1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018, Joyent, Inc. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 388 do { \ 389 if ((remp) != NULL) { \ 390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 391 } \ 392 _NOTE(CONSTCOND) } while (0) 393 394 395 /* 396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 397 * alloc_sz on the righthand side of the comparison in order to avoid overflow 398 * or underflow in the comparison with it. This is simpler than the INRANGE 399 * check above, because we know that the dtms_scratch_ptr is valid in the 400 * range. Allocations of size zero are allowed. 401 */ 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 404 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 405 406 #define DTRACE_LOADFUNC(bits) \ 407 /*CSTYLED*/ \ 408 uint##bits##_t \ 409 dtrace_load##bits(uintptr_t addr) \ 410 { \ 411 size_t size = bits / NBBY; \ 412 /*CSTYLED*/ \ 413 uint##bits##_t rval; \ 414 int i; \ 415 volatile uint16_t *flags = (volatile uint16_t *) \ 416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 417 \ 418 DTRACE_ALIGNCHECK(addr, size, flags); \ 419 \ 420 for (i = 0; i < dtrace_toxranges; i++) { \ 421 if (addr >= dtrace_toxrange[i].dtt_limit) \ 422 continue; \ 423 \ 424 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 425 continue; \ 426 \ 427 /* \ 428 * This address falls within a toxic region; return 0. \ 429 */ \ 430 *flags |= CPU_DTRACE_BADADDR; \ 431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 432 return (0); \ 433 } \ 434 \ 435 *flags |= CPU_DTRACE_NOFAULT; \ 436 /*CSTYLED*/ \ 437 rval = *((volatile uint##bits##_t *)addr); \ 438 *flags &= ~CPU_DTRACE_NOFAULT; \ 439 \ 440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 441 } 442 443 #ifdef _LP64 444 #define dtrace_loadptr dtrace_load64 445 #else 446 #define dtrace_loadptr dtrace_load32 447 #endif 448 449 #define DTRACE_DYNHASH_FREE 0 450 #define DTRACE_DYNHASH_SINK 1 451 #define DTRACE_DYNHASH_VALID 2 452 453 #define DTRACE_MATCH_FAIL -1 454 #define DTRACE_MATCH_NEXT 0 455 #define DTRACE_MATCH_DONE 1 456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 457 #define DTRACE_STATE_ALIGN 64 458 459 #define DTRACE_FLAGS2FLT(flags) \ 460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 469 DTRACEFLT_UNKNOWN) 470 471 #define DTRACEACT_ISSTRING(act) \ 472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 474 475 static size_t dtrace_strlen(const char *, size_t); 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 477 static void dtrace_enabling_provide(dtrace_provider_t *); 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 479 static void dtrace_enabling_matchall(void); 480 static void dtrace_enabling_reap(void); 481 static dtrace_state_t *dtrace_anon_grab(void); 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 483 dtrace_state_t *, uint64_t, uint64_t); 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 485 static void dtrace_buffer_drop(dtrace_buffer_t *); 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 488 dtrace_state_t *, dtrace_mstate_t *); 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 490 dtrace_optval_t); 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 494 static void dtrace_getf_barrier(void); 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 496 dtrace_mstate_t *, dtrace_vstate_t *); 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 498 dtrace_mstate_t *, dtrace_vstate_t *); 499 500 /* 501 * DTrace Probe Context Functions 502 * 503 * These functions are called from probe context. Because probe context is 504 * any context in which C may be called, arbitrarily locks may be held, 505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 506 * As a result, functions called from probe context may only call other DTrace 507 * support functions -- they may not interact at all with the system at large. 508 * (Note that the ASSERT macro is made probe-context safe by redefining it in 509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 510 * loads are to be performed from probe context, they _must_ be in terms of 511 * the safe dtrace_load*() variants. 512 * 513 * Some functions in this block are not actually called from probe context; 514 * for these functions, there will be a comment above the function reading 515 * "Note: not called from probe context." 516 */ 517 void 518 dtrace_panic(const char *format, ...) 519 { 520 va_list alist; 521 522 va_start(alist, format); 523 dtrace_vpanic(format, alist); 524 va_end(alist); 525 } 526 527 int 528 dtrace_assfail(const char *a, const char *f, int l) 529 { 530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 531 532 /* 533 * We just need something here that even the most clever compiler 534 * cannot optimize away. 535 */ 536 return (a[(uintptr_t)f]); 537 } 538 539 /* 540 * Atomically increment a specified error counter from probe context. 541 */ 542 static void 543 dtrace_error(uint32_t *counter) 544 { 545 /* 546 * Most counters stored to in probe context are per-CPU counters. 547 * However, there are some error conditions that are sufficiently 548 * arcane that they don't merit per-CPU storage. If these counters 549 * are incremented concurrently on different CPUs, scalability will be 550 * adversely affected -- but we don't expect them to be white-hot in a 551 * correctly constructed enabling... 552 */ 553 uint32_t oval, nval; 554 555 do { 556 oval = *counter; 557 558 if ((nval = oval + 1) == 0) { 559 /* 560 * If the counter would wrap, set it to 1 -- assuring 561 * that the counter is never zero when we have seen 562 * errors. (The counter must be 32-bits because we 563 * aren't guaranteed a 64-bit compare&swap operation.) 564 * To save this code both the infamy of being fingered 565 * by a priggish news story and the indignity of being 566 * the target of a neo-puritan witch trial, we're 567 * carefully avoiding any colorful description of the 568 * likelihood of this condition -- but suffice it to 569 * say that it is only slightly more likely than the 570 * overflow of predicate cache IDs, as discussed in 571 * dtrace_predicate_create(). 572 */ 573 nval = 1; 574 } 575 } while (dtrace_cas32(counter, oval, nval) != oval); 576 } 577 578 /* 579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 580 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 581 */ 582 /* BEGIN CSTYLED */ 583 DTRACE_LOADFUNC(8) 584 DTRACE_LOADFUNC(16) 585 DTRACE_LOADFUNC(32) 586 DTRACE_LOADFUNC(64) 587 /* END CSTYLED */ 588 589 static int 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 591 { 592 if (dest < mstate->dtms_scratch_base) 593 return (0); 594 595 if (dest + size < dest) 596 return (0); 597 598 if (dest + size > mstate->dtms_scratch_ptr) 599 return (0); 600 601 return (1); 602 } 603 604 static int 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 606 dtrace_statvar_t **svars, int nsvars) 607 { 608 int i; 609 size_t maxglobalsize, maxlocalsize; 610 611 if (nsvars == 0) 612 return (0); 613 614 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 615 maxlocalsize = maxglobalsize * NCPU; 616 617 for (i = 0; i < nsvars; i++) { 618 dtrace_statvar_t *svar = svars[i]; 619 uint8_t scope; 620 size_t size; 621 622 if (svar == NULL || (size = svar->dtsv_size) == 0) 623 continue; 624 625 scope = svar->dtsv_var.dtdv_scope; 626 627 /* 628 * We verify that our size is valid in the spirit of providing 629 * defense in depth: we want to prevent attackers from using 630 * DTrace to escalate an orthogonal kernel heap corruption bug 631 * into the ability to store to arbitrary locations in memory. 632 */ 633 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 634 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 635 636 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 637 svar->dtsv_size)) { 638 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 639 svar->dtsv_size); 640 return (1); 641 } 642 } 643 644 return (0); 645 } 646 647 /* 648 * Check to see if the address is within a memory region to which a store may 649 * be issued. This includes the DTrace scratch areas, and any DTrace variable 650 * region. The caller of dtrace_canstore() is responsible for performing any 651 * alignment checks that are needed before stores are actually executed. 652 */ 653 static int 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 655 dtrace_vstate_t *vstate) 656 { 657 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 658 } 659 660 /* 661 * Implementation of dtrace_canstore which communicates the upper bound of the 662 * allowed memory region. 663 */ 664 static int 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 667 { 668 /* 669 * First, check to see if the address is in scratch space... 670 */ 671 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 672 mstate->dtms_scratch_size)) { 673 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 674 mstate->dtms_scratch_size); 675 return (1); 676 } 677 678 /* 679 * Now check to see if it's a dynamic variable. This check will pick 680 * up both thread-local variables and any global dynamically-allocated 681 * variables. 682 */ 683 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 684 vstate->dtvs_dynvars.dtds_size)) { 685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 686 uintptr_t base = (uintptr_t)dstate->dtds_base + 687 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 688 uintptr_t chunkoffs; 689 dtrace_dynvar_t *dvar; 690 691 /* 692 * Before we assume that we can store here, we need to make 693 * sure that it isn't in our metadata -- storing to our 694 * dynamic variable metadata would corrupt our state. For 695 * the range to not include any dynamic variable metadata, 696 * it must: 697 * 698 * (1) Start above the hash table that is at the base of 699 * the dynamic variable space 700 * 701 * (2) Have a starting chunk offset that is beyond the 702 * dtrace_dynvar_t that is at the base of every chunk 703 * 704 * (3) Not span a chunk boundary 705 * 706 * (4) Not be in the tuple space of a dynamic variable 707 * 708 */ 709 if (addr < base) 710 return (0); 711 712 chunkoffs = (addr - base) % dstate->dtds_chunksize; 713 714 if (chunkoffs < sizeof (dtrace_dynvar_t)) 715 return (0); 716 717 if (chunkoffs + sz > dstate->dtds_chunksize) 718 return (0); 719 720 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 721 722 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 723 return (0); 724 725 if (chunkoffs < sizeof (dtrace_dynvar_t) + 726 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 727 return (0); 728 729 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 730 return (1); 731 } 732 733 /* 734 * Finally, check the static local and global variables. These checks 735 * take the longest, so we perform them last. 736 */ 737 if (dtrace_canstore_statvar(addr, sz, remain, 738 vstate->dtvs_locals, vstate->dtvs_nlocals)) 739 return (1); 740 741 if (dtrace_canstore_statvar(addr, sz, remain, 742 vstate->dtvs_globals, vstate->dtvs_nglobals)) 743 return (1); 744 745 return (0); 746 } 747 748 749 /* 750 * Convenience routine to check to see if the address is within a memory 751 * region in which a load may be issued given the user's privilege level; 752 * if not, it sets the appropriate error flags and loads 'addr' into the 753 * illegal value slot. 754 * 755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 756 * appropriate memory access protection. 757 */ 758 static int 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 760 dtrace_vstate_t *vstate) 761 { 762 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 763 } 764 765 /* 766 * Implementation of dtrace_canload which communicates the upper bound of the 767 * allowed memory region. 768 */ 769 static int 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 771 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 772 { 773 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 774 file_t *fp; 775 776 /* 777 * If we hold the privilege to read from kernel memory, then 778 * everything is readable. 779 */ 780 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 781 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 782 return (1); 783 } 784 785 /* 786 * You can obviously read that which you can store. 787 */ 788 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 789 return (1); 790 791 /* 792 * We're allowed to read from our own string table. 793 */ 794 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 795 mstate->dtms_difo->dtdo_strlen)) { 796 DTRACE_RANGE_REMAIN(remain, addr, 797 mstate->dtms_difo->dtdo_strtab, 798 mstate->dtms_difo->dtdo_strlen); 799 return (1); 800 } 801 802 if (vstate->dtvs_state != NULL && 803 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 804 proc_t *p; 805 806 /* 807 * When we have privileges to the current process, there are 808 * several context-related kernel structures that are safe to 809 * read, even absent the privilege to read from kernel memory. 810 * These reads are safe because these structures contain only 811 * state that (1) we're permitted to read, (2) is harmless or 812 * (3) contains pointers to additional kernel state that we're 813 * not permitted to read (and as such, do not present an 814 * opportunity for privilege escalation). Finally (and 815 * critically), because of the nature of their relation with 816 * the current thread context, the memory associated with these 817 * structures cannot change over the duration of probe context, 818 * and it is therefore impossible for this memory to be 819 * deallocated and reallocated as something else while it's 820 * being operated upon. 821 */ 822 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 823 DTRACE_RANGE_REMAIN(remain, addr, curthread, 824 sizeof (kthread_t)); 825 return (1); 826 } 827 828 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 829 sz, curthread->t_procp, sizeof (proc_t))) { 830 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 831 sizeof (proc_t)); 832 return (1); 833 } 834 835 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 836 curthread->t_cred, sizeof (cred_t))) { 837 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 838 sizeof (cred_t)); 839 return (1); 840 } 841 842 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 843 &(p->p_pidp->pid_id), sizeof (pid_t))) { 844 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 845 sizeof (pid_t)); 846 return (1); 847 } 848 849 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 850 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 852 offsetof(cpu_t, cpu_pause_thread)); 853 return (1); 854 } 855 } 856 857 if ((fp = mstate->dtms_getf) != NULL) { 858 uintptr_t psz = sizeof (void *); 859 vnode_t *vp; 860 vnodeops_t *op; 861 862 /* 863 * When getf() returns a file_t, the enabling is implicitly 864 * granted the (transient) right to read the returned file_t 865 * as well as the v_path and v_op->vnop_name of the underlying 866 * vnode. These accesses are allowed after a successful 867 * getf() because the members that they refer to cannot change 868 * once set -- and the barrier logic in the kernel's closef() 869 * path assures that the file_t and its referenced vode_t 870 * cannot themselves be stale (that is, it impossible for 871 * either dtms_getf itself or its f_vnode member to reference 872 * freed memory). 873 */ 874 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 875 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 876 return (1); 877 } 878 879 if ((vp = fp->f_vnode) != NULL) { 880 size_t slen; 881 882 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 883 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 884 psz); 885 return (1); 886 } 887 888 slen = strlen(vp->v_path) + 1; 889 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 890 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 891 slen); 892 return (1); 893 } 894 895 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 897 psz); 898 return (1); 899 } 900 901 if ((op = vp->v_op) != NULL && 902 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 903 DTRACE_RANGE_REMAIN(remain, addr, 904 &op->vnop_name, psz); 905 return (1); 906 } 907 908 if (op != NULL && op->vnop_name != NULL && 909 DTRACE_INRANGE(addr, sz, op->vnop_name, 910 (slen = strlen(op->vnop_name) + 1))) { 911 DTRACE_RANGE_REMAIN(remain, addr, 912 op->vnop_name, slen); 913 return (1); 914 } 915 } 916 } 917 918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 919 *illval = addr; 920 return (0); 921 } 922 923 /* 924 * Convenience routine to check to see if a given string is within a memory 925 * region in which a load may be issued given the user's privilege level; 926 * this exists so that we don't need to issue unnecessary dtrace_strlen() 927 * calls in the event that the user has all privileges. 928 */ 929 static int 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 931 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 932 { 933 size_t rsize; 934 935 /* 936 * If we hold the privilege to read from kernel memory, then 937 * everything is readable. 938 */ 939 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 940 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 941 return (1); 942 } 943 944 /* 945 * Even if the caller is uninterested in querying the remaining valid 946 * range, it is required to ensure that the access is allowed. 947 */ 948 if (remain == NULL) { 949 remain = &rsize; 950 } 951 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 952 size_t strsz; 953 /* 954 * Perform the strlen after determining the length of the 955 * memory region which is accessible. This prevents timing 956 * information from being used to find NULs in memory which is 957 * not accessible to the caller. 958 */ 959 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 960 MIN(sz, *remain)); 961 if (strsz <= *remain) { 962 return (1); 963 } 964 } 965 966 return (0); 967 } 968 969 /* 970 * Convenience routine to check to see if a given variable is within a memory 971 * region in which a load may be issued given the user's privilege level. 972 */ 973 static int 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 975 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 976 { 977 size_t sz; 978 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 979 980 /* 981 * Calculate the max size before performing any checks since even 982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 983 * return the max length via 'remain'. 984 */ 985 if (type->dtdt_kind == DIF_TYPE_STRING) { 986 dtrace_state_t *state = vstate->dtvs_state; 987 988 if (state != NULL) { 989 sz = state->dts_options[DTRACEOPT_STRSIZE]; 990 } else { 991 /* 992 * In helper context, we have a NULL state; fall back 993 * to using the system-wide default for the string size 994 * in this case. 995 */ 996 sz = dtrace_strsize_default; 997 } 998 } else { 999 sz = type->dtdt_size; 1000 } 1001 1002 /* 1003 * If we hold the privilege to read from kernel memory, then 1004 * everything is readable. 1005 */ 1006 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1007 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1008 return (1); 1009 } 1010 1011 if (type->dtdt_kind == DIF_TYPE_STRING) { 1012 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1013 vstate)); 1014 } 1015 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1016 vstate)); 1017 } 1018 1019 /* 1020 * Convert a string to a signed integer using safe loads. 1021 * 1022 * NOTE: This function uses various macros from strtolctype.h to manipulate 1023 * digit values, etc -- these have all been checked to ensure they make 1024 * no additional function calls. 1025 */ 1026 static int64_t 1027 dtrace_strtoll(char *input, int base, size_t limit) 1028 { 1029 uintptr_t pos = (uintptr_t)input; 1030 int64_t val = 0; 1031 int x; 1032 boolean_t neg = B_FALSE; 1033 char c, cc, ccc; 1034 uintptr_t end = pos + limit; 1035 1036 /* 1037 * Consume any whitespace preceding digits. 1038 */ 1039 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1040 pos++; 1041 1042 /* 1043 * Handle an explicit sign if one is present. 1044 */ 1045 if (c == '-' || c == '+') { 1046 if (c == '-') 1047 neg = B_TRUE; 1048 c = dtrace_load8(++pos); 1049 } 1050 1051 /* 1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1053 * if present. 1054 */ 1055 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1056 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1057 pos += 2; 1058 c = ccc; 1059 } 1060 1061 /* 1062 * Read in contiguous digits until the first non-digit character. 1063 */ 1064 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1065 c = dtrace_load8(++pos)) 1066 val = val * base + x; 1067 1068 return (neg ? -val : val); 1069 } 1070 1071 /* 1072 * Compare two strings using safe loads. 1073 */ 1074 static int 1075 dtrace_strncmp(char *s1, char *s2, size_t limit) 1076 { 1077 uint8_t c1, c2; 1078 volatile uint16_t *flags; 1079 1080 if (s1 == s2 || limit == 0) 1081 return (0); 1082 1083 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1084 1085 do { 1086 if (s1 == NULL) { 1087 c1 = '\0'; 1088 } else { 1089 c1 = dtrace_load8((uintptr_t)s1++); 1090 } 1091 1092 if (s2 == NULL) { 1093 c2 = '\0'; 1094 } else { 1095 c2 = dtrace_load8((uintptr_t)s2++); 1096 } 1097 1098 if (c1 != c2) 1099 return (c1 - c2); 1100 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Compute strlen(s) for a string using safe memory accesses. The additional 1107 * len parameter is used to specify a maximum length to ensure completion. 1108 */ 1109 static size_t 1110 dtrace_strlen(const char *s, size_t lim) 1111 { 1112 uint_t len; 1113 1114 for (len = 0; len != lim; len++) { 1115 if (dtrace_load8((uintptr_t)s++) == '\0') 1116 break; 1117 } 1118 1119 return (len); 1120 } 1121 1122 /* 1123 * Check if an address falls within a toxic region. 1124 */ 1125 static int 1126 dtrace_istoxic(uintptr_t kaddr, size_t size) 1127 { 1128 uintptr_t taddr, tsize; 1129 int i; 1130 1131 for (i = 0; i < dtrace_toxranges; i++) { 1132 taddr = dtrace_toxrange[i].dtt_base; 1133 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1134 1135 if (kaddr - taddr < tsize) { 1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1137 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1138 return (1); 1139 } 1140 1141 if (taddr - kaddr < size) { 1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1143 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1144 return (1); 1145 } 1146 } 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1153 * memory specified by the DIF program. The dst is assumed to be safe memory 1154 * that we can store to directly because it is managed by DTrace. As with 1155 * standard bcopy, overlapping copies are handled properly. 1156 */ 1157 static void 1158 dtrace_bcopy(const void *src, void *dst, size_t len) 1159 { 1160 if (len != 0) { 1161 uint8_t *s1 = dst; 1162 const uint8_t *s2 = src; 1163 1164 if (s1 <= s2) { 1165 do { 1166 *s1++ = dtrace_load8((uintptr_t)s2++); 1167 } while (--len != 0); 1168 } else { 1169 s2 += len; 1170 s1 += len; 1171 1172 do { 1173 *--s1 = dtrace_load8((uintptr_t)--s2); 1174 } while (--len != 0); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * Copy src to dst using safe memory accesses, up to either the specified 1181 * length, or the point that a nul byte is encountered. The src is assumed to 1182 * be unsafe memory specified by the DIF program. The dst is assumed to be 1183 * safe memory that we can store to directly because it is managed by DTrace. 1184 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1185 */ 1186 static void 1187 dtrace_strcpy(const void *src, void *dst, size_t len) 1188 { 1189 if (len != 0) { 1190 uint8_t *s1 = dst, c; 1191 const uint8_t *s2 = src; 1192 1193 do { 1194 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1195 } while (--len != 0 && c != '\0'); 1196 } 1197 } 1198 1199 /* 1200 * Copy src to dst, deriving the size and type from the specified (BYREF) 1201 * variable type. The src is assumed to be unsafe memory specified by the DIF 1202 * program. The dst is assumed to be DTrace variable memory that is of the 1203 * specified type; we assume that we can store to directly. 1204 */ 1205 static void 1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1207 { 1208 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1209 1210 if (type->dtdt_kind == DIF_TYPE_STRING) { 1211 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1212 } else { 1213 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1214 } 1215 } 1216 1217 /* 1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1220 * safe memory that we can access directly because it is managed by DTrace. 1221 */ 1222 static int 1223 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1224 { 1225 volatile uint16_t *flags; 1226 1227 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1228 1229 if (s1 == s2) 1230 return (0); 1231 1232 if (s1 == NULL || s2 == NULL) 1233 return (1); 1234 1235 if (s1 != s2 && len != 0) { 1236 const uint8_t *ps1 = s1; 1237 const uint8_t *ps2 = s2; 1238 1239 do { 1240 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1241 return (1); 1242 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1243 } 1244 return (0); 1245 } 1246 1247 /* 1248 * Zero the specified region using a simple byte-by-byte loop. Note that this 1249 * is for safe DTrace-managed memory only. 1250 */ 1251 static void 1252 dtrace_bzero(void *dst, size_t len) 1253 { 1254 uchar_t *cp; 1255 1256 for (cp = dst; len != 0; len--) 1257 *cp++ = 0; 1258 } 1259 1260 static void 1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1262 { 1263 uint64_t result[2]; 1264 1265 result[0] = addend1[0] + addend2[0]; 1266 result[1] = addend1[1] + addend2[1] + 1267 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1268 1269 sum[0] = result[0]; 1270 sum[1] = result[1]; 1271 } 1272 1273 /* 1274 * Shift the 128-bit value in a by b. If b is positive, shift left. 1275 * If b is negative, shift right. 1276 */ 1277 static void 1278 dtrace_shift_128(uint64_t *a, int b) 1279 { 1280 uint64_t mask; 1281 1282 if (b == 0) 1283 return; 1284 1285 if (b < 0) { 1286 b = -b; 1287 if (b >= 64) { 1288 a[0] = a[1] >> (b - 64); 1289 a[1] = 0; 1290 } else { 1291 a[0] >>= b; 1292 mask = 1LL << (64 - b); 1293 mask -= 1; 1294 a[0] |= ((a[1] & mask) << (64 - b)); 1295 a[1] >>= b; 1296 } 1297 } else { 1298 if (b >= 64) { 1299 a[1] = a[0] << (b - 64); 1300 a[0] = 0; 1301 } else { 1302 a[1] <<= b; 1303 mask = a[0] >> (64 - b); 1304 a[1] |= mask; 1305 a[0] <<= b; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1312 * use native multiplication on those, and then re-combine into the 1313 * resulting 128-bit value. 1314 * 1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1316 * hi1 * hi2 << 64 + 1317 * hi1 * lo2 << 32 + 1318 * hi2 * lo1 << 32 + 1319 * lo1 * lo2 1320 */ 1321 static void 1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1323 { 1324 uint64_t hi1, hi2, lo1, lo2; 1325 uint64_t tmp[2]; 1326 1327 hi1 = factor1 >> 32; 1328 hi2 = factor2 >> 32; 1329 1330 lo1 = factor1 & DT_MASK_LO; 1331 lo2 = factor2 & DT_MASK_LO; 1332 1333 product[0] = lo1 * lo2; 1334 product[1] = hi1 * hi2; 1335 1336 tmp[0] = hi1 * lo2; 1337 tmp[1] = 0; 1338 dtrace_shift_128(tmp, 32); 1339 dtrace_add_128(product, tmp, product); 1340 1341 tmp[0] = hi2 * lo1; 1342 tmp[1] = 0; 1343 dtrace_shift_128(tmp, 32); 1344 dtrace_add_128(product, tmp, product); 1345 } 1346 1347 /* 1348 * This privilege check should be used by actions and subroutines to 1349 * verify that the user credentials of the process that enabled the 1350 * invoking ECB match the target credentials 1351 */ 1352 static int 1353 dtrace_priv_proc_common_user(dtrace_state_t *state) 1354 { 1355 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1356 1357 /* 1358 * We should always have a non-NULL state cred here, since if cred 1359 * is null (anonymous tracing), we fast-path bypass this routine. 1360 */ 1361 ASSERT(s_cr != NULL); 1362 1363 if ((cr = CRED()) != NULL && 1364 s_cr->cr_uid == cr->cr_uid && 1365 s_cr->cr_uid == cr->cr_ruid && 1366 s_cr->cr_uid == cr->cr_suid && 1367 s_cr->cr_gid == cr->cr_gid && 1368 s_cr->cr_gid == cr->cr_rgid && 1369 s_cr->cr_gid == cr->cr_sgid) 1370 return (1); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * This privilege check should be used by actions and subroutines to 1377 * verify that the zone of the process that enabled the invoking ECB 1378 * matches the target credentials 1379 */ 1380 static int 1381 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1382 { 1383 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1384 1385 /* 1386 * We should always have a non-NULL state cred here, since if cred 1387 * is null (anonymous tracing), we fast-path bypass this routine. 1388 */ 1389 ASSERT(s_cr != NULL); 1390 1391 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1392 return (1); 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * This privilege check should be used by actions and subroutines to 1399 * verify that the process has not setuid or changed credentials. 1400 */ 1401 static int 1402 dtrace_priv_proc_common_nocd() 1403 { 1404 proc_t *proc; 1405 1406 if ((proc = ttoproc(curthread)) != NULL && 1407 !(proc->p_flag & SNOCD)) 1408 return (1); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1415 { 1416 int action = state->dts_cred.dcr_action; 1417 1418 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1419 goto bad; 1420 1421 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1422 dtrace_priv_proc_common_zone(state) == 0) 1423 goto bad; 1424 1425 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1426 dtrace_priv_proc_common_user(state) == 0) 1427 goto bad; 1428 1429 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1430 dtrace_priv_proc_common_nocd() == 0) 1431 goto bad; 1432 1433 return (1); 1434 1435 bad: 1436 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1437 1438 return (0); 1439 } 1440 1441 static int 1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1443 { 1444 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1445 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1446 return (1); 1447 1448 if (dtrace_priv_proc_common_zone(state) && 1449 dtrace_priv_proc_common_user(state) && 1450 dtrace_priv_proc_common_nocd()) 1451 return (1); 1452 } 1453 1454 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1455 1456 return (0); 1457 } 1458 1459 static int 1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1461 { 1462 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1463 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1464 return (1); 1465 1466 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1467 1468 return (0); 1469 } 1470 1471 static int 1472 dtrace_priv_kernel(dtrace_state_t *state) 1473 { 1474 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1475 return (1); 1476 1477 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1478 1479 return (0); 1480 } 1481 1482 static int 1483 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1484 { 1485 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1486 return (1); 1487 1488 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1489 1490 return (0); 1491 } 1492 1493 /* 1494 * Determine if the dte_cond of the specified ECB allows for processing of 1495 * the current probe to continue. Note that this routine may allow continued 1496 * processing, but with access(es) stripped from the mstate's dtms_access 1497 * field. 1498 */ 1499 static int 1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1501 dtrace_ecb_t *ecb) 1502 { 1503 dtrace_probe_t *probe = ecb->dte_probe; 1504 dtrace_provider_t *prov = probe->dtpr_provider; 1505 dtrace_pops_t *pops = &prov->dtpv_pops; 1506 int mode = DTRACE_MODE_NOPRIV_DROP; 1507 1508 ASSERT(ecb->dte_cond); 1509 1510 if (pops->dtps_mode != NULL) { 1511 mode = pops->dtps_mode(prov->dtpv_arg, 1512 probe->dtpr_id, probe->dtpr_arg); 1513 1514 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1515 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1516 DTRACE_MODE_NOPRIV_DROP)); 1517 } 1518 1519 /* 1520 * If the dte_cond bits indicate that this consumer is only allowed to 1521 * see user-mode firings of this probe, check that the probe was fired 1522 * while in a user context. If that's not the case, use the policy 1523 * specified by the provider to determine if we drop the probe or 1524 * merely restrict operation. 1525 */ 1526 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1527 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1528 1529 if (!(mode & DTRACE_MODE_USER)) { 1530 if (mode & DTRACE_MODE_NOPRIV_DROP) 1531 return (0); 1532 1533 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1534 } 1535 } 1536 1537 /* 1538 * This is more subtle than it looks. We have to be absolutely certain 1539 * that CRED() isn't going to change out from under us so it's only 1540 * legit to examine that structure if we're in constrained situations. 1541 * Currently, the only times we'll this check is if a non-super-user 1542 * has enabled the profile or syscall providers -- providers that 1543 * allow visibility of all processes. For the profile case, the check 1544 * above will ensure that we're examining a user context. 1545 */ 1546 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1547 cred_t *cr; 1548 cred_t *s_cr = state->dts_cred.dcr_cred; 1549 proc_t *proc; 1550 1551 ASSERT(s_cr != NULL); 1552 1553 if ((cr = CRED()) == NULL || 1554 s_cr->cr_uid != cr->cr_uid || 1555 s_cr->cr_uid != cr->cr_ruid || 1556 s_cr->cr_uid != cr->cr_suid || 1557 s_cr->cr_gid != cr->cr_gid || 1558 s_cr->cr_gid != cr->cr_rgid || 1559 s_cr->cr_gid != cr->cr_sgid || 1560 (proc = ttoproc(curthread)) == NULL || 1561 (proc->p_flag & SNOCD)) { 1562 if (mode & DTRACE_MODE_NOPRIV_DROP) 1563 return (0); 1564 1565 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1566 } 1567 } 1568 1569 /* 1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1571 * in our zone, check to see if our mode policy is to restrict rather 1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1573 * and DTRACE_ACCESS_ARGS 1574 */ 1575 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1576 cred_t *cr; 1577 cred_t *s_cr = state->dts_cred.dcr_cred; 1578 1579 ASSERT(s_cr != NULL); 1580 1581 if ((cr = CRED()) == NULL || 1582 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1583 if (mode & DTRACE_MODE_NOPRIV_DROP) 1584 return (0); 1585 1586 mstate->dtms_access &= 1587 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1588 } 1589 } 1590 1591 /* 1592 * By merits of being in this code path at all, we have limited 1593 * privileges. If the provider has indicated that limited privileges 1594 * are to denote restricted operation, strip off the ability to access 1595 * arguments. 1596 */ 1597 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1598 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1599 1600 return (1); 1601 } 1602 1603 /* 1604 * Note: not called from probe context. This function is called 1605 * asynchronously (and at a regular interval) from outside of probe context to 1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1607 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1608 */ 1609 void 1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1611 { 1612 dtrace_dynvar_t *dirty; 1613 dtrace_dstate_percpu_t *dcpu; 1614 dtrace_dynvar_t **rinsep; 1615 int i, j, work = 0; 1616 1617 for (i = 0; i < NCPU; i++) { 1618 dcpu = &dstate->dtds_percpu[i]; 1619 rinsep = &dcpu->dtdsc_rinsing; 1620 1621 /* 1622 * If the dirty list is NULL, there is no dirty work to do. 1623 */ 1624 if (dcpu->dtdsc_dirty == NULL) 1625 continue; 1626 1627 if (dcpu->dtdsc_rinsing != NULL) { 1628 /* 1629 * If the rinsing list is non-NULL, then it is because 1630 * this CPU was selected to accept another CPU's 1631 * dirty list -- and since that time, dirty buffers 1632 * have accumulated. This is a highly unlikely 1633 * condition, but we choose to ignore the dirty 1634 * buffers -- they'll be picked up a future cleanse. 1635 */ 1636 continue; 1637 } 1638 1639 if (dcpu->dtdsc_clean != NULL) { 1640 /* 1641 * If the clean list is non-NULL, then we're in a 1642 * situation where a CPU has done deallocations (we 1643 * have a non-NULL dirty list) but no allocations (we 1644 * also have a non-NULL clean list). We can't simply 1645 * move the dirty list into the clean list on this 1646 * CPU, yet we also don't want to allow this condition 1647 * to persist, lest a short clean list prevent a 1648 * massive dirty list from being cleaned (which in 1649 * turn could lead to otherwise avoidable dynamic 1650 * drops). To deal with this, we look for some CPU 1651 * with a NULL clean list, NULL dirty list, and NULL 1652 * rinsing list -- and then we borrow this CPU to 1653 * rinse our dirty list. 1654 */ 1655 for (j = 0; j < NCPU; j++) { 1656 dtrace_dstate_percpu_t *rinser; 1657 1658 rinser = &dstate->dtds_percpu[j]; 1659 1660 if (rinser->dtdsc_rinsing != NULL) 1661 continue; 1662 1663 if (rinser->dtdsc_dirty != NULL) 1664 continue; 1665 1666 if (rinser->dtdsc_clean != NULL) 1667 continue; 1668 1669 rinsep = &rinser->dtdsc_rinsing; 1670 break; 1671 } 1672 1673 if (j == NCPU) { 1674 /* 1675 * We were unable to find another CPU that 1676 * could accept this dirty list -- we are 1677 * therefore unable to clean it now. 1678 */ 1679 dtrace_dynvar_failclean++; 1680 continue; 1681 } 1682 } 1683 1684 work = 1; 1685 1686 /* 1687 * Atomically move the dirty list aside. 1688 */ 1689 do { 1690 dirty = dcpu->dtdsc_dirty; 1691 1692 /* 1693 * Before we zap the dirty list, set the rinsing list. 1694 * (This allows for a potential assertion in 1695 * dtrace_dynvar(): if a free dynamic variable appears 1696 * on a hash chain, either the dirty list or the 1697 * rinsing list for some CPU must be non-NULL.) 1698 */ 1699 *rinsep = dirty; 1700 dtrace_membar_producer(); 1701 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1702 dirty, NULL) != dirty); 1703 } 1704 1705 if (!work) { 1706 /* 1707 * We have no work to do; we can simply return. 1708 */ 1709 return; 1710 } 1711 1712 dtrace_sync(); 1713 1714 for (i = 0; i < NCPU; i++) { 1715 dcpu = &dstate->dtds_percpu[i]; 1716 1717 if (dcpu->dtdsc_rinsing == NULL) 1718 continue; 1719 1720 /* 1721 * We are now guaranteed that no hash chain contains a pointer 1722 * into this dirty list; we can make it clean. 1723 */ 1724 ASSERT(dcpu->dtdsc_clean == NULL); 1725 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1726 dcpu->dtdsc_rinsing = NULL; 1727 } 1728 1729 /* 1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1731 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1732 * This prevents a race whereby a CPU incorrectly decides that 1733 * the state should be something other than DTRACE_DSTATE_CLEAN 1734 * after dtrace_dynvar_clean() has completed. 1735 */ 1736 dtrace_sync(); 1737 1738 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1739 } 1740 1741 /* 1742 * Depending on the value of the op parameter, this function looks-up, 1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1744 * allocation is requested, this function will return a pointer to a 1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1746 * variable can be allocated. If NULL is returned, the appropriate counter 1747 * will be incremented. 1748 */ 1749 dtrace_dynvar_t * 1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1751 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1752 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1753 { 1754 uint64_t hashval = DTRACE_DYNHASH_VALID; 1755 dtrace_dynhash_t *hash = dstate->dtds_hash; 1756 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1757 processorid_t me = CPU->cpu_id, cpu = me; 1758 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1759 size_t bucket, ksize; 1760 size_t chunksize = dstate->dtds_chunksize; 1761 uintptr_t kdata, lock, nstate; 1762 uint_t i; 1763 1764 ASSERT(nkeys != 0); 1765 1766 /* 1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1768 * algorithm. For the by-value portions, we perform the algorithm in 1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1770 * bit, and seems to have only a minute effect on distribution. For 1771 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1772 * over each referenced byte. It's painful to do this, but it's much 1773 * better than pathological hash distribution. The efficacy of the 1774 * hashing algorithm (and a comparison with other algorithms) may be 1775 * found by running the ::dtrace_dynstat MDB dcmd. 1776 */ 1777 for (i = 0; i < nkeys; i++) { 1778 if (key[i].dttk_size == 0) { 1779 uint64_t val = key[i].dttk_value; 1780 1781 hashval += (val >> 48) & 0xffff; 1782 hashval += (hashval << 10); 1783 hashval ^= (hashval >> 6); 1784 1785 hashval += (val >> 32) & 0xffff; 1786 hashval += (hashval << 10); 1787 hashval ^= (hashval >> 6); 1788 1789 hashval += (val >> 16) & 0xffff; 1790 hashval += (hashval << 10); 1791 hashval ^= (hashval >> 6); 1792 1793 hashval += val & 0xffff; 1794 hashval += (hashval << 10); 1795 hashval ^= (hashval >> 6); 1796 } else { 1797 /* 1798 * This is incredibly painful, but it beats the hell 1799 * out of the alternative. 1800 */ 1801 uint64_t j, size = key[i].dttk_size; 1802 uintptr_t base = (uintptr_t)key[i].dttk_value; 1803 1804 if (!dtrace_canload(base, size, mstate, vstate)) 1805 break; 1806 1807 for (j = 0; j < size; j++) { 1808 hashval += dtrace_load8(base + j); 1809 hashval += (hashval << 10); 1810 hashval ^= (hashval >> 6); 1811 } 1812 } 1813 } 1814 1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1816 return (NULL); 1817 1818 hashval += (hashval << 3); 1819 hashval ^= (hashval >> 11); 1820 hashval += (hashval << 15); 1821 1822 /* 1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1824 * comes out to be one of our two sentinel hash values. If this 1825 * actually happens, we set the hashval to be a value known to be a 1826 * non-sentinel value. 