dtb_size; 16891 } 16892 16893 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16894 mutex_exit(&dtrace_lock); 16895 return (EFAULT); 16896 } 16897 16898 desc.dtbd_size = sz; 16899 desc.dtbd_drops = buf->dtb_drops; 16900 desc.dtbd_errors = buf->dtb_errors; 16901 desc.dtbd_oldest = buf->dtb_xamot_offset; 16902 desc.dtbd_timestamp = dtrace_gethrtime(); 16903 16904 mutex_exit(&dtrace_lock); 16905 16906 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16907 return (EFAULT); 16908 16909 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16910 16911 return (0); 16912 } 16913 16914 if (buf->dtb_tomax == NULL) { 16915 ASSERT(buf->dtb_xamot == NULL); 16916 mutex_exit(&dtrace_lock); 16917 return (ENOENT); 16918 } 16919 16920 cached = buf->dtb_tomax; 16921 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16922 16923 dtrace_xcall(desc.dtbd_cpu, 16924 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16925 16926 state->dts_errors += buf->dtb_xamot_errors; 16927 16928 /* 16929 * If the buffers did not actually switch, then the cross call 16930 * did not take place -- presumably because the given CPU is 16931 * not in the ready set. If this is the case, we'll return 16932 * ENOENT. 16933 */ 16934 if (buf->dtb_tomax == cached) { 16935 ASSERT(buf->dtb_xamot != cached); 16936 mutex_exit(&dtrace_lock); 16937 return (ENOENT); 16938 } 16939 16940 ASSERT(cached == buf->dtb_xamot); 16941 16942 /* 16943 * We have our snapshot; now copy it out. 16944 */ 16945 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16946 buf->dtb_xamot_offset) != 0) { 16947 mutex_exit(&dtrace_lock); 16948 return (EFAULT); 16949 } 16950 16951 desc.dtbd_size = buf->dtb_xamot_offset; 16952 desc.dtbd_drops = buf->dtb_xamot_drops; 16953 desc.dtbd_errors = buf->dtb_xamot_errors; 16954 desc.dtbd_oldest = 0; 16955 desc.dtbd_timestamp = buf->dtb_switched; 16956 16957 mutex_exit(&dtrace_lock); 16958 16959 /* 16960 * Finally, copy out the buffer description. 16961 */ 16962 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16963 return (EFAULT); 16964 16965 return (0); 16966 } 16967 16968 case DTRACEIOC_CONF: { 16969 dtrace_conf_t conf; 16970 16971 bzero(&conf, sizeof (conf)); 16972 conf.dtc_difversion = DIF_VERSION; 16973 conf.dtc_difintregs = DIF_DIR_NREGS; 16974 conf.dtc_diftupregs = DIF_DTR_NREGS; 16975 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16976 16977 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16978 return (EFAULT); 16979 16980 return (0); 16981 } 16982 16983 case DTRACEIOC_STATUS: { 16984 dtrace_status_t stat; 16985 dtrace_dstate_t *dstate; 16986 int i, j; 16987 uint64_t nerrs; 16988 16989 /* 16990 * See the comment in dtrace_state_deadman() for the reason 16991 * for setting dts_laststatus to INT64_MAX before setting 16992 * it to the correct value. 16993 */ 16994 state->dts_laststatus = INT64_MAX; 16995 dtrace_membar_producer(); 16996 state->dts_laststatus = dtrace_gethrtime(); 16997 16998 bzero(&stat, sizeof (stat)); 16999 17000 mutex_enter(&dtrace_lock); 17001 17002 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 17003 mutex_exit(&dtrace_lock); 17004 return (ENOENT); 17005 } 17006 17007 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 17008 stat.dtst_exiting = 1; 17009 17010 nerrs = state->dts_errors; 17011 dstate = &state->dts_vstate.dtvs_dynvars; 17012 17013 for (i = 0; i < NCPU; i++) { 17014 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17015 17016 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17017 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17018 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17019 17020 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17021 stat.dtst_filled++; 17022 17023 nerrs += state->dts_buffer[i].dtb_errors; 17024 17025 for (j = 