1827 */ 1828 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1829 hashval = DTRACE_DYNHASH_VALID; 1830 1831 /* 1832 * Yes, it's painful to do a divide here. If the cycle count becomes 1833 * important here, tricks can be pulled to reduce it. (However, it's 1834 * critical that hash collisions be kept to an absolute minimum; 1835 * they're much more painful than a divide.) It's better to have a 1836 * solution that generates few collisions and still keeps things 1837 * relatively simple. 1838 */ 1839 bucket = hashval % dstate->dtds_hashsize; 1840 1841 if (op == DTRACE_DYNVAR_DEALLOC) { 1842 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1843 1844 for (;;) { 1845 while ((lock = *lockp) & 1) 1846 continue; 1847 1848 if (dtrace_casptr((void *)lockp, 1849 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1850 break; 1851 } 1852 1853 dtrace_membar_producer(); 1854 } 1855 1856 top: 1857 prev = NULL; 1858 lock = hash[bucket].dtdh_lock; 1859 1860 dtrace_membar_consumer(); 1861 1862 start = hash[bucket].dtdh_chain; 1863 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1864 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1865 op != DTRACE_DYNVAR_DEALLOC)); 1866 1867 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1868 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1869 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1870 1871 if (dvar->dtdv_hashval != hashval) { 1872 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1873 /* 1874 * We've reached the sink, and therefore the 1875 * end of the hash chain; we can kick out of 1876 * the loop knowing that we have seen a valid 1877 * snapshot of state. 1878 */ 1879 ASSERT(dvar->dtdv_next == NULL); 1880 ASSERT(dvar == &dtrace_dynhash_sink); 1881 break; 1882 } 1883 1884 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1885 /* 1886 * We've gone off the rails: somewhere along 1887 * the line, one of the members of this hash 1888 * chain was deleted. Note that we could also 1889 * detect this by simply letting this loop run 1890 * to completion, as we would eventually hit 1891 * the end of the dirty list. However, we 1892 * want to avoid running the length of the 1893 * dirty list unnecessarily (it might be quite 1894 * long), so we catch this as early as 1895 * possible by detecting the hash marker. In 1896 * this case, we simply set dvar to NULL and 1897 * break; the conditional after the loop will 1898 * send us back to top. 1899 */ 1900 dvar = NULL; 1901 break; 1902 } 1903 1904 goto next; 1905 } 1906 1907 if (dtuple->dtt_nkeys != nkeys) 1908 goto next; 1909 1910 for (i = 0; i < nkeys; i++, dkey++) { 1911 if (dkey->dttk_size != key[i].dttk_size) 1912 goto next; /* size or type mismatch */ 1913 1914 if (dkey->dttk_size != 0) { 1915 if (dtrace_bcmp( 1916 (void *)(uintptr_t)key[i].dttk_value, 1917 (void *)(uintptr_t)dkey->dttk_value, 1918 dkey->dttk_size)) 1919 goto next; 1920 } else { 1921 if (dkey->dttk_value != key[i].dttk_value) 1922 goto next; 1923 } 1924 } 1925 1926 if (op != DTRACE_DYNVAR_DEALLOC) 1927 return (dvar); 1928 1929 ASSERT(dvar->dtdv_next == NULL || 1930 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1931 1932 if (prev != NULL) { 1933 ASSERT(hash[bucket].dtdh_chain != dvar); 1934 ASSERT(start != dvar); 1935 ASSERT(prev->dtdv_next == dvar); 1936 prev->dtdv_next = dvar->dtdv_next; 1937 } else { 1938 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1939 start, dvar->dtdv_next) != start) { 1940 /* 1941 * We have failed to atomically swing the 1942 * hash table head pointer, presumably because 1943 * of a conflicting allocation on another CPU. 1944 * We need to reread the hash chain and try 1945 * again. 1946 */ 1947 goto top; 1948 } 1949 } 1950 1951 dtrace_membar_producer(); 1952 1953 /* 1954 * Now set the hash value to indicate that it's free. 1955 */ 1956 ASSERT(hash[bucket].dtdh_chain != dvar); 1957 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1958 1959 dtrace_membar_producer(); 1960 1961 /* 1962 * Set the next pointer to point at the dirty list, and 1963 * atomically swing the dirty pointer to the newly freed dvar. 1964 */ 1965 do { 1966 next = dcpu->dtdsc_dirty; 1967 dvar->dtdv_next = next; 1968 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1969 1970 /* 1971 * Finally, unlock this hash bucket. 1972 */ 1973 ASSERT(hash[bucket].dtdh_lock == lock); 1974 ASSERT(lock & 1); 1975 hash[bucket].dtdh_lock++; 1976 1977 return (NULL); 1978 next: 1979 prev = dvar; 1980 continue; 1981 } 1982 1983 if (dvar == NULL) { 1984 /* 1985 * If dvar is NULL, it is because we went off the rails: 1986 * one of the elements that we traversed in the hash chain 1987 * was deleted while we were traversing it. In this case, 1988 * we assert that we aren't doing a dealloc (deallocs lock 1989 * the hash bucket to prevent themselves from racing with 1990 * one another), and retry the hash chain traversal. 1991 */ 1992 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1993 goto top; 1994 } 1995 1996 if (op != DTRACE_DYNVAR_ALLOC) { 1997 /* 1998 * If we are not to allocate a new variable, we want to 1999 * return NULL now. Before we return, check that the value 2000 * of the lock word hasn't changed. If it has, we may have 2001 * seen an inconsistent snapshot. 2002 */ 2003 if (op == DTRACE_DYNVAR_NOALLOC) { 2004 if (hash[bucket].dtdh_lock != lock) 2005 goto top; 2006 } else { 2007 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2008 ASSERT(hash[bucket].dtdh_lock == lock); 2009 ASSERT(lock & 1); 2010 hash[bucket].dtdh_lock++; 2011 } 2012 2013 return (NULL); 2014 } 2015 2016 /* 2017 * We need to allocate a new dynamic variable. The size we need is the 2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2020 * the size of any referred-to data (dsize). We then round the final 2021 * size up to the chunksize for allocation. 2022 */ 2023 for (ksize = 0, i = 0; i < nkeys; i++) 2024 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2025 2026 /* 2027 * This should be pretty much impossible, but could happen if, say, 2028 * strange DIF specified the tuple. Ideally, this should be an 2029 * assertion and not an error condition -- but that requires that the 2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2031 * bullet-proof. (That is, it must not be able to be fooled by 2032 * malicious DIF.) Given the lack of backwards branches in DIF, 2033 * solving this would presumably not amount to solving the Halting 2034 * Problem -- but it still seems awfully hard. 2035 */ 2036 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2037 ksize + dsize > chunksize) { 2038 dcpu->dtdsc_drops++; 2039 return (NULL); 2040 } 2041 2042 nstate = DTRACE_DSTATE_EMPTY; 2043 2044 do { 2045 retry: 2046 free = dcpu->dtdsc_free; 2047 2048 if (free == NULL) { 2049 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2050 void *rval; 2051 2052 if (clean == NULL) { 2053 /* 2054 * We're out of dynamic variable space on 2055 * this CPU. Unless we have tried all CPUs, 2056 * we'll try to allocate from a different 2057 * CPU. 2058 */ 2059 switch (dstate->dtds_state) { 2060 case DTRACE_DSTATE_CLEAN: { 2061 void *sp = &dstate->dtds_state; 2062 2063 if (++cpu >= NCPU) 2064 cpu = 0; 2065 2066 if (dcpu->dtdsc_dirty != NULL && 2067 nstate == DTRACE_DSTATE_EMPTY) 2068 nstate = DTRACE_DSTATE_DIRTY; 2069 2070 if (dcpu->dtdsc_rinsing != NULL) 2071 nstate = DTRACE_DSTATE_RINSING; 2072 2073 dcpu = &dstate->dtds_percpu[cpu]; 2074 2075 if (cpu != me) 2076 goto retry; 2077 2078 (void) dtrace_cas32(sp, 2079 DTRACE_DSTATE_CLEAN, nstate); 2080 2081 /* 2082 * To increment the correct bean 2083 * counter, take another lap. 2084 */ 2085 goto retry; 2086 } 2087 2088 case DTRACE_DSTATE_DIRTY: 2089 dcpu->dtdsc_dirty_drops++; 2090 break; 2091 2092 case DTRACE_DSTATE_RINSING: 2093 dcpu->dtdsc_rinsing_drops++; 2094 break; 2095 2096 case DTRACE_DSTATE_EMPTY: 2097 dcpu->dtdsc_drops++; 2098 break; 2099 } 2100 2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2102 return (NULL); 2103 } 2104 2105 /* 2106 * The clean list appears to be non-empty. We want to 2107 * move the clean list to the free list; we start by 2108 * moving the clean pointer aside. 2109 */ 2110 if (dtrace_casptr(&dcpu->dtdsc_clean, 2111 clean, NULL) != clean) { 2112 /* 2113 * We are in one of two situations: 2114 * 2115 * (a) The clean list was switched to the 2116 * free list by another CPU. 2117 * 2118 * (b) The clean list was added to by the 2119 * cleansing cyclic. 2120 * 2121 * In either of these situations, we can 2122 * just reattempt the free list allocation. 2123 */ 2124 goto retry; 2125 } 2126 2127 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2128 2129 /* 2130 * Now we'll move the clean list to our free list. 2131 * It's impossible for this to fail: the only way 2132 * the free list can be updated is through this 2133 * code path, and only one CPU can own the clean list. 2134 * Thus, it would only be possible for this to fail if 2135 * this code were racing with dtrace_dynvar_clean(). 2136 * (That is, if dtrace_dynvar_clean() updated the clean 2137 * list, and we ended up racing to update the free 2138 * list.) This race is prevented by the dtrace_sync() 2139 * in dtrace_dynvar_clean() -- which flushes the 2140 * owners of the clean lists out before resetting 2141 * the clean lists. 2142 */ 2143 dcpu = &dstate->dtds_percpu[me]; 2144 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2145 ASSERT(rval == NULL); 2146 goto retry; 2147 } 2148 2149 dvar = free; 2150 new_free = dvar->dtdv_next; 2151 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2152 2153 /* 2154 * We have now allocated a new chunk. We copy the tuple keys into the 2155 * tuple array and copy any referenced key data into the data space 2156 * following the tuple array. As we do this, we relocate dttk_value 2157 * in the final tuple to point to the key data address in the chunk. 2158 */ 2159 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2160 dvar->dtdv_data = (void *)(kdata + ksize); 2161 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2162 2163 for (i = 0; i < nkeys; i++) { 2164 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2165 size_t kesize = key[i].dttk_size; 2166 2167 if (kesize != 0) { 2168 dtrace_bcopy( 2169 (const void *)(uintptr_t)key[i].dttk_value, 2170 (void *)kdata, kesize); 2171 dkey->dttk_value = kdata; 2172 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2173 } else { 2174 dkey->dttk_value = key[i].dttk_value; 2175 } 2176 2177 dkey->dttk_size = kesize; 2178 } 2179 2180 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2181 dvar->dtdv_hashval = hashval; 2182 dvar->dtdv_next = start; 2183 2184 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2185 return (dvar); 2186 2187 /* 2188 * The cas has failed. Either another CPU is adding an element to 2189 * this hash chain, or another CPU is deleting an element from this 2190 * hash chain. The simplest way to deal with both of these cases 2191 * (though not necessarily the most efficient) is to free our 2192 * allocated block and re-attempt it all. Note that the free is 2193 * to the dirty list and _not_ to the free list. This is to prevent 2194 * races with allocators, above. 2195 */ 2196 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2197 2198 dtrace_membar_producer(); 2199 2200 do { 2201 free = dcpu->dtdsc_dirty; 2202 dvar->dtdv_next = free; 2203 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2204 2205 goto top; 2206 } 2207 2208 /*ARGSUSED*/ 2209 static void 2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2211 { 2212 if ((int64_t)nval < (int64_t)*oval) 2213 *oval = nval; 2214 } 2215 2216 /*ARGSUSED*/ 2217 static void 2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2219 { 2220 if ((int64_t)nval > (int64_t)*oval) 2221 *oval = nval; 2222 } 2223 2224 static void 2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2226 { 2227 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2228 int64_t val = (int64_t)nval; 2229 2230 if (val < 0) { 2231 for (i = 0; i < zero; i++) { 2232 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2233 quanta[i] += incr; 2234 return; 2235 } 2236 } 2237 } else { 2238 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2239 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2240 quanta[i - 1] += incr; 2241 return; 2242 } 2243 } 2244 2245 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2246 return; 2247 } 2248 2249 ASSERT(0); 2250 } 2251 2252 static void 2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2254 { 2255 uint64_t arg = *lquanta++; 2256 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2257 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2258 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2259 int32_t val = (int32_t)nval, level; 2260 2261 ASSERT(step != 0); 2262 ASSERT(levels != 0); 2263 2264 if (val < base) { 2265 /* 2266 * This is an underflow. 2267 */ 2268 lquanta[0] += incr; 2269 return; 2270 } 2271 2272 level = (val - base) / step; 2273 2274 if (level < levels) { 2275 lquanta[level + 1] += incr; 2276 return; 2277 } 2278 2279 /* 2280 * This is an overflow. 2281 */ 2282 lquanta[levels + 1] += incr; 2283 } 2284 2285 static int 2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2287 uint16_t high, uint16_t nsteps, int64_t value) 2288 { 2289 int64_t this = 1, last, next; 2290 int base = 1, order; 2291 2292 ASSERT(factor <= nsteps); 2293 ASSERT(nsteps % factor == 0); 2294 2295 for (order = 0; order < low; order++) 2296 this *= factor; 2297 2298 /* 2299 * If our value is less than our factor taken to the power of the 2300 * low order of magnitude, it goes into the zeroth bucket. 2301 */ 2302 if (value < (last = this)) 2303 return (0); 2304 2305 for (this *= factor; order <= high; order++) { 2306 int nbuckets = this > nsteps ? nsteps : this; 2307 2308 if ((next = this * factor) < this) { 2309 /* 2310 * We should not generally get log/linear quantizations 2311 * with a high magnitude that allows 64-bits to 2312 * overflow, but we nonetheless protect against this 2313 * by explicitly checking for overflow, and clamping 2314 * our value accordingly. 2315 */ 2316 value = this - 1; 2317 } 2318 2319 if (value < this) { 2320 /* 2321 * If our value lies within this order of magnitude, 2322 * determine its position by taking the offset within 2323 * the order of magnitude, dividing by the bucket 2324 * width, and adding to our (accumulated) base. 2325 */ 2326 return (base + (value - last) / (this / nbuckets)); 2327 } 2328 2329 base += nbuckets - (nbuckets / factor); 2330 last = this; 2331 this = next; 2332 } 2333 2334 /* 2335 * Our value is greater than or equal to our factor taken to the 2336 * power of one plus the high magnitude -- return the top bucket. 2337 */ 2338 return (base); 2339 } 2340 2341 static void 2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2343 { 2344 uint64_t arg = *llquanta++; 2345 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2346 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2347 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2348 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2349 2350 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2351 low, high, nsteps, nval)] += incr; 2352 } 2353 2354 /*ARGSUSED*/ 2355 static void 2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2357 { 2358 data[0]++; 2359 data[1] += nval; 2360 } 2361 2362 /*ARGSUSED*/ 2363 static void 2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2365 { 2366 int64_t snval = (int64_t)nval; 2367 uint64_t tmp[2]; 2368 2369 data[0]++; 2370 data[1] += nval; 2371 2372 /* 2373 * What we want to say here is: 2374 * 2375 * data[2] += nval * nval; 2376 * 2377 * But given that nval is 64-bit, we could easily overflow, so 2378 * we do this as 128-bit arithmetic. 2379 */ 2380 if (snval < 0) 2381 snval = -snval; 2382 2383 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2384 dtrace_add_128(data + 2, tmp, data + 2); 2385 } 2386 2387 /*ARGSUSED*/ 2388 static void 2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2390 { 2391 *oval = *oval + 1; 2392 } 2393 2394 /*ARGSUSED*/ 2395 static void 2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2397 { 2398 *oval += nval; 2399 } 2400 2401 /* 2402 * Aggregate given the tuple in the principal data buffer, and the aggregating 2403 * action denoted by the specified dtrace_aggregation_t. The aggregation 2404 * buffer is specified as the buf parameter. This routine does not return 2405 * failure; if there is no space in the aggregation buffer, the data will be 2406 * dropped, and a corresponding counter incremented. 2407 */ 2408 static void 2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2410 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2411 { 2412 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2413 uint32_t i, ndx, size, fsize; 2414 uint32_t align = sizeof (uint64_t) - 1; 2415 dtrace_aggbuffer_t *agb; 2416 dtrace_aggkey_t *key; 2417 uint32_t hashval = 0, limit, isstr; 2418 caddr_t tomax, data, kdata; 2419 dtrace_actkind_t action; 2420 dtrace_action_t *act; 2421 uintptr_t offs; 2422 2423 if (buf == NULL) 2424 return; 2425 2426 if (!agg->dtag_hasarg) { 2427 /* 2428 * Currently, only quantize() and lquantize() take additional 2429 * arguments, and they have the same semantics: an increment 2430 * value that defaults to 1 when not present. If additional 2431 * aggregating actions take arguments, the setting of the 2432 * default argument value will presumably have to become more 2433 * sophisticated... 2434 */ 2435 arg = 1; 2436 } 2437 2438 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2439 size = rec->dtrd_offset - agg->dtag_base; 2440 fsize = size + rec->dtrd_size; 2441 2442 ASSERT(dbuf->dtb_tomax != NULL); 2443 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2444 2445 if ((tomax = buf->dtb_tomax) == NULL) { 2446 dtrace_buffer_drop(buf); 2447 return; 2448 } 2449 2450 /* 2451 * The metastructure is always at the bottom of the buffer. 2452 */ 2453 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2454 sizeof (dtrace_aggbuffer_t)); 2455 2456 if (buf->dtb_offset == 0) { 2457 /* 2458 * We just kludge up approximately 1/8th of the size to be 2459 * buckets. If this guess ends up being routinely 2460 * off-the-mark, we may need to dynamically readjust this 2461 * based on past performance. 2462 */ 2463 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2464 2465 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2466 (uintptr_t)tomax || hashsize == 0) { 2467 /* 2468 * We've been given a ludicrously small buffer; 2469 * increment our drop count and leave. 2470 */ 2471 dtrace_buffer_drop(buf); 2472 return; 2473 } 2474 2475 /* 2476 * And now, a pathetic attempt to try to get a an odd (or 2477 * perchance, a prime) hash size for better hash distribution. 2478 */ 2479 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2480 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2481 2482 agb->dtagb_hashsize = hashsize; 2483 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2484 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2485 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2486 2487 for (i = 0; i < agb->dtagb_hashsize; i++) 2488 agb->dtagb_hash[i] = NULL; 2489 } 2490 2491 ASSERT(agg->dtag_first != NULL); 2492 ASSERT(agg->dtag_first->dta_intuple); 2493 2494 /* 2495 * Calculate the hash value based on the key. Note that we _don't_ 2496 * include the aggid in the hashing (but we will store it as part of 2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2498 * algorithm: a simple, quick algorithm that has no known funnels, and 2499 * gets good distribution in practice. The efficacy of the hashing 2500 * algorithm (and a comparison with other algorithms) may be found by 2501 * running the ::dtrace_aggstat MDB dcmd. 2502 */ 2503 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2504 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2505 limit = i + act->dta_rec.dtrd_size; 2506 ASSERT(limit <= size); 2507 isstr = DTRACEACT_ISSTRING(act); 2508 2509 for (; i < limit; i++) { 2510 hashval += data[i]; 2511 hashval += (hashval << 10); 2512 hashval ^= (hashval >> 6); 2513 2514 if (isstr && data[i] == '\0') 2515 break; 2516 } 2517 } 2518 2519 hashval += (hashval << 3); 2520 hashval ^= (hashval >> 11); 2521 hashval += (hashval << 15); 2522 2523 /* 2524 * Yes, the divide here is expensive -- but it's generally the least 2525 * of the performance issues given the amount of data that we iterate 2526 * over to compute hash values, compare data, etc. 2527 */ 2528 ndx = hashval % agb->dtagb_hashsize; 2529 2530 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2531 ASSERT((caddr_t)key >= tomax); 2532 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2533 2534 if (hashval != key->dtak_hashval || key->dtak_size != size) 2535 continue; 2536 2537 kdata = key->dtak_data; 2538 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2539 2540 for (act = agg->dtag_first; act->dta_intuple; 2541 act = act->dta_next) { 2542 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2543 limit = i + act->dta_rec.dtrd_size; 2544 ASSERT(limit <= size); 2545 isstr = DTRACEACT_ISSTRING(act); 2546 2547 for (; i < limit; i++) { 2548 if (kdata[i] != data[i]) 2549 goto next; 2550 2551 if (isstr && data[i] == '\0') 2552 break; 2553 } 2554 } 2555 2556 if (action != key->dtak_action) { 2557 /* 2558 * We are aggregating on the same value in the same 2559 * aggregation with two different aggregating actions. 2560 * (This should have been picked up in the compiler, 2561 * so we may be dealing with errant or devious DIF.) 2562 * This is an error condition; we indicate as much, 2563 * and return. 2564 */ 2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2566 return; 2567 } 2568 2569 /* 2570 * This is a hit: we need to apply the aggregator to 2571 * the value at this key. 2572 */ 2573 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2574 return; 2575 next: 2576 continue; 2577 } 2578 2579 /* 2580 * We didn't find it. We need to allocate some zero-filled space, 2581 * link it into the hash table appropriately, and apply the aggregator 2582 * to the (zero-filled) value. 2583 */ 2584 offs = buf->dtb_offset; 2585 while (offs & (align - 1)) 2586 offs += sizeof (uint32_t); 2587 2588 /* 2589 * If we don't have enough room to both allocate a new key _and_ 2590 * its associated data, increment the drop count and return. 2591 */ 2592 if ((uintptr_t)tomax + offs + fsize > 2593 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2594 dtrace_buffer_drop(buf); 2595 return; 2596 } 2597 2598 /*CONSTCOND*/ 2599 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2600 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2601 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2602 2603 key->dtak_data = kdata = tomax + offs; 2604 buf->dtb_offset = offs + fsize; 2605 2606 /* 2607 * Now copy the data across. 2608 */ 2609 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2610 2611 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2612 kdata[i] = data[i]; 2613 2614 /* 2615 * Because strings are not zeroed out by default, we need to iterate 2616 * looking for actions that store strings, and we need to explicitly 2617 * pad these strings out with zeroes. 2618 */ 2619 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2620 int nul; 2621 2622 if (!DTRACEACT_ISSTRING(act)) 2623 continue; 2624 2625 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2626 limit = i + act->dta_rec.dtrd_size; 2627 ASSERT(limit <= size); 2628 2629 for (nul = 0; i < limit; i++) { 2630 if (nul) { 2631 kdata[i] = '\0'; 2632 continue; 2633 } 2634 2635 if (data[i] != '\0') 2636 continue; 2637 2638 nul = 1; 2639 } 2640 } 2641 2642 for (i = size; i < fsize; i++) 2643 kdata[i] = 0; 2644 2645 key->dtak_hashval = hashval; 2646 key->dtak_size = size; 2647 key->dtak_action = action; 2648 key->dtak_next = agb->dtagb_hash[ndx]; 2649 agb->dtagb_hash[ndx] = key; 2650 2651 /* 2652 * Finally, apply the aggregator. 2653 */ 2654 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2655 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2656 } 2657 2658 /* 2659 * Given consumer state, this routine finds a speculation in the INACTIVE 2660 * state and transitions it into the ACTIVE state. If there is no speculation 2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2662 * incremented -- it is up to the caller to take appropriate action. 2663 */ 2664 static int 2665 dtrace_speculation(dtrace_state_t *state) 2666 { 2667 int i = 0; 2668 dtrace_speculation_state_t current; 2669 uint32_t *stat = &state->dts_speculations_unavail, count; 2670 2671 while (i < state->dts_nspeculations) { 2672 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2673 2674 current = spec->dtsp_state; 2675 2676 if (current != DTRACESPEC_INACTIVE) { 2677 if (current == DTRACESPEC_COMMITTINGMANY || 2678 current == DTRACESPEC_COMMITTING || 2679 current == DTRACESPEC_DISCARDING) 2680 stat = &state->dts_speculations_busy; 2681 i++; 2682 continue; 2683 } 2684 2685 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2686 current, DTRACESPEC_ACTIVE) == current) 2687 return (i + 1); 2688 } 2689 2690 /* 2691 * We couldn't find a speculation. If we found as much as a single 2692 * busy speculation buffer, we'll attribute this failure as "busy" 2693 * instead of "unavail". 2694 */ 2695 do { 2696 count = *stat; 2697 } while (dtrace_cas32(stat, count, count + 1) != count); 2698 2699 return (0); 2700 } 2701 2702 /* 2703 * This routine commits an active speculation. If the specified speculation 2704 * is not in a valid state to perform a commit(), this routine will silently do 2705 * nothing. The state of the specified speculation is transitioned according 2706 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2707 */ 2708 static void 2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2710 dtrace_specid_t which) 2711 { 2712 dtrace_speculation_t *spec; 2713 dtrace_buffer_t *src, *dest; 2714 uintptr_t daddr, saddr, dlimit, slimit; 2715 dtrace_speculation_state_t current, new; 2716 intptr_t offs; 2717 uint64_t timestamp; 2718 2719 if (which == 0) 2720 return; 2721 2722 if (which > state->dts_nspeculations) { 2723 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2724 return; 2725 } 2726 2727 spec = &state->dts_speculations[which - 1]; 2728 src = &spec->dtsp_buffer[cpu]; 2729 dest = &state->dts_buffer[cpu]; 2730 2731 do { 2732 current = spec->dtsp_state; 2733 2734 if (current == DTRACESPEC_COMMITTINGMANY) 2735 break; 2736 2737 switch (current) { 2738 case DTRACESPEC_INACTIVE: 2739 case DTRACESPEC_DISCARDING: 2740 return; 2741 2742 case DTRACESPEC_COMMITTING: 2743 /* 2744 * This is only possible if we are (a) commit()'ing 2745 * without having done a prior speculate() on this CPU 2746 * and (b) racing with another commit() on a different 2747 * CPU. There's nothing to do -- we just assert that 2748 * our offset is 0. 2749 */ 2750 ASSERT(src->dtb_offset == 0); 2751 return; 2752 2753 case DTRACESPEC_ACTIVE: 2754 new = DTRACESPEC_COMMITTING; 2755 break; 2756 2757 case DTRACESPEC_ACTIVEONE: 2758 /* 2759 * This speculation is active on one CPU. If our 2760 * buffer offset is non-zero, we know that the one CPU 2761 * must be us. Otherwise, we are committing on a 2762 * different CPU from the speculate(), and we must 2763 * rely on being asynchronously cleaned. 2764 */ 2765 if (src->dtb_offset != 0) { 2766 new = DTRACESPEC_COMMITTING; 2767 break; 2768 } 2769 /*FALLTHROUGH*/ 2770 2771 case DTRACESPEC_ACTIVEMANY: 2772 new = DTRACESPEC_COMMITTINGMANY; 2773 break; 2774 2775 default: 2776 ASSERT(0); 2777 } 2778 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2779 current, new) != current); 2780 2781 /* 2782 * We have set the state to indicate that we are committing this 2783 * speculation. Now reserve the necessary space in the destination 2784 * buffer. 2785 */ 2786 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2787 sizeof (uint64_t), state, NULL)) < 0) { 2788 dtrace_buffer_drop(dest); 2789 goto out; 2790 } 2791 2792 /* 2793 * We have sufficient space to copy the speculative buffer into the 2794 * primary buffer. First, modify the speculative buffer, filling 2795 * in the timestamp of all entries with the current time. The data 2796 * must have the commit() time rather than the time it was traced, 2797 * so that all entries in the primary buffer are in timestamp order. 2798 */ 2799 timestamp = dtrace_gethrtime(); 2800 saddr = (uintptr_t)src->dtb_tomax; 2801 slimit = saddr + src->dtb_offset; 2802 while (saddr < slimit) { 2803 size_t size; 2804 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2805 2806 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2807 saddr += sizeof (dtrace_epid_t); 2808 continue; 2809 } 2810 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2811 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2812 2813 ASSERT3U(saddr + size, <=, slimit); 2814 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2816 2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2818 2819 saddr += size; 2820 } 2821 2822 /* 2823 * Copy the buffer across. (Note that this is a 2824 * highly subobtimal bcopy(); in the unlikely event that this becomes 2825 * a serious performance issue, a high-performance DTrace-specific 2826 * bcopy() should obviously be invented.) 2827 */ 2828 daddr = (uintptr_t)dest->dtb_tomax + offs; 2829 dlimit = daddr + src->dtb_offset; 2830 saddr = (uintptr_t)src->dtb_tomax; 2831 2832 /* 2833 * First, the aligned portion. 2834 */ 2835 while (dlimit - daddr >= sizeof (uint64_t)) { 2836 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2837 2838 daddr += sizeof (uint64_t); 2839 saddr += sizeof (uint64_t); 2840 } 2841 2842 /* 2843 * Now any left-over bit... 2844 */ 2845 while (dlimit - daddr) 2846 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2847 2848 /* 2849 * Finally, commit the reserved space in the destination buffer. 2850 */ 2851 dest->dtb_offset = offs + src->dtb_offset; 2852 2853 out: 2854 /* 2855 * If we're lucky enough to be the only active CPU on this speculation 2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2857 */ 2858 if (current == DTRACESPEC_ACTIVE || 2859 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2860 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2861 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2862 2863 ASSERT(rval == DTRACESPEC_COMMITTING); 2864 } 2865 2866 src->dtb_offset = 0; 2867 src->dtb_xamot_drops += src->dtb_drops; 2868 src->dtb_drops = 0; 2869 } 2870 2871 /* 2872 * This routine discards an active speculation. If the specified speculation 2873 * is not in a valid state to perform a discard(), this routine will silently 2874 * do nothing. The state of the specified speculation is transitioned 2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2876 */ 2877 static void 2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2879 dtrace_specid_t which) 2880 { 2881 dtrace_speculation_t *spec; 2882 dtrace_speculation_state_t current, new; 2883 dtrace_buffer_t *buf; 2884 2885 if (which == 0) 2886 return; 2887 2888 if (which > state->dts_nspeculations) { 2889 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2890 return; 2891 } 2892 2893 spec = &state->dts_speculations[which - 1]; 2894 buf = &spec->dtsp_buffer[cpu]; 2895 2896 do { 2897 current = spec->dtsp_state; 2898 2899 switch (current) { 2900 case DTRACESPEC_INACTIVE: 2901 case DTRACESPEC_COMMITTINGMANY: 2902 case DTRACESPEC_COMMITTING: 2903 case DTRACESPEC_DISCARDING: 2904 return; 2905 2906 case DTRACESPEC_ACTIVE: 2907 case DTRACESPEC_ACTIVEMANY: 2908 new = DTRACESPEC_DISCARDING; 2909 break; 2910 2911 case DTRACESPEC_ACTIVEONE: 2912 if (buf->dtb_offset != 0) { 2913 new = DTRACESPEC_INACTIVE; 2914 } else { 2915 new = DTRACESPEC_DISCARDING; 2916 } 2917 break; 2918 2919 default: 2920 ASSERT(0); 2921 } 2922 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2923 current, new) != current); 2924 2925 buf->dtb_offset = 0; 2926 buf->dtb_drops = 0; 2927 } 2928 2929 /* 2930 * Note: not called from probe context. This function is called 2931 * asynchronously from cross call context to clean any speculations that are 2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2934 * speculation. 2935 */ 2936 static void 2937 dtrace_speculation_clean_here(dtrace_state_t *state) 2938 { 2939 dtrace_icookie_t cookie; 2940 processorid_t cpu = CPU->cpu_id; 2941 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2942 dtrace_specid_t i; 2943 2944 cookie = dtrace_interrupt_disable(); 2945 2946 if (dest->dtb_tomax == NULL) { 2947 dtrace_interrupt_enable(cookie); 2948 return; 2949 } 2950 2951 for (i = 0; i < state->dts_nspeculations; i++) { 2952 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2953 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2954 2955 if (src->dtb_tomax == NULL) 2956 continue; 2957 2958 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2959 src->dtb_offset = 0; 2960 continue; 2961 } 2962 2963 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2964 continue; 2965 2966 if (src->dtb_offset == 0) 2967 continue; 2968 2969 dtrace_speculation_commit(state, cpu, i + 1); 2970 } 2971 2972 dtrace_interrupt_enable(cookie); 2973 } 2974 2975 /* 2976 * Note: not called from probe context. This function is called 2977 * asynchronously (and at a regular interval) to clean any speculations that 2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2979 * is work to be done, it cross calls all CPUs to perform that work; 2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2981 * INACTIVE state until they have been cleaned by all CPUs. 2982 */ 2983 static void 2984 dtrace_speculation_clean(dtrace_state_t *state) 2985 { 2986 int work = 0, rv; 2987 dtrace_specid_t i; 2988 2989 for (i = 0; i < state->dts_nspeculations; i++) { 2990 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2991 2992 ASSERT(!spec->dtsp_cleaning); 2993 2994 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2995 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2996 continue; 2997 2998 work++; 2999 spec->dtsp_cleaning = 1; 3000 } 3001 3002 if (!work) 3003 return; 3004 3005 dtrace_xcall(DTRACE_CPUALL, 3006 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3007 3008 /* 3009 * We now know that all CPUs have committed or discarded their 3010 * speculation buffers, as appropriate. We can now set the state 3011 * to inactive. 3012 */ 3013 for (i = 0; i < state->dts_nspeculations; i++) { 3014 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3015 dtrace_speculation_state_t current, new; 3016 3017 if (!spec->dtsp_cleaning) 3018 continue; 3019 3020 current = spec->dtsp_state; 3021 ASSERT(current == DTRACESPEC_DISCARDING || 3022 current == DTRACESPEC_COMMITTINGMANY); 3023 3024 new = DTRACESPEC_INACTIVE; 3025 3026 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3027 ASSERT(rv == current); 3028 spec->dtsp_cleaning = 0; 3029 } 3030 } 3031 3032 /* 3033 * Called as part of a speculate() to get the speculative buffer associated 3034 * with a given speculation. Returns NULL if the specified speculation is not 3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3036 * the active CPU is not the specified CPU -- the speculation will be 3037 * atomically transitioned into the ACTIVEMANY state. 3038 */ 3039 static dtrace_buffer_t * 3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3041 dtrace_specid_t which) 3042 { 3043 dtrace_speculation_t *spec; 3044 dtrace_speculation_state_t current, new; 3045 dtrace_buffer_t *buf; 3046 3047 if (which == 0) 3048 return (NULL); 3049 3050 if (which > state->dts_nspeculations) { 3051 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3052 return (NULL); 3053 } 3054 3055 spec = &state->dts_speculations[which - 1]; 3056 buf = &spec->dtsp_buffer[cpuid]; 3057 3058 do { 3059 current = spec->dtsp_state; 3060 3061 switch (current) { 3062 case DTRACESPEC_INACTIVE: 3063 case DTRACESPEC_COMMITTINGMANY: 3064 case DTRACESPEC_DISCARDING: 3065 return (NULL); 3066 3067 case DTRACESPEC_COMMITTING: 3068 ASSERT(buf->dtb_offset == 0); 3069 return (NULL); 3070 3071 case DTRACESPEC_ACTIVEONE: 3072 /* 3073 * This speculation is currently active on one CPU. 3074 * Check the offset in the buffer; if it's non-zero, 3075 * that CPU must be us (and we leave the state alone). 3076 * If it's zero, assume that we're starting on a new 3077 * CPU -- and change the state to indicate that the 3078 * speculation is active on more than one CPU. 3079 */ 3080 if (buf->dtb_offset != 0) 3081 return (buf); 3082 3083 new = DTRACESPEC_ACTIVEMANY; 3084 break; 3085 3086 case DTRACESPEC_ACTIVEMANY: 3087 return (buf); 3088 3089 case DTRACESPEC_ACTIVE: 3090 new = DTRACESPEC_ACTIVEONE; 3091 break; 3092 3093 default: 3094 ASSERT(0); 3095 } 3096 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3097 current, new) != current); 3098 3099 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3100 return (buf); 3101 } 3102 3103 /* 3104 * Return a string. In the event that the user lacks the privilege to access 3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3106 * don't fail access checking. 3107 * 3108 * dtrace_dif_variable() uses this routine as a helper for various 3109 * builtin values such as 'execname' and 'probefunc.' 3110 */ 3111 uintptr_t 3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3113 dtrace_mstate_t *mstate) 3114 { 3115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3116 uintptr_t ret; 3117 size_t strsz; 3118 3119 /* 3120 * The easy case: this probe is allowed to read all of memory, so 3121 * we can just return this as a vanilla pointer. 3122 */ 3123 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3124 return (addr); 3125 3126 /* 3127 * This is the tougher case: we copy the string in question from 3128 * kernel memory into scratch memory and return it that way: this 3129 * ensures that we won't trip up when access checking tests the 3130 * BYREF return value. 3131 */ 3132 strsz = dtrace_strlen((char *)addr, size) + 1; 3133 3134 if (mstate->dtms_scratch_ptr + strsz > 3135 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3137 return (NULL); 3138 } 3139 3140 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3141 strsz); 3142 ret = mstate->dtms_scratch_ptr; 3143 mstate->dtms_scratch_ptr += strsz; 3144 return (ret); 3145 } 3146 3147 /* 3148 * This function implements the DIF emulator's variable lookups. The emulator 3149 * passes a reserved variable identifier and optional built-in array index. 3150 */ 3151 static uint64_t 3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3153 uint64_t ndx) 3154 { 3155 /* 3156 * If we're accessing one of the uncached arguments, we'll turn this 3157 * into a reference in the args array. 3158 */ 3159 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3160 ndx = v - DIF_VAR_ARG0; 3161 v = DIF_VAR_ARGS; 3162 } 3163 3164 switch (v) { 3165 case DIF_VAR_ARGS: 3166 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3167 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3168 CPU_DTRACE_KPRIV; 3169 return (0); 3170 } 3171 3172 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3173 if (ndx >= sizeof (mstate->dtms_arg) / 3174 sizeof (mstate->dtms_arg[0])) { 3175 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3176 dtrace_provider_t *pv; 3177 uint64_t val; 3178 3179 pv = mstate->dtms_probe->dtpr_provider; 3180 if (pv->dtpv_pops.dtps_getargval != NULL) 3181 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3182 mstate->dtms_probe->dtpr_id, 3183 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3184 else 3185 val = dtrace_getarg(ndx, aframes); 3186 3187 /* 3188 * This is regrettably required to keep the compiler 3189 * from tail-optimizing the call to dtrace_getarg(). 3190 * The condition always evaluates to true, but the 3191 * compiler has no way of figuring that out a priori. 3192 * (None of this would be necessary if the compiler 3193 * could be relied upon to _always_ tail-optimize 3194 * the call to dtrace_getarg() -- but it can't.) 3195 */ 3196 if (mstate->dtms_probe != NULL) 3197 return (val); 3198 3199 ASSERT(0); 3200 } 3201 3202 return (mstate->dtms_arg[ndx]); 3203 3204 case DIF_VAR_UREGS: { 3205 klwp_t *lwp; 3206 3207 if (!dtrace_priv_proc(state, mstate)) 3208 return (0); 3209 3210 if ((lwp = curthread->t_lwp) == NULL) { 3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3212 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3213 return (0); 3214 } 3215 3216 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3217 } 3218 3219 case DIF_VAR_VMREGS: { 3220 uint64_t rval; 3221 3222 if (!dtrace_priv_kernel(state)) 3223 return (0); 3224 3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3226 3227 rval = dtrace_getvmreg(ndx, 3228 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3229 3230 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3231 3232 return (rval); 3233 } 3234 3235 case DIF_VAR_CURTHREAD: 3236 if (!dtrace_priv_proc(state, mstate)) 3237 return (0); 3238 return ((uint64_t)(uintptr_t)curthread); 3239 3240 case DIF_VAR_TIMESTAMP: 3241 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3242 mstate->dtms_timestamp = dtrace_gethrtime(); 3243 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3244 } 3245 return (mstate->dtms_timestamp); 3246 3247 case DIF_VAR_VTIMESTAMP: 3248 ASSERT(dtrace_vtime_references != 0); 3249 return (curthread->t_dtrace_vtime); 3250 3251 case DIF_VAR_WALLTIMESTAMP: 3252 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3253 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3254 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3255 } 3256 return (mstate->dtms_walltimestamp); 3257 3258 case DIF_VAR_IPL: 3259 if (!dtrace_priv_kernel(state)) 3260 return (0); 3261 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3262 mstate->dtms_ipl = dtrace_getipl(); 3263 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3264 } 3265 return (mstate->dtms_ipl); 3266 3267 case DIF_VAR_EPID: 3268 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3269 return (mstate->dtms_epid); 3270 3271 case DIF_VAR_ID: 3272 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3273 return (mstate->dtms_probe->dtpr_id); 3274 3275 case DIF_VAR_STACKDEPTH: 3276 if (!dtrace_priv_kernel(state)) 3277 return (0); 3278 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3279 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3280 3281 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3282 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3283 } 3284 return (mstate->dtms_stackdepth); 3285 3286 case DIF_VAR_USTACKDEPTH: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3294 CPU_ON_INTR(CPU)) { 3295 mstate->dtms_ustackdepth = 0; 3296 } else { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3298 mstate->dtms_ustackdepth = 3299 dtrace_getustackdepth(); 3300 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3301 } 3302 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3303 } 3304 return (mstate->dtms_ustackdepth); 3305 3306 case DIF_VAR_CALLER: 3307 if (!dtrace_priv_kernel(state)) 3308 return (0); 3309 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3310 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3311 3312 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3313 /* 3314 * If this is an unanchored probe, we are 3315 * required to go through the slow path: 3316 * dtrace_caller() only guarantees correct 3317 * results for anchored probes. 