0; j < state->dts_nspeculations; j++) { 17026 dtrace_speculation_t *spec; 17027 dtrace_buffer_t *buf; 17028 17029 spec = &state->dts_speculations[j]; 17030 buf = &spec->dtsp_buffer[i]; 17031 stat.dtst_specdrops += buf->dtb_xamot_drops; 17032 } 17033 } 17034 17035 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17036 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17037 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17038 stat.dtst_dblerrors = state->dts_dblerrors; 17039 stat.dtst_killed = 17040 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17041 stat.dtst_errors = nerrs; 17042 17043 mutex_exit(&dtrace_lock); 17044 17045 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17046 return (EFAULT); 17047 17048 return (0); 17049 } 17050 17051 case DTRACEIOC_FORMAT: { 17052 dtrace_fmtdesc_t fmt; 17053 char *str; 17054 int len; 17055 17056 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17057 return (EFAULT); 17058 17059 mutex_enter(&dtrace_lock); 17060 17061 if (fmt.dtfd_format == 0 || 17062 fmt.dtfd_format > state->dts_nformats) { 17063 mutex_exit(&dtrace_lock); 17064 return (EINVAL); 17065 } 17066 17067 /* 17068 * Format strings are allocated contiguously and they are 17069 * never freed; if a format index is less than the number 17070 * of formats, we can assert that the format map is non-NULL 17071 * and that the format for the specified index is non-NULL. 17072 */ 17073 ASSERT(state->dts_formats != NULL); 17074 str = state->dts_formats[fmt.dtfd_format - 1]; 17075 ASSERT(str != NULL); 17076 17077 len = strlen(str) + 1; 17078 17079 if (len > fmt.dtfd_length) { 17080 fmt.dtfd_length = len; 17081 17082 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17083 mutex_exit(&dtrace_lock); 17084 return (EINVAL); 17085 } 17086 } else { 17087 if (copyout(str, fmt.dtfd_string, len) != 0) { 17088 mutex_exit(&dtrace_lock); 17089 return (EINVAL); 17090 } 17091 } 17092 17093 mutex_exit(&dtrace_lock); 17094 return (0); 17095 } 17096 17097 default: 17098 break; 17099 } 17100 17101 return (ENOTTY); 17102 } 17103 17104 /*ARGSUSED*/ 17105 static int 17106 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17107 { 17108 dtrace_state_t *state; 17109 17110 switch (cmd) { 17111 case DDI_DETACH: 17112 break; 17113 17114 case DDI_SUSPEND: 17115 return (DDI_SUCCESS); 17116 17117 default: 17118 return (DDI_FAILURE); 17119 } 17120 17121 mutex_enter(&cpu_lock); 17122 mutex_enter(&dtrace_provider_lock); 17123 mutex_enter(&dtrace_lock); 17124 17125 ASSERT(dtrace_opens == 0); 17126 17127 if (dtrace_helpers > 0) { 17128 mutex_exit(&dtrace_provider_lock); 17129 mutex_exit(&dtrace_lock); 17130 mutex_exit(&cpu_lock); 17131 return (DDI_FAILURE); 17132 } 17133 17134 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17135 mutex_exit(&dtrace_provider_lock); 17136 mutex_exit(&dtrace_lock); 17137 mutex_exit(&cpu_lock); 17138 return (DDI_FAILURE); 17139 } 17140 17141 dtrace_provider = NULL; 17142 17143 if ((state = dtrace_anon_grab()) != NULL) { 17144 /* 17145 * If there were ECBs on this state, the provider should 17146 * have not been allowed to detach; assert that there is 17147 * none. 17148 */ 17149 ASSERT(state->dts_necbs == 0); 17150 dtrace_state_destroy(state); 17151 17152 /* 17153 * If we're being detached with anonymous state, we need to 17154 * indicate to the kernel debugger that DTrace is now inactive. 