3318 */ 3319 pc_t caller[2]; 3320 3321 dtrace_getpcstack(caller, 2, aframes, 3322 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3323 mstate->dtms_caller = caller[1]; 3324 } else if ((mstate->dtms_caller = 3325 dtrace_caller(aframes)) == -1) { 3326 /* 3327 * We have failed to do this the quick way; 3328 * we must resort to the slower approach of 3329 * calling dtrace_getpcstack(). 3330 */ 3331 pc_t caller; 3332 3333 dtrace_getpcstack(&caller, 1, aframes, NULL); 3334 mstate->dtms_caller = caller; 3335 } 3336 3337 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3338 } 3339 return (mstate->dtms_caller); 3340 3341 case DIF_VAR_UCALLER: 3342 if (!dtrace_priv_proc(state, mstate)) 3343 return (0); 3344 3345 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3346 uint64_t ustack[3]; 3347 3348 /* 3349 * dtrace_getupcstack() fills in the first uint64_t 3350 * with the current PID. The second uint64_t will 3351 * be the program counter at user-level. The third 3352 * uint64_t will contain the caller, which is what 3353 * we're after. 3354 */ 3355 ustack[2] = NULL; 3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3357 dtrace_getupcstack(ustack, 3); 3358 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3359 mstate->dtms_ucaller = ustack[2]; 3360 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3361 } 3362 3363 return (mstate->dtms_ucaller); 3364 3365 case DIF_VAR_PROBEPROV: 3366 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3367 return (dtrace_dif_varstr( 3368 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3369 state, mstate)); 3370 3371 case DIF_VAR_PROBEMOD: 3372 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3373 return (dtrace_dif_varstr( 3374 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3375 state, mstate)); 3376 3377 case DIF_VAR_PROBEFUNC: 3378 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3379 return (dtrace_dif_varstr( 3380 (uintptr_t)mstate->dtms_probe->dtpr_func, 3381 state, mstate)); 3382 3383 case DIF_VAR_PROBENAME: 3384 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3385 return (dtrace_dif_varstr( 3386 (uintptr_t)mstate->dtms_probe->dtpr_name, 3387 state, mstate)); 3388 3389 case DIF_VAR_PID: 3390 if (!dtrace_priv_proc(state, mstate)) 3391 return (0); 3392 3393 /* 3394 * Note that we are assuming that an unanchored probe is 3395 * always due to a high-level interrupt. (And we're assuming 3396 * that there is only a single high level interrupt.) 3397 */ 3398 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3399 return (pid0.pid_id); 3400 3401 /* 3402 * It is always safe to dereference one's own t_procp pointer: 3403 * it always points to a valid, allocated proc structure. 3404 * Further, it is always safe to dereference the p_pidp member 3405 * of one's own proc structure. (These are truisms becuase 3406 * threads and processes don't clean up their own state -- 3407 * they leave that task to whomever reaps them.) 3408 */ 3409 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3410 3411 case DIF_VAR_PPID: 3412 if (!dtrace_priv_proc(state, mstate)) 3413 return (0); 3414 3415 /* 3416 * See comment in DIF_VAR_PID. 3417 */ 3418 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3419 return (pid0.pid_id); 3420 3421 /* 3422 * It is always safe to dereference one's own t_procp pointer: 3423 * it always points to a valid, allocated proc structure. 3424 * (This is true because threads don't clean up their own 3425 * state -- they leave that task to whomever reaps them.) 3426 */ 3427 return ((uint64_t)curthread->t_procp->p_ppid); 3428 3429 case DIF_VAR_TID: 3430 /* 3431 * See comment in DIF_VAR_PID. 3432 */ 3433 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3434 return (0); 3435 3436 return ((uint64_t)curthread->t_tid); 3437 3438 case DIF_VAR_EXECNAME: 3439 if (!dtrace_priv_proc(state, mstate)) 3440 return (0); 3441 3442 /* 3443 * See comment in DIF_VAR_PID. 3444 */ 3445 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3446 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3447 3448 /* 3449 * It is always safe to dereference one's own t_procp pointer: 3450 * it always points to a valid, allocated proc structure. 3451 * (This is true because threads don't clean up their own 3452 * state -- they leave that task to whomever reaps them.) 3453 */ 3454 return (dtrace_dif_varstr( 3455 (uintptr_t)curthread->t_procp->p_user.u_comm, 3456 state, mstate)); 3457 3458 case DIF_VAR_ZONENAME: 3459 if (!dtrace_priv_proc(state, mstate)) 3460 return (0); 3461 3462 /* 3463 * See comment in DIF_VAR_PID. 3464 */ 3465 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3466 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3467 3468 /* 3469 * It is always safe to dereference one's own t_procp pointer: 3470 * it always points to a valid, allocated proc structure. 3471 * (This is true because threads don't clean up their own 3472 * state -- they leave that task to whomever reaps them.) 3473 */ 3474 return (dtrace_dif_varstr( 3475 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3476 state, mstate)); 3477 3478 case DIF_VAR_UID: 3479 if (!dtrace_priv_proc(state, mstate)) 3480 return (0); 3481 3482 /* 3483 * See comment in DIF_VAR_PID. 3484 */ 3485 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3486 return ((uint64_t)p0.p_cred->cr_uid); 3487 3488 /* 3489 * It is always safe to dereference one's own t_procp pointer: 3490 * it always points to a valid, allocated proc structure. 3491 * (This is true because threads don't clean up their own 3492 * state -- they leave that task to whomever reaps them.) 3493 * 3494 * Additionally, it is safe to dereference one's own process 3495 * credential, since this is never NULL after process birth. 3496 */ 3497 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3498 3499 case DIF_VAR_GID: 3500 if (!dtrace_priv_proc(state, mstate)) 3501 return (0); 3502 3503 /* 3504 * See comment in DIF_VAR_PID. 3505 */ 3506 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3507 return ((uint64_t)p0.p_cred->cr_gid); 3508 3509 /* 3510 * It is always safe to dereference one's own t_procp pointer: 3511 * it always points to a valid, allocated proc structure. 3512 * (This is true because threads don't clean up their own 3513 * state -- they leave that task to whomever reaps them.) 3514 * 3515 * Additionally, it is safe to dereference one's own process 3516 * credential, since this is never NULL after process birth. 3517 */ 3518 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3519 3520 case DIF_VAR_ERRNO: { 3521 klwp_t *lwp; 3522 if (!dtrace_priv_proc(state, mstate)) 3523 return (0); 3524 3525 /* 3526 * See comment in DIF_VAR_PID. 3527 */ 3528 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3529 return (0); 3530 3531 /* 3532 * It is always safe to dereference one's own t_lwp pointer in 3533 * the event that this pointer is non-NULL. (This is true 3534 * because threads and lwps don't clean up their own state -- 3535 * they leave that task to whomever reaps them.) 3536 */ 3537 if ((lwp = curthread->t_lwp) == NULL) 3538 return (0); 3539 3540 return ((uint64_t)lwp->lwp_errno); 3541 } 3542 3543 case DIF_VAR_THREADNAME: 3544 /* 3545 * See comment in DIF_VAR_PID. 3546 */ 3547 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3548 return (0); 3549 3550 if (curthread->t_name == NULL) 3551 return (0); 3552 3553 /* 3554 * Once set, ->t_name itself is never changed: any updates are 3555 * made to the same buffer that we are pointing out. So we are 3556 * safe to dereference it here. 3557 */ 3558 return (dtrace_dif_varstr((uintptr_t)curthread->t_name, 3559 state, mstate)); 3560 3561 default: 3562 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3563 return (0); 3564 } 3565 } 3566 3567 static void 3568 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state, 3569 uint64_t v, uint64_t ndx, uint64_t data) 3570 { 3571 switch (v) { 3572 case DIF_VAR_UREGS: { 3573 klwp_t *lwp; 3574 3575 if (dtrace_destructive_disallow || 3576 !dtrace_priv_proc_control(state, mstate)) { 3577 return; 3578 } 3579 3580 if ((lwp = curthread->t_lwp) == NULL) { 3581 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3582 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3583 return; 3584 } 3585 3586 dtrace_setreg(lwp->lwp_regs, ndx, data); 3587 return; 3588 } 3589 3590 default: 3591 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3592 return; 3593 } 3594 } 3595 3596 typedef enum dtrace_json_state { 3597 DTRACE_JSON_REST = 1, 3598 DTRACE_JSON_OBJECT, 3599 DTRACE_JSON_STRING, 3600 DTRACE_JSON_STRING_ESCAPE, 3601 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3602 DTRACE_JSON_COLON, 3603 DTRACE_JSON_COMMA, 3604 DTRACE_JSON_VALUE, 3605 DTRACE_JSON_IDENTIFIER, 3606 DTRACE_JSON_NUMBER, 3607 DTRACE_JSON_NUMBER_FRAC, 3608 DTRACE_JSON_NUMBER_EXP, 3609 DTRACE_JSON_COLLECT_OBJECT 3610 } dtrace_json_state_t; 3611 3612 /* 3613 * This function possesses just enough knowledge about JSON to extract a single 3614 * value from a JSON string and store it in the scratch buffer. It is able 3615 * to extract nested object values, and members of arrays by index. 3616 * 3617 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3618 * be looked up as we descend into the object tree. e.g. 3619 * 3620 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3621 * with nelems = 5. 3622 * 3623 * The run time of this function must be bounded above by strsize to limit the 3624 * amount of work done in probe context. As such, it is implemented as a 3625 * simple state machine, reading one character at a time using safe loads 3626 * until we find the requested element, hit a parsing error or run off the 3627 * end of the object or string. 3628 * 3629 * As there is no way for a subroutine to return an error without interrupting 3630 * clause execution, we simply return NULL in the event of a missing key or any 3631 * other error condition. Each NULL return in this function is commented with 3632 * the error condition it represents -- parsing or otherwise. 3633 * 3634 * The set of states for the state machine closely matches the JSON 3635 * specification (http://json.org/). Briefly: 3636 * 3637 * DTRACE_JSON_REST: 3638 * Skip whitespace until we find either a top-level Object, moving 3639 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3640 * 3641 * DTRACE_JSON_OBJECT: 3642 * Locate the next key String in an Object. Sets a flag to denote 3643 * the next String as a key string and moves to DTRACE_JSON_STRING. 3644 * 3645 * DTRACE_JSON_COLON: 3646 * Skip whitespace until we find the colon that separates key Strings 3647 * from their values. Once found, move to DTRACE_JSON_VALUE. 3648 * 3649 * DTRACE_JSON_VALUE: 3650 * Detects the type of the next value (String, Number, Identifier, Object 3651 * or Array) and routes to the states that process that type. Here we also 3652 * deal with the element selector list if we are requested to traverse down 3653 * into the object tree. 3654 * 3655 * DTRACE_JSON_COMMA: 3656 * Skip whitespace until we find the comma that separates key-value pairs 3657 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3658 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3659 * states return to this state at the end of their value, unless otherwise 3660 * noted. 3661 * 3662 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3663 * Processes a Number literal from the JSON, including any exponent 3664 * component that may be present. Numbers are returned as strings, which 3665 * may be passed to strtoll() if an integer is required. 3666 * 3667 * DTRACE_JSON_IDENTIFIER: 3668 * Processes a "true", "false" or "null" literal in the JSON. 3669 * 3670 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3671 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3672 * Processes a String literal from the JSON, whether the String denotes 3673 * a key, a value or part of a larger Object. Handles all escape sequences 3674 * present in the specification, including four-digit unicode characters, 3675 * but merely includes the escape sequence without converting it to the 3676 * actual escaped character. If the String is flagged as a key, we 3677 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3678 * 3679 * DTRACE_JSON_COLLECT_OBJECT: 3680 * This state collects an entire Object (or Array), correctly handling 3681 * embedded strings. If the full element selector list matches this nested 3682 * object, we return the Object in full as a string. If not, we use this 3683 * state to skip to the next value at this level and continue processing. 3684 * 3685 * NOTE: This function uses various macros from strtolctype.h to manipulate 3686 * digit values, etc -- these have all been checked to ensure they make 3687 * no additional function calls. 3688 */ 3689 static char * 3690 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3691 char *dest) 3692 { 3693 dtrace_json_state_t state = DTRACE_JSON_REST; 3694 int64_t array_elem = INT64_MIN; 3695 int64_t array_pos = 0; 3696 uint8_t escape_unicount = 0; 3697 boolean_t string_is_key = B_FALSE; 3698 boolean_t collect_object = B_FALSE; 3699 boolean_t found_key = B_FALSE; 3700 boolean_t in_array = B_FALSE; 3701 uint32_t braces = 0, brackets = 0; 3702 char *elem = elemlist; 3703 char *dd = dest; 3704 uintptr_t cur; 3705 3706 for (cur = json; cur < json + size; cur++) { 3707 char cc = dtrace_load8(cur); 3708 if (cc == '\0') 3709 return (NULL); 3710 3711 switch (state) { 3712 case DTRACE_JSON_REST: 3713 if (isspace(cc)) 3714 break; 3715 3716 if (cc == '{') { 3717 state = DTRACE_JSON_OBJECT; 3718 break; 3719 } 3720 3721 if (cc == '[') { 3722 in_array = B_TRUE; 3723 array_pos = 0; 3724 array_elem = dtrace_strtoll(elem, 10, size); 3725 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3726 state = DTRACE_JSON_VALUE; 3727 break; 3728 } 3729 3730 /* 3731 * ERROR: expected to find a top-level object or array. 3732 */ 3733 return (NULL); 3734 case DTRACE_JSON_OBJECT: 3735 if (isspace(cc)) 3736 break; 3737 3738 if (cc == '"') { 3739 state = DTRACE_JSON_STRING; 3740 string_is_key = B_TRUE; 3741 break; 3742 } 3743 3744 /* 3745 * ERROR: either the object did not start with a key 3746 * string, or we've run off the end of the object 3747 * without finding the requested key. 3748 */ 3749 return (NULL); 3750 case DTRACE_JSON_STRING: 3751 if (cc == '\\') { 3752 *dd++ = '\\'; 3753 state = DTRACE_JSON_STRING_ESCAPE; 3754 break; 3755 } 3756 3757 if (cc == '"') { 3758 if (collect_object) { 3759 /* 3760 * We don't reset the dest here, as 3761 * the string is part of a larger 3762 * object being collected. 3763 */ 3764 *dd++ = cc; 3765 collect_object = B_FALSE; 3766 state = DTRACE_JSON_COLLECT_OBJECT; 3767 break; 3768 } 3769 *dd = '\0'; 3770 dd = dest; /* reset string buffer */ 3771 if (string_is_key) { 3772 if (dtrace_strncmp(dest, elem, 3773 size) == 0) 3774 found_key = B_TRUE; 3775 } else if (found_key) { 3776 if (nelems > 1) { 3777 /* 3778 * We expected an object, not 3779 * this string. 3780 */ 3781 return (NULL); 3782 } 3783 return (dest); 3784 } 3785 state = string_is_key ? DTRACE_JSON_COLON : 3786 DTRACE_JSON_COMMA; 3787 string_is_key = B_FALSE; 3788 break; 3789 } 3790 3791 *dd++ = cc; 3792 break; 3793 case DTRACE_JSON_STRING_ESCAPE: 3794 *dd++ = cc; 3795 if (cc == 'u') { 3796 escape_unicount = 0; 3797 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3798 } else { 3799 state = DTRACE_JSON_STRING; 3800 } 3801 break; 3802 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3803 if (!isxdigit(cc)) { 3804 /* 3805 * ERROR: invalid unicode escape, expected 3806 * four valid hexidecimal digits. 3807 */ 3808 return (NULL); 3809 } 3810 3811 *dd++ = cc; 3812 if (++escape_unicount == 4) 3813 state = DTRACE_JSON_STRING; 3814 break; 3815 case DTRACE_JSON_COLON: 3816 if (isspace(cc)) 3817 break; 3818 3819 if (cc == ':') { 3820 state = DTRACE_JSON_VALUE; 3821 break; 3822 } 3823 3824 /* 3825 * ERROR: expected a colon. 3826 */ 3827 return (NULL); 3828 case DTRACE_JSON_COMMA: 3829 if (isspace(cc)) 3830 break; 3831 3832 if (cc == ',') { 3833 if (in_array) { 3834 state = DTRACE_JSON_VALUE; 3835 if (++array_pos == array_elem) 3836 found_key = B_TRUE; 3837 } else { 3838 state = DTRACE_JSON_OBJECT; 3839 } 3840 break; 3841 } 3842 3843 /* 3844 * ERROR: either we hit an unexpected character, or 3845 * we reached the end of the object or array without 3846 * finding the requested key. 3847 */ 3848 return (NULL); 3849 case DTRACE_JSON_IDENTIFIER: 3850 if (islower(cc)) { 3851 *dd++ = cc; 3852 break; 3853 } 3854 3855 *dd = '\0'; 3856 dd = dest; /* reset string buffer */ 3857 3858 if (dtrace_strncmp(dest, "true", 5) == 0 || 3859 dtrace_strncmp(dest, "false", 6) == 0 || 3860 dtrace_strncmp(dest, "null", 5) == 0) { 3861 if (found_key) { 3862 if (nelems > 1) { 3863 /* 3864 * ERROR: We expected an object, 3865 * not this identifier. 3866 */ 3867 return (NULL); 3868 } 3869 return (dest); 3870 } else { 3871 cur--; 3872 state = DTRACE_JSON_COMMA; 3873 break; 3874 } 3875 } 3876 3877 /* 3878 * ERROR: we did not recognise the identifier as one 3879 * of those in the JSON specification. 3880 */ 3881 return (NULL); 3882 case DTRACE_JSON_NUMBER: 3883 if (cc == '.') { 3884 *dd++ = cc; 3885 state = DTRACE_JSON_NUMBER_FRAC; 3886 break; 3887 } 3888 3889 if (cc == 'x' || cc == 'X') { 3890 /* 3891 * ERROR: specification explicitly excludes 3892 * hexidecimal or octal numbers. 3893 */ 3894 return (NULL); 3895 } 3896 3897 /* FALLTHRU */ 3898 case DTRACE_JSON_NUMBER_FRAC: 3899 if (cc == 'e' || cc == 'E') { 3900 *dd++ = cc; 3901 state = DTRACE_JSON_NUMBER_EXP; 3902 break; 3903 } 3904 3905 if (cc == '+' || cc == '-') { 3906 /* 3907 * ERROR: expect sign as part of exponent only. 3908 */ 3909 return (NULL); 3910 } 3911 /* FALLTHRU */ 3912 case DTRACE_JSON_NUMBER_EXP: 3913 if (isdigit(cc) || cc == '+' || cc == '-') { 3914 *dd++ = cc; 3915 break; 3916 } 3917 3918 *dd = '\0'; 3919 dd = dest; /* reset string buffer */ 3920 if (found_key) { 3921 if (nelems > 1) { 3922 /* 3923 * ERROR: We expected an object, not 3924 * this number. 3925 */ 3926 return (NULL); 3927 } 3928 return (dest); 3929 } 3930 3931 cur--; 3932 state = DTRACE_JSON_COMMA; 3933 break; 3934 case DTRACE_JSON_VALUE: 3935 if (isspace(cc)) 3936 break; 3937 3938 if (cc == '{' || cc == '[') { 3939 if (nelems > 1 && found_key) { 3940 in_array = cc == '[' ? B_TRUE : B_FALSE; 3941 /* 3942 * If our element selector directs us 3943 * to descend into this nested object, 3944 * then move to the next selector 3945 * element in the list and restart the 3946 * state machine. 3947 */ 3948 while (*elem != '\0') 3949 elem++; 3950 elem++; /* skip the inter-element NUL */ 3951 nelems--; 3952 dd = dest; 3953 if (in_array) { 3954 state = DTRACE_JSON_VALUE; 3955 array_pos = 0; 3956 array_elem = dtrace_strtoll( 3957 elem, 10, size); 3958 found_key = array_elem == 0 ? 3959 B_TRUE : B_FALSE; 3960 } else { 3961 found_key = B_FALSE; 3962 state = DTRACE_JSON_OBJECT; 3963 } 3964 break; 3965 } 3966 3967 /* 3968 * Otherwise, we wish to either skip this 3969 * nested object or return it in full. 3970 */ 3971 if (cc == '[') 3972 brackets = 1; 3973 else 3974 braces = 1; 3975 *dd++ = cc; 3976 state = DTRACE_JSON_COLLECT_OBJECT; 3977 break; 3978 } 3979 3980 if (cc == '"') { 3981 state = DTRACE_JSON_STRING; 3982 break; 3983 } 3984 3985 if (islower(cc)) { 3986 /* 3987 * Here we deal with true, false and null. 3988 */ 3989 *dd++ = cc; 3990 state = DTRACE_JSON_IDENTIFIER; 3991 break; 3992 } 3993 3994 if (cc == '-' || isdigit(cc)) { 3995 *dd++ = cc; 3996 state = DTRACE_JSON_NUMBER; 3997 break; 3998 } 3999 4000 /* 4001 * ERROR: unexpected character at start of value. 4002 */ 4003 return (NULL); 4004 case DTRACE_JSON_COLLECT_OBJECT: 4005 if (cc == '\0') 4006 /* 4007 * ERROR: unexpected end of input. 4008 */ 4009 return (NULL); 4010 4011 *dd++ = cc; 4012 if (cc == '"') { 4013 collect_object = B_TRUE; 4014 state = DTRACE_JSON_STRING; 4015 break; 4016 } 4017 4018 if (cc == ']') { 4019 if (brackets-- == 0) { 4020 /* 4021 * ERROR: unbalanced brackets. 4022 */ 4023 return (NULL); 4024 } 4025 } else if (cc == '}') { 4026 if (braces-- == 0) { 4027 /* 4028 * ERROR: unbalanced braces. 4029 */ 4030 return (NULL); 4031 } 4032 } else if (cc == '{') { 4033 braces++; 4034 } else if (cc == '[') { 4035 brackets++; 4036 } 4037 4038 if (brackets == 0 && braces == 0) { 4039 if (found_key) { 4040 *dd = '\0'; 4041 return (dest); 4042 } 4043 dd = dest; /* reset string buffer */ 4044 state = DTRACE_JSON_COMMA; 4045 } 4046 break; 4047 } 4048 } 4049 return (NULL); 4050 } 4051 4052 /* 4053 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4054 * Notice that we don't bother validating the proper number of arguments or 4055 * their types in the tuple stack. This isn't needed because all argument 4056 * interpretation is safe because of our load safety -- the worst that can 4057 * happen is that a bogus program can obtain bogus results. 4058 */ 4059 static void 4060 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4061 dtrace_key_t *tupregs, int nargs, 4062 dtrace_mstate_t *mstate, dtrace_state_t *state) 4063 { 4064 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4065 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4066 dtrace_vstate_t *vstate = &state->dts_vstate; 4067 4068 union { 4069 mutex_impl_t mi; 4070 uint64_t mx; 4071 } m; 4072 4073 union { 4074 krwlock_t ri; 4075 uintptr_t rw; 4076 } r; 4077 4078 switch (subr) { 4079 case DIF_SUBR_RAND: 4080 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4081 break; 4082 4083 case DIF_SUBR_MUTEX_OWNED: 4084 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4085 mstate, vstate)) { 4086 regs[rd] = NULL; 4087 break; 4088 } 4089 4090 m.mx = dtrace_load64(tupregs[0].dttk_value); 4091 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4092 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4093 else 4094 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4095 break; 4096 4097 case DIF_SUBR_MUTEX_OWNER: 4098 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4099 mstate, vstate)) { 4100 regs[rd] = NULL; 4101 break; 4102 } 4103 4104 m.mx = dtrace_load64(tupregs[0].dttk_value); 4105 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4106 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4107 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4108 else 4109 regs[rd] = 0; 4110 break; 4111 4112 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4113 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4114 mstate, vstate)) { 4115 regs[rd] = NULL; 4116 break; 4117 } 4118 4119 m.mx = dtrace_load64(tupregs[0].dttk_value); 4120 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4121 break; 4122 4123 case DIF_SUBR_MUTEX_TYPE_SPIN: 4124 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4125 mstate, vstate)) { 4126 regs[rd] = NULL; 4127 break; 4128 } 4129 4130 m.mx = dtrace_load64(tupregs[0].dttk_value); 4131 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4132 break; 4133 4134 case DIF_SUBR_RW_READ_HELD: { 4135 uintptr_t tmp; 4136 4137 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4138 mstate, vstate)) { 4139 regs[rd] = NULL; 4140 break; 4141 } 4142 4143 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4144 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4145 break; 4146 } 4147 4148 case DIF_SUBR_RW_WRITE_HELD: 4149 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4150 mstate, vstate)) { 4151 regs[rd] = NULL; 4152 break; 4153 } 4154 4155 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4156 regs[rd] = _RW_WRITE_HELD(&r.ri); 4157 break; 4158 4159 case DIF_SUBR_RW_ISWRITER: 4160 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4161 mstate, vstate)) { 4162 regs[rd] = NULL; 4163 break; 4164 } 4165 4166 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4167 regs[rd] = _RW_ISWRITER(&r.ri); 4168 break; 4169 4170 case DIF_SUBR_BCOPY: { 4171 /* 4172 * We need to be sure that the destination is in the scratch 4173 * region -- no other region is allowed. 4174 */ 4175 uintptr_t src = tupregs[0].dttk_value; 4176 uintptr_t dest = tupregs[1].dttk_value; 4177 size_t size = tupregs[2].dttk_value; 4178 4179 if (!dtrace_inscratch(dest, size, mstate)) { 4180 *flags |= CPU_DTRACE_BADADDR; 4181 *illval = regs[rd]; 4182 break; 4183 } 4184 4185 if (!dtrace_canload(src, size, mstate, vstate)) { 4186 regs[rd] = NULL; 4187 break; 4188 } 4189 4190 dtrace_bcopy((void *)src, (void *)dest, size); 4191 break; 4192 } 4193 4194 case DIF_SUBR_ALLOCA: 4195 case DIF_SUBR_COPYIN: { 4196 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4197 uint64_t size = 4198 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4199 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4200 4201 /* 4202 * This action doesn't require any credential checks since 4203 * probes will not activate in user contexts to which the 4204 * enabling user does not have permissions. 4205 */ 4206 4207 /* 4208 * Rounding up the user allocation size could have overflowed 4209 * a large, bogus allocation (like -1ULL) to 0. 4210 */ 4211 if (scratch_size < size || 4212 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4213 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4214 regs[rd] = NULL; 4215 break; 4216 } 4217 4218 if (subr == DIF_SUBR_COPYIN) { 4219 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4220 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4221 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4222 } 4223 4224 mstate->dtms_scratch_ptr += scratch_size; 4225 regs[rd] = dest; 4226 break; 4227 } 4228 4229 case DIF_SUBR_COPYINTO: { 4230 uint64_t size = tupregs[1].dttk_value; 4231 uintptr_t dest = tupregs[2].dttk_value; 4232 4233 /* 4234 * This action doesn't require any credential checks since 4235 * probes will not activate in user contexts to which the 4236 * enabling user does not have permissions. 4237 */ 4238 if (!dtrace_inscratch(dest, size, mstate)) { 4239 *flags |= CPU_DTRACE_BADADDR; 4240 *illval = regs[rd]; 4241 break; 4242 } 4243 4244 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4245 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4247 break; 4248 } 4249 4250 case DIF_SUBR_COPYINSTR: { 4251 uintptr_t dest = mstate->dtms_scratch_ptr; 4252 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4253 4254 if (nargs > 1 && tupregs[1].dttk_value < size) 4255 size = tupregs[1].dttk_value + 1; 4256 4257 /* 4258 * This action doesn't require any credential checks since 4259 * probes will not activate in user contexts to which the 4260 * enabling user does not have permissions. 4261 */ 4262 if (!DTRACE_INSCRATCH(mstate, size)) { 4263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4264 regs[rd] = NULL; 4265 break; 4266 } 4267 4268 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4269 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4270 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4271 4272 ((char *)dest)[size - 1] = '\0'; 4273 mstate->dtms_scratch_ptr += size; 4274 regs[rd] = dest; 4275 break; 4276 } 4277 4278 case DIF_SUBR_MSGSIZE: 4279 case DIF_SUBR_MSGDSIZE: { 4280 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4281 uintptr_t wptr, rptr; 4282 size_t count = 0; 4283 int cont = 0; 4284 4285 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4286 4287 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4288 vstate)) { 4289 regs[rd] = NULL; 4290 break; 4291 } 4292 4293 wptr = dtrace_loadptr(baddr + 4294 offsetof(mblk_t, b_wptr)); 4295 4296 rptr = dtrace_loadptr(baddr + 4297 offsetof(mblk_t, b_rptr)); 4298 4299 if (wptr < rptr) { 4300 *flags |= CPU_DTRACE_BADADDR; 4301 *illval = tupregs[0].dttk_value; 4302 break; 4303 } 4304 4305 daddr = dtrace_loadptr(baddr + 4306 offsetof(mblk_t, b_datap)); 4307 4308 baddr = dtrace_loadptr(baddr + 4309 offsetof(mblk_t, b_cont)); 4310 4311 /* 4312 * We want to prevent against denial-of-service here, 4313 * so we're only going to search the list for 4314 * dtrace_msgdsize_max mblks. 4315 */ 4316 if (cont++ > dtrace_msgdsize_max) { 4317 *flags |= CPU_DTRACE_ILLOP; 4318 break; 4319 } 4320 4321 if (subr == DIF_SUBR_MSGDSIZE) { 4322 if (dtrace_load8(daddr + 4323 offsetof(dblk_t, db_type)) != M_DATA) 4324 continue; 4325 } 4326 4327 count += wptr - rptr; 4328 } 4329 4330 if (!(*flags & CPU_DTRACE_FAULT)) 4331 regs[rd] = count; 4332 4333 break; 4334 } 4335 4336 case DIF_SUBR_PROGENYOF: { 4337 pid_t pid = tupregs[0].dttk_value; 4338 proc_t *p; 4339 int rval = 0; 4340 4341 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4342 4343 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4344 if (p->p_pidp->pid_id == pid) { 4345 rval = 1; 4346 break; 4347 } 4348 } 4349 4350 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4351 4352 regs[rd] = rval; 4353 break; 4354 } 4355 4356 case DIF_SUBR_SPECULATION: 4357 regs[rd] = dtrace_speculation(state); 4358 break; 4359 4360 case DIF_SUBR_COPYOUT: { 4361 uintptr_t kaddr = tupregs[0].dttk_value; 4362 uintptr_t uaddr = tupregs[1].dttk_value; 4363 uint64_t size = tupregs[2].dttk_value; 4364 4365 if (!dtrace_destructive_disallow && 4366 dtrace_priv_proc_control(state, mstate) && 4367 !dtrace_istoxic(kaddr, size) && 4368 dtrace_canload(kaddr, size, mstate, vstate)) { 4369 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4370 dtrace_copyout(kaddr, uaddr, size, flags); 4371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4372 } 4373 break; 4374 } 4375 4376 case DIF_SUBR_COPYOUTSTR: { 4377 uintptr_t kaddr = tupregs[0].dttk_value; 4378 uintptr_t uaddr = tupregs[1].dttk_value; 4379 uint64_t size = tupregs[2].dttk_value; 4380 size_t lim; 4381 4382 if (!dtrace_destructive_disallow && 4383 dtrace_priv_proc_control(state, mstate) && 4384 !dtrace_istoxic(kaddr, size) && 4385 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4386 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4387 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4388 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4389 } 4390 break; 4391 } 4392 4393 case DIF_SUBR_STRLEN: { 4394 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4395 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4396 size_t lim; 4397 4398 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4399 regs[rd] = NULL; 4400 break; 4401 } 4402 regs[rd] = dtrace_strlen((char *)addr, lim); 4403 4404 break; 4405 } 4406 4407 case DIF_SUBR_STRCHR: 4408 case DIF_SUBR_STRRCHR: { 4409 /* 4410 * We're going to iterate over the string looking for the 4411 * specified character. We will iterate until we have reached 4412 * the string length or we have found the character. If this 4413 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4414 * of the specified character instead of the first. 4415 */ 4416 uintptr_t addr = tupregs[0].dttk_value; 4417 uintptr_t addr_limit; 4418 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4419 size_t lim; 4420 char c, target = (char)tupregs[1].dttk_value; 4421 4422 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4423 regs[rd] = NULL; 4424 break; 4425 } 4426 addr_limit = addr + lim; 4427 4428 for (regs[rd] = NULL; addr < addr_limit; addr++) { 4429 if ((c = dtrace_load8(addr)) == target) { 4430 regs[rd] = addr; 4431 4432 if (subr == DIF_SUBR_STRCHR) 4433 break; 4434 } 4435 if (c == '\0') 4436 break; 4437 } 4438 4439 break; 4440 } 4441 4442 case DIF_SUBR_STRSTR: 4443 case DIF_SUBR_INDEX: 4444 case DIF_SUBR_RINDEX: { 4445 /* 4446 * We're going to iterate over the string looking for the 4447 * specified string. We will iterate until we have reached 4448 * the string length or we have found the string. (Yes, this 4449 * is done in the most naive way possible -- but considering 4450 * that the string we're searching for is likely to be 4451 * relatively short, the complexity of Rabin-Karp or similar 4452 * hardly seems merited.) 4453 */ 4454 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4455 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4456 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4457 size_t len = dtrace_strlen(addr, size); 4458 size_t sublen = dtrace_strlen(substr, size); 4459 char *limit = addr + len, *orig = addr; 4460 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4461 int inc = 1; 4462 4463 regs[rd] = notfound; 4464 4465 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4466 regs[rd] = NULL; 4467 break; 4468 } 4469 4470 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4471 vstate)) { 4472 regs[rd] = NULL; 4473 break; 4474 } 4475 4476 /* 4477 * strstr() and index()/rindex() have similar semantics if 4478 * both strings are the empty string: strstr() returns a 4479 * pointer to the (empty) string, and index() and rindex() 4480 * both return index 0 (regardless of any position argument). 4481 */ 4482 if (sublen == 0 && len == 0) { 4483 if (subr == DIF_SUBR_STRSTR) 4484 regs[rd] = (uintptr_t)addr; 4485 else 4486 regs[rd] = 0; 4487 break; 4488 } 4489 4490 if (subr != DIF_SUBR_STRSTR) { 4491 if (subr == DIF_SUBR_RINDEX) { 4492 limit = orig - 1; 4493 addr += len; 4494 inc = -1; 4495 } 4496 4497 /* 4498 * Both index() and rindex() take an optional position 4499 * argument that denotes the starting position. 4500 */ 4501 if (nargs == 3) { 4502 int64_t pos = (int64_t)tupregs[2].dttk_value; 4503 4504 /* 4505 * If the position argument to index() is 4506 * negative, Perl implicitly clamps it at 4507 * zero. This semantic is a little surprising 4508 * given the special meaning of negative 4509 * positions to similar Perl functions like 4510 * substr(), but it appears to reflect a 4511 * notion that index() can start from a 4512 * negative index and increment its way up to 4513 * the string. Given this notion, Perl's 4514 * rindex() is at least self-consistent in 4515 * that it implicitly clamps positions greater 4516 * than the string length to be the string 4517 * length. Where Perl completely loses 4518 * coherence, however, is when the specified 4519 * substring is the empty string (""). In 4520 * this case, even if the position is 4521 * negative, rindex() returns 0 -- and even if 4522 * the position is greater than the length, 4523 * index() returns the string length. These 4524 * semantics violate the notion that index() 4525 * should never return a value less than the 4526 * specified position and that rindex() should 4527 * never return a value greater than the 4528 * specified position. (One assumes that 4529 * these semantics are artifacts of Perl's 4530 * implementation and not the results of 4531 * deliberate design -- it beggars belief that 4532 * even Larry Wall could desire such oddness.) 4533 * While in the abstract one would wish for 4534 * consistent position semantics across 4535 * substr(), index() and rindex() -- or at the 4536 * very least self-consistent position 4537 * semantics for index() and rindex() -- we 4538 * instead opt to keep with the extant Perl 4539 * semantics, in all their broken glory. (Do 4540 * we have more desire to maintain Perl's 4541 * semantics than Perl does? Probably.) 4542 */ 4543 if (subr == DIF_SUBR_RINDEX) { 4544 if (pos < 0) { 4545 if (sublen == 0) 4546 regs[rd] = 0; 4547 break; 4548 } 4549 4550 if (pos > len) 4551 pos = len; 4552 } else { 4553 if (pos < 0) 4554 pos = 0; 4555 4556 if (pos >= len) { 4557 if (sublen == 0) 4558 regs[rd] = len; 4559 break; 4560 } 4561 } 4562 4563 addr = orig + pos; 4564 } 4565 } 4566 4567 for (regs[rd] = notfound; addr != limit; addr += inc) { 4568 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4569 if (subr != DIF_SUBR_STRSTR) { 4570 /* 4571 * As D index() and rindex() are 4572 * modeled on Perl (and not on awk), 4573 * we return a zero-based (and not a 4574 * one-based) index. (For you Perl 4575 * weenies: no, we're not going to add 4576 * $[ -- and shouldn't you be at a con 4577 * or something?) 4578 */ 4579 regs[rd] = (uintptr_t)(addr - orig); 4580 break; 4581 } 4582 4583 ASSERT(subr == DIF_SUBR_STRSTR); 4584 regs[rd] = (uintptr_t)addr; 4585 break; 4586 } 4587 } 4588 4589 break; 4590 } 4591 4592 case DIF_SUBR_STRTOK: { 4593 uintptr_t addr = tupregs[0].dttk_value; 4594 uintptr_t tokaddr = tupregs[1].dttk_value; 4595 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4596 uintptr_t limit, toklimit; 4597 size_t clim; 4598 uint8_t c, tokmap[32]; /* 256 / 8 */ 4599 char *dest = (char *)mstate->dtms_scratch_ptr; 4600 int i; 4601 4602 /* 4603 * Check both the token buffer and (later) the input buffer, 4604 * since both could be non-scratch addresses. 4605 */ 4606 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4607 regs[rd] = NULL; 4608 break; 4609 } 4610 toklimit = tokaddr + clim; 4611 4612 if (!DTRACE_INSCRATCH(mstate, size)) { 4613 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4614 regs[rd] = NULL; 4615 break; 4616 } 4617 4618 if (addr == NULL) { 4619 /* 4620 * If the address specified is NULL, we use our saved 4621 * strtok pointer from the mstate. Note that this 4622 * means that the saved strtok pointer is _only_ 4623 * valid within multiple enablings of the same probe -- 4624 * it behaves like an implicit clause-local variable. 4625 */ 4626 addr = mstate->dtms_strtok; 4627 limit = mstate->dtms_strtok_limit; 4628 } else { 4629 /* 4630 * If the user-specified address is non-NULL we must 4631 * access check it. This is the only time we have 4632 * a chance to do so, since this address may reside 4633 * in the string table of this clause-- future calls 4634 * (when we fetch addr from mstate->dtms_strtok) 4635 * would fail this access check. 4636 */ 4637 if (!dtrace_strcanload(addr, size, &clim, mstate, 4638 vstate)) { 4639 regs[rd] = NULL; 4640 break; 4641 } 4642 limit = addr + clim; 4643 } 4644 4645 /* 4646 * First, zero the token map, and then process the token 4647 * string -- setting a bit in the map for every character 4648 * found in the token string. 4649 */ 4650 for (i = 0; i < sizeof (tokmap); i++) 4651 tokmap[i] = 0; 4652 4653 for (; tokaddr < toklimit; tokaddr++) { 4654 if ((c = dtrace_load8(tokaddr)) == '\0') 4655 break; 4656 4657 ASSERT((c >> 3) < sizeof (tokmap)); 4658 tokmap[c >> 3] |= (1 << (c & 0x7)); 4659 } 4660 4661 for (; addr < limit; addr++) { 4662 /* 4663 * We're looking for a character that is _not_ 4664 * contained in the token string. 4665 */ 4666 if ((c = dtrace_load8(addr)) == '\0') 4667 break; 4668 4669 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4670 break; 4671 } 4672 4673 if (c == '\0') { 4674 /* 4675 * We reached the end of the string without finding 4676 * any character that was not in the token string. 4677 * We return NULL in this case, and we set the saved 4678 * address to NULL as well. 4679 */ 4680 regs[rd] = NULL; 4681 mstate->dtms_strtok = NULL; 4682 mstate->dtms_strtok_limit = NULL; 4683 break; 4684 } 4685 4686 /* 4687 * From here on, we're copying into the destination string. 4688 */ 4689 for (i = 0; addr < limit && i < size - 1; addr++) { 4690 if ((c = dtrace_load8(addr)) == '\0') 4691 break; 4692 4693 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4694 break; 4695 4696 ASSERT(i < size); 4697 dest[i++] = c; 4698 } 4699 4700 ASSERT(i < size); 4701 dest[i] = '\0'; 4702 regs[rd] = (uintptr_t)dest; 4703 mstate->dtms_scratch_ptr += size; 4704 mstate->dtms_strtok = addr; 4705 mstate->dtms_strtok_limit = limit; 4706 break; 4707 } 4708 4709 case DIF_SUBR_SUBSTR: { 4710 uintptr_t s = tupregs[0].dttk_value; 4711 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4712 char *d = (char *)mstate->dtms_scratch_ptr; 4713 int64_t index = (int64_t)tupregs[1].dttk_value; 4714 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4715 size_t len = dtrace_strlen((char *)s, size); 4716 int64_t i; 4717 4718 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4719 regs[rd] = NULL; 4720 break; 4721 } 4722 4723 if (!DTRACE_INSCRATCH(mstate, size)) { 4724 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4725 regs[rd] = NULL; 4726 break; 4727 } 4728 4729 if (nargs <= 2) 4730 remaining = (int64_t)size; 4731 4732 if (index < 0) { 4733 index += len; 4734 4735 if (index < 0 && index + remaining > 0) { 4736 remaining += index; 4737 index = 0; 4738 } 4739 } 4740 4741 if (index >= len || index < 0) { 4742 remaining = 0; 4743 } else if (remaining < 0) { 4744 remaining += len - index; 4745 } else if (index + remaining > size) { 4746 remaining = size - index; 4747 } 4748 4749 for (i = 0; i < remaining; i++) { 4750 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4751 break; 4752 } 4753 4754 d[i] = '\0'; 4755 4756 mstate->dtms_scratch_ptr += size; 4757 regs[rd] = (uintptr_t)d; 4758 break; 4759 } 4760 4761 case DIF_SUBR_JSON: { 4762 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4763 uintptr_t json = tupregs[0].dttk_value; 4764 size_t jsonlen = dtrace_strlen((char *)json, size); 4765 uintptr_t elem = tupregs[1].dttk_value; 4766 size_t elemlen = dtrace_strlen((char *)elem, size); 4767 4768 char *dest = (char *)mstate->dtms_scratch_ptr; 4769 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4770 char *ee = elemlist; 4771 int nelems = 1; 4772 uintptr_t cur; 4773 4774 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4775 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4776 regs[rd] = NULL; 4777 break; 4778 } 4779 4780 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4782 regs[rd] = NULL; 4783 break; 4784 } 4785 4786 /* 4787 * Read the element selector and split it up into a packed list 4788 * of strings. 4789 */ 4790 for (cur = elem; cur < elem + elemlen; cur++) { 4791 char cc = dtrace_load8(cur); 4792 4793 if (cur == elem && cc == '[') { 4794 /* 4795 * If the first element selector key is 4796 * actually an array index then ignore the 4797 * bracket. 4798 */ 4799 continue; 4800 } 4801 4802 if (cc == ']') 4803 continue; 4804 4805 if (cc == '.' || cc == '[') { 4806 nelems++; 4807 cc = '\0'; 4808 } 4809 4810 *ee++ = cc; 4811 } 4812 *ee++ = '\0'; 4813 4814 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4815 nelems, dest)) != NULL) 4816 mstate->dtms_scratch_ptr += jsonlen + 1; 4817 break; 4818 } 4819 4820 case DIF_SUBR_TOUPPER: 4821 case DIF_SUBR_TOLOWER: { 4822 uintptr_t s = tupregs[0].dttk_value; 4823 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4824 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4825 size_t len = dtrace_strlen((char *)s, size); 4826 char lower, upper, convert; 4827 int64_t i; 4828 4829 if (subr == DIF_SUBR_TOUPPER) { 4830 lower = 'a'; 4831 upper = 'z'; 4832 convert = 'A'; 4833 } else { 4834 lower = 'A'; 4835 upper = 'Z'; 4836 convert = 'a'; 4837 } 4838 4839 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4840 regs[rd] = NULL; 4841 break; 4842 } 4843 4844 if (!DTRACE_INSCRATCH(mstate, size)) { 4845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4846 regs[rd] = NULL; 4847 break; 4848 } 4849 4850 for (i = 0; i < size - 1; i++) { 4851 if ((c = dtrace_load8(s + i)) == '\0') 4852 break; 4853 4854 if (c >= lower && c <= upper) 4855 c = convert + (c - lower); 4856 4857 dest[i] = c; 4858 } 4859 4860 ASSERT(i < size); 4861 dest[i] = '\0'; 4862 regs[rd] = (uintptr_t)dest; 4863 mstate->dtms_scratch_ptr += size; 4864 break; 4865 } 4866 4867 case DIF_SUBR_GETMAJOR: 4868 #ifdef _LP64 4869 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4870 #else 4871 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4872 #endif 4873 break; 4874 4875 case DIF_SUBR_GETMINOR: 4876 #ifdef _LP64 4877 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4878 #else 4879 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4880 #endif 4881 break; 4882 4883 case DIF_SUBR_DDI_PATHNAME: { 4884 /* 4885 * This one is a galactic mess. We are going to roughly 4886 * emulate ddi_pathname(), but it's made more complicated 4887 * by the fact that we (a) want to include the minor name and 4888 * (b) must proceed iteratively instead of recursively. 4889 */ 4890 uintptr_t dest = mstate->dtms_scratch_ptr; 4891 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4892 char *start = (char *)dest, *end = start + size - 1; 4893 uintptr_t daddr = tupregs[0].dttk_value; 4894 int64_t minor = (int64_t)tupregs[1].dttk_value; 4895 char *s; 4896 int i, len, depth = 0; 4897 4898 /* 4899 * Due to all the pointer jumping we do and context we must 4900 * rely upon, we just mandate that the user must have kernel 4901 * read privileges to use this routine. 4902 */ 4903 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4904 *flags |= CPU_DTRACE_KPRIV; 4905 *illval = daddr; 4906 regs[rd] = NULL; 4907 } 4908 4909 if (!DTRACE_INSCRATCH(mstate, size)) { 4910 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4911 regs[rd] = NULL; 4912 break; 4913 } 4914 4915 *end = '\0'; 4916 4917 /* 4918 * We want to have a name for the minor. In order to do this, 4919 * we need to walk the minor list from the devinfo. We want 4920 * to be sure that we don't infinitely walk a circular list, 4921 * so we check for circularity by sending a scout pointer 4922 * ahead two elements for every element that we iterate over; 4923 * if the list is circular, these will ultimately point to the 4924 * same element. You may recognize this little trick as the 4925 * answer to a stupid interview question -- one that always 4926 * seems to be asked by those who had to have it laboriously 4927 * explained to them, and who can't even concisely describe 4928 * the conditions under which one would be forced to resort to 4929 * this technique. Needless to say, those conditions are 4930 * found here -- and probably only here. Is this the only use 4931 * of this infamous trick in shipping, production code? If it 4932 * isn't, it probably should be... 4933 */ 4934 if (minor != -1) { 4935 uintptr_t maddr = dtrace_loadptr(daddr + 4936 offsetof(struct dev_info, devi_minor)); 4937 4938 uintptr_t next = offsetof(struct ddi_minor_data, next); 4939 uintptr_t name = offsetof(struct ddi_minor_data, 4940 d_minor) + offsetof(struct ddi_minor, name); 4941 uintptr_t dev = offsetof(struct ddi_minor_data, 4942 d_minor) + offsetof(struct ddi_minor, dev); 4943 uintptr_t scout; 4944 4945 if (maddr != NULL) 4946 scout = dtrace_loadptr(maddr + next); 4947 4948 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4949 uint64_t m; 4950 #ifdef _LP64 4951 m = dtrace_load64(maddr + dev) & MAXMIN64; 4952 #else 4953 m = dtrace_load32(maddr + dev) & MAXMIN; 4954 #endif 4955 if (m != minor) { 4956 maddr = dtrace_loadptr(maddr + next); 4957 4958 if (scout == NULL) 4959 continue; 4960 4961 scout = dtrace_loadptr(scout + next); 4962 4963 if (scout == NULL) 4964 continue; 4965 4966 scout = dtrace_loadptr(scout + next); 4967 4968 if (scout == NULL) 4969 continue; 4970 4971 if (scout == maddr) { 4972 *flags |= CPU_DTRACE_ILLOP; 4973 break; 4974 } 4975 4976 continue; 4977 } 4978 4979 /* 4980 * We have the minor data. Now we need to 4981 * copy the minor's name into the end of the 4982 * pathname. 4983 */ 4984 s = (char *)dtrace_loadptr(maddr + name); 4985 len = dtrace_strlen(s, size); 4986 4987 if (*flags & CPU_DTRACE_FAULT) 4988 break; 4989 4990 if (len != 0) { 4991 if ((end -= (len + 1)) < start) 4992 break; 4993 4994 *end = ':'; 4995 } 4996 4997 for (i = 1; i <= len; i++) 4998 end[i] = dtrace_load8((uintptr_t)s++); 4999 break; 5000 } 5001 } 5002 5003 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5004 ddi_node_state_t devi_state; 5005 5006 devi_state = dtrace_load32(daddr + 5007 offsetof(struct dev_info, devi_node_state)); 5008 5009 if (*flags & CPU_DTRACE_FAULT) 5010 break; 5011 5012 if (devi_state >= DS_INITIALIZED) { 5013 s = (char *)dtrace_loadptr(daddr + 5014 offsetof(struct dev_info, devi_addr)); 5015 len = dtrace_strlen(s, size); 5016 5017 if (*flags & CPU_DTRACE_FAULT) 5018 break; 5019 5020 if (len != 0) { 5021 if ((end -= (len + 1)) < start) 5022 break; 5023 5024 *end = '@'; 5025 } 5026 5027 for (i = 1; i <= len; i++) 5028 end[i] = dtrace_load8((uintptr_t)s++); 5029 } 5030 5031 /* 5032 * Now for the node name... 5033 */ 5034 s = (char *)dtrace_loadptr(daddr + 5035 offsetof(struct dev_info, devi_node_name)); 5036 5037 daddr = dtrace_loadptr(daddr + 5038 offsetof(struct dev_info, devi_parent)); 5039 5040 /* 5041 * If our parent is NULL (that is, if we're the root 5042 * node), we're going to use the special path 5043 * "devices". 5044 */ 5045 if (daddr == NULL) 5046 s = "devices"; 5047 5048 len = dtrace_strlen(s, size); 5049 if (*flags & CPU_DTRACE_FAULT) 5050 break; 5051 5052 if ((end -= (len + 1)) < start) 5053 break; 5054 5055 for (i = 1; i <= len; i++) 5056 end[i] = dtrace_load8((uintptr_t)s++); 5057 *end = '/'; 5058 5059 if (depth++ > dtrace_devdepth_max) { 5060 *flags |= CPU_DTRACE_ILLOP; 5061 break; 5062 } 5063 } 5064 5065 if (end < start) 5066 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5067 5068 if (daddr == NULL) { 5069 regs[rd] = (uintptr_t)end; 5070 mstate->dtms_scratch_ptr += size; 5071 } 5072 5073 break; 5074 } 5075 5076 case DIF_SUBR_STRJOIN: { 5077 char *d = (char *)mstate->dtms_scratch_ptr; 5078 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5079 uintptr_t s1 = tupregs[0].dttk_value; 5080 uintptr_t s2 = tupregs[1].dttk_value; 5081 int i = 0, j = 0; 5082 size_t lim1, lim2; 5083 char c; 5084 5085 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5086 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5087 regs[rd] = NULL; 5088 break; 5089 } 5090 5091 if (!DTRACE_INSCRATCH(mstate, size)) { 5092 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5093 regs[rd] = NULL; 5094 break; 5095 } 5096 5097 for (;;) { 5098 if (i >= size) { 5099 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5100 regs[rd] = NULL; 5101 break; 5102 } 5103 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5104 if ((d[i++] = c) == '\0') { 5105 i--; 5106 break; 5107 } 5108 } 5109 5110 for (;;) { 5111 if (i >= size) { 5112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5113 regs[rd] = NULL; 5114 break; 5115 } 5116 5117 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5118 if ((d[i++] = c) == '\0') 5119 break; 5120 } 5121 5122 if (i < size) { 5123 mstate->dtms_scratch_ptr += i; 5124 regs[rd] = (uintptr_t)d; 5125 } 5126 5127 break; 5128 } 5129 5130 case DIF_SUBR_STRTOLL: { 5131 uintptr_t s = tupregs[0].dttk_value; 5132 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5133 size_t lim; 5134 int base = 10; 5135 5136 if (nargs > 1) { 5137 if ((base = tupregs[1].dttk_value) <= 1 || 5138 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5139 *flags |= CPU_DTRACE_ILLOP; 5140 break; 5141 } 5142 } 5143 5144 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5145 regs[rd] = INT64_MIN; 5146 break; 5147 } 5148 5149 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5150 break; 5151 } 5152 5153 case DIF_SUBR_LLTOSTR: { 5154 int64_t i = (int64_t)tupregs[0].dttk_value; 5155 uint64_t val, digit; 5156 uint64_t size = 65; /* enough room for 2^64 in binary */ 5157 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5158 int base = 10; 5159 5160 if (nargs > 1) { 5161 if ((base = tupregs[1].dttk_value) <= 1 || 5162 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5163 *flags |= CPU_DTRACE_ILLOP; 5164 break; 5165 } 5166 } 5167 5168 val = (base == 10 && i < 0) ? i * -1 : i; 5169 5170 if (!DTRACE_INSCRATCH(mstate, size)) { 5171 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5172 regs[rd] = NULL; 5173 break; 5174 } 5175 5176 for (*end-- = '\0'; val; val /= base) { 5177 if ((digit = val % base) <= '9' - '0') { 5178 *end-- = '0' + digit; 5179 } else { 5180 *end-- = 'a' + (digit - ('9' - '0') - 1); 5181 } 5182 } 5183 5184 if (i == 0 && base == 16) 5185 *end-- = '0'; 5186 5187 if (base == 16) 5188 *end-- = 'x'; 5189 5190 if (i == 0 || base == 8 || base == 16) 5191 *end-- = '0'; 5192 5193 if (i < 0 && base == 10) 5194 *end-- = '-'; 5195 5196 regs[rd] = (uintptr_t)end + 1; 5197 mstate->dtms_scratch_ptr += size; 5198 break; 5199 } 5200 5201 case DIF_SUBR_HTONS: 5202 case DIF_SUBR_NTOHS: 5203 #ifdef _BIG_ENDIAN 5204 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5205 #else 5206 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5207 #endif 5208 break; 5209 5210 5211 case DIF_SUBR_HTONL: 5212 case DIF_SUBR_NTOHL: 5213 #ifdef _BIG_ENDIAN 5214 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5215 #else 5216 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5217 #endif 5218 break; 5219 5220 5221 case DIF_SUBR_HTONLL: 5222 case DIF_SUBR_NTOHLL: 5223 #ifdef _BIG_ENDIAN 5224 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5225 #else 5226 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5227 #endif 5228 break; 5229 5230 5231 case DIF_SUBR_DIRNAME: 5232 case DIF_SUBR_BASENAME: { 5233 char *dest = (char *)mstate->dtms_scratch_ptr; 5234 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5235 uintptr_t src = tupregs[0].dttk_value; 5236 int i, j, len = dtrace_strlen((char *)src, size); 5237 int lastbase = -1, firstbase = -1, lastdir = -1; 5238 int start, end; 5239 5240 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5241 regs[rd] = NULL; 5242 break; 5243 } 5244 5245 if (!DTRACE_INSCRATCH(mstate, size)) { 5246 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5247 regs[rd] = NULL; 5248 break; 5249 } 5250 5251 /* 5252 * The basename and dirname for a zero-length string is 5253 * defined to be "." 5254 */ 5255 if (len == 0) { 5256 len = 1; 5257 src = (uintptr_t)"."; 5258 } 5259 5260 /* 5261 * Start from the back of the string, moving back toward the 5262 * front until we see a character that isn't a slash. That 5263 * character is the last character in the basename. 5264 */ 5265 for (i = len - 1; i >= 0; i--) { 5266 if (dtrace_load8(src + i) != '/') 5267 break; 5268 } 5269 5270 if (i >= 0) 5271 lastbase = i; 5272 5273 /* 5274 * Starting from the last character in the basename, move 5275 * towards the front until we find a slash. The character 5276 * that we processed immediately before that is the first 5277 * character in the basename. 5278 */ 5279 for (; i >= 0; i--) { 5280 if (dtrace_load8(src + i) == '/') 5281 break; 5282 } 5283 5284 if (i >= 0) 5285 firstbase = i + 1; 5286 5287 /* 5288 * Now keep going until we find a non-slash character. That 5289 * character is the last character in the dirname. 5290 */ 5291 for (; i >= 0; i--) { 5292 if (dtrace_load8(src + i) != '/') 5293 break; 5294 } 5295 5296 if (i >= 0) 5297 lastdir = i; 5298 5299 ASSERT(!(lastbase == -1 && firstbase != -1)); 5300 ASSERT(!(firstbase == -1 && lastdir != -1)); 5301 5302 if (lastbase == -1) { 5303 /* 5304 * We didn't find a non-slash character. We know that 5305 * the length is non-zero, so the whole string must be 5306 * slashes. In either the dirname or the basename 5307 * case, we return '/'. 5308 */ 5309 ASSERT(firstbase == -1); 5310 firstbase = lastbase = lastdir = 0; 5311 } 5312 5313 if (firstbase == -1) { 5314 /* 5315 * The entire string consists only of a basename 5316 * component. If we're looking for dirname, we need 5317 * to change our string to be just "."; if we're 5318 * looking for a basename, we'll just set the first 5319 * character of the basename to be 0. 5320 */ 5321 if (subr == DIF_SUBR_DIRNAME) { 5322 ASSERT(lastdir == -1); 5323 src = (uintptr_t)"."; 5324 lastdir = 0; 5325 } else { 5326 firstbase = 0; 5327 } 5328 } 5329 5330 if (subr == DIF_SUBR_DIRNAME) { 5331 if (lastdir == -1) { 5332 /* 5333 * We know that we have a slash in the name -- 5334 * or lastdir would be set to 0, above. And 5335 * because lastdir is -1, we know that this 5336 * slash must be the first character. (That 5337 * is, the full string must be of the form 5338 * "/basename".) In this case, the last 5339 * character of the directory name is 0. 5340 */ 5341 lastdir = 0; 5342 } 5343 5344 start = 0; 5345 end = lastdir; 5346 } else { 5347 ASSERT(subr == DIF_SUBR_BASENAME); 5348 ASSERT(firstbase != -1 && lastbase != -1); 5349 start = firstbase; 5350 end = lastbase; 5351 } 5352 5353 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5354 dest[j] = dtrace_load8(src + i); 5355 5356 dest[j] = '\0'; 5357 regs[rd] = (uintptr_t)dest; 5358 mstate->dtms_scratch_ptr += size; 5359 break; 5360 } 5361 5362 case DIF_SUBR_GETF: { 5363 uintptr_t fd = tupregs[0].dttk_value; 5364 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5365 file_t *fp; 5366 5367 if (!dtrace_priv_proc(state, mstate)) { 5368 regs[rd] = NULL; 5369 break; 5370 } 5371 5372 /* 5373 * This is safe because fi_nfiles only increases, and the 5374 * fi_list array is not freed when the array size doubles. 5375 * (See the comment in flist_grow() for details on the 5376 * management of the u_finfo structure.) 5377 */ 5378 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5379 5380 mstate->dtms_getf = fp; 5381 regs[rd] = (uintptr_t)fp; 5382 break; 5383 } 5384 5385 case DIF_SUBR_CLEANPATH: { 5386 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5387 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5388 uintptr_t src = tupregs[0].dttk_value; 5389 size_t lim; 5390 int i = 0, j = 0; 5391 zone_t *z; 5392 5393 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5394 regs[rd] = NULL; 5395 break; 5396 } 5397 5398 if (!DTRACE_INSCRATCH(mstate, size)) { 5399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5400 regs[rd] = NULL; 5401 break; 5402 } 5403 5404 /* 5405 * Move forward, loading each character. 5406 */ 5407 do { 5408 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5409 next: 5410 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5411 break; 5412 5413 if (c != '/') { 5414 dest[j++] = c; 5415 continue; 5416 } 5417 5418 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5419 5420 if (c == '/') { 5421 /* 5422 * We have two slashes -- we can just advance 5423 * to the next character. 5424 */ 5425 goto next; 5426 } 5427 5428 if (c != '.') { 5429 /* 5430 * This is not "." and it's not ".." -- we can 5431 * just store the "/" and this character and 5432 * drive on. 5433 */ 5434 dest[j++] = '/'; 5435 dest[j++] = c; 5436 continue; 5437 } 5438 5439 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5440 5441 if (c == '/') { 5442 /* 5443 * This is a "/./" component. We're not going 5444 * to store anything in the destination buffer; 5445 * we're just going to go to the next component. 5446 */ 5447 goto next; 5448 } 5449 5450 if (c != '.') { 5451 /* 5452 * This is not ".." -- we can just store the 5453 * "/." and this character and continue 5454 * processing. 5455 */ 5456 dest[j++] = '/'; 5457 dest[j++] = '.'; 5458 dest[j++] = c; 5459 continue; 5460 } 5461 5462 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5463 5464 if (c != '/' && c != '\0') { 5465 /* 5466 * This is not ".." -- it's "..[mumble]". 5467 * We'll store the "/.." and this character 5468 * and continue processing. 5469 */ 5470 dest[j++] = '/'; 5471 dest[j++] = '.'; 5472 dest[j++] = '.'; 5473 dest[j++] = c; 5474 continue; 5475 } 5476 5477 /* 5478 * This is "/../" or "/..\0". We need to back up 5479 * our destination pointer until we find a "/". 5480 */ 5481 i--; 5482 while (j != 0 && dest[--j] != '/') 5483 continue; 5484 5485 if (c == '\0') 5486 dest[++j] = '/'; 5487 } while (c != '\0'); 5488 5489 dest[j] = '\0'; 5490 5491 if (mstate->dtms_getf != NULL && 5492 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5493 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5494 /* 5495 * If we've done a getf() as a part of this ECB and we 5496 * don't have kernel access (and we're not in the global 5497 * zone), check if the path we cleaned up begins with 5498 * the zone's root path, and trim it off if so. Note 5499 * that this is an output cleanliness issue, not a 5500 * security issue: knowing one's zone root path does 5501 * not enable privilege escalation. 5502 */ 5503 if (strstr(dest, z->zone_rootpath) == dest) 5504 dest += strlen(z->zone_rootpath) - 1; 5505 } 5506 5507 regs[rd] = (uintptr_t)dest; 5508 mstate->dtms_scratch_ptr += size; 5509 break; 5510 } 5511 5512 case DIF_SUBR_INET_NTOA: 5513 case DIF_SUBR_INET_NTOA6: 5514 case DIF_SUBR_INET_NTOP: { 5515 size_t size; 5516 int af, argi, i; 5517 char *base, *end; 5518 5519 if (subr == DIF_SUBR_INET_NTOP) { 5520 af = (int)tupregs[0].dttk_value; 5521 argi = 1; 5522 } else { 5523 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5524 argi = 0; 5525 } 5526 5527 if (af == AF_INET) { 5528 ipaddr_t ip4; 5529 uint8_t *ptr8, val; 5530 5531 if (!dtrace_canload(tupregs[argi].dttk_value, 5532 sizeof (ipaddr_t), mstate, vstate)) { 5533 regs[rd] = NULL; 5534 break; 5535 } 5536 5537 /* 5538 * Safely load the IPv4 address. 5539 */ 5540 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5541 5542 /* 5543 * Check an IPv4 string will fit in scratch. 5544 */ 5545 size = INET_ADDRSTRLEN; 5546 if (!DTRACE_INSCRATCH(mstate, size)) { 5547 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5548 regs[rd] = NULL; 5549 break; 5550 } 5551 base = (char *)mstate->dtms_scratch_ptr; 5552 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5553 5554 /* 5555 * Stringify as a dotted decimal quad. 5556 */ 5557 *end-- = '\0'; 5558 ptr8 = (uint8_t *)&ip4; 5559 for (i = 3; i >= 0; i--) { 5560 val = ptr8[i]; 5561 5562 if (val == 0) { 5563 *end-- = '0'; 5564 } else { 5565 for (; val; val /= 10) { 5566 *end-- = '0' + (val % 10); 5567 } 5568 } 5569 5570 if (i > 0) 5571 *end-- = '.'; 5572 } 5573 ASSERT(end + 1 >= base); 5574 5575 } else if (af == AF_INET6) { 5576 struct in6_addr ip6; 5577 int firstzero, tryzero, numzero, v6end; 5578 uint16_t val; 5579 const char digits[] = "0123456789abcdef"; 5580 5581 /* 5582 * Stringify using RFC 1884 convention 2 - 16 bit 5583 * hexadecimal values with a zero-run compression. 5584 * Lower case hexadecimal digits are used. 5585 * eg, fe80::214:4fff:fe0b:76c8. 5586 * The IPv4 embedded form is returned for inet_ntop, 5587 * just the IPv4 string is returned for inet_ntoa6. 5588 */ 5589 5590 if (!dtrace_canload(tupregs[argi].dttk_value, 5591 sizeof (struct in6_addr), mstate, vstate)) { 5592 regs[rd] = NULL; 5593 break; 5594 } 5595 5596 /* 5597 * Safely load the IPv6 address. 5598 */ 5599 dtrace_bcopy( 5600 (void *)(uintptr_t)tupregs[argi].dttk_value, 5601 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5602 5603 /* 5604 * Check an IPv6 string will fit in scratch. 5605 */ 5606 size = INET6_ADDRSTRLEN; 5607 if (!DTRACE_INSCRATCH(mstate, size)) { 5608 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5609 regs[rd] = NULL; 5610 break; 5611 } 5612 base = (char *)mstate->dtms_scratch_ptr; 5613 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5614 *end-- = '\0'; 5615 5616 /* 5617 * Find the longest run of 16 bit zero values 5618 * for the single allowed zero compression - "::". 5619 */ 5620 firstzero = -1; 5621 tryzero = -1; 5622 numzero = 1; 5623 for (i = 0; i < sizeof (struct in6_addr); i++) { 5624 if (ip6._S6_un._S6_u8[i] == 0 && 5625 tryzero == -1 && i % 2 == 0) { 5626 tryzero = i; 5627 continue; 5628 } 5629 5630 if (tryzero != -1 && 5631 (ip6._S6_un._S6_u8[i] != 0 || 5632 i == sizeof (struct in6_addr) - 1)) { 5633 5634 if (i - tryzero <= numzero) { 5635 tryzero = -1; 5636 continue; 5637 } 5638 5639 firstzero = tryzero; 5640 numzero = i - i % 2 - tryzero; 5641 tryzero = -1; 5642 5643 if (ip6._S6_un._S6_u8[i] == 0 && 5644 i == sizeof (struct in6_addr) - 1) 5645 numzero += 2; 5646 } 5647 } 5648 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5649 5650 /* 5651 * Check for an IPv4 embedded address. 5652 */ 5653 v6end = sizeof (struct in6_addr) - 2; 5654 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5655 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5656 for (i = sizeof (struct in6_addr) - 1; 5657 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5658 ASSERT(end >= base); 5659 5660 val = ip6._S6_un._S6_u8[i]; 5661 5662 if (val == 0) { 5663 *end-- = '0'; 5664 } else { 5665 for (; val; val /= 10) { 5666 *end-- = '0' + val % 10; 5667 } 5668 } 5669 5670 if (i > DTRACE_V4MAPPED_OFFSET) 5671 *end-- = '.'; 5672 } 5673 5674 if (subr == DIF_SUBR_INET_NTOA6) 5675 goto inetout; 5676 5677 /* 5678 * Set v6end to skip the IPv4 address that 5679 * we have already stringified. 5680 */ 5681 v6end = 10; 5682 } 5683 5684 /* 5685 * Build the IPv6 string by working through the 5686 * address in reverse. 5687 */ 5688 for (i = v6end; i >= 0; i -= 2) { 5689 ASSERT(end >= base); 5690 5691 if (i == firstzero + numzero - 2) { 5692 *end-- = ':'; 5693 *end-- = ':'; 5694 i -= numzero - 2; 5695 continue; 5696 } 5697 5698 if (i < 14 && i != firstzero - 2) 5699 *end-- = ':'; 5700 5701 val = (ip6._S6_un._S6_u8[i] << 8) + 5702 ip6._S6_un._S6_u8[i + 1]; 5703 5704 if (val == 0) { 5705 *end-- = '0'; 5706 } else { 5707 for (; val; val /= 16) { 5708 *end-- = digits[val % 16]; 5709 } 5710 } 5711 } 5712 ASSERT(end + 1 >= base); 5713 5714 } else { 5715 /* 5716 * The user didn't use AH_INET or AH_INET6. 5717 */ 5718 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5719 regs[rd] = NULL; 5720 break; 5721 } 5722 5723 inetout: regs[rd] = (uintptr_t)end + 1; 5724 mstate->dtms_scratch_ptr += size; 5725 break; 5726 } 5727 5728 } 5729 } 5730 5731 /* 5732 * Emulate the execution of DTrace IR instructions specified by the given 5733 * DIF object. This function is deliberately void of assertions as all of 5734 * the necessary checks are handled by a call to dtrace_difo_validate(). 5735 */ 5736 static uint64_t 5737 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5738 dtrace_vstate_t *vstate, dtrace_state_t *state) 5739 { 5740 const dif_instr_t *text = difo->dtdo_buf; 5741 const uint_t textlen = difo->dtdo_len; 5742 const char *strtab = difo->dtdo_strtab; 5743 const uint64_t *inttab = difo->dtdo_inttab; 5744 5745 uint64_t rval = 0; 5746 dtrace_statvar_t *svar; 5747 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5748 dtrace_difv_t *v; 5749 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5750 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5751 5752 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5753 uint64_t regs[DIF_DIR_NREGS]; 5754 uint64_t *tmp; 5755 5756 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5757 int64_t cc_r; 5758 uint_t pc = 0, id, opc; 5759 uint8_t ttop = 0; 5760 dif_instr_t instr; 5761 uint_t r1, r2, rd; 5762 5763 /* 5764 * We stash the current DIF object into the machine state: we need it 5765 * for subsequent access checking. 5766 */ 5767 mstate->dtms_difo = difo; 5768 5769 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5770 5771 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5772 opc = pc; 5773 5774 instr = text[pc++]; 5775 r1 = DIF_INSTR_R1(instr); 5776 r2 = DIF_INSTR_R2(instr); 5777 rd = DIF_INSTR_RD(instr); 5778 5779 switch (DIF_INSTR_OP(instr)) { 5780 case DIF_OP_OR: 5781 regs[rd] = regs[r1] | regs[r2]; 5782 break; 5783 case DIF_OP_XOR: 5784 regs[rd] = regs[r1] ^ regs[r2]; 5785 break; 5786 case DIF_OP_AND: 5787 regs[rd] = regs[r1] & regs[r2]; 5788 break; 5789 case DIF_OP_SLL: 5790 regs[rd] = regs[r1] << regs[r2]; 5791 break; 5792 case DIF_OP_SRL: 5793 regs[rd] = regs[r1] >> regs[r2]; 5794 break; 5795 case DIF_OP_SUB: 5796 regs[rd] = regs[r1] - regs[r2]; 5797 break; 5798 case DIF_OP_ADD: 5799 regs[rd] = regs[r1] + regs[r2]; 5800 break; 5801 case DIF_OP_MUL: 5802 regs[rd] = regs[r1] * regs[r2]; 5803 break; 5804 case DIF_OP_SDIV: 5805 if (regs[r2] == 0) { 5806 regs[rd] = 0; 5807 *flags |= CPU_DTRACE_DIVZERO; 5808 } else { 5809 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5810 regs[rd] = (int64_t)regs[r1] / 5811 (int64_t)regs[r2]; 5812 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5813 } 5814 break; 5815 5816 case DIF_OP_UDIV: 5817 if (regs[r2] == 0) { 5818 regs[rd] = 0; 5819 *flags |= CPU_DTRACE_DIVZERO; 5820 } else { 5821 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5822 regs[rd] = regs[r1] / regs[r2]; 5823 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5824 } 5825 break; 5826 5827 case DIF_OP_SREM: 5828 if (regs[r2] == 0) { 5829 regs[rd] = 0; 5830 *flags |= CPU_DTRACE_DIVZERO; 5831 } else { 5832 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5833 regs[rd] = (int64_t)regs[r1] % 5834 (int64_t)regs[r2]; 5835 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5836 } 5837 break; 5838 5839 case DIF_OP_UREM: 5840 if (regs[r2] == 0) { 5841 regs[rd] = 0; 5842 *flags |= CPU_DTRACE_DIVZERO; 5843 } else { 5844 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5845 regs[rd] = regs[r1] % regs[r2]; 5846 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5847 } 5848 break; 5849 5850 case DIF_OP_NOT: 5851 regs[rd] = ~regs[r1]; 5852 break; 5853 case DIF_OP_MOV: 5854 regs[rd] = regs[r1]; 5855 break; 5856 case DIF_OP_CMP: 5857 cc_r = regs[r1] - regs[r2]; 5858 cc_n = cc_r < 0; 5859 cc_z = cc_r == 0; 5860 cc_v = 0; 5861 cc_c = regs[r1] < regs[r2]; 5862 break; 5863 case DIF_OP_TST: 5864 cc_n = cc_v = cc_c = 0; 5865 cc_z = regs[r1] == 0; 5866 break; 5867 case DIF_OP_BA: 5868 pc = DIF_INSTR_LABEL(instr); 5869 break; 5870 case DIF_OP_BE: 5871 if (cc_z) 5872 pc = DIF_INSTR_LABEL(instr); 5873 break; 5874 case DIF_OP_BNE: 5875 if (cc_z == 0) 5876 pc = DIF_INSTR_LABEL(instr); 5877 break; 5878 case DIF_OP_BG: 5879 if ((cc_z | (cc_n ^ cc_v)) == 0) 5880 pc = DIF_INSTR_LABEL(instr); 5881 break; 5882 case DIF_OP_BGU: 5883 if ((cc_c | cc_z) == 0) 5884 pc = DIF_INSTR_LABEL(instr); 5885 break; 5886 case DIF_OP_BGE: 5887 if ((cc_n ^ cc_v) == 0) 5888 pc = DIF_INSTR_LABEL(instr); 5889 break; 5890 case DIF_OP_BGEU: 5891 if (cc_c == 0) 5892 pc = DIF_INSTR_LABEL(instr); 5893 break; 5894 case DIF_OP_BL: 5895 if (cc_n ^ cc_v) 5896 pc = DIF_INSTR_LABEL(instr); 5897 break; 5898 case DIF_OP_BLU: 5899 if (cc_c) 5900 pc = DIF_INSTR_LABEL(instr); 5901 break; 5902 case DIF_OP_BLE: 5903 if (cc_z | (cc_n ^ cc_v)) 5904 pc = DIF_INSTR_LABEL(instr); 5905 break; 5906 case DIF_OP_BLEU: 5907 if (cc_c | cc_z) 5908 pc = DIF_INSTR_LABEL(instr); 5909 break; 5910 case DIF_OP_RLDSB: 5911 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5912 break; 5913 /*FALLTHROUGH*/ 5914 case DIF_OP_LDSB: 5915 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5916 break; 5917 case DIF_OP_RLDSH: 5918 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5919 break; 5920 /*FALLTHROUGH*/ 5921 case DIF_OP_LDSH: 5922 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5923 break; 5924 case DIF_OP_RLDSW: 5925 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5926 break; 5927 /*FALLTHROUGH*/ 5928 case DIF_OP_LDSW: 5929 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5930 break; 5931 case DIF_OP_RLDUB: 5932 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5933 break; 5934 /*FALLTHROUGH*/ 5935 case DIF_OP_LDUB: 5936 regs[rd] = dtrace_load8(regs[r1]); 5937 break; 5938 case DIF_OP_RLDUH: 5939 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5940 break; 5941 /*FALLTHROUGH*/ 5942 case DIF_OP_LDUH: 5943 regs[rd] = dtrace_load16(regs[r1]); 5944 break; 5945 case DIF_OP_RLDUW: 5946 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5947 break; 5948 /*FALLTHROUGH*/ 5949 case DIF_OP_LDUW: 5950 regs[rd] = dtrace_load32(regs[r1]); 5951 break; 5952 case DIF_OP_RLDX: 5953 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5954 break; 5955 /*FALLTHROUGH*/ 5956 case DIF_OP_LDX: 5957 regs[rd] = dtrace_load64(regs[r1]); 5958 break; 5959 case DIF_OP_ULDSB: 5960 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5961 regs[rd] = (int8_t) 5962 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5963 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5964 break; 5965 case DIF_OP_ULDSH: 5966 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5967 regs[rd] = (int16_t) 5968 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5969 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5970 break; 5971 case DIF_OP_ULDSW: 5972 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5973 regs[rd] = (int32_t) 5974 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5975 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5976 break; 5977 case DIF_OP_ULDUB: 5978 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5979 regs[rd] = 5980 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5981 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5982 break; 5983 case DIF_OP_ULDUH: 5984 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5985 regs[rd] = 5986 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5987 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5988 break; 5989 case DIF_OP_ULDUW: 5990 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5991 regs[rd] = 5992 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5993 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5994 break; 5995 case DIF_OP_ULDX: 5996 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5997 regs[rd] = 5998 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5999 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6000 break; 6001 case DIF_OP_RET: 6002 rval = regs[rd]; 6003 pc = textlen; 6004 break; 6005 case DIF_OP_NOP: 6006 break; 6007 case DIF_OP_SETX: 6008 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6009 break; 6010 case DIF_OP_SETS: 6011 regs[rd] = (uint64_t)(uintptr_t) 6012 (strtab + DIF_INSTR_STRING(instr)); 6013 break; 6014 case DIF_OP_SCMP: { 6015 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6016 uintptr_t s1 = regs[r1]; 6017 uintptr_t s2 = regs[r2]; 6018 size_t lim1, lim2; 6019 6020 if (s1 != NULL && 6021 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6022 break; 6023 if (s2 != NULL && 6024 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6025 break; 6026 6027 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6028 MIN(lim1, lim2)); 6029 6030 cc_n = cc_r < 0; 6031 cc_z = cc_r == 0; 6032 cc_v = cc_c = 0; 6033 break; 6034 } 6035 case DIF_OP_LDGA: 6036 regs[rd] = dtrace_dif_variable(mstate, state, 6037 r1, regs[r2]); 6038 break; 6039 case DIF_OP_LDGS: 6040 id = DIF_INSTR_VAR(instr); 6041 6042 if (id >= DIF_VAR_OTHER_UBASE) { 6043 uintptr_t a; 6044 6045 id -= DIF_VAR_OTHER_UBASE; 6046 svar = vstate->dtvs_globals[id]; 6047 ASSERT(svar != NULL); 6048 v = &svar->dtsv_var; 6049 6050 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6051 regs[rd] = svar->dtsv_data; 6052 break; 6053 } 6054 6055 a = (uintptr_t)svar->dtsv_data; 6056 6057 if (*(uint8_t *)a == UINT8_MAX) { 6058 /* 6059 * If the 0th byte is set to UINT8_MAX 6060 * then this is to be treated as a 6061 * reference to a NULL variable. 6062 */ 6063 regs[rd] = NULL; 6064 } else { 6065 regs[rd] = a + sizeof (uint64_t); 6066 } 6067 6068 break; 6069 } 6070 6071 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6072 break; 6073 6074 case DIF_OP_STGA: 6075 dtrace_dif_variable_write(mstate, state, r1, regs[r2], 6076 regs[rd]); 6077 break; 6078 6079 case DIF_OP_STGS: 6080 id = DIF_INSTR_VAR(instr); 6081 6082 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6083 id -= DIF_VAR_OTHER_UBASE; 6084 6085 VERIFY(id < vstate->dtvs_nglobals); 6086 svar = vstate->dtvs_globals[id]; 6087 ASSERT(svar != NULL); 6088 v = &svar->dtsv_var; 6089 6090 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6091 uintptr_t a = (uintptr_t)svar->dtsv_data; 6092 size_t lim; 6093 6094 ASSERT(a != NULL); 6095 ASSERT(svar->dtsv_size != 0); 6096 6097 if (regs[rd] == NULL) { 6098 *(uint8_t *)a = UINT8_MAX; 6099 break; 6100 } else { 6101 *(uint8_t *)a = 0; 6102 a += sizeof (uint64_t); 6103 } 6104 if (!dtrace_vcanload( 6105 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6106 &lim, mstate, vstate)) 6107 break; 6108 6109 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6110 (void *)a, &v->dtdv_type, lim); 6111 break; 6112 } 6113 6114 svar->dtsv_data = regs[rd]; 6115 break; 6116 6117 case DIF_OP_LDTA: 6118 /* 6119 * There are no DTrace built-in thread-local arrays at 6120 * present. This opcode is saved for future work. 6121 */ 6122 *flags |= CPU_DTRACE_ILLOP; 6123 regs[rd] = 0; 6124 break; 6125 6126 case DIF_OP_LDLS: 6127 id = DIF_INSTR_VAR(instr); 6128 6129 if (id < DIF_VAR_OTHER_UBASE) { 6130 /* 6131 * For now, this has no meaning. 6132 */ 6133 regs[rd] = 0; 6134 break; 6135 } 6136 6137 id -= DIF_VAR_OTHER_UBASE; 6138 6139 ASSERT(id < vstate->dtvs_nlocals); 6140 ASSERT(vstate->dtvs_locals != NULL); 6141 6142 svar = vstate->dtvs_locals[id]; 6143 ASSERT(svar != NULL); 6144 v = &svar->dtsv_var; 6145 6146 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6147 uintptr_t a = (uintptr_t)svar->dtsv_data; 6148 size_t sz = v->dtdv_type.dtdt_size; 6149 6150 sz += sizeof (uint64_t); 6151 ASSERT(svar->dtsv_size == NCPU * sz); 6152 a += CPU->cpu_id * sz; 6153 6154 if (*(uint8_t *)a == UINT8_MAX) { 6155 /* 6156 * If the 0th byte is set to UINT8_MAX 6157 * then this is to be treated as a 6158 * reference to a NULL variable. 6159 */ 6160 regs[rd] = NULL; 6161 } else { 6162 regs[rd] = a + sizeof (uint64_t); 6163 } 6164 6165 break; 6166 } 6167 6168 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6169 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6170 regs[rd] = tmp[CPU->cpu_id]; 6171 break; 6172 6173 case DIF_OP_STLS: 6174 id = DIF_INSTR_VAR(instr); 6175 6176 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6177 id -= DIF_VAR_OTHER_UBASE; 6178 VERIFY(id < vstate->dtvs_nlocals); 6179 6180 ASSERT(vstate->dtvs_locals != NULL); 6181 svar = vstate->dtvs_locals[id]; 6182 ASSERT(svar != NULL); 6183 v = &svar->dtsv_var; 6184 6185 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6186 uintptr_t a = (uintptr_t)svar->dtsv_data; 6187 size_t sz = v->dtdv_type.dtdt_size; 6188 size_t lim; 6189 6190 sz += sizeof (uint64_t); 6191 ASSERT(svar->dtsv_size == NCPU * sz); 6192 a += CPU->cpu_id * sz; 6193 6194 if (regs[rd] == NULL) { 6195 *(uint8_t *)a = UINT8_MAX; 6196 break; 6197 } else { 6198 *(uint8_t *)a = 0; 6199 a += sizeof (uint64_t); 6200 } 6201 6202 if (!dtrace_vcanload( 6203 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6204 &lim, mstate, vstate)) 6205 break; 6206 6207 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6208 (void *)a, &v->dtdv_type, lim); 6209 break; 6210 } 6211 6212 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6213 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6214 tmp[CPU->cpu_id] = regs[rd]; 6215 break; 6216 6217 case DIF_OP_LDTS: { 6218 dtrace_dynvar_t *dvar; 6219 dtrace_key_t *key; 6220 6221 id = DIF_INSTR_VAR(instr); 6222 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6223 id -= DIF_VAR_OTHER_UBASE; 6224 v = &vstate->dtvs_tlocals[id]; 6225 6226 key = &tupregs[DIF_DTR_NREGS]; 6227 key[0].dttk_value = (uint64_t)id; 6228 key[0].dttk_size = 0; 6229 DTRACE_TLS_THRKEY(key[1].dttk_value); 6230 key[1].dttk_size = 0; 6231 6232 dvar = dtrace_dynvar(dstate, 2, key, 6233 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6234 mstate, vstate); 6235 6236 if (dvar == NULL) { 6237 regs[rd] = 0; 6238 break; 6239 } 6240 6241 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6242 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6243 } else { 6244 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6245 } 6246 6247 break; 6248 } 6249 6250 case DIF_OP_STTS: { 6251 dtrace_dynvar_t *dvar; 6252 dtrace_key_t *key; 6253 6254 id = DIF_INSTR_VAR(instr); 6255 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6256 id -= DIF_VAR_OTHER_UBASE; 6257 VERIFY(id < vstate->dtvs_ntlocals); 6258 6259 key = &tupregs[DIF_DTR_NREGS]; 6260 key[0].dttk_value = (uint64_t)id; 6261 key[0].dttk_size = 0; 6262 DTRACE_TLS_THRKEY(key[1].dttk_value); 6263 key[1].dttk_size = 0; 6264 v = &vstate->dtvs_tlocals[id]; 6265 6266 dvar = dtrace_dynvar(dstate, 2, key, 6267 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6268 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6269 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6270 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6271 6272 /* 6273 * Given that we're storing to thread-local data, 6274 * we need to flush our predicate cache. 6275 */ 6276 curthread->t_predcache = NULL; 6277 6278 if (dvar == NULL) 6279 break; 6280 6281 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6282 size_t lim; 6283 6284 if (!dtrace_vcanload( 6285 (void *)(uintptr_t)regs[rd], 6286 &v->dtdv_type, &lim, mstate, vstate)) 6287 break; 6288 6289 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6290 dvar->dtdv_data, &v->dtdv_type, lim); 6291 } else { 6292 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6293 } 6294 6295 break; 6296 } 6297 6298 case DIF_OP_SRA: 6299 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6300 break; 6301 6302 case DIF_OP_CALL: 6303 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6304 regs, tupregs, ttop, mstate, state); 6305 break; 6306 6307 case DIF_OP_PUSHTR: 6308 if (ttop == DIF_DTR_NREGS) { 6309 *flags |= CPU_DTRACE_TUPOFLOW; 6310 break; 6311 } 6312 6313 if (r1 == DIF_TYPE_STRING) { 6314 /* 6315 * If this is a string type and the size is 0, 6316 * we'll use the system-wide default string 6317 * size. Note that we are _not_ looking at 6318 * the value of the DTRACEOPT_STRSIZE option; 6319 * had this been set, we would expect to have 6320 * a non-zero size value in the "pushtr". 