17155 */ 17156 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17157 } 17158 17159 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17160 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17161 dtrace_cpu_init = NULL; 17162 dtrace_helpers_cleanup = NULL; 17163 dtrace_helpers_fork = NULL; 17164 dtrace_cpustart_init = NULL; 17165 dtrace_cpustart_fini = NULL; 17166 dtrace_debugger_init = NULL; 17167 dtrace_debugger_fini = NULL; 17168 dtrace_modload = NULL; 17169 dtrace_modunload = NULL; 17170 17171 ASSERT(dtrace_getf == 0); 17172 ASSERT(dtrace_closef == NULL); 17173 17174 mutex_exit(&cpu_lock); 17175 17176 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17177 dtrace_probes = NULL; 17178 dtrace_nprobes = 0; 17179 17180 dtrace_hash_destroy(dtrace_bymod); 17181 dtrace_hash_destroy(dtrace_byfunc); 17182 dtrace_hash_destroy(dtrace_byname); 17183 dtrace_bymod = NULL; 17184 dtrace_byfunc = NULL; 17185 dtrace_byname = NULL; 17186 17187 kmem_cache_destroy(dtrace_state_cache); 17188 vmem_destroy(dtrace_minor); 17189 vmem_destroy(dtrace_arena); 17190 17191 if (dtrace_toxrange != NULL) { 17192 kmem_free(dtrace_toxrange, 17193 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17194 dtrace_toxrange = NULL; 17195 dtrace_toxranges = 0; 17196 dtrace_toxranges_max = 0; 17197 } 17198 17199 ddi_remove_minor_node(dtrace_devi, NULL); 17200 dtrace_devi = NULL; 17201 17202 ddi_soft_state_fini(&dtrace_softstate); 17203 17204 ASSERT(dtrace_vtime_references == 0); 17205 ASSERT(dtrace_opens == 0); 17206 ASSERT(dtrace_retained == NULL); 17207 17208 mutex_exit(&dtrace_lock); 17209 mutex_exit(&dtrace_provider_lock); 17210 17211 /* 17212 * We don't destroy the task queue until after we have dropped our 17213 * locks (taskq_destroy() may block on running tasks). To prevent 17214 * attempting to do work after we have effectively detached but before 17215 * the task queue has been destroyed, all tasks dispatched via the 17216 * task queue must check that DTrace is still attached before 17217 * performing any operation. 17218 */ 17219 taskq_destroy(dtrace_taskq); 17220 dtrace_taskq = NULL; 17221 17222 return (DDI_SUCCESS); 17223 } 17224 17225 /*ARGSUSED*/ 17226 static int 17227 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17228 { 17229 int error; 17230 17231 switch (infocmd) { 17232 case DDI_INFO_DEVT2DEVINFO: 17233 *result = (void *)dtrace_devi; 17234 error = DDI_SUCCESS; 17235 break; 17236 case DDI_INFO_DEVT2INSTANCE: 17237 *result = (void *)0; 17238 error = DDI_SUCCESS; 17239 break; 17240 default: 17241 error = DDI_FAILURE; 17242 } 17243 return (error); 17244 } 17245 17246 static struct cb_ops dtrace_cb_ops = { 17247 dtrace_open, /* open */ 17248 dtrace_close, /* close */ 17249 nulldev, /* strategy */ 17250 nulldev, /* print */ 17251 nodev, /* dump */ 17252 nodev, /* read */ 17253 nodev, /* write */ 17254 dtrace_ioctl, /* ioctl */ 17255 nodev, /* devmap */ 17256 nodev, /* mmap */ 17257 nodev, /* segmap */ 17258 nochpoll, /* poll */ 17259 ddi_prop_op, /* cb_prop_op */ 17260 0, /* streamtab */ 17261 D_NEW | D_MP /* Driver compatibility flag */ 17262 }; 17263 17264 static struct dev_ops dtrace_ops = { 17265 DEVO_REV, /* devo_rev */ 17266 0, /* refcnt */ 17267 dtrace_info, /* get_dev_info */ 17268 nulldev, /* identify */ 17269 nulldev, /* probe */ 17270 dtrace_attach, /* attach */ 17271 dtrace_detach, /* detach */ 17272 nodev, /* reset */ 17273 &dtrace_cb_ops, /* driver operations */ 17274 NULL, /* bus operations */ 17275 nodev, /* dev power */ 17276 ddi_quiesce_not_needed, /* quiesce */ 17277 }; 17278 17279 static struct modldrv modldrv = { 17280 &mod_driverops, /* module type (this is a pseudo driver) */ 17281 "Dynamic Tracing", /* name of module */ 17282 &dtrace_ops, /* driver ops */ 17283 }; 17284 17285 static struct modlinkage modlinkage = { 17286 MODREV_1, 17287 (void *)&modldrv, 17288 NULL 17289 }; 17290 17291 int 17292 _init(void) 17293 { 17294 return (mod_install(&modlinkage)); 17295 } 17296 17297 int 17298 _info(struct modinfo *modinfop) 17299 { 17300 return (mod_info(&modlinkage, modinfop)); 17301 } 17302 17303 int 17304 _fini(void) 17305 { 17306 return (mod_remove(&modlinkage)); 17307 } 17308