6321 */ 6322 tupregs[ttop].dttk_size = 6323 dtrace_strlen((char *)(uintptr_t)regs[rd], 6324 regs[r2] ? regs[r2] : 6325 dtrace_strsize_default) + 1; 6326 } else { 6327 if (regs[r2] > LONG_MAX) { 6328 *flags |= CPU_DTRACE_ILLOP; 6329 break; 6330 } 6331 6332 tupregs[ttop].dttk_size = regs[r2]; 6333 } 6334 6335 tupregs[ttop++].dttk_value = regs[rd]; 6336 break; 6337 6338 case DIF_OP_PUSHTV: 6339 if (ttop == DIF_DTR_NREGS) { 6340 *flags |= CPU_DTRACE_TUPOFLOW; 6341 break; 6342 } 6343 6344 tupregs[ttop].dttk_value = regs[rd]; 6345 tupregs[ttop++].dttk_size = 0; 6346 break; 6347 6348 case DIF_OP_POPTS: 6349 if (ttop != 0) 6350 ttop--; 6351 break; 6352 6353 case DIF_OP_FLUSHTS: 6354 ttop = 0; 6355 break; 6356 6357 case DIF_OP_LDGAA: 6358 case DIF_OP_LDTAA: { 6359 dtrace_dynvar_t *dvar; 6360 dtrace_key_t *key = tupregs; 6361 uint_t nkeys = ttop; 6362 6363 id = DIF_INSTR_VAR(instr); 6364 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6365 id -= DIF_VAR_OTHER_UBASE; 6366 6367 key[nkeys].dttk_value = (uint64_t)id; 6368 key[nkeys++].dttk_size = 0; 6369 6370 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6371 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6372 key[nkeys++].dttk_size = 0; 6373 VERIFY(id < vstate->dtvs_ntlocals); 6374 v = &vstate->dtvs_tlocals[id]; 6375 } else { 6376 VERIFY(id < vstate->dtvs_nglobals); 6377 v = &vstate->dtvs_globals[id]->dtsv_var; 6378 } 6379 6380 dvar = dtrace_dynvar(dstate, nkeys, key, 6381 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6382 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6383 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6384 6385 if (dvar == NULL) { 6386 regs[rd] = 0; 6387 break; 6388 } 6389 6390 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6391 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6392 } else { 6393 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6394 } 6395 6396 break; 6397 } 6398 6399 case DIF_OP_STGAA: 6400 case DIF_OP_STTAA: { 6401 dtrace_dynvar_t *dvar; 6402 dtrace_key_t *key = tupregs; 6403 uint_t nkeys = ttop; 6404 6405 id = DIF_INSTR_VAR(instr); 6406 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6407 id -= DIF_VAR_OTHER_UBASE; 6408 6409 key[nkeys].dttk_value = (uint64_t)id; 6410 key[nkeys++].dttk_size = 0; 6411 6412 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6413 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6414 key[nkeys++].dttk_size = 0; 6415 VERIFY(id < vstate->dtvs_ntlocals); 6416 v = &vstate->dtvs_tlocals[id]; 6417 } else { 6418 VERIFY(id < vstate->dtvs_nglobals); 6419 v = &vstate->dtvs_globals[id]->dtsv_var; 6420 } 6421 6422 dvar = dtrace_dynvar(dstate, nkeys, key, 6423 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6424 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6425 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6426 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6427 6428 if (dvar == NULL) 6429 break; 6430 6431 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6432 size_t lim; 6433 6434 if (!dtrace_vcanload( 6435 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6436 &lim, mstate, vstate)) 6437 break; 6438 6439 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6440 dvar->dtdv_data, &v->dtdv_type, lim); 6441 } else { 6442 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6443 } 6444 6445 break; 6446 } 6447 6448 case DIF_OP_ALLOCS: { 6449 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6450 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6451 6452 /* 6453 * Rounding up the user allocation size could have 6454 * overflowed large, bogus allocations (like -1ULL) to 6455 * 0. 6456 */ 6457 if (size < regs[r1] || 6458 !DTRACE_INSCRATCH(mstate, size)) { 6459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6460 regs[rd] = NULL; 6461 break; 6462 } 6463 6464 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6465 mstate->dtms_scratch_ptr += size; 6466 regs[rd] = ptr; 6467 break; 6468 } 6469 6470 case DIF_OP_COPYS: 6471 if (!dtrace_canstore(regs[rd], regs[r2], 6472 mstate, vstate)) { 6473 *flags |= CPU_DTRACE_BADADDR; 6474 *illval = regs[rd]; 6475 break; 6476 } 6477 6478 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6479 break; 6480 6481 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6482 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6483 break; 6484 6485 case DIF_OP_STB: 6486 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6487 *flags |= CPU_DTRACE_BADADDR; 6488 *illval = regs[rd]; 6489 break; 6490 } 6491 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6492 break; 6493 6494 case DIF_OP_STH: 6495 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6496 *flags |= CPU_DTRACE_BADADDR; 6497 *illval = regs[rd]; 6498 break; 6499 } 6500 if (regs[rd] & 1) { 6501 *flags |= CPU_DTRACE_BADALIGN; 6502 *illval = regs[rd]; 6503 break; 6504 } 6505 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6506 break; 6507 6508 case DIF_OP_STW: 6509 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6510 *flags |= CPU_DTRACE_BADADDR; 6511 *illval = regs[rd]; 6512 break; 6513 } 6514 if (regs[rd] & 3) { 6515 *flags |= CPU_DTRACE_BADALIGN; 6516 *illval = regs[rd]; 6517 break; 6518 } 6519 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6520 break; 6521 6522 case DIF_OP_STX: 6523 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6524 *flags |= CPU_DTRACE_BADADDR; 6525 *illval = regs[rd]; 6526 break; 6527 } 6528 if (regs[rd] & 7) { 6529 *flags |= CPU_DTRACE_BADALIGN; 6530 *illval = regs[rd]; 6531 break; 6532 } 6533 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6534 break; 6535 } 6536 } 6537 6538 if (!(*flags & CPU_DTRACE_FAULT)) 6539 return (rval); 6540 6541 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6542 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6543 6544 return (0); 6545 } 6546 6547 static void 6548 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6549 { 6550 dtrace_probe_t *probe = ecb->dte_probe; 6551 dtrace_provider_t *prov = probe->dtpr_provider; 6552 char c[DTRACE_FULLNAMELEN + 80], *str; 6553 char *msg = "dtrace: breakpoint action at probe "; 6554 char *ecbmsg = " (ecb "; 6555 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6556 uintptr_t val = (uintptr_t)ecb; 6557 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6558 6559 if (dtrace_destructive_disallow) 6560 return; 6561 6562 /* 6563 * It's impossible to be taking action on the NULL probe. 6564 */ 6565 ASSERT(probe != NULL); 6566 6567 /* 6568 * This is a poor man's (destitute man's?) sprintf(): we want to 6569 * print the provider name, module name, function name and name of 6570 * the probe, along with the hex address of the ECB with the breakpoint 6571 * action -- all of which we must place in the character buffer by 6572 * hand. 6573 */ 6574 while (*msg != '\0') 6575 c[i++] = *msg++; 6576 6577 for (str = prov->dtpv_name; *str != '\0'; str++) 6578 c[i++] = *str; 6579 c[i++] = ':'; 6580 6581 for (str = probe->dtpr_mod; *str != '\0'; str++) 6582 c[i++] = *str; 6583 c[i++] = ':'; 6584 6585 for (str = probe->dtpr_func; *str != '\0'; str++) 6586 c[i++] = *str; 6587 c[i++] = ':'; 6588 6589 for (str = probe->dtpr_name; *str != '\0'; str++) 6590 c[i++] = *str; 6591 6592 while (*ecbmsg != '\0') 6593 c[i++] = *ecbmsg++; 6594 6595 while (shift >= 0) { 6596 mask = (uintptr_t)0xf << shift; 6597 6598 if (val >= ((uintptr_t)1 << shift)) 6599 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6600 shift -= 4; 6601 } 6602 6603 c[i++] = ')'; 6604 c[i] = '\0'; 6605 6606 debug_enter(c); 6607 } 6608 6609 static void 6610 dtrace_action_panic(dtrace_ecb_t *ecb) 6611 { 6612 dtrace_probe_t *probe = ecb->dte_probe; 6613 6614 /* 6615 * It's impossible to be taking action on the NULL probe. 6616 */ 6617 ASSERT(probe != NULL); 6618 6619 if (dtrace_destructive_disallow) 6620 return; 6621 6622 if (dtrace_panicked != NULL) 6623 return; 6624 6625 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6626 return; 6627 6628 /* 6629 * We won the right to panic. (We want to be sure that only one 6630 * thread calls panic() from dtrace_probe(), and that panic() is 6631 * called exactly once.) 6632 */ 6633 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6634 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6635 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6636 } 6637 6638 static void 6639 dtrace_action_raise(uint64_t sig) 6640 { 6641 if (dtrace_destructive_disallow) 6642 return; 6643 6644 if (sig >= NSIG) { 6645 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6646 return; 6647 } 6648 6649 /* 6650 * raise() has a queue depth of 1 -- we ignore all subsequent 6651 * invocations of the raise() action. 6652 */ 6653 if (curthread->t_dtrace_sig == 0) 6654 curthread->t_dtrace_sig = (uint8_t)sig; 6655 6656 curthread->t_sig_check = 1; 6657 aston(curthread); 6658 } 6659 6660 static void 6661 dtrace_action_stop(void) 6662 { 6663 if (dtrace_destructive_disallow) 6664 return; 6665 6666 if (!curthread->t_dtrace_stop) { 6667 curthread->t_dtrace_stop = 1; 6668 curthread->t_sig_check = 1; 6669 aston(curthread); 6670 } 6671 } 6672 6673 static void 6674 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6675 { 6676 hrtime_t now; 6677 volatile uint16_t *flags; 6678 cpu_t *cpu = CPU; 6679 6680 if (dtrace_destructive_disallow) 6681 return; 6682 6683 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6684 6685 now = dtrace_gethrtime(); 6686 6687 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6688 /* 6689 * We need to advance the mark to the current time. 6690 */ 6691 cpu->cpu_dtrace_chillmark = now; 6692 cpu->cpu_dtrace_chilled = 0; 6693 } 6694 6695 /* 6696 * Now check to see if the requested chill time would take us over 6697 * the maximum amount of time allowed in the chill interval. (Or 6698 * worse, if the calculation itself induces overflow.) 6699 */ 6700 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6701 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6702 *flags |= CPU_DTRACE_ILLOP; 6703 return; 6704 } 6705 6706 while (dtrace_gethrtime() - now < val) 6707 continue; 6708 6709 /* 6710 * Normally, we assure that the value of the variable "timestamp" does 6711 * not change within an ECB. The presence of chill() represents an 6712 * exception to this rule, however. 6713 */ 6714 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6715 cpu->cpu_dtrace_chilled += val; 6716 } 6717 6718 static void 6719 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6720 uint64_t *buf, uint64_t arg) 6721 { 6722 int nframes = DTRACE_USTACK_NFRAMES(arg); 6723 int strsize = DTRACE_USTACK_STRSIZE(arg); 6724 uint64_t *pcs = &buf[1], *fps; 6725 char *str = (char *)&pcs[nframes]; 6726 int size, offs = 0, i, j; 6727 size_t rem; 6728 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6729 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6730 char *sym; 6731 6732 /* 6733 * Should be taking a faster path if string space has not been 6734 * allocated. 6735 */ 6736 ASSERT(strsize != 0); 6737 6738 /* 6739 * We will first allocate some temporary space for the frame pointers. 6740 */ 6741 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6742 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6743 (nframes * sizeof (uint64_t)); 6744 6745 if (!DTRACE_INSCRATCH(mstate, size)) { 6746 /* 6747 * Not enough room for our frame pointers -- need to indicate 6748 * that we ran out of scratch space. 6749 */ 6750 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6751 return; 6752 } 6753 6754 mstate->dtms_scratch_ptr += size; 6755 saved = mstate->dtms_scratch_ptr; 6756 6757 /* 6758 * Now get a stack with both program counters and frame pointers. 6759 */ 6760 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6761 dtrace_getufpstack(buf, fps, nframes + 1); 6762 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6763 6764 /* 6765 * If that faulted, we're cooked. 6766 */ 6767 if (*flags & CPU_DTRACE_FAULT) 6768 goto out; 6769 6770 /* 6771 * Now we want to walk up the stack, calling the USTACK helper. For 6772 * each iteration, we restore the scratch pointer. 6773 */ 6774 for (i = 0; i < nframes; i++) { 6775 mstate->dtms_scratch_ptr = saved; 6776 6777 if (offs >= strsize) 6778 break; 6779 6780 sym = (char *)(uintptr_t)dtrace_helper( 6781 DTRACE_HELPER_ACTION_USTACK, 6782 mstate, state, pcs[i], fps[i]); 6783 6784 /* 6785 * If we faulted while running the helper, we're going to 6786 * clear the fault and null out the corresponding string. 6787 */ 6788 if (*flags & CPU_DTRACE_FAULT) { 6789 *flags &= ~CPU_DTRACE_FAULT; 6790 str[offs++] = '\0'; 6791 continue; 6792 } 6793 6794 if (sym == NULL) { 6795 str[offs++] = '\0'; 6796 continue; 6797 } 6798 6799 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6800 &(state->dts_vstate))) { 6801 str[offs++] = '\0'; 6802 continue; 6803 } 6804 6805 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6806 6807 /* 6808 * Now copy in the string that the helper returned to us. 6809 */ 6810 for (j = 0; offs + j < strsize && j < rem; j++) { 6811 if ((str[offs + j] = sym[j]) == '\0') 6812 break; 6813 } 6814 6815 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6816 6817 offs += j + 1; 6818 } 6819 6820 if (offs >= strsize) { 6821 /* 6822 * If we didn't have room for all of the strings, we don't 6823 * abort processing -- this needn't be a fatal error -- but we 6824 * still want to increment a counter (dts_stkstroverflows) to 6825 * allow this condition to be warned about. (If this is from 6826 * a jstack() action, it is easily tuned via jstackstrsize.) 6827 */ 6828 dtrace_error(&state->dts_stkstroverflows); 6829 } 6830 6831 while (offs < strsize) 6832 str[offs++] = '\0'; 6833 6834 out: 6835 mstate->dtms_scratch_ptr = old; 6836 } 6837 6838 static void 6839 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6840 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6841 { 6842 volatile uint16_t *flags; 6843 uint64_t val = *valp; 6844 size_t valoffs = *valoffsp; 6845 6846 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6847 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6848 6849 /* 6850 * If this is a string, we're going to only load until we find the zero 6851 * byte -- after which we'll store zero bytes. 6852 */ 6853 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6854 char c = '\0' + 1; 6855 size_t s; 6856 6857 for (s = 0; s < size; s++) { 6858 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6859 c = dtrace_load8(val++); 6860 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6861 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6862 c = dtrace_fuword8((void *)(uintptr_t)val++); 6863 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6864 if (*flags & CPU_DTRACE_FAULT) 6865 break; 6866 } 6867 6868 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6869 6870 if (c == '\0' && intuple) 6871 break; 6872 } 6873 } else { 6874 uint8_t c; 6875 while (valoffs < end) { 6876 if (dtkind == DIF_TF_BYREF) { 6877 c = dtrace_load8(val++); 6878 } else if (dtkind == DIF_TF_BYUREF) { 6879 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6880 c = dtrace_fuword8((void *)(uintptr_t)val++); 6881 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6882 if (*flags & CPU_DTRACE_FAULT) 6883 break; 6884 } 6885 6886 DTRACE_STORE(uint8_t, tomax, 6887 valoffs++, c); 6888 } 6889 } 6890 6891 *valp = val; 6892 *valoffsp = valoffs; 6893 } 6894 6895 /* 6896 * If you're looking for the epicenter of DTrace, you just found it. This 6897 * is the function called by the provider to fire a probe -- from which all 6898 * subsequent probe-context DTrace activity emanates. 6899 */ 6900 void 6901 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6902 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6903 { 6904 processorid_t cpuid; 6905 dtrace_icookie_t cookie; 6906 dtrace_probe_t *probe; 6907 dtrace_mstate_t mstate; 6908 dtrace_ecb_t *ecb; 6909 dtrace_action_t *act; 6910 intptr_t offs; 6911 size_t size; 6912 int vtime, onintr; 6913 volatile uint16_t *flags; 6914 hrtime_t now, end; 6915 6916 /* 6917 * Kick out immediately if this CPU is still being born (in which case 6918 * curthread will be set to -1) or the current thread can't allow 6919 * probes in its current context. 6920 */ 6921 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6922 return; 6923 6924 cookie = dtrace_interrupt_disable(); 6925 probe = dtrace_probes[id - 1]; 6926 cpuid = CPU->cpu_id; 6927 onintr = CPU_ON_INTR(CPU); 6928 6929 CPU->cpu_dtrace_probes++; 6930 6931 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6932 probe->dtpr_predcache == curthread->t_predcache) { 6933 /* 6934 * We have hit in the predicate cache; we know that 6935 * this predicate would evaluate to be false. 6936 */ 6937 dtrace_interrupt_enable(cookie); 6938 return; 6939 } 6940 6941 if (panic_quiesce) { 6942 /* 6943 * We don't trace anything if we're panicking. 6944 */ 6945 dtrace_interrupt_enable(cookie); 6946 return; 6947 } 6948 6949 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6950 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6951 vtime = dtrace_vtime_references != 0; 6952 6953 if (vtime && curthread->t_dtrace_start) 6954 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6955 6956 mstate.dtms_difo = NULL; 6957 mstate.dtms_probe = probe; 6958 mstate.dtms_strtok = NULL; 6959 mstate.dtms_arg[0] = arg0; 6960 mstate.dtms_arg[1] = arg1; 6961 mstate.dtms_arg[2] = arg2; 6962 mstate.dtms_arg[3] = arg3; 6963 mstate.dtms_arg[4] = arg4; 6964 6965 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6966 6967 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6968 dtrace_predicate_t *pred = ecb->dte_predicate; 6969 dtrace_state_t *state = ecb->dte_state; 6970 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6971 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6972 dtrace_vstate_t *vstate = &state->dts_vstate; 6973 dtrace_provider_t *prov = probe->dtpr_provider; 6974 uint64_t tracememsize = 0; 6975 int committed = 0; 6976 caddr_t tomax; 6977 6978 /* 6979 * A little subtlety with the following (seemingly innocuous) 6980 * declaration of the automatic 'val': by looking at the 6981 * code, you might think that it could be declared in the 6982 * action processing loop, below. (That is, it's only used in 6983 * the action processing loop.) However, it must be declared 6984 * out of that scope because in the case of DIF expression 6985 * arguments to aggregating actions, one iteration of the 6986 * action loop will use the last iteration's value. 6987 */ 6988 #ifdef lint 6989 uint64_t val = 0; 6990 #else 6991 uint64_t val; 6992 #endif 6993 6994 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6995 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6996 mstate.dtms_getf = NULL; 6997 6998 *flags &= ~CPU_DTRACE_ERROR; 6999 7000 if (prov == dtrace_provider) { 7001 /* 7002 * If dtrace itself is the provider of this probe, 7003 * we're only going to continue processing the ECB if 7004 * arg0 (the dtrace_state_t) is equal to the ECB's 7005 * creating state. (This prevents disjoint consumers 7006 * from seeing one another's metaprobes.) 7007 */ 7008 if (arg0 != (uint64_t)(uintptr_t)state) 7009 continue; 7010 } 7011 7012 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7013 /* 7014 * We're not currently active. If our provider isn't 7015 * the dtrace pseudo provider, we're not interested. 7016 */ 7017 if (prov != dtrace_provider) 7018 continue; 7019 7020 /* 7021 * Now we must further check if we are in the BEGIN 7022 * probe. If we are, we will only continue processing 7023 * if we're still in WARMUP -- if one BEGIN enabling 7024 * has invoked the exit() action, we don't want to 7025 * evaluate subsequent BEGIN enablings. 7026 */ 7027 if (probe->dtpr_id == dtrace_probeid_begin && 7028 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7029 ASSERT(state->dts_activity == 7030 DTRACE_ACTIVITY_DRAINING); 7031 continue; 7032 } 7033 } 7034 7035 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 7036 continue; 7037 7038 if (now - state->dts_alive > dtrace_deadman_timeout) { 7039 /* 7040 * We seem to be dead. Unless we (a) have kernel 7041 * destructive permissions (b) have explicitly enabled 7042 * destructive actions and (c) destructive actions have 7043 * not been disabled, we're going to transition into 7044 * the KILLED state, from which no further processing 7045 * on this state will be performed. 7046 */ 7047 if (!dtrace_priv_kernel_destructive(state) || 7048 !state->dts_cred.dcr_destructive || 7049 dtrace_destructive_disallow) { 7050 void *activity = &state->dts_activity; 7051 dtrace_activity_t current; 7052 7053 do { 7054 current = state->dts_activity; 7055 } while (dtrace_cas32(activity, current, 7056 DTRACE_ACTIVITY_KILLED) != current); 7057 7058 continue; 7059 } 7060 } 7061 7062 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7063 ecb->dte_alignment, state, &mstate)) < 0) 7064 continue; 7065 7066 tomax = buf->dtb_tomax; 7067 ASSERT(tomax != NULL); 7068 7069 if (ecb->dte_size != 0) { 7070 dtrace_rechdr_t dtrh; 7071 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7072 mstate.dtms_timestamp = dtrace_gethrtime(); 7073 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7074 } 7075 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7076 dtrh.dtrh_epid = ecb->dte_epid; 7077 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7078 mstate.dtms_timestamp); 7079 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7080 } 7081 7082 mstate.dtms_epid = ecb->dte_epid; 7083 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7084 7085 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7086 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7087 7088 if (pred != NULL) { 7089 dtrace_difo_t *dp = pred->dtp_difo; 7090 int rval; 7091 7092 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7093 7094 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7095 dtrace_cacheid_t cid = probe->dtpr_predcache; 7096 7097 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7098 /* 7099 * Update the predicate cache... 7100 */ 7101 ASSERT(cid == pred->dtp_cacheid); 7102 curthread->t_predcache = cid; 7103 } 7104 7105 continue; 7106 } 7107 } 7108 7109 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7110 act != NULL; act = act->dta_next) { 7111 size_t valoffs; 7112 dtrace_difo_t *dp; 7113 dtrace_recdesc_t *rec = &act->dta_rec; 7114 7115 size = rec->dtrd_size; 7116 valoffs = offs + rec->dtrd_offset; 7117 7118 if (DTRACEACT_ISAGG(act->dta_kind)) { 7119 uint64_t v = 0xbad; 7120 dtrace_aggregation_t *agg; 7121 7122 agg = (dtrace_aggregation_t *)act; 7123 7124 if ((dp = act->dta_difo) != NULL) 7125 v = dtrace_dif_emulate(dp, 7126 &mstate, vstate, state); 7127 7128 if (*flags & CPU_DTRACE_ERROR) 7129 continue; 7130 7131 /* 7132 * Note that we always pass the expression 7133 * value from the previous iteration of the 7134 * action loop. This value will only be used 7135 * if there is an expression argument to the 7136 * aggregating action, denoted by the 7137 * dtag_hasarg field. 7138 */ 7139 dtrace_aggregate(agg, buf, 7140 offs, aggbuf, v, val); 7141 continue; 7142 } 7143 7144 switch (act->dta_kind) { 7145 case DTRACEACT_STOP: 7146 if (dtrace_priv_proc_destructive(state, 7147 &mstate)) 7148 dtrace_action_stop(); 7149 continue; 7150 7151 case DTRACEACT_BREAKPOINT: 7152 if (dtrace_priv_kernel_destructive(state)) 7153 dtrace_action_breakpoint(ecb); 7154 continue; 7155 7156 case DTRACEACT_PANIC: 7157 if (dtrace_priv_kernel_destructive(state)) 7158 dtrace_action_panic(ecb); 7159 continue; 7160 7161 case DTRACEACT_STACK: 7162 if (!dtrace_priv_kernel(state)) 7163 continue; 7164 7165 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7166 size / sizeof (pc_t), probe->dtpr_aframes, 7167 DTRACE_ANCHORED(probe) ? NULL : 7168 (uint32_t *)arg0); 7169 7170 continue; 7171 7172 case DTRACEACT_JSTACK: 7173 case DTRACEACT_USTACK: 7174 if (!dtrace_priv_proc(state, &mstate)) 7175 continue; 7176 7177 /* 7178 * See comment in DIF_VAR_PID. 7179 */ 7180 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7181 CPU_ON_INTR(CPU)) { 7182 int depth = DTRACE_USTACK_NFRAMES( 7183 rec->dtrd_arg) + 1; 7184 7185 dtrace_bzero((void *)(tomax + valoffs), 7186 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7187 + depth * sizeof (uint64_t)); 7188 7189 continue; 7190 } 7191 7192 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7193 curproc->p_dtrace_helpers != NULL) { 7194 /* 7195 * This is the slow path -- we have 7196 * allocated string space, and we're 7197 * getting the stack of a process that 7198 * has helpers. Call into a separate 7199 * routine to perform this processing. 7200 */ 7201 dtrace_action_ustack(&mstate, state, 7202 (uint64_t *)(tomax + valoffs), 7203 rec->dtrd_arg); 7204 continue; 7205 } 7206 7207 /* 7208 * Clear the string space, since there's no 7209 * helper to do it for us. 7210 */ 7211 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7212 int depth = DTRACE_USTACK_NFRAMES( 7213 rec->dtrd_arg); 7214 size_t strsize = DTRACE_USTACK_STRSIZE( 7215 rec->dtrd_arg); 7216 uint64_t *buf = (uint64_t *)(tomax + 7217 valoffs); 7218 void *strspace = &buf[depth + 1]; 7219 7220 dtrace_bzero(strspace, 7221 MIN(depth, strsize)); 7222 } 7223 7224 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7225 dtrace_getupcstack((uint64_t *) 7226 (tomax + valoffs), 7227 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7228 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7229 continue; 7230 7231 default: 7232 break; 7233 } 7234 7235 dp = act->dta_difo; 7236 ASSERT(dp != NULL); 7237 7238 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7239 7240 if (*flags & CPU_DTRACE_ERROR) 7241 continue; 7242 7243 switch (act->dta_kind) { 7244 case DTRACEACT_SPECULATE: { 7245 dtrace_rechdr_t *dtrh; 7246 7247 ASSERT(buf == &state->dts_buffer[cpuid]); 7248 buf = dtrace_speculation_buffer(state, 7249 cpuid, val); 7250 7251 if (buf == NULL) { 7252 *flags |= CPU_DTRACE_DROP; 7253 continue; 7254 } 7255 7256 offs = dtrace_buffer_reserve(buf, 7257 ecb->dte_needed, ecb->dte_alignment, 7258 state, NULL); 7259 7260 if (offs < 0) { 7261 *flags |= CPU_DTRACE_DROP; 7262 continue; 7263 } 7264 7265 tomax = buf->dtb_tomax; 7266 ASSERT(tomax != NULL); 7267 7268 if (ecb->dte_size == 0) 7269 continue; 7270 7271 ASSERT3U(ecb->dte_size, >=, 7272 sizeof (dtrace_rechdr_t)); 7273 dtrh = ((void *)(tomax + offs)); 7274 dtrh->dtrh_epid = ecb->dte_epid; 7275 /* 7276 * When the speculation is committed, all of 7277 * the records in the speculative buffer will 7278 * have their timestamps set to the commit 7279 * time. Until then, it is set to a sentinel 7280 * value, for debugability. 7281 */ 7282 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7283 continue; 7284 } 7285 7286 case DTRACEACT_CHILL: 7287 if (dtrace_priv_kernel_destructive(state)) 7288 dtrace_action_chill(&mstate, val); 7289 continue; 7290 7291 case DTRACEACT_RAISE: 7292 if (dtrace_priv_proc_destructive(state, 7293 &mstate)) 7294 dtrace_action_raise(val); 7295 continue; 7296 7297 case DTRACEACT_COMMIT: 7298 ASSERT(!committed); 7299 7300 /* 7301 * We need to commit our buffer state. 7302 */ 7303 if (ecb->dte_size) 7304 buf->dtb_offset = offs + ecb->dte_size; 7305 buf = &state->dts_buffer[cpuid]; 7306 dtrace_speculation_commit(state, cpuid, val); 7307 committed = 1; 7308 continue; 7309 7310 case DTRACEACT_DISCARD: 7311 dtrace_speculation_discard(state, cpuid, val); 7312 continue; 7313 7314 case DTRACEACT_DIFEXPR: 7315 case DTRACEACT_LIBACT: 7316 case DTRACEACT_PRINTF: 7317 case DTRACEACT_PRINTA: 7318 case DTRACEACT_SYSTEM: 7319 case DTRACEACT_FREOPEN: 7320 case DTRACEACT_TRACEMEM: 7321 break; 7322 7323 case DTRACEACT_TRACEMEM_DYNSIZE: 7324 tracememsize = val; 7325 break; 7326 7327 case DTRACEACT_SYM: 7328 case DTRACEACT_MOD: 7329 if (!dtrace_priv_kernel(state)) 7330 continue; 7331 break; 7332 7333 case DTRACEACT_USYM: 7334 case DTRACEACT_UMOD: 7335 case DTRACEACT_UADDR: { 7336 struct pid *pid = curthread->t_procp->p_pidp; 7337 7338 if (!dtrace_priv_proc(state, &mstate)) 7339 continue; 7340 7341 DTRACE_STORE(uint64_t, tomax, 7342 valoffs, (uint64_t)pid->pid_id); 7343 DTRACE_STORE(uint64_t, tomax, 7344 valoffs + sizeof (uint64_t), val); 7345 7346 continue; 7347 } 7348 7349 case DTRACEACT_EXIT: { 7350 /* 7351 * For the exit action, we are going to attempt 7352 * to atomically set our activity to be 7353 * draining. If this fails (either because 7354 * another CPU has beat us to the exit action, 7355 * or because our current activity is something 7356 * other than ACTIVE or WARMUP), we will 7357 * continue. This assures that the exit action 7358 * can be successfully recorded at most once 7359 * when we're in the ACTIVE state. If we're 7360 * encountering the exit() action while in 7361 * COOLDOWN, however, we want to honor the new 7362 * status code. (We know that we're the only 7363 * thread in COOLDOWN, so there is no race.) 7364 */ 7365 void *activity = &state->dts_activity; 7366 dtrace_activity_t current = state->dts_activity; 7367 7368 if (current == DTRACE_ACTIVITY_COOLDOWN) 7369 break; 7370 7371 if (current != DTRACE_ACTIVITY_WARMUP) 7372 current = DTRACE_ACTIVITY_ACTIVE; 7373 7374 if (dtrace_cas32(activity, current, 7375 DTRACE_ACTIVITY_DRAINING) != current) { 7376 *flags |= CPU_DTRACE_DROP; 7377 continue; 7378 } 7379 7380 break; 7381 } 7382 7383 default: 7384 ASSERT(0); 7385 } 7386 7387 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7388 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7389 uintptr_t end = valoffs + size; 7390 7391 if (tracememsize != 0 && 7392 valoffs + tracememsize < end) { 7393 end = valoffs + tracememsize; 7394 tracememsize = 0; 7395 } 7396 7397 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7398 !dtrace_vcanload((void *)(uintptr_t)val, 7399 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7400 continue; 7401 7402 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7403 &val, end, act->dta_intuple, 7404 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7405 DIF_TF_BYREF: DIF_TF_BYUREF); 7406 continue; 7407 } 7408 7409 switch (size) { 7410 case 0: 7411 break; 7412 7413 case sizeof (uint8_t): 7414 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7415 break; 7416 case sizeof (uint16_t): 7417 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7418 break; 7419 case sizeof (uint32_t): 7420 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7421 break; 7422 case sizeof (uint64_t): 7423 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7424 break; 7425 default: 7426 /* 7427 * Any other size should have been returned by 7428 * reference, not by value. 7429 */ 7430 ASSERT(0); 7431 break; 7432 } 7433 } 7434 7435 if (*flags & CPU_DTRACE_DROP) 7436 continue; 7437 7438 if (*flags & CPU_DTRACE_FAULT) { 7439 int ndx; 7440 dtrace_action_t *err; 7441 7442 buf->dtb_errors++; 7443 7444 if (probe->dtpr_id == dtrace_probeid_error) { 7445 /* 7446 * There's nothing we can do -- we had an 7447 * error on the error probe. We bump an 7448 * error counter to at least indicate that 7449 * this condition happened. 7450 */ 7451 dtrace_error(&state->dts_dblerrors); 7452 continue; 7453 } 7454 7455 if (vtime) { 7456 /* 7457 * Before recursing on dtrace_probe(), we 7458 * need to explicitly clear out our start 7459 * time to prevent it from being accumulated 7460 * into t_dtrace_vtime. 7461 */ 7462 curthread->t_dtrace_start = 0; 7463 } 7464 7465 /* 7466 * Iterate over the actions to figure out which action 7467 * we were processing when we experienced the error. 7468 * Note that act points _past_ the faulting action; if 7469 * act is ecb->dte_action, the fault was in the 7470 * predicate, if it's ecb->dte_action->dta_next it's 7471 * in action #1, and so on. 7472 */ 7473 for (err = ecb->dte_action, ndx = 0; 7474 err != act; err = err->dta_next, ndx++) 7475 continue; 7476 7477 dtrace_probe_error(state, ecb->dte_epid, ndx, 7478 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7479 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7480 cpu_core[cpuid].cpuc_dtrace_illval); 7481 7482 continue; 7483 } 7484 7485 if (!committed) 7486 buf->dtb_offset = offs + ecb->dte_size; 7487 } 7488 7489 end = dtrace_gethrtime(); 7490 if (vtime) 7491 curthread->t_dtrace_start = end; 7492 7493 CPU->cpu_dtrace_nsec += end - now; 7494 7495 dtrace_interrupt_enable(cookie); 7496 } 7497 7498 /* 7499 * DTrace Probe Hashing Functions 7500 * 7501 * The functions in this section (and indeed, the functions in remaining 7502 * sections) are not _called_ from probe context. (Any exceptions to this are 7503 * marked with a "Note:".) Rather, they are called from elsewhere in the 7504 * DTrace framework to look-up probes in, add probes to and remove probes from 7505 * the DTrace probe hashes. (Each probe is hashed by each element of the 7506 * probe tuple -- allowing for fast lookups, regardless of what was 7507 * specified.) 7508 */ 7509 static uint_t 7510 dtrace_hash_str(char *p) 7511 { 7512 unsigned int g; 7513 uint_t hval = 0; 7514 7515 while (*p) { 7516 hval = (hval << 4) + *p++; 7517 if ((g = (hval & 0xf0000000)) != 0) 7518 hval ^= g >> 24; 7519 hval &= ~g; 7520 } 7521 return (hval); 7522 } 7523 7524 static dtrace_hash_t * 7525 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7526 { 7527 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7528 7529 hash->dth_stroffs = stroffs; 7530 hash->dth_nextoffs = nextoffs; 7531 hash->dth_prevoffs = prevoffs; 7532 7533 hash->dth_size = 1; 7534 hash->dth_mask = hash->dth_size - 1; 7535 7536 hash->dth_tab = kmem_zalloc(hash->dth_size * 7537 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7538 7539 return (hash); 7540 } 7541 7542 static void 7543 dtrace_hash_destroy(dtrace_hash_t *hash) 7544 { 7545 #ifdef DEBUG 7546 int i; 7547 7548 for (i = 0; i < hash->dth_size; i++) 7549 ASSERT(hash->dth_tab[i] == NULL); 7550 #endif 7551 7552 kmem_free(hash->dth_tab, 7553 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7554 kmem_free(hash, sizeof (dtrace_hash_t)); 7555 } 7556 7557 static void 7558 dtrace_hash_resize(dtrace_hash_t *hash) 7559 { 7560 int size = hash->dth_size, i, ndx; 7561 int new_size = hash->dth_size << 1; 7562 int new_mask = new_size - 1; 7563 dtrace_hashbucket_t **new_tab, *bucket, *next; 7564 7565 ASSERT((new_size & new_mask) == 0); 7566 7567 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7568 7569 for (i = 0; i < size; i++) { 7570 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7571 dtrace_probe_t *probe = bucket->dthb_chain; 7572 7573 ASSERT(probe != NULL); 7574 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7575 7576 next = bucket->dthb_next; 7577 bucket->dthb_next = new_tab[ndx]; 7578 new_tab[ndx] = bucket; 7579 } 7580 } 7581 7582 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7583 hash->dth_tab = new_tab; 7584 hash->dth_size = new_size; 7585 hash->dth_mask = new_mask; 7586 } 7587 7588 static void 7589 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7590 { 7591 int hashval = DTRACE_HASHSTR(hash, new); 7592 int ndx = hashval & hash->dth_mask; 7593 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7594 dtrace_probe_t **nextp, **prevp; 7595 7596 for (; bucket != NULL; bucket = bucket->dthb_next) { 7597 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7598 goto add; 7599 } 7600 7601 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7602 dtrace_hash_resize(hash); 7603 dtrace_hash_add(hash, new); 7604 return; 7605 } 7606 7607 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7608 bucket->dthb_next = hash->dth_tab[ndx]; 7609 hash->dth_tab[ndx] = bucket; 7610 hash->dth_nbuckets++; 7611 7612 add: 7613 nextp = DTRACE_HASHNEXT(hash, new); 7614 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7615 *nextp = bucket->dthb_chain; 7616 7617 if (bucket->dthb_chain != NULL) { 7618 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7619 ASSERT(*prevp == NULL); 7620 *prevp = new; 7621 } 7622 7623 bucket->dthb_chain = new; 7624 bucket->dthb_len++; 7625 } 7626 7627 static dtrace_probe_t * 7628 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7629 { 7630 int hashval = DTRACE_HASHSTR(hash, template); 7631 int ndx = hashval & hash->dth_mask; 7632 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7633 7634 for (; bucket != NULL; bucket = bucket->dthb_next) { 7635 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7636 return (bucket->dthb_chain); 7637 } 7638 7639 return (NULL); 7640 } 7641 7642 static int 7643 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7644 { 7645 int hashval = DTRACE_HASHSTR(hash, template); 7646 int ndx = hashval & hash->dth_mask; 7647 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7648 7649 for (; bucket != NULL; bucket = bucket->dthb_next) { 7650 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7651 return (bucket->dthb_len); 7652 } 7653 7654 return (NULL); 7655 } 7656 7657 static void 7658 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7659 { 7660 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7661 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7662 7663 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7664 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7665 7666 /* 7667 * Find the bucket that we're removing this probe from. 7668 */ 7669 for (; bucket != NULL; bucket = bucket->dthb_next) { 7670 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7671 break; 7672 } 7673 7674 ASSERT(bucket != NULL); 7675 7676 if (*prevp == NULL) { 7677 if (*nextp == NULL) { 7678 /* 7679 * The removed probe was the only probe on this 7680 * bucket; we need to remove the bucket. 7681 */ 7682 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7683 7684 ASSERT(bucket->dthb_chain == probe); 7685 ASSERT(b != NULL); 7686 7687 if (b == bucket) { 7688 hash->dth_tab[ndx] = bucket->dthb_next; 7689 } else { 7690 while (b->dthb_next != bucket) 7691 b = b->dthb_next; 7692 b->dthb_next = bucket->dthb_next; 7693 } 7694 7695 ASSERT(hash->dth_nbuckets > 0); 7696 hash->dth_nbuckets--; 7697 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7698 return; 7699 } 7700 7701 bucket->dthb_chain = *nextp; 7702 } else { 7703 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7704 } 7705 7706 if (*nextp != NULL) 7707 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7708 } 7709 7710 /* 7711 * DTrace Utility Functions 7712 * 7713 * These are random utility functions that are _not_ called from probe context. 7714 */ 7715 static int 7716 dtrace_badattr(const dtrace_attribute_t *a) 7717 { 7718 return (a->dtat_name > DTRACE_STABILITY_MAX || 7719 a->dtat_data > DTRACE_STABILITY_MAX || 7720 a->dtat_class > DTRACE_CLASS_MAX); 7721 } 7722 7723 /* 7724 * Return a duplicate copy of a string. If the specified string is NULL, 7725 * this function returns a zero-length string. 7726 */ 7727 static char * 7728 dtrace_strdup(const char *str) 7729 { 7730 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7731 7732 if (str != NULL) 7733 (void) strcpy(new, str); 7734 7735 return (new); 7736 } 7737 7738 #define DTRACE_ISALPHA(c) \ 7739 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7740 7741 static int 7742 dtrace_badname(const char *s) 7743 { 7744 char c; 7745 7746 if (s == NULL || (c = *s++) == '\0') 7747 return (0); 7748 7749 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7750 return (1); 7751 7752 while ((c = *s++) != '\0') { 7753 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7754 c != '-' && c != '_' && c != '.' && c != '`') 7755 return (1); 7756 } 7757 7758 return (0); 7759 } 7760 7761 static void 7762 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7763 { 7764 uint32_t priv; 7765 7766 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7767 /* 7768 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7769 */ 7770 priv = DTRACE_PRIV_ALL; 7771 } else { 7772 *uidp = crgetuid(cr); 7773 *zoneidp = crgetzoneid(cr); 7774 7775 priv = 0; 7776 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7777 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7778 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7779 priv |= DTRACE_PRIV_USER; 7780 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7781 priv |= DTRACE_PRIV_PROC; 7782 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7783 priv |= DTRACE_PRIV_OWNER; 7784 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7785 priv |= DTRACE_PRIV_ZONEOWNER; 7786 } 7787 7788 *privp = priv; 7789 } 7790 7791 #ifdef DTRACE_ERRDEBUG 7792 static void 7793 dtrace_errdebug(const char *str) 7794 { 7795 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7796 int occupied = 0; 7797 7798 mutex_enter(&dtrace_errlock); 7799 dtrace_errlast = str; 7800 dtrace_errthread = curthread; 7801 7802 while (occupied++ < DTRACE_ERRHASHSZ) { 7803 if (dtrace_errhash[hval].dter_msg == str) { 7804 dtrace_errhash[hval].dter_count++; 7805 goto out; 7806 } 7807 7808 if (dtrace_errhash[hval].dter_msg != NULL) { 7809 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7810 continue; 7811 } 7812 7813 dtrace_errhash[hval].dter_msg = str; 7814 dtrace_errhash[hval].dter_count = 1; 7815 goto out; 7816 } 7817 7818 panic("dtrace: undersized error hash"); 7819 out: 7820 mutex_exit(&dtrace_errlock); 7821 } 7822 #endif 7823 7824 /* 7825 * DTrace Matching Functions 7826 * 7827 * These functions are used to match groups of probes, given some elements of 7828 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7829 */ 7830 static int 7831 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7832 zoneid_t zoneid) 7833 { 7834 if (priv != DTRACE_PRIV_ALL) { 7835 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7836 uint32_t match = priv & ppriv; 7837 7838 /* 7839 * No PRIV_DTRACE_* privileges... 7840 */ 7841 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7842 DTRACE_PRIV_KERNEL)) == 0) 7843 return (0); 7844 7845 /* 7846 * No matching bits, but there were bits to match... 7847 */ 7848 if (match == 0 && ppriv != 0) 7849 return (0); 7850 7851 /* 7852 * Need to have permissions to the process, but don't... 7853 */ 7854 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7855 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7856 return (0); 7857 } 7858 7859 /* 7860 * Need to be in the same zone unless we possess the 7861 * privilege to examine all zones. 7862 */ 7863 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7864 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7865 return (0); 7866 } 7867 } 7868 7869 return (1); 7870 } 7871 7872 /* 7873 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7874 * consists of input pattern strings and an ops-vector to evaluate them. 7875 * This function returns >0 for match, 0 for no match, and <0 for error. 7876 */ 7877 static int 7878 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7879 uint32_t priv, uid_t uid, zoneid_t zoneid) 7880 { 7881 dtrace_provider_t *pvp = prp->dtpr_provider; 7882 int rv; 7883 7884 if (pvp->dtpv_defunct) 7885 return (0); 7886 7887 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7888 return (rv); 7889 7890 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7891 return (rv); 7892 7893 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7894 return (rv); 7895 7896 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7897 return (rv); 7898 7899 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7900 return (0); 7901 7902 return (rv); 7903 } 7904 7905 /* 7906 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7907 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7908 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7909 * In addition, all of the recursion cases except for '*' matching have been 7910 * unwound. For '*', we still implement recursive evaluation, but a depth 7911 * counter is maintained and matching is aborted if we recurse too deep. 7912 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7913 */ 7914 static int 7915 dtrace_match_glob(const char *s, const char *p, int depth) 7916 { 7917 const char *olds; 7918 char s1, c; 7919 int gs; 7920 7921 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7922 return (-1); 7923 7924 if (s == NULL) 7925 s = ""; /* treat NULL as empty string */ 7926 7927 top: 7928 olds = s; 7929 s1 = *s++; 7930 7931 if (p == NULL) 7932 return (0); 7933 7934 if ((c = *p++) == '\0') 7935 return (s1 == '\0'); 7936 7937 switch (c) { 7938 case '[': { 7939 int ok = 0, notflag = 0; 7940 char lc = '\0'; 7941 7942 if (s1 == '\0') 7943 return (0); 7944 7945 if (*p == '!') { 7946 notflag = 1; 7947 p++; 7948 } 7949 7950 if ((c = *p++) == '\0') 7951 return (0); 7952 7953 do { 7954 if (c == '-' && lc != '\0' && *p != ']') { 7955 if ((c = *p++) == '\0') 7956 return (0); 7957 if (c == '\\' && (c = *p++) == '\0') 7958 return (0); 7959 7960 if (notflag) { 7961 if (s1 < lc || s1 > c) 7962 ok++; 7963 else 7964 return (0); 7965 } else if (lc <= s1 && s1 <= c) 7966 ok++; 7967 7968 } else if (c == '\\' && (c = *p++) == '\0') 7969 return (0); 7970 7971 lc = c; /* save left-hand 'c' for next iteration */ 7972 7973 if (notflag) { 7974 if (s1 != c) 7975 ok++; 7976 else 7977 return (0); 7978 } else if (s1 == c) 7979 ok++; 7980 7981 if ((c = *p++) == '\0') 7982 return (0); 7983 7984 } while (c != ']'); 7985 7986 if (ok) 7987 goto top; 7988 7989 return (0); 7990 } 7991 7992 case '\\': 7993 if ((c = *p++) == '\0') 7994 return (0); 7995 /*FALLTHRU*/ 7996 7997 default: 7998 if (c != s1) 7999 return (0); 8000 /*FALLTHRU*/ 8001 8002 case '?': 8003 if (s1 != '\0') 8004 goto top; 8005 return (0); 8006 8007 case '*': 8008 while (*p == '*') 8009 p++; /* consecutive *'s are identical to a single one */ 8010 8011 if (*p == '\0') 8012 return (1); 8013 8014 for (s = olds; *s != '\0'; s++) { 8015 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8016 return (gs); 8017 } 8018 8019 return (0); 8020 } 8021 } 8022 8023 /*ARGSUSED*/ 8024 static int 8025 dtrace_match_string(const char *s, const char *p, int depth) 8026 { 8027 return (s != NULL && strcmp(s, p) == 0); 8028 } 8029 8030 /*ARGSUSED*/ 8031 static int 8032 dtrace_match_nul(const char *s, const char *p, int depth) 8033 { 8034 return (1); /* always match the empty pattern */ 8035 } 8036 8037 /*ARGSUSED*/ 8038 static int 8039 dtrace_match_nonzero(const char *s, const char *p, int depth) 8040 { 8041 return (s != NULL && s[0] != '\0'); 8042 } 8043 8044 static int 8045 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8046 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8047 { 8048 dtrace_probe_t template, *probe; 8049 dtrace_hash_t *hash = NULL; 8050 int len, rc, best = INT_MAX, nmatched = 0; 8051 dtrace_id_t i; 8052 8053 ASSERT(MUTEX_HELD(&dtrace_lock)); 8054 8055 /* 8056 * If the probe ID is specified in the key, just lookup by ID and 8057 * invoke the match callback once if a matching probe is found. 8058 */ 8059 if (pkp->dtpk_id != DTRACE_IDNONE) { 8060 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8061 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8062 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8063 return (DTRACE_MATCH_FAIL); 8064 nmatched++; 8065 } 8066 return (nmatched); 8067 } 8068 8069 template.dtpr_mod = (char *)pkp->dtpk_mod; 8070 template.dtpr_func = (char *)pkp->dtpk_func; 8071 template.dtpr_name = (char *)pkp->dtpk_name; 8072 8073 /* 8074 * We want to find the most distinct of the module name, function 8075 * name, and name. So for each one that is not a glob pattern or 8076 * empty string, we perform a lookup in the corresponding hash and 8077 * use the hash table with the fewest collisions to do our search. 8078 */ 8079 if (pkp->dtpk_mmatch == &dtrace_match_string && 8080 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8081 best = len; 8082 hash = dtrace_bymod; 8083 } 8084 8085 if (pkp->dtpk_fmatch == &dtrace_match_string && 8086 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8087 best = len; 8088 hash = dtrace_byfunc; 8089 } 8090 8091 if (pkp->dtpk_nmatch == &dtrace_match_string && 8092 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8093 best = len; 8094 hash = dtrace_byname; 8095 } 8096 8097 /* 8098 * If we did not select a hash table, iterate over every probe and 8099 * invoke our callback for each one that matches our input probe key. 8100 */ 8101 if (hash == NULL) { 8102 for (i = 0; i < dtrace_nprobes; i++) { 8103 if ((probe = dtrace_probes[i]) == NULL || 8104 dtrace_match_probe(probe, pkp, priv, uid, 8105 zoneid) <= 0) 8106 continue; 8107 8108 nmatched++; 8109 8110 if ((rc = (*matched)(probe, arg)) != 8111 DTRACE_MATCH_NEXT) { 8112 if (rc == DTRACE_MATCH_FAIL) 8113 return (DTRACE_MATCH_FAIL); 8114 break; 8115 } 8116 } 8117 8118 return (nmatched); 8119 } 8120 8121 /* 8122 * If we selected a hash table, iterate over each probe of the same key 8123 * name and invoke the callback for every probe that matches the other 8124 * attributes of our input probe key. 8125 */ 8126 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8127 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8128 8129 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8130 continue; 8131 8132 nmatched++; 8133 8134 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8135 if (rc == DTRACE_MATCH_FAIL) 8136 return (DTRACE_MATCH_FAIL); 8137 break; 8138 } 8139 } 8140 8141 return (nmatched); 8142 } 8143 8144 /* 8145 * Return the function pointer dtrace_probecmp() should use to compare the 8146 * specified pattern with a string. For NULL or empty patterns, we select 8147 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8148 * For non-empty non-glob strings, we use dtrace_match_string(). 8149 */ 8150 static dtrace_probekey_f * 8151 dtrace_probekey_func(const char *p) 8152 { 8153 char c; 8154 8155 if (p == NULL || *p == '\0') 8156 return (&dtrace_match_nul); 8157 8158 while ((c = *p++) != '\0') { 8159 if (c == '[' || c == '?' || c == '*' || c == '\\') 8160 return (&dtrace_match_glob); 8161 } 8162 8163 return (&dtrace_match_string); 8164 } 8165 8166 /* 8167 * Build a probe comparison key for use with dtrace_match_probe() from the 8168 * given probe description. By convention, a null key only matches anchored 8169 * probes: if each field is the empty string, reset dtpk_fmatch to 8170 * dtrace_match_nonzero(). 8171 */ 8172 static void 8173 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8174 { 8175 pkp->dtpk_prov = pdp->dtpd_provider; 8176 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8177 8178 pkp->dtpk_mod = pdp->dtpd_mod; 8179 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8180 8181 pkp->dtpk_func = pdp->dtpd_func; 8182 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8183 8184 pkp->dtpk_name = pdp->dtpd_name; 8185 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8186 8187 pkp->dtpk_id = pdp->dtpd_id; 8188 8189 if (pkp->dtpk_id == DTRACE_IDNONE && 8190 pkp->dtpk_pmatch == &dtrace_match_nul && 8191 pkp->dtpk_mmatch == &dtrace_match_nul && 8192 pkp->dtpk_fmatch == &dtrace_match_nul && 8193 pkp->dtpk_nmatch == &dtrace_match_nul) 8194 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8195 } 8196 8197 /* 8198 * DTrace Provider-to-Framework API Functions 8199 * 8200 * These functions implement much of the Provider-to-Framework API, as 8201 * described in <sys/dtrace.h>. The parts of the API not in this section are 8202 * the functions in the API for probe management (found below), and 8203 * dtrace_probe() itself (found above). 8204 */ 8205 8206 /* 8207 * Register the calling provider with the DTrace framework. This should 8208 * generally be called by DTrace providers in their attach(9E) entry point. 8209 */ 8210 int 8211 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8212 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8213 { 8214 dtrace_provider_t *provider; 8215 8216 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8217 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8218 "arguments", name ? name : "<NULL>"); 8219 return (EINVAL); 8220 } 8221 8222 if (name[0] == '\0' || dtrace_badname(name)) { 8223 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8224 "provider name", name); 8225 return (EINVAL); 8226 } 8227 8228 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8229 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8230 pops->dtps_destroy == NULL || 8231 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8232 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8233 "provider ops", name); 8234 return (EINVAL); 8235 } 8236 8237 if (dtrace_badattr(&pap->dtpa_provider) || 8238 dtrace_badattr(&pap->dtpa_mod) || 8239 dtrace_badattr(&pap->dtpa_func) || 8240 dtrace_badattr(&pap->dtpa_name) || 8241 dtrace_badattr(&pap->dtpa_args)) { 8242 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8243 "provider attributes", name); 8244 return (EINVAL); 8245 } 8246 8247 if (priv & ~DTRACE_PRIV_ALL) { 8248 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8249 "privilege attributes", name); 8250 return (EINVAL); 8251 } 8252 8253 if ((priv & DTRACE_PRIV_KERNEL) && 8254 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8255 pops->dtps_mode == NULL) { 8256 cmn_err(CE_WARN, "failed to register provider '%s': need " 8257 "dtps_mode() op for given privilege attributes", name); 8258 return (EINVAL); 8259 } 8260 8261 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8262 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8263 (void) strcpy(provider->dtpv_name, name); 8264 8265 provider->dtpv_attr = *pap; 8266 provider->dtpv_priv.dtpp_flags = priv; 8267 if (cr != NULL) { 8268 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8269 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8270 } 8271 provider->dtpv_pops = *pops; 8272 8273 if (pops->dtps_provide == NULL) { 8274 ASSERT(pops->dtps_provide_module != NULL); 8275 provider->dtpv_pops.dtps_provide = 8276 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8277 } 8278 8279 if (pops->dtps_provide_module == NULL) { 8280 ASSERT(pops->dtps_provide != NULL); 8281 provider->dtpv_pops.dtps_provide_module = 8282 (void (*)(void *, struct modctl *))dtrace_nullop; 8283 } 8284 8285 if (pops->dtps_suspend == NULL) { 8286 ASSERT(pops->dtps_resume == NULL); 8287 provider->dtpv_pops.dtps_suspend = 8288 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8289 provider->dtpv_pops.dtps_resume = 8290 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8291 } 8292 8293 provider->dtpv_arg = arg; 8294 *idp = (dtrace_provider_id_t)provider; 8295 8296 if (pops == &dtrace_provider_ops) { 8297 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8298 ASSERT(MUTEX_HELD(&dtrace_lock)); 8299 ASSERT(dtrace_anon.dta_enabling == NULL); 8300 8301 /* 8302 * We make sure that the DTrace provider is at the head of 8303 * the provider chain. 8304 */ 8305 provider->dtpv_next = dtrace_provider; 8306 dtrace_provider = provider; 8307 return (0); 8308 } 8309 8310 mutex_enter(&dtrace_provider_lock); 8311 mutex_enter(&dtrace_lock); 8312 8313 /* 8314 * If there is at least one provider registered, we'll add this 8315 * provider after the first provider. 8316 */ 8317 if (dtrace_provider != NULL) { 8318 provider->dtpv_next = dtrace_provider->dtpv_next; 8319 dtrace_provider->dtpv_next = provider; 8320 } else { 8321 dtrace_provider = provider; 8322 } 8323 8324 if (dtrace_retained != NULL) { 8325 dtrace_enabling_provide(provider); 8326 8327 /* 8328 * Now we need to call dtrace_enabling_matchall() -- which 8329 * will acquire cpu_lock and dtrace_lock. We therefore need 8330 * to drop all of our locks before calling into it... 8331 */ 8332 mutex_exit(&dtrace_lock); 8333 mutex_exit(&dtrace_provider_lock); 8334 dtrace_enabling_matchall(); 8335 8336 return (0); 8337 } 8338 8339 mutex_exit(&dtrace_lock); 8340 mutex_exit(&dtrace_provider_lock); 8341 8342 return (0); 8343 } 8344 8345 /* 8346 * Unregister the specified provider from the DTrace framework. This should 8347 * generally be called by DTrace providers in their detach(9E) entry point. 8348 */ 8349 int 8350 dtrace_unregister(dtrace_provider_id_t id) 8351 { 8352 dtrace_provider_t *old = (dtrace_provider_t *)id; 8353 dtrace_provider_t *prev = NULL; 8354 int i, self = 0, noreap = 0; 8355 dtrace_probe_t *probe, *first = NULL; 8356 8357 if (old->dtpv_pops.dtps_enable == 8358 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8359 /* 8360 * If DTrace itself is the provider, we're called with locks 8361 * already held. 8362 */ 8363 ASSERT(old == dtrace_provider); 8364 ASSERT(dtrace_devi != NULL); 8365 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8366 ASSERT(MUTEX_HELD(&dtrace_lock)); 8367 self = 1; 8368 8369 if (dtrace_provider->dtpv_next != NULL) { 8370 /* 8371 * There's another provider here; return failure. 8372 */ 8373 return (EBUSY); 8374 } 8375 } else { 8376 mutex_enter(&dtrace_provider_lock); 8377 mutex_enter(&mod_lock); 8378 mutex_enter(&dtrace_lock); 8379 } 8380 8381 /* 8382 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8383 * probes, we refuse to let providers slither away, unless this 8384 * provider has already been explicitly invalidated. 8385 */ 8386 if (!old->dtpv_defunct && 8387 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8388 dtrace_anon.dta_state->dts_necbs > 0))) { 8389 if (!self) { 8390 mutex_exit(&dtrace_lock); 8391 mutex_exit(&mod_lock); 8392 mutex_exit(&dtrace_provider_lock); 8393 } 8394 return (EBUSY); 8395 } 8396 8397 /* 8398 * Attempt to destroy the probes associated with this provider. 8399 */ 8400 for (i = 0; i < dtrace_nprobes; i++) { 8401 if ((probe = dtrace_probes[i]) == NULL) 8402 continue; 8403 8404 if (probe->dtpr_provider != old) 8405 continue; 8406 8407 if (probe->dtpr_ecb == NULL) 8408 continue; 8409 8410 /* 8411 * If we are trying to unregister a defunct provider, and the 8412 * provider was made defunct within the interval dictated by 8413 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8414 * attempt to reap our enablings. To denote that the provider 8415 * should reattempt to unregister itself at some point in the 8416 * future, we will return a differentiable error code (EAGAIN 8417 * instead of EBUSY) in this case. 8418 */ 8419 if (dtrace_gethrtime() - old->dtpv_defunct > 8420 dtrace_unregister_defunct_reap) 8421 noreap = 1; 8422 8423 if (!self) { 8424 mutex_exit(&dtrace_lock); 8425 mutex_exit(&mod_lock); 8426 mutex_exit(&dtrace_provider_lock); 8427 } 8428 8429 if (noreap) 8430 return (EBUSY); 8431 8432 (void) taskq_dispatch(dtrace_taskq, 8433 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8434 8435 return (EAGAIN); 8436 } 8437 8438 /* 8439 * All of the probes for this provider are disabled; we can safely 8440 * remove all of them from their hash chains and from the probe array. 8441 */ 8442 for (i = 0; i < dtrace_nprobes; i++) { 8443 if ((probe = dtrace_probes[i]) == NULL) 8444 continue; 8445 8446 if (probe->dtpr_provider != old) 8447 continue; 8448 8449 dtrace_probes[i] = NULL; 8450 8451 dtrace_hash_remove(dtrace_bymod, probe); 8452 dtrace_hash_remove(dtrace_byfunc, probe); 8453 dtrace_hash_remove(dtrace_byname, probe); 8454 8455 if (first == NULL) { 8456 first = probe; 8457 probe->dtpr_nextmod = NULL; 8458 } else { 8459 probe->dtpr_nextmod = first; 8460 first = probe; 8461 } 8462 } 8463 8464 /* 8465 * The provider's probes have been removed from the hash chains and 8466 * from the probe array. Now issue a dtrace_sync() to be sure that 8467 * everyone has cleared out from any probe array processing. 8468 */ 8469 dtrace_sync(); 8470 8471 for (probe = first; probe != NULL; probe = first) { 8472 first = probe->dtpr_nextmod; 8473 8474 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8475 probe->dtpr_arg); 8476 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8477 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8478 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8479 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8480 kmem_free(probe, sizeof (dtrace_probe_t)); 8481 } 8482 8483 if ((prev = dtrace_provider) == old) { 8484 ASSERT(self || dtrace_devi == NULL); 8485 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8486 dtrace_provider = old->dtpv_next; 8487 } else { 8488 while (prev != NULL && prev->dtpv_next != old) 8489 prev = prev->dtpv_next; 8490 8491 if (prev == NULL) { 8492 panic("attempt to unregister non-existent " 8493 "dtrace provider %p\n", (void *)id); 8494 } 8495 8496 prev->dtpv_next = old->dtpv_next; 8497 } 8498 8499 if (!self) { 8500 mutex_exit(&dtrace_lock); 8501 mutex_exit(&mod_lock); 8502 mutex_exit(&dtrace_provider_lock); 8503 } 8504 8505 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8506 kmem_free(old, sizeof (dtrace_provider_t)); 8507 8508 return (0); 8509 } 8510 8511 /* 8512 * Invalidate the specified provider. All subsequent probe lookups for the 8513 * specified provider will fail, but its probes will not be removed. 8514 */ 8515 void 8516 dtrace_invalidate(dtrace_provider_id_t id) 8517 { 8518 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8519 8520 ASSERT(pvp->dtpv_pops.dtps_enable != 8521 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8522 8523 mutex_enter(&dtrace_provider_lock); 8524 mutex_enter(&dtrace_lock); 8525 8526 pvp->dtpv_defunct = dtrace_gethrtime(); 8527 8528 mutex_exit(&dtrace_lock); 8529 mutex_exit(&dtrace_provider_lock); 8530 } 8531 8532 /* 8533 * Indicate whether or not DTrace has attached. 8534 */ 8535 int 8536 dtrace_attached(void) 8537 { 8538 /* 8539 * dtrace_provider will be non-NULL iff the DTrace driver has 8540 * attached. (It's non-NULL because DTrace is always itself a 8541 * provider.) 8542 */ 8543 return (dtrace_provider != NULL); 8544 } 8545 8546 /* 8547 * Remove all the unenabled probes for the given provider. This function is 8548 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8549 * -- just as many of its associated probes as it can. 8550 */ 8551 int 8552 dtrace_condense(dtrace_provider_id_t id) 8553 { 8554 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8555 int i; 8556 dtrace_probe_t *probe; 8557 8558 /* 8559 * Make sure this isn't the dtrace provider itself. 8560 */ 8561 ASSERT(prov->dtpv_pops.dtps_enable != 8562 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8563 8564 mutex_enter(&dtrace_provider_lock); 8565 mutex_enter(&dtrace_lock); 8566 8567 /* 8568 * Attempt to destroy the probes associated with this provider. 8569 */ 8570 for (i = 0; i < dtrace_nprobes; i++) { 8571 if ((probe = dtrace_probes[i]) == NULL) 8572 continue; 8573 8574 if (probe->dtpr_provider != prov) 8575 continue; 8576 8577 if (probe->dtpr_ecb != NULL) 8578 continue; 8579 8580 dtrace_probes[i] = NULL; 8581 8582 dtrace_hash_remove(dtrace_bymod, probe); 8583 dtrace_hash_remove(dtrace_byfunc, probe); 8584 dtrace_hash_remove(dtrace_byname, probe); 8585 8586 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8587 probe->dtpr_arg); 8588 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8589 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8590 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8591 kmem_free(probe, sizeof (dtrace_probe_t)); 8592 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8593 } 8594 8595 mutex_exit(&dtrace_lock); 8596 mutex_exit(&dtrace_provider_lock); 8597 8598 return (0); 8599 } 8600 8601 /* 8602 * DTrace Probe Management Functions 8603 * 8604 * The functions in this section perform the DTrace probe management, 8605 * including functions to create probes, look-up probes, and call into the 8606 * providers to request that probes be provided. Some of these functions are 8607 * in the Provider-to-Framework API; these functions can be identified by the 8608 * fact that they are not declared "static". 8609 */ 8610 8611 /* 8612 * Create a probe with the specified module name, function name, and name. 8613 */ 8614 dtrace_id_t 8615 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8616 const char *func, const char *name, int aframes, void *arg) 8617 { 8618 dtrace_probe_t *probe, **probes; 8619 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8620 dtrace_id_t id; 8621 8622 if (provider == dtrace_provider) { 8623 ASSERT(MUTEX_HELD(&dtrace_lock)); 8624 } else { 8625 mutex_enter(&dtrace_lock); 8626 } 8627 8628 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8629 VM_BESTFIT | VM_SLEEP); 8630 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8631 8632 probe->dtpr_id = id; 8633 probe->dtpr_gen = dtrace_probegen++; 8634 probe->dtpr_mod = dtrace_strdup(mod); 8635 probe->dtpr_func = dtrace_strdup(func); 8636 probe->dtpr_name = dtrace_strdup(name); 8637 probe->dtpr_arg = arg; 8638 probe->dtpr_aframes = aframes; 8639 probe->dtpr_provider = provider; 8640 8641 dtrace_hash_add(dtrace_bymod, probe); 8642 dtrace_hash_add(dtrace_byfunc, probe); 8643 dtrace_hash_add(dtrace_byname, probe); 8644 8645 if (id - 1 >= dtrace_nprobes) { 8646 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8647 size_t nsize = osize << 1; 8648 8649 if (nsize == 0) { 8650 ASSERT(osize == 0); 8651 ASSERT(dtrace_probes == NULL); 8652 nsize = sizeof (dtrace_probe_t *); 8653 } 8654 8655 probes = kmem_zalloc(nsize, KM_SLEEP); 8656 8657 if (dtrace_probes == NULL) { 8658 ASSERT(osize == 0); 8659 dtrace_probes = probes; 8660 dtrace_nprobes = 1; 8661 } else { 8662 dtrace_probe_t **oprobes = dtrace_probes; 8663 8664 bcopy(oprobes, probes, osize); 8665 dtrace_membar_producer(); 8666 dtrace_probes = probes; 8667 8668 dtrace_sync(); 8669 8670 /* 8671 * All CPUs are now seeing the new probes array; we can 8672 * safely free the old array. 8673 */ 8674 kmem_free(oprobes, osize); 8675 dtrace_nprobes <<= 1; 8676 } 8677 8678 ASSERT(id - 1 < dtrace_nprobes); 8679 } 8680 8681 ASSERT(dtrace_probes[id - 1] == NULL); 8682 dtrace_probes[id - 1] = probe; 8683 8684 if (provider != dtrace_provider) 8685 mutex_exit(&dtrace_lock); 8686 8687 return (id); 8688 } 8689 8690 static dtrace_probe_t * 8691 dtrace_probe_lookup_id(dtrace_id_t id) 8692 { 8693 ASSERT(MUTEX_HELD(&dtrace_lock)); 8694 8695 if (id == 0 || id > dtrace_nprobes) 8696 return (NULL); 8697 8698 return (dtrace_probes[id - 1]); 8699 } 8700 8701 static int 8702 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8703 { 8704 *((dtrace_id_t *)arg) = probe->dtpr_id; 8705 8706 return (DTRACE_MATCH_DONE); 8707 } 8708 8709 /* 8710 * Look up a probe based on provider and one or more of module name, function 8711 * name and probe name. 8712 */ 8713 dtrace_id_t 8714 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8715 const char *func, const char *name) 8716 { 8717 dtrace_probekey_t pkey; 8718 dtrace_id_t id; 8719 int match; 8720 8721 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8722 pkey.dtpk_pmatch = &dtrace_match_string; 8723 pkey.dtpk_mod = mod; 8724 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8725 pkey.dtpk_func = func; 8726 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8727 pkey.dtpk_name = name; 8728 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8729 pkey.dtpk_id = DTRACE_IDNONE; 8730 8731 mutex_enter(&dtrace_lock); 8732 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8733 dtrace_probe_lookup_match, &id); 8734 mutex_exit(&dtrace_lock); 8735 8736 ASSERT(match == 1 || match == 0); 8737 return (match ? id : 0); 8738 } 8739 8740 /* 8741 * Returns the probe argument associated with the specified probe. 8742 */ 8743 void * 8744 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8745 { 8746 dtrace_probe_t *probe; 8747 void *rval = NULL; 8748 8749 mutex_enter(&dtrace_lock); 8750 8751 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8752 probe->dtpr_provider == (dtrace_provider_t *)id) 8753 rval = probe->dtpr_arg; 8754 8755 mutex_exit(&dtrace_lock); 8756 8757 return (rval); 8758 } 8759 8760 /* 8761 * Copy a probe into a probe description. 8762 */ 8763 static void 8764 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8765 { 8766 bzero(pdp, sizeof (dtrace_probedesc_t)); 8767 pdp->dtpd_id = prp->dtpr_id; 8768 8769 (void) strncpy(pdp->dtpd_provider, 8770 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8771 8772 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8773 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8774 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8775 } 8776 8777 /* 8778 * Called to indicate that a probe -- or probes -- should be provided by a 8779 * specfied provider. If the specified description is NULL, the provider will 8780 * be told to provide all of its probes. (This is done whenever a new 8781 * consumer comes along, or whenever a retained enabling is to be matched.) If 8782 * the specified description is non-NULL, the provider is given the 8783 * opportunity to dynamically provide the specified probe, allowing providers 8784 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8785 * probes.) If the provider is NULL, the operations will be applied to all 8786 * providers; if the provider is non-NULL the operations will only be applied 8787 * to the specified provider. The dtrace_provider_lock must be held, and the 8788 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8789 * will need to grab the dtrace_lock when it reenters the framework through 8790 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8791 */ 8792 static void 8793 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8794 { 8795 struct modctl *ctl; 8796 int all = 0; 8797 8798 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8799 8800 if (prv == NULL) { 8801 all = 1; 8802 prv = dtrace_provider; 8803 } 8804 8805 do { 8806 /* 8807 * First, call the blanket provide operation. 8808 */ 8809 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8810 8811 /* 8812 * Now call the per-module provide operation. We will grab 8813 * mod_lock to prevent the list from being modified. Note 8814 * that this also prevents the mod_busy bits from changing. 8815 * (mod_busy can only be changed with mod_lock held.) 8816 */ 8817 mutex_enter(&mod_lock); 8818 8819 ctl = &modules; 8820 do { 8821 if (ctl->mod_busy || ctl->mod_mp == NULL) 8822 continue; 8823 8824 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8825 8826 } while ((ctl = ctl->mod_next) != &modules); 8827 8828 mutex_exit(&mod_lock); 8829 } while (all && (prv = prv->dtpv_next) != NULL); 8830 } 8831 8832 /* 8833 * Iterate over each probe, and call the Framework-to-Provider API function 8834 * denoted by offs. 8835 */ 8836 static void 8837 dtrace_probe_foreach(uintptr_t offs) 8838 { 8839 dtrace_provider_t *prov; 8840 void (*func)(void *, dtrace_id_t, void *); 8841 dtrace_probe_t *probe; 8842 dtrace_icookie_t cookie; 8843 int i; 8844 8845 /* 8846 * We disable interrupts to walk through the probe array. This is 8847 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8848 * won't see stale data. 8849 */ 8850 cookie = dtrace_interrupt_disable(); 8851 8852 for (i = 0; i < dtrace_nprobes; i++) { 8853 if ((probe = dtrace_probes[i]) == NULL) 8854 continue; 8855 8856 if (probe->dtpr_ecb == NULL) { 8857 /* 8858 * This probe isn't enabled -- don't call the function. 8859 */ 8860 continue; 8861 } 8862 8863 prov = probe->dtpr_provider; 8864 func = *((void(**)(void *, dtrace_id_t, void *)) 8865 ((uintptr_t)&prov->dtpv_pops + offs)); 8866 8867 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8868 } 8869 8870 dtrace_interrupt_enable(cookie); 8871 } 8872 8873 static int 8874 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8875 { 8876 dtrace_probekey_t pkey; 8877 uint32_t priv; 8878 uid_t uid; 8879 zoneid_t zoneid; 8880 8881 ASSERT(MUTEX_HELD(&dtrace_lock)); 8882 dtrace_ecb_create_cache = NULL; 8883 8884 if (desc == NULL) { 8885 /* 8886 * If we're passed a NULL description, we're being asked to 8887 * create an ECB with a NULL probe. 8888 */ 8889 (void) dtrace_ecb_create_enable(NULL, enab); 8890 return (0); 8891 } 8892 8893 dtrace_probekey(desc, &pkey); 8894 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8895 &priv, &uid, &zoneid); 8896 8897 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8898 enab)); 8899 } 8900 8901 /* 8902 * DTrace Helper Provider Functions 8903 */ 8904 static void 8905 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8906 { 8907 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8908 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8909 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8910 } 8911 8912 static void 8913 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8914 const dof_provider_t *dofprov, char *strtab) 8915 { 8916 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8917 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8918 dofprov->dofpv_provattr); 8919 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8920 dofprov->dofpv_modattr); 8921 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8922 dofprov->dofpv_funcattr); 8923 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8924 dofprov->dofpv_nameattr); 8925 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8926 dofprov->dofpv_argsattr); 8927 } 8928 8929 static void 8930 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8931 { 8932 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8933 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8934 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8935 dof_provider_t *provider; 8936 dof_probe_t *probe; 8937 uint32_t *off, *enoff; 8938 uint8_t *arg; 8939 char *strtab; 8940 uint_t i, nprobes; 8941 dtrace_helper_provdesc_t dhpv; 8942 dtrace_helper_probedesc_t dhpb; 8943 dtrace_meta_t *meta = dtrace_meta_pid; 8944 dtrace_mops_t *mops = &meta->dtm_mops; 8945 void *parg; 8946 8947 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8948 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8949 provider->dofpv_strtab * dof->dofh_secsize); 8950 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8951 provider->dofpv_probes * dof->dofh_secsize); 8952 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8953 provider->dofpv_prargs * dof->dofh_secsize); 8954 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8955 provider->dofpv_proffs * dof->dofh_secsize); 8956 8957 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8958 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8959 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8960 enoff = NULL; 8961 8962 /* 8963 * See dtrace_helper_provider_validate(). 8964 */ 8965 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8966 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8967 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8968 provider->dofpv_prenoffs * dof->dofh_secsize); 8969 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8970 } 8971 8972 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8973 8974 /* 8975 * Create the provider. 8976 */ 8977 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8978 8979 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8980 return; 8981 8982 meta->dtm_count++; 8983 8984 /* 8985 * Create the probes. 8986 */ 8987 for (i = 0; i < nprobes; i++) { 8988 probe = (dof_probe_t *)(uintptr_t)(daddr + 8989 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8990 8991 dhpb.dthpb_mod = dhp->dofhp_mod; 8992 dhpb.dthpb_func = strtab + probe->dofpr_func; 8993 dhpb.dthpb_name = strtab + probe->dofpr_name; 8994 dhpb.dthpb_base = probe->dofpr_addr; 8995 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8996 dhpb.dthpb_noffs = probe->dofpr_noffs; 8997 if (enoff != NULL) { 8998 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8999 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9000 } else { 9001 dhpb.dthpb_enoffs = NULL; 9002 dhpb.dthpb_nenoffs = 0; 9003 } 9004 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9005 dhpb.dthpb_nargc = probe->dofpr_nargc; 9006 dhpb.dthpb_xargc = probe->dofpr_xargc; 9007 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9008 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9009 9010 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9011 } 9012 } 9013 9014 static void 9015 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9016 { 9017 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9018 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9019 int i; 9020 9021 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9022 9023 for (i = 0; i < dof->dofh_secnum; i++) { 9024 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9025 dof->dofh_secoff + i * dof->dofh_secsize); 9026 9027 if (sec->dofs_type != DOF_SECT_PROVIDER) 9028 continue; 9029 9030 dtrace_helper_provide_one(dhp, sec, pid); 9031 } 9032 9033 /* 9034 * We may have just created probes, so we must now rematch against 9035 * any retained enablings. Note that this call will acquire both 9036 * cpu_lock and dtrace_lock; the fact that we are holding 9037 * dtrace_meta_lock now is what defines the ordering with respect to 9038 * these three locks. 9039 */ 9040 dtrace_enabling_matchall(); 9041 } 9042 9043 static void 9044 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9045 { 9046 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9047 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9048 dof_sec_t *str_sec; 9049 dof_provider_t *provider; 9050 char *strtab; 9051 dtrace_helper_provdesc_t dhpv; 9052 dtrace_meta_t *meta = dtrace_meta_pid; 9053 dtrace_mops_t *mops = &meta->dtm_mops; 9054 9055 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9056 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9057 provider->dofpv_strtab * dof->dofh_secsize); 9058 9059 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9060 9061 /* 9062 * Create the provider. 9063 */ 9064 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9065 9066 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9067 9068 meta->dtm_count--; 9069 } 9070 9071 static void 9072 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9073 { 9074 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9075 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9076 int i; 9077 9078 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9079 9080 for (i = 0; i < dof->dofh_secnum; i++) { 9081 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9082 dof->dofh_secoff + i * dof->dofh_secsize); 9083 9084 if (sec->dofs_type != DOF_SECT_PROVIDER) 9085 continue; 9086 9087 dtrace_helper_provider_remove_one(dhp, sec, pid); 9088 } 9089 } 9090 9091 /* 9092 * DTrace Meta Provider-to-Framework API Functions 9093 * 9094 * These functions implement the Meta Provider-to-Framework API, as described 9095 * in <sys/dtrace.h>. 9096 */ 9097 int 9098 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9099 dtrace_meta_provider_id_t *idp) 9100 { 9101 dtrace_meta_t *meta; 9102 dtrace_helpers_t *help, *next; 9103 int i; 9104 9105 *idp = DTRACE_METAPROVNONE; 9106 9107 /* 9108 * We strictly don't need the name, but we hold onto it for 9109 * debuggability. All hail error queues! 9110 */ 9111 if (name == NULL) { 9112 cmn_err(CE_WARN, "failed to register meta-provider: " 9113 "invalid name"); 9114 return (EINVAL); 9115 } 9116 9117 if (mops == NULL || 9118 mops->dtms_create_probe == NULL || 9119 mops->dtms_provide_pid == NULL || 9120 mops->dtms_remove_pid == NULL) { 9121 cmn_err(CE_WARN, "failed to register meta-register %s: " 9122 "invalid ops", name); 9123 return (EINVAL); 9124 } 9125 9126 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9127 meta->dtm_mops = *mops; 9128 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9129 (void) strcpy(meta->dtm_name, name); 9130 meta->dtm_arg = arg; 9131 9132 mutex_enter(&dtrace_meta_lock); 9133 mutex_enter(&dtrace_lock); 9134 9135 if (dtrace_meta_pid != NULL) { 9136 mutex_exit(&dtrace_lock); 9137 mutex_exit(&dtrace_meta_lock); 9138 cmn_err(CE_WARN, "failed to register meta-register %s: " 9139 "user-land meta-provider exists", name); 9140 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9141 kmem_free(meta, sizeof (dtrace_meta_t)); 9142 return (EINVAL); 9143 } 9144 9145 dtrace_meta_pid = meta; 9146 *idp = (dtrace_meta_provider_id_t)meta; 9147 9148 /* 9149 * If there are providers and probes ready to go, pass them 9150 * off to the new meta provider now. 9151 */ 9152 9153 help = dtrace_deferred_pid; 9154 dtrace_deferred_pid = NULL; 9155 9156 mutex_exit(&dtrace_lock); 9157 9158 while (help != NULL) { 9159 for (i = 0; i < help->dthps_nprovs; i++) { 9160 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9161 help->dthps_pid); 9162 } 9163 9164 next = help->dthps_next; 9165 help->dthps_next = NULL; 9166 help->dthps_prev = NULL; 9167 help->dthps_deferred = 0; 9168 help = next; 9169 } 9170 9171 mutex_exit(&dtrace_meta_lock); 9172 9173 return (0); 9174 } 9175 9176 int 9177 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9178 { 9179 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9180 9181 mutex_enter(&dtrace_meta_lock); 9182 mutex_enter(&dtrace_lock); 9183 9184 if (old == dtrace_meta_pid) { 9185 pp = &dtrace_meta_pid; 9186 } else { 9187 panic("attempt to unregister non-existent " 9188 "dtrace meta-provider %p\n", (void *)old); 9189 } 9190 9191 if (old->dtm_count != 0) { 9192 mutex_exit(&dtrace_lock); 9193 mutex_exit(&dtrace_meta_lock); 9194 return (EBUSY); 9195 } 9196 9197 *pp = NULL; 9198 9199 mutex_exit(&dtrace_lock); 9200 mutex_exit(&dtrace_meta_lock); 9201 9202 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9203 kmem_free(old, sizeof (dtrace_meta_t)); 9204 9205 return (0); 9206 } 9207 9208 9209 /* 9210 * DTrace DIF Object Functions 9211 */ 9212 static int 9213 dtrace_difo_err(uint_t pc, const char *format, ...) 9214 { 9215 if (dtrace_err_verbose) { 9216 va_list alist; 9217 9218 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9219 va_start(alist, format); 9220 (void) vuprintf(format, alist); 9221 va_end(alist); 9222 } 9223 9224 #ifdef DTRACE_ERRDEBUG 9225 dtrace_errdebug(format); 9226 #endif 9227 return (1); 9228 } 9229 9230 /* 9231 * Validate a DTrace DIF object by checking the IR instructions. The following 9232 * rules are currently enforced by dtrace_difo_validate(): 9233 * 9234 * 1. Each instruction must have a valid opcode 9235 * 2. Each register, string, variable, or subroutine reference must be valid 9236 * 3. No instruction can modify register %r0 (must be zero) 9237 * 4. All instruction reserved bits must be set to zero 9238 * 5. The last instruction must be a "ret" instruction 9239 * 6. All branch targets must reference a valid instruction _after_ the branch 9240 */ 9241 static int 9242 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9243 cred_t *cr) 9244 { 9245 int err = 0, i; 9246 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9247 int kcheckload; 9248 uint_t pc; 9249 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9250 9251 kcheckload = cr == NULL || 9252 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9253 9254 dp->dtdo_destructive = 0; 9255 9256 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9257 dif_instr_t instr = dp->dtdo_buf[pc]; 9258 9259 uint_t r1 = DIF_INSTR_R1(instr); 9260 uint_t r2 = DIF_INSTR_R2(instr); 9261 uint_t rd = DIF_INSTR_RD(instr); 9262 uint_t rs = DIF_INSTR_RS(instr); 9263 uint_t label = DIF_INSTR_LABEL(instr); 9264 uint_t v = DIF_INSTR_VAR(instr); 9265 uint_t subr = DIF_INSTR_SUBR(instr); 9266 uint_t type = DIF_INSTR_TYPE(instr); 9267 uint_t op = DIF_INSTR_OP(instr); 9268 9269 switch (op) { 9270 case DIF_OP_OR: 9271 case DIF_OP_XOR: 9272 case DIF_OP_AND: 9273 case DIF_OP_SLL: 9274 case DIF_OP_SRL: 9275 case DIF_OP_SRA: 9276 case DIF_OP_SUB: 9277 case DIF_OP_ADD: 9278 case DIF_OP_MUL: 9279 case DIF_OP_SDIV: 9280 case DIF_OP_UDIV: 9281 case DIF_OP_SREM: 9282 case DIF_OP_UREM: 9283 case DIF_OP_COPYS: 9284 if (r1 >= nregs) 9285 err += efunc(pc, "invalid register %u\n", r1); 9286 if (r2 >= nregs) 9287 err += efunc(pc, "invalid register %u\n", r2); 9288 if (rd >= nregs) 9289 err += efunc(pc, "invalid register %u\n", rd); 9290 if (rd == 0) 9291 err += efunc(pc, "cannot write to %r0\n"); 9292 break; 9293 case DIF_OP_NOT: 9294 case DIF_OP_MOV: 9295 case DIF_OP_ALLOCS: 9296 if (r1 >= nregs) 9297 err += efunc(pc, "invalid register %u\n", r1); 9298 if (r2 != 0) 9299 err += efunc(pc, "non-zero reserved bits\n"); 9300 if (rd >= nregs) 9301 err += efunc(pc, "invalid register %u\n", rd); 9302 if (rd == 0) 9303 err += efunc(pc, "cannot write to %r0\n"); 9304 break; 9305 case DIF_OP_LDSB: 9306 case DIF_OP_LDSH: 9307 case DIF_OP_LDSW: 9308 case DIF_OP_LDUB: 9309 case DIF_OP_LDUH: 9310 case DIF_OP_LDUW: 9311 case DIF_OP_LDX: 9312 if (r1 >= nregs) 9313 err += efunc(pc, "invalid register %u\n", r1); 9314 if (r2 != 0) 9315 err += efunc(pc, "non-zero reserved bits\n"); 9316 if (rd >= nregs) 9317 err += efunc(pc, "invalid register %u\n", rd); 9318 if (rd == 0) 9319 err += efunc(pc, "cannot write to %r0\n"); 9320 if (kcheckload) 9321 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9322 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9323 break; 9324 case DIF_OP_RLDSB: 9325 case DIF_OP_RLDSH: 9326 case DIF_OP_RLDSW: 9327 case DIF_OP_RLDUB: 9328 case DIF_OP_RLDUH: 9329 case DIF_OP_RLDUW: 9330 case DIF_OP_RLDX: 9331 if (r1 >= nregs) 9332 err += efunc(pc, "invalid register %u\n", r1); 9333 if (r2 != 0) 9334 err += efunc(pc, "non-zero reserved bits\n"); 9335 if (rd >= nregs) 9336 err += efunc(pc, "invalid register %u\n", rd); 9337 if (rd == 0) 9338 err += efunc(pc, "cannot write to %r0\n"); 9339 break; 9340 case DIF_OP_ULDSB: 9341 case DIF_OP_ULDSH: 9342 case DIF_OP_ULDSW: 9343 case DIF_OP_ULDUB: 9344 case DIF_OP_ULDUH: 9345 case DIF_OP_ULDUW: 9346 case DIF_OP_ULDX: 9347 if (r1 >= nregs) 9348 err += efunc(pc, "invalid register %u\n", r1); 9349 if (r2 != 0) 9350 err += efunc(pc, "non-zero reserved bits\n"); 9351 if (rd >= nregs) 9352 err += efunc(pc, "invalid register %u\n", rd); 9353 if (rd == 0) 9354 err += efunc(pc, "cannot write to %r0\n"); 9355 break; 9356 case DIF_OP_STB: 9357 case DIF_OP_STH: 9358 case DIF_OP_STW: 9359 case DIF_OP_STX: 9360 if (r1 >= nregs) 9361 err += efunc(pc, "invalid register %u\n", r1); 9362 if (r2 != 0) 9363 err += efunc(pc, "non-zero reserved bits\n"); 9364 if (rd >= nregs) 9365 err += efunc(pc, "invalid register %u\n", rd); 9366 if (rd == 0) 9367 err += efunc(pc, "cannot write to 0 address\n"); 9368 break; 9369 case DIF_OP_CMP: 9370 case DIF_OP_SCMP: 9371 if (r1 >= nregs) 9372 err += efunc(pc, "invalid register %u\n", r1); 9373 if (r2 >= nregs) 9374 err += efunc(pc, "invalid register %u\n", r2); 9375 if (rd != 0) 9376 err += efunc(pc, "non-zero reserved bits\n"); 9377 break; 9378 case DIF_OP_TST: 9379 if (r1 >= nregs) 9380 err += efunc(pc, "invalid register %u\n", r1); 9381 if (r2 != 0 || rd != 0) 9382 err += efunc(pc, "non-zero reserved bits\n"); 9383 break; 9384 case DIF_OP_BA: 9385 case DIF_OP_BE: 9386 case DIF_OP_BNE: 9387 case DIF_OP_BG: 9388 case DIF_OP_BGU: 9389 case DIF_OP_BGE: 9390 case DIF_OP_BGEU: 9391 case DIF_OP_BL: 9392 case DIF_OP_BLU: 9393 case DIF_OP_BLE: 9394 case DIF_OP_BLEU: 9395 if (label >= dp->dtdo_len) { 9396 err += efunc(pc, "invalid branch target %u\n", 9397 label); 9398 } 9399 if (label <= pc) { 9400 err += efunc(pc, "backward branch to %u\n", 9401 label); 9402 } 9403 break; 9404 case DIF_OP_RET: 9405 if (r1 != 0 || r2 != 0) 9406 err += efunc(pc, "non-zero reserved bits\n"); 9407 if (rd >= nregs) 9408 err += efunc(pc, "invalid register %u\n", rd); 9409 break; 9410 case DIF_OP_NOP: 9411 case DIF_OP_POPTS: 9412 case DIF_OP_FLUSHTS: 9413 if (r1 != 0 || r2 != 0 || rd != 0) 9414 err += efunc(pc, "non-zero reserved bits\n"); 9415 break; 9416 case DIF_OP_SETX: 9417 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9418 err += efunc(pc, "invalid integer ref %u\n", 9419 DIF_INSTR_INTEGER(instr)); 9420 } 9421 if (rd >= nregs) 9422 err += efunc(pc, "invalid register %u\n", rd); 9423 if (rd == 0) 9424 err += efunc(pc, "cannot write to %r0\n"); 9425 break; 9426 case DIF_OP_SETS: 9427 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9428 err += efunc(pc, "invalid string ref %u\n", 9429 DIF_INSTR_STRING(instr)); 9430 } 9431 if (rd >= nregs) 9432 err += efunc(pc, "invalid register %u\n", rd); 9433 if (rd == 0) 9434 err += efunc(pc, "cannot write to %r0\n"); 9435 break; 9436 case DIF_OP_LDGA: 9437 case DIF_OP_LDTA: 9438 if (r1 > DIF_VAR_ARRAY_MAX) 9439 err += efunc(pc, "invalid array %u\n", r1); 9440 if (r2 >= nregs) 9441 err += efunc(pc, "invalid register %u\n", r2); 9442 if (rd >= nregs) 9443 err += efunc(pc, "invalid register %u\n", rd); 9444 if (rd == 0) 9445 err += efunc(pc, "cannot write to %r0\n"); 9446 break; 9447 case DIF_OP_STGA: 9448 if (r1 > DIF_VAR_ARRAY_MAX) 9449 err += efunc(pc, "invalid array %u\n", r1); 9450 if (r2 >= nregs) 9451 err += efunc(pc, "invalid register %u\n", r2); 9452 if (rd >= nregs) 9453 err += efunc(pc, "invalid register %u\n", rd); 9454 dp->dtdo_destructive = 1; 9455 break; 9456 case DIF_OP_LDGS: 9457 case DIF_OP_LDTS: 9458 case DIF_OP_LDLS: 9459 case DIF_OP_LDGAA: 9460 case DIF_OP_LDTAA: 9461 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9462 err += efunc(pc, "invalid variable %u\n", v); 9463 if (rd >= nregs) 9464 err += efunc(pc, "invalid register %u\n", rd); 9465 if (rd == 0) 9466 err += efunc(pc, "cannot write to %r0\n"); 9467 break; 9468 case DIF_OP_STGS: 9469 case DIF_OP_STTS: 9470 case DIF_OP_STLS: 9471 case DIF_OP_STGAA: 9472 case DIF_OP_STTAA: 9473 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9474 err += efunc(pc, "invalid variable %u\n", v); 9475 if (rs >= nregs) 9476 err += efunc(pc, "invalid register %u\n", rd); 9477 break; 9478 case DIF_OP_CALL: 9479 if (subr > DIF_SUBR_MAX) 9480 err += efunc(pc, "invalid subr %u\n", subr); 9481 if (rd >= nregs) 9482 err += efunc(pc, "invalid register %u\n", rd); 9483 if (rd == 0) 9484 err += efunc(pc, "cannot write to %r0\n"); 9485 9486 if (subr == DIF_SUBR_COPYOUT || 9487 subr == DIF_SUBR_COPYOUTSTR) { 9488 dp->dtdo_destructive = 1; 9489 } 9490 9491 if (subr == DIF_SUBR_GETF) { 9492 /* 9493 * If we have a getf() we need to record that 9494 * in our state. Note that our state can be 9495 * NULL if this is a helper -- but in that 9496 * case, the call to getf() is itself illegal, 9497 * and will be caught (slightly later) when 9498 * the helper is validated. 9499 */ 9500 if (vstate->dtvs_state != NULL) 9501 vstate->dtvs_state->dts_getf++; 9502 } 9503 9504 break; 9505 case DIF_OP_PUSHTR: 9506 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9507 err += efunc(pc, "invalid ref type %u\n", type); 9508 if (r2 >= nregs) 9509 err += efunc(pc, "invalid register %u\n", r2); 9510 if (rs >= nregs) 9511 err += efunc(pc, "invalid register %u\n", rs); 9512 break; 9513 case DIF_OP_PUSHTV: 9514 if (type != DIF_TYPE_CTF) 9515 err += efunc(pc, "invalid val type %u\n", type); 9516 if (r2 >= nregs) 9517 err += efunc(pc, "invalid register %u\n", r2); 9518 if (rs >= nregs) 9519 err += efunc(pc, "invalid register %u\n", rs); 9520 break; 9521 default: 9522 err += efunc(pc, "invalid opcode %u\n", 9523 DIF_INSTR_OP(instr)); 9524 } 9525 } 9526 9527 if (dp->dtdo_len != 0 && 9528 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9529 err += efunc(dp->dtdo_len - 1, 9530 "expected 'ret' as last DIF instruction\n"); 9531 } 9532 9533 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9534 /* 9535 * If we're not returning by reference, the size must be either 9536 * 0 or the size of one of the base types. 9537 */ 9538 switch (dp->dtdo_rtype.dtdt_size) { 9539 case 0: 9540 case sizeof (uint8_t): 9541 case sizeof (uint16_t): 9542 case sizeof (uint32_t): 9543 case sizeof (uint64_t): 9544 break; 9545 9546 default: 9547 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9548 } 9549 } 9550 9551 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9552 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9553 dtrace_diftype_t *vt, *et; 9554 uint_t id, ndx; 9555 9556 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9557 v->dtdv_scope != DIFV_SCOPE_THREAD && 9558 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9559 err += efunc(i, "unrecognized variable scope %d\n", 9560 v->dtdv_scope); 9561 break; 9562 } 9563 9564 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9565 v->dtdv_kind != DIFV_KIND_SCALAR) { 9566 err += efunc(i, "unrecognized variable type %d\n", 9567 v->dtdv_kind); 9568 break; 9569 } 9570 9571 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9572 err += efunc(i, "%d exceeds variable id limit\n", id); 9573 break; 9574 } 9575 9576 if (id < DIF_VAR_OTHER_UBASE) 9577 continue; 9578 9579 /* 9580 * For user-defined variables, we need to check that this 9581 * definition is identical to any previous definition that we 9582 * encountered. 9583 */ 9584 ndx = id - DIF_VAR_OTHER_UBASE; 9585 9586 switch (v->dtdv_scope) { 9587 case DIFV_SCOPE_GLOBAL: 9588 if (maxglobal == -1 || ndx > maxglobal) 9589 maxglobal = ndx; 9590 9591 if (ndx < vstate->dtvs_nglobals) { 9592 dtrace_statvar_t *svar; 9593 9594 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9595 existing = &svar->dtsv_var; 9596 } 9597 9598 break; 9599 9600 case DIFV_SCOPE_THREAD: 9601 if (maxtlocal == -1 || ndx > maxtlocal) 9602 maxtlocal = ndx; 9603 9604 if (ndx < vstate->dtvs_ntlocals) 9605 existing = &vstate->dtvs_tlocals[ndx]; 9606 break; 9607 9608 case DIFV_SCOPE_LOCAL: 9609 if (maxlocal == -1 || ndx > maxlocal) 9610 maxlocal = ndx; 9611 9612 if (ndx < vstate->dtvs_nlocals) { 9613 dtrace_statvar_t *svar; 9614 9615 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9616 existing = &svar->dtsv_var; 9617 } 9618 9619 break; 9620 } 9621 9622 vt = &v->dtdv_type; 9623 9624 if (vt->dtdt_flags & DIF_TF_BYREF) { 9625 if (vt->dtdt_size == 0) { 9626 err += efunc(i, "zero-sized variable\n"); 9627 break; 9628 } 9629 9630 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9631 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9632 vt->dtdt_size > dtrace_statvar_maxsize) { 9633 err += efunc(i, "oversized by-ref static\n"); 9634 break; 9635 } 9636 } 9637 9638 if (existing == NULL || existing->dtdv_id == 0) 9639 continue; 9640 9641 ASSERT(existing->dtdv_id == v->dtdv_id); 9642 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9643 9644 if (existing->dtdv_kind != v->dtdv_kind) 9645 err += efunc(i, "%d changed variable kind\n", id); 9646 9647 et = &existing->dtdv_type; 9648 9649 if (vt->dtdt_flags != et->dtdt_flags) { 9650 err += efunc(i, "%d changed variable type flags\n", id); 9651 break; 9652 } 9653 9654 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9655 err += efunc(i, "%d changed variable type size\n", id); 9656 break; 9657 } 9658 } 9659 9660 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9661 dif_instr_t instr = dp->dtdo_buf[pc]; 9662 9663 uint_t v = DIF_INSTR_VAR(instr); 9664 uint_t op = DIF_INSTR_OP(instr); 9665 9666 switch (op) { 9667 case DIF_OP_LDGS: 9668 case DIF_OP_LDGAA: 9669 case DIF_OP_STGS: 9670 case DIF_OP_STGAA: 9671 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9672 err += efunc(pc, "invalid variable %u\n", v); 9673 break; 9674 case DIF_OP_LDTS: 9675 case DIF_OP_LDTAA: 9676 case DIF_OP_STTS: 9677 case DIF_OP_STTAA: 9678 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9679 err += efunc(pc, "invalid variable %u\n", v); 9680 break; 9681 case DIF_OP_LDLS: 9682 case DIF_OP_STLS: 9683 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9684 err += efunc(pc, "invalid variable %u\n", v); 9685 break; 9686 default: 9687 break; 9688 } 9689 } 9690 9691 return (err); 9692 } 9693 9694 /* 9695 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9696 * are much more constrained than normal DIFOs. Specifically, they may 9697 * not: 9698 * 9699 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9700 * miscellaneous string routines 9701 * 2. Access DTrace variables other than the args[] array, and the 9702 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9703 * 3. Have thread-local variables. 9704 * 4. Have dynamic variables. 9705 */ 9706 static int 9707 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9708 { 9709 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9710 int err = 0; 9711 uint_t pc; 9712 9713 for (pc = 0; pc < dp->dtdo_len; pc++) { 9714 dif_instr_t instr = dp->dtdo_buf[pc]; 9715 9716 uint_t v = DIF_INSTR_VAR(instr); 9717 uint_t subr = DIF_INSTR_SUBR(instr); 9718 uint_t op = DIF_INSTR_OP(instr); 9719 9720 switch (op) { 9721 case DIF_OP_OR: 9722 case DIF_OP_XOR: 9723 case DIF_OP_AND: 9724 case DIF_OP_SLL: 9725 case DIF_OP_SRL: 9726 case DIF_OP_SRA: 9727 case DIF_OP_SUB: 9728 case DIF_OP_ADD: 9729 case DIF_OP_MUL: 9730 case DIF_OP_SDIV: 9731 case DIF_OP_UDIV: 9732 case DIF_OP_SREM: 9733 case DIF_OP_UREM: 9734 case DIF_OP_COPYS: 9735 case DIF_OP_NOT: 9736 case DIF_OP_MOV: 9737 case DIF_OP_RLDSB: 9738 case DIF_OP_RLDSH: 9739 case DIF_OP_RLDSW: 9740 case DIF_OP_RLDUB: 9741 case DIF_OP_RLDUH: 9742 case DIF_OP_RLDUW: 9743 case DIF_OP_RLDX: 9744 case DIF_OP_ULDSB: 9745 case DIF_OP_ULDSH: 9746 case DIF_OP_ULDSW: 9747 case DIF_OP_ULDUB: 9748 case DIF_OP_ULDUH: 9749 case DIF_OP_ULDUW: 9750 case DIF_OP_ULDX: 9751 case DIF_OP_STB: 9752 case DIF_OP_STH: 9753 case DIF_OP_STW: 9754 case DIF_OP_STX: 9755 case DIF_OP_ALLOCS: 9756 case DIF_OP_CMP: 9757 case DIF_OP_SCMP: 9758 case DIF_OP_TST: 9759 case DIF_OP_BA: 9760 case DIF_OP_BE: 9761 case DIF_OP_BNE: 9762 case DIF_OP_BG: 9763 case DIF_OP_BGU: 9764 case DIF_OP_BGE: 9765 case DIF_OP_BGEU: 9766 case DIF_OP_BL: 9767 case DIF_OP_BLU: 9768 case DIF_OP_BLE: 9769 case DIF_OP_BLEU: 9770 case DIF_OP_RET: 9771 case DIF_OP_NOP: 9772 case DIF_OP_POPTS: 9773 case DIF_OP_FLUSHTS: 9774 case DIF_OP_SETX: 9775 case DIF_OP_SETS: 9776 case DIF_OP_LDGA: 9777 case DIF_OP_LDLS: 9778 case DIF_OP_STGS: 9779 case DIF_OP_STLS: 9780 case DIF_OP_PUSHTR: 9781 case DIF_OP_PUSHTV: 9782 break; 9783 9784 case DIF_OP_LDGS: 9785 if (v >= DIF_VAR_OTHER_UBASE) 9786 break; 9787 9788 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9789 break; 9790 9791 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9792 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9793 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9794 v == DIF_VAR_UID || v == DIF_VAR_GID) 9795 break; 9796 9797 err += efunc(pc, "illegal variable %u\n", v); 9798 break; 9799 9800 case DIF_OP_LDTA: 9801 if (v < DIF_VAR_OTHER_UBASE) { 9802 err += efunc(pc, "illegal variable load\n"); 9803 break; 9804 } 9805 /* FALLTHROUGH */ 9806 case DIF_OP_LDTS: 9807 case DIF_OP_LDGAA: 9808 case DIF_OP_LDTAA: 9809 err += efunc(pc, "illegal dynamic variable load\n"); 9810 break; 9811 9812 case DIF_OP_STGA: 9813 if (v < DIF_VAR_OTHER_UBASE) { 9814 err += efunc(pc, "illegal variable store\n"); 9815 break; 9816 } 9817 /* FALLTHROUGH */ 9818 case DIF_OP_STTS: 9819 case DIF_OP_STGAA: 9820 case DIF_OP_STTAA: 9821 err += efunc(pc, "illegal dynamic variable store\n"); 9822 break; 9823 9824 case DIF_OP_CALL: 9825 if (subr == DIF_SUBR_ALLOCA || 9826 subr == DIF_SUBR_BCOPY || 9827 subr == DIF_SUBR_COPYIN || 9828 subr == DIF_SUBR_COPYINTO || 9829 subr == DIF_SUBR_COPYINSTR || 9830 subr == DIF_SUBR_INDEX || 9831 subr == DIF_SUBR_INET_NTOA || 9832 subr == DIF_SUBR_INET_NTOA6 || 9833 subr == DIF_SUBR_INET_NTOP || 9834 subr == DIF_SUBR_JSON || 9835 subr == DIF_SUBR_LLTOSTR || 9836 subr == DIF_SUBR_STRTOLL || 9837 subr == DIF_SUBR_RINDEX || 9838 subr == DIF_SUBR_STRCHR || 9839 subr == DIF_SUBR_STRJOIN || 9840 subr == DIF_SUBR_STRRCHR || 9841 subr == DIF_SUBR_STRSTR || 9842 subr == DIF_SUBR_HTONS || 9843 subr == DIF_SUBR_HTONL || 9844 subr == DIF_SUBR_HTONLL || 9845 subr == DIF_SUBR_NTOHS || 9846 subr == DIF_SUBR_NTOHL || 9847 subr == DIF_SUBR_NTOHLL) 9848 break; 9849 9850 err += efunc(pc, "invalid subr %u\n", subr); 9851 break; 9852 9853 default: 9854 err += efunc(pc, "invalid opcode %u\n", 9855 DIF_INSTR_OP(instr)); 9856 } 9857 } 9858 9859 return (err); 9860 } 9861 9862 /* 9863 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9864 * basis; 0 if not. 9865 */ 9866 static int 9867 dtrace_difo_cacheable(dtrace_difo_t *dp) 9868 { 9869 int i; 9870 9871 if (dp == NULL) 9872 return (0); 9873 9874 for (i = 0; i < dp->dtdo_varlen; i++) { 9875 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9876 9877 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9878 continue; 9879 9880 switch (v->dtdv_id) { 9881 case DIF_VAR_CURTHREAD: 9882 case DIF_VAR_PID: 9883 case DIF_VAR_TID: 9884 case DIF_VAR_EXECNAME: 9885 case DIF_VAR_ZONENAME: 9886 break; 9887 9888 default: 9889 return (0); 9890 } 9891 } 9892 9893 /* 9894 * This DIF object may be cacheable. Now we need to look for any 9895 * array loading instructions, any memory loading instructions, or 9896 * any stores to thread-local variables. 9897 */ 9898 for (i = 0; i < dp->dtdo_len; i++) { 9899 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9900 9901 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9902 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9903 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9904 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9905 return (0); 9906 } 9907 9908 return (1); 9909 } 9910 9911 static void 9912 dtrace_difo_hold(dtrace_difo_t *dp) 9913 { 9914 int i; 9915 9916 ASSERT(MUTEX_HELD(&dtrace_lock)); 9917 9918 dp->dtdo_refcnt++; 9919 ASSERT(dp->dtdo_refcnt != 0); 9920 9921 /* 9922 * We need to check this DIF object for references to the variable 9923 * DIF_VAR_VTIMESTAMP. 9924 */ 9925 for (i = 0; i < dp->dtdo_varlen; i++) { 9926 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9927 9928 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9929 continue; 9930 9931 if (dtrace_vtime_references++ == 0) 9932 dtrace_vtime_enable(); 9933 } 9934 } 9935 9936 /* 9937 * This routine calculates the dynamic variable chunksize for a given DIF 9938 * object. The calculation is not fool-proof, and can probably be tricked by 9939 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9940 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9941 * if a dynamic variable size exceeds the chunksize. 9942 */ 9943 static void 9944 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9945 { 9946 uint64_t sval; 9947 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9948 const dif_instr_t *text = dp->dtdo_buf; 9949 uint_t pc, srd = 0; 9950 uint_t ttop = 0; 9951 size_t size, ksize; 9952 uint_t id, i; 9953 9954 for (pc = 0; pc < dp->dtdo_len; pc++) { 9955 dif_instr_t instr = text[pc]; 9956 uint_t op = DIF_INSTR_OP(instr); 9957 uint_t rd = DIF_INSTR_RD(instr); 9958 uint_t r1 = DIF_INSTR_R1(instr); 9959 uint_t nkeys = 0; 9960 uchar_t scope; 9961 9962 dtrace_key_t *key = tupregs; 9963 9964 switch (op) { 9965 case DIF_OP_SETX: 9966 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9967 srd = rd; 9968 continue; 9969 9970 case DIF_OP_STTS: 9971 key = &tupregs[DIF_DTR_NREGS]; 9972 key[0].dttk_size = 0; 9973 key[1].dttk_size = 0; 9974 nkeys = 2; 9975 scope = DIFV_SCOPE_THREAD; 9976 break; 9977 9978 case DIF_OP_STGAA: 9979 case DIF_OP_STTAA: 9980 nkeys = ttop; 9981 9982 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9983 key[nkeys++].dttk_size = 0; 9984 9985 key[nkeys++].dttk_size = 0; 9986 9987 if (op == DIF_OP_STTAA) { 9988 scope = DIFV_SCOPE_THREAD; 9989 } else { 9990 scope = DIFV_SCOPE_GLOBAL; 9991 } 9992 9993 break; 9994 9995 case DIF_OP_PUSHTR: 9996 if (ttop == DIF_DTR_NREGS) 9997 return; 9998 9999 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10000 /* 10001 * If the register for the size of the "pushtr" 10002 * is %r0 (or the value is 0) and the type is 10003 * a string, we'll use the system-wide default 10004 * string size. 10005 */ 10006 tupregs[ttop++].dttk_size = 10007 dtrace_strsize_default; 10008 } else { 10009 if (srd == 0) 10010 return; 10011 10012 if (sval > LONG_MAX) 10013 return; 10014 10015 tupregs[ttop++].dttk_size = sval; 10016 } 10017 10018 break; 10019 10020 case DIF_OP_PUSHTV: 10021 if (ttop == DIF_DTR_NREGS) 10022 return; 10023 10024 tupregs[ttop++].dttk_size = 0; 10025 break; 10026 10027 case DIF_OP_FLUSHTS: 10028 ttop = 0; 10029 break; 10030 10031 case DIF_OP_POPTS: 10032 if (ttop != 0) 10033 ttop--; 10034 break; 10035 } 10036 10037 sval = 0; 10038 srd = 0; 10039 10040 if (nkeys == 0) 10041 continue; 10042 10043 /* 10044 * We have a dynamic variable allocation; calculate its size. 10045 */ 10046 for (ksize = 0, i = 0; i < nkeys; i++) 10047 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10048 10049 size = sizeof (dtrace_dynvar_t); 10050 size += sizeof (dtrace_key_t) * (nkeys - 1); 10051 size += ksize; 10052 10053 /* 10054 * Now we need to determine the size of the stored data. 10055 */ 10056 id = DIF_INSTR_VAR(instr); 10057 10058 for (i = 0; i < dp->dtdo_varlen; i++) { 10059 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10060 10061 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10062 size += v->dtdv_type.dtdt_size; 10063 break; 10064 } 10065 } 10066 10067 if (i == dp->dtdo_varlen) 10068 return; 10069 10070 /* 10071 * We have the size. If this is larger than the chunk size 10072 * for our dynamic variable state, reset the chunk size. 10073 */ 10074 size = P2ROUNDUP(size, sizeof (uint64_t)); 10075 10076 /* 10077 * Before setting the chunk size, check that we're not going 10078 * to set it to a negative value... 10079 */ 10080 if (size > LONG_MAX) 10081 return; 10082 10083 /* 10084 * ...and make certain that we didn't badly overflow. 10085 */ 10086 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10087 return; 10088 10089 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10090 vstate->dtvs_dynvars.dtds_chunksize = size; 10091 } 10092 } 10093 10094 static void 10095 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10096 { 10097 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10098 uint_t id; 10099 10100 ASSERT(MUTEX_HELD(&dtrace_lock)); 10101 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10102 10103 for (i = 0; i < dp->dtdo_varlen; i++) { 10104 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10105 dtrace_statvar_t *svar, ***svarp; 10106 size_t dsize = 0; 10107 uint8_t scope = v->dtdv_scope; 10108 int *np; 10109 10110 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10111 continue; 10112 10113 id -= DIF_VAR_OTHER_UBASE; 10114 10115 switch (scope) { 10116 case DIFV_SCOPE_THREAD: 10117 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10118 dtrace_difv_t *tlocals; 10119 10120 if ((ntlocals = (otlocals << 1)) == 0) 10121 ntlocals = 1; 10122 10123 osz = otlocals * sizeof (dtrace_difv_t); 10124 nsz = ntlocals * sizeof (dtrace_difv_t); 10125 10126 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10127 10128 if (osz != 0) { 10129 bcopy(vstate->dtvs_tlocals, 10130 tlocals, osz); 10131 kmem_free(vstate->dtvs_tlocals, osz); 10132 } 10133 10134 vstate->dtvs_tlocals = tlocals; 10135 vstate->dtvs_ntlocals = ntlocals; 10136 } 10137 10138 vstate->dtvs_tlocals[id] = *v; 10139 continue; 10140 10141 case DIFV_SCOPE_LOCAL: 10142 np = &vstate->dtvs_nlocals; 10143 svarp = &vstate->dtvs_locals; 10144 10145 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10146 dsize = NCPU * (v->dtdv_type.dtdt_size + 10147 sizeof (uint64_t)); 10148 else 10149 dsize = NCPU * sizeof (uint64_t); 10150 10151 break; 10152 10153 case DIFV_SCOPE_GLOBAL: 10154 np = &vstate->dtvs_nglobals; 10155 svarp = &vstate->dtvs_globals; 10156 10157 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10158 dsize = v->dtdv_type.dtdt_size + 10159 sizeof (uint64_t); 10160 10161 break; 10162 10163 default: 10164 ASSERT(0); 10165 } 10166 10167 while (id >= (oldsvars = *np)) { 10168 dtrace_statvar_t **statics; 10169 int newsvars, oldsize, newsize; 10170 10171 if ((newsvars = (oldsvars << 1)) == 0) 10172 newsvars = 1; 10173 10174 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10175 newsize = newsvars * sizeof (dtrace_statvar_t *); 10176 10177 statics = kmem_zalloc(newsize, KM_SLEEP); 10178 10179 if (oldsize != 0) { 10180 bcopy(*svarp, statics, oldsize); 10181 kmem_free(*svarp, oldsize); 10182 } 10183 10184 *svarp = statics; 10185 *np = newsvars; 10186 } 10187 10188 if ((svar = (*svarp)[id]) == NULL) { 10189 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10190 svar->dtsv_var = *v; 10191 10192 if ((svar->dtsv_size = dsize) != 0) { 10193 svar->dtsv_data = (uint64_t)(uintptr_t) 10194 kmem_zalloc(dsize, KM_SLEEP); 10195 } 10196 10197 (*svarp)[id] = svar; 10198 } 10199 10200 svar->dtsv_refcnt++; 10201 } 10202 10203 dtrace_difo_chunksize(dp, vstate); 10204 dtrace_difo_hold(dp); 10205 } 10206 10207 static dtrace_difo_t * 10208 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10209 { 10210 dtrace_difo_t *new; 10211 size_t sz; 10212 10213 ASSERT(dp->dtdo_buf != NULL); 10214 ASSERT(dp->dtdo_refcnt != 0); 10215 10216 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10217 10218 ASSERT(dp->dtdo_buf != NULL); 10219 sz = dp->dtdo_len * sizeof (dif_instr_t); 10220 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10221 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10222 new->dtdo_len = dp->dtdo_len; 10223 10224 if (dp->dtdo_strtab != NULL) { 10225 ASSERT(dp->dtdo_strlen != 0); 10226 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10227 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10228 new->dtdo_strlen = dp->dtdo_strlen; 10229 } 10230 10231 if (dp->dtdo_inttab != NULL) { 10232 ASSERT(dp->dtdo_intlen != 0); 10233 sz = dp->dtdo_intlen * sizeof (uint64_t); 10234 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10235 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10236 new->dtdo_intlen = dp->dtdo_intlen; 10237 } 10238 10239 if (dp->dtdo_vartab != NULL) { 10240 ASSERT(dp->dtdo_varlen != 0); 10241 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10242 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10243 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10244 new->dtdo_varlen = dp->dtdo_varlen; 10245 } 10246 10247 dtrace_difo_init(new, vstate); 10248 return (new); 10249 } 10250 10251 static void 10252 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10253 { 10254 int i; 10255 10256 ASSERT(dp->dtdo_refcnt == 0); 10257 10258 for (i = 0; i < dp->dtdo_varlen; i++) { 10259 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10260 dtrace_statvar_t *svar, **svarp; 10261 uint_t id; 10262 uint8_t scope = v->dtdv_scope; 10263 int *np; 10264 10265 switch (scope) { 10266 case DIFV_SCOPE_THREAD: 10267 continue; 10268 10269 case DIFV_SCOPE_LOCAL: 10270 np = &vstate->dtvs_nlocals; 10271 svarp = vstate->dtvs_locals; 10272 break; 10273 10274 case DIFV_SCOPE_GLOBAL: 10275 np = &vstate->dtvs_nglobals; 10276 svarp = vstate->dtvs_globals; 10277 break; 10278 10279 default: 10280 ASSERT(0); 10281 } 10282 10283 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10284 continue; 10285 10286 id -= DIF_VAR_OTHER_UBASE; 10287 ASSERT(id < *np); 10288 10289 svar = svarp[id]; 10290 ASSERT(svar != NULL); 10291 ASSERT(svar->dtsv_refcnt > 0); 10292 10293 if (--svar->dtsv_refcnt > 0) 10294 continue; 10295 10296 if (svar->dtsv_size != 0) { 10297 ASSERT(svar->dtsv_data != NULL); 10298 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10299 svar->dtsv_size); 10300 } 10301 10302 kmem_free(svar, sizeof (dtrace_statvar_t)); 10303 svarp[id] = NULL; 10304 } 10305 10306 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10307 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10308 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10309 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10310 10311 kmem_free(dp, sizeof (dtrace_difo_t)); 10312 } 10313 10314 static void 10315 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10316 { 10317 int i; 10318 10319 ASSERT(MUTEX_HELD(&dtrace_lock)); 10320 ASSERT(dp->dtdo_refcnt != 0); 10321 10322 for (i = 0; i < dp->dtdo_varlen; i++) { 10323 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10324 10325 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10326 continue; 10327 10328 ASSERT(dtrace_vtime_references > 0); 10329 if (--dtrace_vtime_references == 0) 10330 dtrace_vtime_disable(); 10331 } 10332 10333 if (--dp->dtdo_refcnt == 0) 10334 dtrace_difo_destroy(dp, vstate); 10335 } 10336 10337 /* 10338 * DTrace Format Functions 10339 */ 10340 static uint16_t 10341 dtrace_format_add(dtrace_state_t *state, char *str) 10342 { 10343 char *fmt, **new; 10344 uint16_t ndx, len = strlen(str) + 1; 10345 10346 fmt = kmem_zalloc(len, KM_SLEEP); 10347 bcopy(str, fmt, len); 10348 10349 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10350 if (state->dts_formats[ndx] == NULL) { 10351 state->dts_formats[ndx] = fmt; 10352 return (ndx + 1); 10353 } 10354 } 10355 10356 if (state->dts_nformats == USHRT_MAX) { 10357 /* 10358 * This is only likely if a denial-of-service attack is being 10359 * attempted. As such, it's okay to fail silently here. 10360 */ 10361 kmem_free(fmt, len); 10362 return (0); 10363 } 10364 10365 /* 10366 * For simplicity, we always resize the formats array to be exactly the 10367 * number of formats. 10368 */ 10369 ndx = state->dts_nformats++; 10370 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10371 10372 if (state->dts_formats != NULL) { 10373 ASSERT(ndx != 0); 10374 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10375 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10376 } 10377 10378 state->dts_formats = new; 10379 state->dts_formats[ndx] = fmt; 10380 10381 return (ndx + 1); 10382 } 10383 10384 static void 10385 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10386 { 10387 char *fmt; 10388 10389 ASSERT(state->dts_formats != NULL); 10390 ASSERT(format <= state->dts_nformats); 10391 ASSERT(state->dts_formats[format - 1] != NULL); 10392 10393 fmt = state->dts_formats[format - 1]; 10394 kmem_free(fmt, strlen(fmt) + 1); 10395 state->dts_formats[format - 1] = NULL; 10396 } 10397 10398 static void 10399 dtrace_format_destroy(dtrace_state_t *state) 10400 { 10401 int i; 10402 10403 if (state->dts_nformats == 0) { 10404 ASSERT(state->dts_formats == NULL); 10405 return; 10406 } 10407 10408 ASSERT(state->dts_formats != NULL); 10409 10410 for (i = 0; i < state->dts_nformats; i++) { 10411 char *fmt = state->dts_formats[i]; 10412 10413 if (fmt == NULL) 10414 continue; 10415 10416 kmem_free(fmt, strlen(fmt) + 1); 10417 } 10418 10419 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10420 state->dts_nformats = 0; 10421 state->dts_formats = NULL; 10422 } 10423 10424 /* 10425 * DTrace Predicate Functions 10426 */ 10427 static dtrace_predicate_t * 10428 dtrace_predicate_create(dtrace_difo_t *dp) 10429 { 10430 dtrace_predicate_t *pred; 10431 10432 ASSERT(MUTEX_HELD(&dtrace_lock)); 10433 ASSERT(dp->dtdo_refcnt != 0); 10434 10435 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10436 pred->dtp_difo = dp; 10437 pred->dtp_refcnt = 1; 10438 10439 if (!dtrace_difo_cacheable(dp)) 10440 return (pred); 10441 10442 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10443 /* 10444 * This is only theoretically possible -- we have had 2^32 10445 * cacheable predicates on this machine. We cannot allow any 10446 * more predicates to become cacheable: as unlikely as it is, 10447 * there may be a thread caching a (now stale) predicate cache 10448 * ID. (N.B.: the temptation is being successfully resisted to 10449 * have this cmn_err() "Holy shit -- we executed this code!") 10450 */ 10451 return (pred); 10452 } 10453 10454 pred->dtp_cacheid = dtrace_predcache_id++; 10455 10456 return (pred); 10457 } 10458 10459 static void 10460 dtrace_predicate_hold(dtrace_predicate_t *pred) 10461 { 10462 ASSERT(MUTEX_HELD(&dtrace_lock)); 10463 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10464 ASSERT(pred->dtp_refcnt > 0); 10465 10466 pred->dtp_refcnt++; 10467 } 10468 10469 static void 10470 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10471 { 10472 dtrace_difo_t *dp = pred->dtp_difo; 10473 10474 ASSERT(MUTEX_HELD(&dtrace_lock)); 10475 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10476 ASSERT(pred->dtp_refcnt > 0); 10477 10478 if (--pred->dtp_refcnt == 0) { 10479 dtrace_difo_release(pred->dtp_difo, vstate); 10480 kmem_free(pred, sizeof (dtrace_predicate_t)); 10481 } 10482 } 10483 10484 /* 10485 * DTrace Action Description Functions 10486 */ 10487 static dtrace_actdesc_t * 10488 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10489 uint64_t uarg, uint64_t arg) 10490 { 10491 dtrace_actdesc_t *act; 10492 10493 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10494 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10495 10496 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10497 act->dtad_kind = kind; 10498 act->dtad_ntuple = ntuple; 10499 act->dtad_uarg = uarg; 10500 act->dtad_arg = arg; 10501 act->dtad_refcnt = 1; 10502 10503 return (act); 10504 } 10505 10506 static void 10507 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10508 { 10509 ASSERT(act->dtad_refcnt >= 1); 10510 act->dtad_refcnt++; 10511 } 10512 10513 static void 10514 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10515 { 10516 dtrace_actkind_t kind = act->dtad_kind; 10517 dtrace_difo_t *dp; 10518 10519 ASSERT(act->dtad_refcnt >= 1); 10520 10521 if (--act->dtad_refcnt != 0) 10522 return; 10523 10524 if ((dp = act->dtad_difo) != NULL) 10525 dtrace_difo_release(dp, vstate); 10526 10527 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10528 char *str = (char *)(uintptr_t)act->dtad_arg; 10529 10530 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10531 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10532 10533 if (str != NULL) 10534 kmem_free(str, strlen(str) + 1); 10535 } 10536 10537 kmem_free(act, sizeof (dtrace_actdesc_t)); 10538 } 10539 10540 /* 10541 * DTrace ECB Functions 10542 */ 10543 static dtrace_ecb_t * 10544 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10545 { 10546 dtrace_ecb_t *ecb; 10547 dtrace_epid_t epid; 10548 10549 ASSERT(MUTEX_HELD(&dtrace_lock)); 10550 10551 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10552 ecb->dte_predicate = NULL; 10553 ecb->dte_probe = probe; 10554 10555 /* 10556 * The default size is the size of the default action: recording 10557 * the header. 10558 */ 10559 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10560 ecb->dte_alignment = sizeof (dtrace_epid_t); 10561 10562 epid = state->dts_epid++; 10563 10564 if (epid - 1 >= state->dts_necbs) { 10565 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10566 int necbs = state->dts_necbs << 1; 10567 10568 ASSERT(epid == state->dts_necbs + 1); 10569 10570 if (necbs == 0) { 10571 ASSERT(oecbs == NULL); 10572 necbs = 1; 10573 } 10574 10575 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10576 10577 if (oecbs != NULL) 10578 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10579 10580 dtrace_membar_producer(); 10581 state->dts_ecbs = ecbs; 10582 10583 if (oecbs != NULL) { 10584 /* 10585 * If this state is active, we must dtrace_sync() 10586 * before we can free the old dts_ecbs array: we're 10587 * coming in hot, and there may be active ring 10588 * buffer processing (which indexes into the dts_ecbs 10589 * array) on another CPU. 10590 */ 10591 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10592 dtrace_sync(); 10593 10594 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10595 } 10596 10597 dtrace_membar_producer(); 10598 state->dts_necbs = necbs; 10599 } 10600 10601 ecb->dte_state = state; 10602 10603 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10604 dtrace_membar_producer(); 10605 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10606 10607 return (ecb); 10608 } 10609 10610 static int 10611 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10612 { 10613 dtrace_probe_t *probe = ecb->dte_probe; 10614 10615 ASSERT(MUTEX_HELD(&cpu_lock)); 10616 ASSERT(MUTEX_HELD(&dtrace_lock)); 10617 ASSERT(ecb->dte_next == NULL); 10618 10619 if (probe == NULL) { 10620 /* 10621 * This is the NULL probe -- there's nothing to do. 10622 */ 10623 return (0); 10624 } 10625 10626 if (probe->dtpr_ecb == NULL) { 10627 dtrace_provider_t *prov = probe->dtpr_provider; 10628 10629 /* 10630 * We're the first ECB on this probe. 10631 */ 10632 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10633 10634 if (ecb->dte_predicate != NULL) 10635 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10636 10637 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10638 probe->dtpr_id, probe->dtpr_arg)); 10639 } else { 10640 /* 10641 * This probe is already active. Swing the last pointer to 10642 * point to the new ECB, and issue a dtrace_sync() to assure 10643 * that all CPUs have seen the change. 10644 */ 10645 ASSERT(probe->dtpr_ecb_last != NULL); 10646 probe->dtpr_ecb_last->dte_next = ecb; 10647 probe->dtpr_ecb_last = ecb; 10648 probe->dtpr_predcache = 0; 10649 10650 dtrace_sync(); 10651 return (0); 10652 } 10653 } 10654 10655 static int 10656 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10657 { 10658 dtrace_action_t *act; 10659 uint32_t curneeded = UINT32_MAX; 10660 uint32_t aggbase = UINT32_MAX; 10661 10662 /* 10663 * If we record anything, we always record the dtrace_rechdr_t. (And 10664 * we always record it first.) 10665 */ 10666 ecb->dte_size = sizeof (dtrace_rechdr_t); 10667 ecb->dte_alignment = sizeof (dtrace_epid_t); 10668 10669 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10670 dtrace_recdesc_t *rec = &act->dta_rec; 10671 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10672 10673 ecb->dte_alignment = MAX(ecb->dte_alignment, 10674 rec->dtrd_alignment); 10675 10676 if (DTRACEACT_ISAGG(act->dta_kind)) { 10677 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10678 10679 ASSERT(rec->dtrd_size != 0); 10680 ASSERT(agg->dtag_first != NULL); 10681 ASSERT(act->dta_prev->dta_intuple); 10682 ASSERT(aggbase != UINT32_MAX); 10683 ASSERT(curneeded != UINT32_MAX); 10684 10685 agg->dtag_base = aggbase; 10686 10687 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10688 rec->dtrd_offset = curneeded; 10689 if (curneeded + rec->dtrd_size < curneeded) 10690 return (EINVAL); 10691 curneeded += rec->dtrd_size; 10692 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10693 10694 aggbase = UINT32_MAX; 10695 curneeded = UINT32_MAX; 10696 } else if (act->dta_intuple) { 10697 if (curneeded == UINT32_MAX) { 10698 /* 10699 * This is the first record in a tuple. Align 10700 * curneeded to be at offset 4 in an 8-byte 10701 * aligned block. 10702 */ 10703 ASSERT(act->dta_prev == NULL || 10704 !act->dta_prev->dta_intuple); 10705 ASSERT3U(aggbase, ==, UINT32_MAX); 10706 curneeded = P2PHASEUP(ecb->dte_size, 10707 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10708 10709 aggbase = curneeded - sizeof (dtrace_aggid_t); 10710 ASSERT(IS_P2ALIGNED(aggbase, 10711 sizeof (uint64_t))); 10712 } 10713 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10714 rec->dtrd_offset = curneeded; 10715 if (curneeded + rec->dtrd_size < curneeded) 10716 return (EINVAL); 10717 curneeded += rec->dtrd_size; 10718 } else { 10719 /* tuples must be followed by an aggregation */ 10720 ASSERT(act->dta_prev == NULL || 10721 !act->dta_prev->dta_intuple); 10722 10723 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10724 rec->dtrd_alignment); 10725 rec->dtrd_offset = ecb->dte_size; 10726 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10727 return (EINVAL); 10728 ecb->dte_size += rec->dtrd_size; 10729 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10730 } 10731 } 10732 10733 if ((act = ecb->dte_action) != NULL && 10734 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10735 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10736 /* 10737 * If the size is still sizeof (dtrace_rechdr_t), then all 10738 * actions store no data; set the size to 0. 10739 */ 10740 ecb->dte_size = 0; 10741 } 10742 10743 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10744 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10745 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10746 ecb->dte_needed); 10747 return (0); 10748 } 10749 10750 static dtrace_action_t * 10751 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10752 { 10753 dtrace_aggregation_t *agg; 10754 size_t size = sizeof (uint64_t); 10755 int ntuple = desc->dtad_ntuple; 10756 dtrace_action_t *act; 10757 dtrace_recdesc_t *frec; 10758 dtrace_aggid_t aggid; 10759 dtrace_state_t *state = ecb->dte_state; 10760 10761 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10762 agg->dtag_ecb = ecb; 10763 10764 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10765 10766 switch (desc->dtad_kind) { 10767 case DTRACEAGG_MIN: 10768 agg->dtag_initial = INT64_MAX; 10769 agg->dtag_aggregate = dtrace_aggregate_min; 10770 break; 10771 10772 case DTRACEAGG_MAX: 10773 agg->dtag_initial = INT64_MIN; 10774 agg->dtag_aggregate = dtrace_aggregate_max; 10775 break; 10776 10777 case DTRACEAGG_COUNT: 10778 agg->dtag_aggregate = dtrace_aggregate_count; 10779 break; 10780 10781 case DTRACEAGG_QUANTIZE: 10782 agg->dtag_aggregate = dtrace_aggregate_quantize; 10783 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10784 sizeof (uint64_t); 10785 break; 10786 10787 case DTRACEAGG_LQUANTIZE: { 10788 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10789 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10790 10791 agg->dtag_initial = desc->dtad_arg; 10792 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10793 10794 if (step == 0 || levels == 0) 10795 goto err; 10796 10797 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10798 break; 10799 } 10800 10801 case DTRACEAGG_LLQUANTIZE: { 10802 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10803 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10804 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10805 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10806 int64_t v; 10807 10808 agg->dtag_initial = desc->dtad_arg; 10809 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10810 10811 if (factor < 2 || low >= high || nsteps < factor) 10812 goto err; 10813 10814 /* 10815 * Now check that the number of steps evenly divides a power 10816 * of the factor. (This assures both integer bucket size and 10817 * linearity within each magnitude.) 10818 */ 10819 for (v = factor; v < nsteps; v *= factor) 10820 continue; 10821 10822 if ((v % nsteps) || (nsteps % factor)) 10823 goto err; 10824 10825 size = (dtrace_aggregate_llquantize_bucket(factor, 10826 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10827 break; 10828 } 10829 10830 case DTRACEAGG_AVG: 10831 agg->dtag_aggregate = dtrace_aggregate_avg; 10832 size = sizeof (uint64_t) * 2; 10833 break; 10834 10835 case DTRACEAGG_STDDEV: 10836 agg->dtag_aggregate = dtrace_aggregate_stddev; 10837 size = sizeof (uint64_t) * 4; 10838 break; 10839 10840 case DTRACEAGG_SUM: 10841 agg->dtag_aggregate = dtrace_aggregate_sum; 10842 break; 10843 10844 default: 10845 goto err; 10846 } 10847 10848 agg->dtag_action.dta_rec.dtrd_size = size; 10849 10850 if (ntuple == 0) 10851 goto err; 10852 10853 /* 10854 * We must make sure that we have enough actions for the n-tuple. 10855 */ 10856 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10857 if (DTRACEACT_ISAGG(act->dta_kind)) 10858 break; 10859 10860 if (--ntuple == 0) { 10861 /* 10862 * This is the action with which our n-tuple begins. 10863 */ 10864 agg->dtag_first = act; 10865 goto success; 10866 } 10867 } 10868 10869 /* 10870 * This n-tuple is short by ntuple elements. Return failure. 10871 */ 10872 ASSERT(ntuple != 0); 10873 err: 10874 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10875 return (NULL); 10876 10877 success: 10878 /* 10879 * If the last action in the tuple has a size of zero, it's actually 10880 * an expression argument for the aggregating action. 10881 */ 10882 ASSERT(ecb->dte_action_last != NULL); 10883 act = ecb->dte_action_last; 10884 10885 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10886 ASSERT(act->dta_difo != NULL); 10887 10888 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10889 agg->dtag_hasarg = 1; 10890 } 10891 10892 /* 10893 * We need to allocate an id for this aggregation. 10894 */ 10895 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10896 VM_BESTFIT | VM_SLEEP); 10897 10898 if (aggid - 1 >= state->dts_naggregations) { 10899 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10900 dtrace_aggregation_t **aggs; 10901 int naggs = state->dts_naggregations << 1; 10902 int onaggs = state->dts_naggregations; 10903 10904 ASSERT(aggid == state->dts_naggregations + 1); 10905 10906 if (naggs == 0) { 10907 ASSERT(oaggs == NULL); 10908 naggs = 1; 10909 } 10910 10911 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10912 10913 if (oaggs != NULL) { 10914 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10915 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10916 } 10917 10918 state->dts_aggregations = aggs; 10919 state->dts_naggregations = naggs; 10920 } 10921 10922 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10923 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10924 10925 frec = &agg->dtag_first->dta_rec; 10926 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10927 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10928 10929 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10930 ASSERT(!act->dta_intuple); 10931 act->dta_intuple = 1; 10932 } 10933 10934 return (&agg->dtag_action); 10935 } 10936 10937 static void 10938 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10939 { 10940 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10941 dtrace_state_t *state = ecb->dte_state; 10942 dtrace_aggid_t aggid = agg->dtag_id; 10943 10944 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10945 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10946 10947 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10948 state->dts_aggregations[aggid - 1] = NULL; 10949 10950 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10951 } 10952 10953 static int 10954 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10955 { 10956 dtrace_action_t *action, *last; 10957 dtrace_difo_t *dp = desc->dtad_difo; 10958 uint32_t size = 0, align = sizeof (uint8_t), mask; 10959 uint16_t format = 0; 10960 dtrace_recdesc_t *rec; 10961 dtrace_state_t *state = ecb->dte_state; 10962 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10963 uint64_t arg = desc->dtad_arg; 10964 10965 ASSERT(MUTEX_HELD(&dtrace_lock)); 10966 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10967 10968 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10969 /* 10970 * If this is an aggregating action, there must be neither 10971 * a speculate nor a commit on the action chain. 10972 */ 10973 dtrace_action_t *act; 10974 10975 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10976 if (act->dta_kind == DTRACEACT_COMMIT) 10977 return (EINVAL); 10978 10979 if (act->dta_kind == DTRACEACT_SPECULATE) 10980 return (EINVAL); 10981 } 10982 10983 action = dtrace_ecb_aggregation_create(ecb, desc); 10984 10985 if (action == NULL) 10986 return (EINVAL); 10987 } else { 10988 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10989 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10990 dp != NULL && dp->dtdo_destructive)) { 10991 state->dts_destructive = 1; 10992 } 10993 10994 switch (desc->dtad_kind) { 10995 case DTRACEACT_PRINTF: 10996 case DTRACEACT_PRINTA: 10997 case DTRACEACT_SYSTEM: 10998 case DTRACEACT_FREOPEN: 10999 case DTRACEACT_DIFEXPR: 11000 /* 11001 * We know that our arg is a string -- turn it into a 11002 * format. 11003 */ 11004 if (arg == NULL) { 11005 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11006 desc->dtad_kind == DTRACEACT_DIFEXPR); 11007 format = 0; 11008 } else { 11009 ASSERT(arg != NULL); 11010 ASSERT(arg > KERNELBASE); 11011 format = dtrace_format_add(state, 11012 (char *)(uintptr_t)arg); 11013 } 11014 11015 /*FALLTHROUGH*/ 11016 case DTRACEACT_LIBACT: 11017 case DTRACEACT_TRACEMEM: 11018 case DTRACEACT_TRACEMEM_DYNSIZE: 11019 if (dp == NULL) 11020 return (EINVAL); 11021 11022 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11023 break; 11024 11025 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11026 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11027 return (EINVAL); 11028 11029 size = opt[DTRACEOPT_STRSIZE]; 11030 } 11031 11032 break; 11033 11034 case DTRACEACT_STACK: 11035 if ((nframes = arg) == 0) { 11036 nframes = opt[DTRACEOPT_STACKFRAMES]; 11037 ASSERT(nframes > 0); 11038 arg = nframes; 11039 } 11040 11041 size = nframes * sizeof (pc_t); 11042 break; 11043 11044 case DTRACEACT_JSTACK: 11045 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11046 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11047 11048 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11049 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11050 11051 arg = DTRACE_USTACK_ARG(nframes, strsize); 11052 11053 /*FALLTHROUGH*/ 11054 case DTRACEACT_USTACK: 11055 if (desc->dtad_kind != DTRACEACT_JSTACK && 11056 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11057 strsize = DTRACE_USTACK_STRSIZE(arg); 11058 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11059 ASSERT(nframes > 0); 11060 arg = DTRACE_USTACK_ARG(nframes, strsize); 11061 } 11062 11063 /* 11064 * Save a slot for the pid. 11065 */ 11066 size = (nframes + 1) * sizeof (uint64_t); 11067 size += DTRACE_USTACK_STRSIZE(arg); 11068 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11069 11070 break; 11071 11072 case DTRACEACT_SYM: 11073 case DTRACEACT_MOD: 11074 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11075 sizeof (uint64_t)) || 11076 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11077 return (EINVAL); 11078 break; 11079 11080 case DTRACEACT_USYM: 11081 case DTRACEACT_UMOD: 11082 case DTRACEACT_UADDR: 11083 if (dp == NULL || 11084 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11085 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11086 return (EINVAL); 11087 11088 /* 11089 * We have a slot for the pid, plus a slot for the 11090 * argument. To keep things simple (aligned with 11091 * bitness-neutral sizing), we store each as a 64-bit 11092 * quantity. 11093 */ 11094 size = 2 * sizeof (uint64_t); 11095 break; 11096 11097 case DTRACEACT_STOP: 11098 case DTRACEACT_BREAKPOINT: 11099 case DTRACEACT_PANIC: 11100 break; 11101 11102 case DTRACEACT_CHILL: 11103 case DTRACEACT_DISCARD: 11104 case DTRACEACT_RAISE: 11105 if (dp == NULL) 11106 return (EINVAL); 11107 break; 11108 11109 case DTRACEACT_EXIT: 11110 if (dp == NULL || 11111 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11112 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11113 return (EINVAL); 11114 break; 11115 11116 case DTRACEACT_SPECULATE: 11117 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11118 return (EINVAL); 11119 11120 if (dp == NULL) 11121 return (EINVAL); 11122 11123 state->dts_speculates = 1; 11124 break; 11125 11126 case DTRACEACT_COMMIT: { 11127 dtrace_action_t *act = ecb->dte_action; 11128 11129 for (; act != NULL; act = act->dta_next) { 11130 if (act->dta_kind == DTRACEACT_COMMIT) 11131 return (EINVAL); 11132 } 11133 11134 if (dp == NULL) 11135 return (EINVAL); 11136 break; 11137 } 11138 11139 default: 11140 return (EINVAL); 11141 } 11142 11143 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11144 /* 11145 * If this is a data-storing action or a speculate, 11146 * we must be sure that there isn't a commit on the 11147 * action chain. 11148 */ 11149 dtrace_action_t *act = ecb->dte_action; 11150 11151 for (; act != NULL; act = act->dta_next) { 11152 if (act->dta_kind == DTRACEACT_COMMIT) 11153 return (EINVAL); 11154 } 11155 } 11156 11157 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11158 action->dta_rec.dtrd_size = size; 11159 } 11160 11161 action->dta_refcnt = 1; 11162 rec = &action->dta_rec; 11163 size = rec->dtrd_size; 11164 11165 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11166 if (!(size & mask)) { 11167 align = mask + 1; 11168 break; 11169 } 11170 } 11171 11172 action->dta_kind = desc->dtad_kind; 11173 11174 if ((action->dta_difo = dp) != NULL) 11175 dtrace_difo_hold(dp); 11176 11177 rec->dtrd_action = action->dta_kind; 11178 rec->dtrd_arg = arg; 11179 rec->dtrd_uarg = desc->dtad_uarg; 11180 rec->dtrd_alignment = (uint16_t)align; 11181 rec->dtrd_format = format; 11182 11183 if ((last = ecb->dte_action_last) != NULL) { 11184 ASSERT(ecb->dte_action != NULL); 11185 action->dta_prev = last; 11186 last->dta_next = action; 11187 } else { 11188 ASSERT(ecb->dte_action == NULL); 11189 ecb->dte_action = action; 11190 } 11191 11192 ecb->dte_action_last = action; 11193 11194 return (0); 11195 } 11196 11197 static void 11198 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11199 { 11200 dtrace_action_t *act = ecb->dte_action, *next; 11201 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11202 dtrace_difo_t *dp; 11203 uint16_t format; 11204 11205 if (act != NULL && act->dta_refcnt > 1) { 11206 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11207 act->dta_refcnt--; 11208 } else { 11209 for (; act != NULL; act = next) { 11210 next = act->dta_next; 11211 ASSERT(next != NULL || act == ecb->dte_action_last); 11212 ASSERT(act->dta_refcnt == 1); 11213 11214 if ((format = act->dta_rec.dtrd_format) != 0) 11215 dtrace_format_remove(ecb->dte_state, format); 11216 11217 if ((dp = act->dta_difo) != NULL) 11218 dtrace_difo_release(dp, vstate); 11219 11220 if (DTRACEACT_ISAGG(act->dta_kind)) { 11221 dtrace_ecb_aggregation_destroy(ecb, act); 11222 } else { 11223 kmem_free(act, sizeof (dtrace_action_t)); 11224 } 11225 } 11226 } 11227 11228 ecb->dte_action = NULL; 11229 ecb->dte_action_last = NULL; 11230 ecb->dte_size = 0; 11231 } 11232 11233 static void 11234 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11235 { 11236 /* 11237 * We disable the ECB by removing it from its probe. 11238 */ 11239 dtrace_ecb_t *pecb, *prev = NULL; 11240 dtrace_probe_t *probe = ecb->dte_probe; 11241 11242 ASSERT(MUTEX_HELD(&dtrace_lock)); 11243 11244 if (probe == NULL) { 11245 /* 11246 * This is the NULL probe; there is nothing to disable. 11247 */ 11248 return; 11249 } 11250 11251 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11252 if (pecb == ecb) 11253 break; 11254 prev = pecb; 11255 } 11256 11257 ASSERT(pecb != NULL); 11258 11259 if (prev == NULL) { 11260 probe->dtpr_ecb = ecb->dte_next; 11261 } else { 11262 prev->dte_next = ecb->dte_next; 11263 } 11264 11265 if (ecb == probe->dtpr_ecb_last) { 11266 ASSERT(ecb->dte_next == NULL); 11267 probe->dtpr_ecb_last = prev; 11268 } 11269 11270 /* 11271 * The ECB has been disconnected from the probe; now sync to assure 11272 * that all CPUs have seen the change before returning. 11273 */ 11274 dtrace_sync(); 11275 11276 if (probe->dtpr_ecb == NULL) { 11277 /* 11278 * That was the last ECB on the probe; clear the predicate 11279 * cache ID for the probe, disable it and sync one more time 11280 * to assure that we'll never hit it again. 11281 */ 11282 dtrace_provider_t *prov = probe->dtpr_provider; 11283 11284 ASSERT(ecb->dte_next == NULL); 11285 ASSERT(probe->dtpr_ecb_last == NULL); 11286 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11287 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11288 probe->dtpr_id, probe->dtpr_arg); 11289 dtrace_sync(); 11290 } else { 11291 /* 11292 * There is at least one ECB remaining on the probe. If there 11293 * is _exactly_ one, set the probe's predicate cache ID to be 11294 * the predicate cache ID of the remaining ECB. 11295 */ 11296 ASSERT(probe->dtpr_ecb_last != NULL); 11297 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11298 11299 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11300 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11301 11302 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11303 11304 if (p != NULL) 11305 probe->dtpr_predcache = p->dtp_cacheid; 11306 } 11307 11308 ecb->dte_next = NULL; 11309 } 11310 } 11311 11312 static void 11313 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11314 { 11315 dtrace_state_t *state = ecb->dte_state; 11316 dtrace_vstate_t *vstate = &state->dts_vstate; 11317 dtrace_predicate_t *pred; 11318 dtrace_epid_t epid = ecb->dte_epid; 11319 11320 ASSERT(MUTEX_HELD(&dtrace_lock)); 11321 ASSERT(ecb->dte_next == NULL); 11322 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11323 11324 if ((pred = ecb->dte_predicate) != NULL) 11325 dtrace_predicate_release(pred, vstate); 11326 11327 dtrace_ecb_action_remove(ecb); 11328 11329 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11330 state->dts_ecbs[epid - 1] = NULL; 11331 11332 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11333 } 11334 11335 static dtrace_ecb_t * 11336 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11337 dtrace_enabling_t *enab) 11338 { 11339 dtrace_ecb_t *ecb; 11340 dtrace_predicate_t *pred; 11341 dtrace_actdesc_t *act; 11342 dtrace_provider_t *prov; 11343 dtrace_ecbdesc_t *desc = enab->dten_current; 11344 11345 ASSERT(MUTEX_HELD(&dtrace_lock)); 11346 ASSERT(state != NULL); 11347 11348 ecb = dtrace_ecb_add(state, probe); 11349 ecb->dte_uarg = desc->dted_uarg; 11350 11351 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11352 dtrace_predicate_hold(pred); 11353 ecb->dte_predicate = pred; 11354 } 11355 11356 if (probe != NULL) { 11357 /* 11358 * If the provider shows more leg than the consumer is old 11359 * enough to see, we need to enable the appropriate implicit 11360 * predicate bits to prevent the ecb from activating at 11361 * revealing times. 11362 * 11363 * Providers specifying DTRACE_PRIV_USER at register time 11364 * are stating that they need the /proc-style privilege 11365 * model to be enforced, and this is what DTRACE_COND_OWNER 11366 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11367 */ 11368 prov = probe->dtpr_provider; 11369 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11370 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11371 ecb->dte_cond |= DTRACE_COND_OWNER; 11372 11373 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11374 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11375 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11376 11377 /* 11378 * If the provider shows us kernel innards and the user 11379 * is lacking sufficient privilege, enable the 11380 * DTRACE_COND_USERMODE implicit predicate. 11381 */ 11382 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11383 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11384 ecb->dte_cond |= DTRACE_COND_USERMODE; 11385 } 11386 11387 if (dtrace_ecb_create_cache != NULL) { 11388 /* 11389 * If we have a cached ecb, we'll use its action list instead 11390 * of creating our own (saving both time and space). 11391 */ 11392 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11393 dtrace_action_t *act = cached->dte_action; 11394 11395 if (act != NULL) { 11396 ASSERT(act->dta_refcnt > 0); 11397 act->dta_refcnt++; 11398 ecb->dte_action = act; 11399 ecb->dte_action_last = cached->dte_action_last; 11400 ecb->dte_needed = cached->dte_needed; 11401 ecb->dte_size = cached->dte_size; 11402 ecb->dte_alignment = cached->dte_alignment; 11403 } 11404 11405 return (ecb); 11406 } 11407 11408 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11409 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11410 dtrace_ecb_destroy(ecb); 11411 return (NULL); 11412 } 11413 } 11414 11415 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11416 dtrace_ecb_destroy(ecb); 11417 return (NULL); 11418 } 11419 11420 return (dtrace_ecb_create_cache = ecb); 11421 } 11422 11423 static int 11424 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11425 { 11426 dtrace_ecb_t *ecb; 11427 dtrace_enabling_t *enab = arg; 11428 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11429 11430 ASSERT(state != NULL); 11431 11432 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11433 /* 11434 * This probe was created in a generation for which this 11435 * enabling has previously created ECBs; we don't want to 11436 * enable it again, so just kick out. 11437 */ 11438 return (DTRACE_MATCH_NEXT); 11439 } 11440 11441 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11442 return (DTRACE_MATCH_DONE); 11443 11444 if (dtrace_ecb_enable(ecb) < 0) 11445 return (DTRACE_MATCH_FAIL); 11446 11447 return (DTRACE_MATCH_NEXT); 11448 } 11449 11450 static dtrace_ecb_t * 11451 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11452 { 11453 dtrace_ecb_t *ecb; 11454 11455 ASSERT(MUTEX_HELD(&dtrace_lock)); 11456 11457 if (id == 0 || id > state->dts_necbs) 11458 return (NULL); 11459 11460 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11461 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11462 11463 return (state->dts_ecbs[id - 1]); 11464 } 11465 11466 static dtrace_aggregation_t * 11467 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11468 { 11469 dtrace_aggregation_t *agg; 11470 11471 ASSERT(MUTEX_HELD(&dtrace_lock)); 11472 11473 if (id == 0 || id > state->dts_naggregations) 11474 return (NULL); 11475 11476 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11477 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11478 agg->dtag_id == id); 11479 11480 return (state->dts_aggregations[id - 1]); 11481 } 11482 11483 /* 11484 * DTrace Buffer Functions 11485 * 11486 * The following functions manipulate DTrace buffers. Most of these functions 11487 * are called in the context of establishing or processing consumer state; 11488 * exceptions are explicitly noted. 11489 */ 11490 11491 /* 11492 * Note: called from cross call context. This function switches the two 11493 * buffers on a given CPU. The atomicity of this operation is assured by 11494 * disabling interrupts while the actual switch takes place; the disabling of 11495 * interrupts serializes the execution with any execution of dtrace_probe() on 11496 * the same CPU. 11497 */ 11498 static void 11499 dtrace_buffer_switch(dtrace_buffer_t *buf) 11500 { 11501 caddr_t tomax = buf->dtb_tomax; 11502 caddr_t xamot = buf->dtb_xamot; 11503 dtrace_icookie_t cookie; 11504 hrtime_t now; 11505 11506 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11507 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11508 11509 cookie = dtrace_interrupt_disable(); 11510 now = dtrace_gethrtime(); 11511 buf->dtb_tomax = xamot; 11512 buf->dtb_xamot = tomax; 11513 buf->dtb_xamot_drops = buf->dtb_drops; 11514 buf->dtb_xamot_offset = buf->dtb_offset; 11515 buf->dtb_xamot_errors = buf->dtb_errors; 11516 buf->dtb_xamot_flags = buf->dtb_flags; 11517 buf->dtb_offset = 0; 11518 buf->dtb_drops = 0; 11519 buf->dtb_errors = 0; 11520 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11521 buf->dtb_interval = now - buf->dtb_switched; 11522 buf->dtb_switched = now; 11523 dtrace_interrupt_enable(cookie); 11524 } 11525 11526 /* 11527 * Note: called from cross call context. This function activates a buffer 11528 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11529 * is guaranteed by the disabling of interrupts. 11530 */ 11531 static void 11532 dtrace_buffer_activate(dtrace_state_t *state) 11533 { 11534 dtrace_buffer_t *buf; 11535 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11536 11537 buf = &state->dts_buffer[CPU->cpu_id]; 11538 11539 if (buf->dtb_tomax != NULL) { 11540 /* 11541 * We might like to assert that the buffer is marked inactive, 11542 * but this isn't necessarily true: the buffer for the CPU 11543 * that processes the BEGIN probe has its buffer activated 11544 * manually. In this case, we take the (harmless) action 11545 * re-clearing the bit INACTIVE bit. 11546 */ 11547 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11548 } 11549 11550 dtrace_interrupt_enable(cookie); 11551 } 11552 11553 static int 11554 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11555 processorid_t cpu, int *factor) 11556 { 11557 cpu_t *cp; 11558 dtrace_buffer_t *buf; 11559 int allocated = 0, desired = 0; 11560 11561 ASSERT(MUTEX_HELD(&cpu_lock)); 11562 ASSERT(MUTEX_HELD(&dtrace_lock)); 11563 11564 *factor = 1; 11565 11566 if (size > dtrace_nonroot_maxsize && 11567 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11568 return (EFBIG); 11569 11570 cp = cpu_list; 11571 11572 do { 11573 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11574 continue; 11575 11576 buf = &bufs[cp->cpu_id]; 11577 11578 /* 11579 * If there is already a buffer allocated for this CPU, it 11580 * is only possible that this is a DR event. In this case, 11581 * the buffer size must match our specified size. 11582 */ 11583 if (buf->dtb_tomax != NULL) { 11584 ASSERT(buf->dtb_size == size); 11585 continue; 11586 } 11587 11588 ASSERT(buf->dtb_xamot == NULL); 11589 11590 if ((buf->dtb_tomax = kmem_zalloc(size, 11591 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11592 goto err; 11593 11594 buf->dtb_size = size; 11595 buf->dtb_flags = flags; 11596 buf->dtb_offset = 0; 11597 buf->dtb_drops = 0; 11598 11599 if (flags & DTRACEBUF_NOSWITCH) 11600 continue; 11601 11602 if ((buf->dtb_xamot = kmem_zalloc(size, 11603 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11604 goto err; 11605 } while ((cp = cp->cpu_next) != cpu_list); 11606 11607 return (0); 11608 11609 err: 11610 cp = cpu_list; 11611 11612 do { 11613 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11614 continue; 11615 11616 buf = &bufs[cp->cpu_id]; 11617 desired += 2; 11618 11619 if (buf->dtb_xamot != NULL) { 11620 ASSERT(buf->dtb_tomax != NULL); 11621 ASSERT(buf->dtb_size == size); 11622 kmem_free(buf->dtb_xamot, size); 11623 allocated++; 11624 } 11625 11626 if (buf->dtb_tomax != NULL) { 11627 ASSERT(buf->dtb_size == size); 11628 kmem_free(buf->dtb_tomax, size); 11629 allocated++; 11630 } 11631 11632 buf->dtb_tomax = NULL; 11633 buf->dtb_xamot = NULL; 11634 buf->dtb_size = 0; 11635 } while ((cp = cp->cpu_next) != cpu_list); 11636 11637 *factor = desired / (allocated > 0 ? allocated : 1); 11638 11639 return (ENOMEM); 11640 } 11641 11642 /* 11643 * Note: called from probe context. This function just increments the drop 11644 * count on a buffer. It has been made a function to allow for the 11645 * possibility of understanding the source of mysterious drop counts. (A 11646 * problem for which one may be particularly disappointed that DTrace cannot 11647 * be used to understand DTrace.) 11648 */ 11649 static void 11650 dtrace_buffer_drop(dtrace_buffer_t *buf) 11651 { 11652 buf->dtb_drops++; 11653 } 11654 11655 /* 11656 * Note: called from probe context. This function is called to reserve space 11657 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11658 * mstate. Returns the new offset in the buffer, or a negative value if an 11659 * error has occurred. 11660 */ 11661 static intptr_t 11662 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11663 dtrace_state_t *state, dtrace_mstate_t *mstate) 11664 { 11665 intptr_t offs = buf->dtb_offset, soffs; 11666 intptr_t woffs; 11667 caddr_t tomax; 11668 size_t total; 11669 11670 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11671 return (-1); 11672 11673 if ((tomax = buf->dtb_tomax) == NULL) { 11674 dtrace_buffer_drop(buf); 11675 return (-1); 11676 } 11677 11678 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11679 while (offs & (align - 1)) { 11680 /* 11681 * Assert that our alignment is off by a number which 11682 * is itself sizeof (uint32_t) aligned. 11683 */ 11684 ASSERT(!((align - (offs & (align - 1))) & 11685 (sizeof (uint32_t) - 1))); 11686 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11687 offs += sizeof (uint32_t); 11688 } 11689 11690 if ((soffs = offs + needed) > buf->dtb_size) { 11691 dtrace_buffer_drop(buf); 11692 return (-1); 11693 } 11694 11695 if (mstate == NULL) 11696 return (offs); 11697 11698 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11699 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11700 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11701 11702 return (offs); 11703 } 11704 11705 if (buf->dtb_flags & DTRACEBUF_FILL) { 11706 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11707 (buf->dtb_flags & DTRACEBUF_FULL)) 11708 return (-1); 11709 goto out; 11710 } 11711 11712 total = needed + (offs & (align - 1)); 11713 11714 /* 11715 * For a ring buffer, life is quite a bit more complicated. Before 11716 * we can store any padding, we need to adjust our wrapping offset. 11717 * (If we've never before wrapped or we're not about to, no adjustment 11718 * is required.) 11719 */ 11720 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11721 offs + total > buf->dtb_size) { 11722 woffs = buf->dtb_xamot_offset; 11723 11724 if (offs + total > buf->dtb_size) { 11725 /* 11726 * We can't fit in the end of the buffer. First, a 11727 * sanity check that we can fit in the buffer at all. 11728 */ 11729 if (total > buf->dtb_size) { 11730 dtrace_buffer_drop(buf); 11731 return (-1); 11732 } 11733 11734 /* 11735 * We're going to be storing at the top of the buffer, 11736 * so now we need to deal with the wrapped offset. We 11737 * only reset our wrapped offset to 0 if it is 11738 * currently greater than the current offset. If it 11739 * is less than the current offset, it is because a 11740 * previous allocation induced a wrap -- but the 11741 * allocation didn't subsequently take the space due 11742 * to an error or false predicate evaluation. In this 11743 * case, we'll just leave the wrapped offset alone: if 11744 * the wrapped offset hasn't been advanced far enough 11745 * for this allocation, it will be adjusted in the 11746 * lower loop. 11747 */ 11748 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11749 if (woffs >= offs) 11750 woffs = 0; 11751 } else { 11752 woffs = 0; 11753 } 11754 11755 /* 11756 * Now we know that we're going to be storing to the 11757 * top of the buffer and that there is room for us 11758 * there. We need to clear the buffer from the current 11759 * offset to the end (there may be old gunk there). 11760 */ 11761 while (offs < buf->dtb_size) 11762 tomax[offs++] = 0; 11763 11764 /* 11765 * We need to set our offset to zero. And because we 11766 * are wrapping, we need to set the bit indicating as 11767 * much. We can also adjust our needed space back 11768 * down to the space required by the ECB -- we know 11769 * that the top of the buffer is aligned. 11770 */ 11771 offs = 0; 11772 total = needed; 11773 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11774 } else { 11775 /* 11776 * There is room for us in the buffer, so we simply 11777 * need to check the wrapped offset. 11778 */ 11779 if (woffs < offs) { 11780 /* 11781 * The wrapped offset is less than the offset. 11782 * This can happen if we allocated buffer space 11783 * that induced a wrap, but then we didn't 11784 * subsequently take the space due to an error 11785 * or false predicate evaluation. This is 11786 * okay; we know that _this_ allocation isn't 11787 * going to induce a wrap. We still can't 11788 * reset the wrapped offset to be zero, 11789 * however: the space may have been trashed in 11790 * the previous failed probe attempt. But at 11791 * least the wrapped offset doesn't need to 11792 * be adjusted at all... 11793 */ 11794 goto out; 11795 } 11796 } 11797 11798 while (offs + total > woffs) { 11799 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11800 size_t size; 11801 11802 if (epid == DTRACE_EPIDNONE) { 11803 size = sizeof (uint32_t); 11804 } else { 11805 ASSERT3U(epid, <=, state->dts_necbs); 11806 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11807 11808 size = state->dts_ecbs[epid - 1]->dte_size; 11809 } 11810 11811 ASSERT(woffs + size <= buf->dtb_size); 11812 ASSERT(size != 0); 11813 11814 if (woffs + size == buf->dtb_size) { 11815 /* 11816 * We've reached the end of the buffer; we want 11817 * to set the wrapped offset to 0 and break 11818 * out. However, if the offs is 0, then we're 11819 * in a strange edge-condition: the amount of 11820 * space that we want to reserve plus the size 11821 * of the record that we're overwriting is 11822 * greater than the size of the buffer. This 11823 * is problematic because if we reserve the 11824 * space but subsequently don't consume it (due 11825 * to a failed predicate or error) the wrapped 11826 * offset will be 0 -- yet the EPID at offset 0 11827 * will not be committed. This situation is 11828 * relatively easy to deal with: if we're in 11829 * this case, the buffer is indistinguishable 11830 * from one that hasn't wrapped; we need only 11831 * finish the job by clearing the wrapped bit, 11832 * explicitly setting the offset to be 0, and 11833 * zero'ing out the old data in the buffer. 11834 */ 11835 if (offs == 0) { 11836 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11837 buf->dtb_offset = 0; 11838 woffs = total; 11839 11840 while (woffs < buf->dtb_size) 11841 tomax[woffs++] = 0; 11842 } 11843 11844 woffs = 0; 11845 break; 11846 } 11847 11848 woffs += size; 11849 } 11850 11851 /* 11852 * We have a wrapped offset. It may be that the wrapped offset 11853 * has become zero -- that's okay. 11854 */ 11855 buf->dtb_xamot_offset = woffs; 11856 } 11857 11858 out: 11859 /* 11860 * Now we can plow the buffer with any necessary padding. 11861 */ 11862 while (offs & (align - 1)) { 11863 /* 11864 * Assert that our alignment is off by a number which 11865 * is itself sizeof (uint32_t) aligned. 11866 */ 11867 ASSERT(!((align - (offs & (align - 1))) & 11868 (sizeof (uint32_t) - 1))); 11869 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11870 offs += sizeof (uint32_t); 11871 } 11872 11873 if (buf->dtb_flags & DTRACEBUF_FILL) { 11874 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11875 buf->dtb_flags |= DTRACEBUF_FULL; 11876 return (-1); 11877 } 11878 } 11879 11880 if (mstate == NULL) 11881 return (offs); 11882 11883 /* 11884 * For ring buffers and fill buffers, the scratch space is always 11885 * the inactive buffer. 11886 */ 11887 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11888 mstate->dtms_scratch_size = buf->dtb_size; 11889 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11890 11891 return (offs); 11892 } 11893 11894 static void 11895 dtrace_buffer_polish(dtrace_buffer_t *buf) 11896 { 11897 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11898 ASSERT(MUTEX_HELD(&dtrace_lock)); 11899 11900 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11901 return; 11902 11903 /* 11904 * We need to polish the ring buffer. There are three cases: 11905 * 11906 * - The first (and presumably most common) is that there is no gap 11907 * between the buffer offset and the wrapped offset. In this case, 11908 * there is nothing in the buffer that isn't valid data; we can 11909 * mark the buffer as polished and return. 11910 * 11911 * - The second (less common than the first but still more common 11912 * than the third) is that there is a gap between the buffer offset 11913 * and the wrapped offset, and the wrapped offset is larger than the 11914 * buffer offset. This can happen because of an alignment issue, or 11915 * can happen because of a call to dtrace_buffer_reserve() that 11916 * didn't subsequently consume the buffer space. In this case, 11917 * we need to zero the data from the buffer offset to the wrapped 11918 * offset. 11919 * 11920 * - The third (and least common) is that there is a gap between the 11921 * buffer offset and the wrapped offset, but the wrapped offset is 11922 * _less_ than the buffer offset. This can only happen because a 11923 * call to dtrace_buffer_reserve() induced a wrap, but the space 11924 * was not subsequently consumed. In this case, we need to zero the 11925 * space from the offset to the end of the buffer _and_ from the 11926 * top of the buffer to the wrapped offset. 11927 */ 11928 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11929 bzero(buf->dtb_tomax + buf->dtb_offset, 11930 buf->dtb_xamot_offset - buf->dtb_offset); 11931 } 11932 11933 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11934 bzero(buf->dtb_tomax + buf->dtb_offset, 11935 buf->dtb_size - buf->dtb_offset); 11936 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11937 } 11938 } 11939 11940 /* 11941 * This routine determines if data generated at the specified time has likely 11942 * been entirely consumed at user-level. This routine is called to determine 11943 * if an ECB on a defunct probe (but for an active enabling) can be safely 11944 * disabled and destroyed. 11945 */ 11946 static int 11947 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11948 { 11949 int i; 11950 11951 for (i = 0; i < NCPU; i++) { 11952 dtrace_buffer_t *buf = &bufs[i]; 11953 11954 if (buf->dtb_size == 0) 11955 continue; 11956 11957 if (buf->dtb_flags & DTRACEBUF_RING) 11958 return (0); 11959 11960 if (!buf->dtb_switched && buf->dtb_offset != 0) 11961 return (0); 11962 11963 if (buf->dtb_switched - buf->dtb_interval < when) 11964 return (0); 11965 } 11966 11967 return (1); 11968 } 11969 11970 static void 11971 dtrace_buffer_free(dtrace_buffer_t *bufs) 11972 { 11973 int i; 11974 11975 for (i = 0; i < NCPU; i++) { 11976 dtrace_buffer_t *buf = &bufs[i]; 11977 11978 if (buf->dtb_tomax == NULL) { 11979 ASSERT(buf->dtb_xamot == NULL); 11980 ASSERT(buf->dtb_size == 0); 11981 continue; 11982 } 11983 11984 if (buf->dtb_xamot != NULL) { 11985 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11986 kmem_free(buf->dtb_xamot, buf->dtb_size); 11987 } 11988 11989 kmem_free(buf->dtb_tomax, buf->dtb_size); 11990 buf->dtb_size = 0; 11991 buf->dtb_tomax = NULL; 11992 buf->dtb_xamot = NULL; 11993 } 11994 } 11995 11996 /* 11997 * DTrace Enabling Functions 11998 */ 11999 static dtrace_enabling_t * 12000 dtrace_enabling_create(dtrace_vstate_t *vstate) 12001 { 12002 dtrace_enabling_t *enab; 12003 12004 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12005 enab->dten_vstate = vstate; 12006 12007 return (enab); 12008 } 12009 12010 static void 12011 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12012 { 12013 dtrace_ecbdesc_t **ndesc; 12014 size_t osize, nsize; 12015 12016 /* 12017 * We can't add to enablings after we've enabled them, or after we've 12018 * retained them. 12019 */ 12020 ASSERT(enab->dten_probegen == 0); 12021 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12022 12023 if (enab->dten_ndesc < enab->dten_maxdesc) { 12024 enab->dten_desc[enab->dten_ndesc++] = ecb; 12025 return; 12026 } 12027 12028 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12029 12030 if (enab->dten_maxdesc == 0) { 12031 enab->dten_maxdesc = 1; 12032 } else { 12033 enab->dten_maxdesc <<= 1; 12034 } 12035 12036 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12037 12038 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12039 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12040 bcopy(enab->dten_desc, ndesc, osize); 12041 kmem_free(enab->dten_desc, osize); 12042 12043 enab->dten_desc = ndesc; 12044 enab->dten_desc[enab->dten_ndesc++] = ecb; 12045 } 12046 12047 static void 12048 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12049 dtrace_probedesc_t *pd) 12050 { 12051 dtrace_ecbdesc_t *new; 12052 dtrace_predicate_t *pred; 12053 dtrace_actdesc_t *act; 12054 12055 /* 12056 * We're going to create a new ECB description that matches the 12057 * specified ECB in every way, but has the specified probe description. 12058 */ 12059 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12060 12061 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12062 dtrace_predicate_hold(pred); 12063 12064 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12065 dtrace_actdesc_hold(act); 12066 12067 new->dted_action = ecb->dted_action; 12068 new->dted_pred = ecb->dted_pred; 12069 new->dted_probe = *pd; 12070 new->dted_uarg = ecb->dted_uarg; 12071 12072 dtrace_enabling_add(enab, new); 12073 } 12074 12075 static void 12076 dtrace_enabling_dump(dtrace_enabling_t *enab) 12077 { 12078 int i; 12079 12080 for (i = 0; i < enab->dten_ndesc; i++) { 12081 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12082 12083 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12084 desc->dtpd_provider, desc->dtpd_mod, 12085 desc->dtpd_func, desc->dtpd_name); 12086 } 12087 } 12088 12089 static void 12090 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12091 { 12092 int i; 12093 dtrace_ecbdesc_t *ep; 12094 dtrace_vstate_t *vstate = enab->dten_vstate; 12095 12096 ASSERT(MUTEX_HELD(&dtrace_lock)); 12097 12098 for (i = 0; i < enab->dten_ndesc; i++) { 12099 dtrace_actdesc_t *act, *next; 12100 dtrace_predicate_t *pred; 12101 12102 ep = enab->dten_desc[i]; 12103 12104 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12105 dtrace_predicate_release(pred, vstate); 12106 12107 for (act = ep->dted_action; act != NULL; act = next) { 12108 next = act->dtad_next; 12109 dtrace_actdesc_release(act, vstate); 12110 } 12111 12112 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12113 } 12114 12115 kmem_free(enab->dten_desc, 12116 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12117 12118 /* 12119 * If this was a retained enabling, decrement the dts_nretained count 12120 * and take it off of the dtrace_retained list. 12121 */ 12122 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12123 dtrace_retained == enab) { 12124 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12125 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12126 enab->dten_vstate->dtvs_state->dts_nretained--; 12127 dtrace_retained_gen++; 12128 } 12129 12130 if (enab->dten_prev == NULL) { 12131 if (dtrace_retained == enab) { 12132 dtrace_retained = enab->dten_next; 12133 12134 if (dtrace_retained != NULL) 12135 dtrace_retained->dten_prev = NULL; 12136 } 12137 } else { 12138 ASSERT(enab != dtrace_retained); 12139 ASSERT(dtrace_retained != NULL); 12140 enab->dten_prev->dten_next = enab->dten_next; 12141 } 12142 12143 if (enab->dten_next != NULL) { 12144 ASSERT(dtrace_retained != NULL); 12145 enab->dten_next->dten_prev = enab->dten_prev; 12146 } 12147 12148 kmem_free(enab, sizeof (dtrace_enabling_t)); 12149 } 12150 12151 static int 12152 dtrace_enabling_retain(dtrace_enabling_t *enab) 12153 { 12154 dtrace_state_t *state; 12155 12156 ASSERT(MUTEX_HELD(&dtrace_lock)); 12157 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12158 ASSERT(enab->dten_vstate != NULL); 12159 12160 state = enab->dten_vstate->dtvs_state; 12161 ASSERT(state != NULL); 12162 12163 /* 12164 * We only allow each state to retain dtrace_retain_max enablings. 12165 */ 12166 if (state->dts_nretained >= dtrace_retain_max) 12167 return (ENOSPC); 12168 12169 state->dts_nretained++; 12170 dtrace_retained_gen++; 12171 12172 if (dtrace_retained == NULL) { 12173 dtrace_retained = enab; 12174 return (0); 12175 } 12176 12177 enab->dten_next = dtrace_retained; 12178 dtrace_retained->dten_prev = enab; 12179 dtrace_retained = enab; 12180 12181 return (0); 12182 } 12183 12184 static int 12185 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12186 dtrace_probedesc_t *create) 12187 { 12188 dtrace_enabling_t *new, *enab; 12189 int found = 0, err = ENOENT; 12190 12191 ASSERT(MUTEX_HELD(&dtrace_lock)); 12192 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12193 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12194 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12195 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12196 12197 new = dtrace_enabling_create(&state->dts_vstate); 12198 12199 /* 12200 * Iterate over all retained enablings, looking for enablings that 12201 * match the specified state. 12202 */ 12203 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12204 int i; 12205 12206 /* 12207 * dtvs_state can only be NULL for helper enablings -- and 12208 * helper enablings can't be retained. 12209 */ 12210 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12211 12212 if (enab->dten_vstate->dtvs_state != state) 12213 continue; 12214 12215 /* 12216 * Now iterate over each probe description; we're looking for 12217 * an exact match to the specified probe description. 12218 */ 12219 for (i = 0; i < enab->dten_ndesc; i++) { 12220 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12221 dtrace_probedesc_t *pd = &ep->dted_probe; 12222 12223 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12224 continue; 12225 12226 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12227 continue; 12228 12229 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12230 continue; 12231 12232 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12233 continue; 12234 12235 /* 12236 * We have a winning probe! Add it to our growing 12237 * enabling. 12238 */ 12239 found = 1; 12240 dtrace_enabling_addlike(new, ep, create); 12241 } 12242 } 12243 12244 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12245 dtrace_enabling_destroy(new); 12246 return (err); 12247 } 12248 12249 return (0); 12250 } 12251 12252 static void 12253 dtrace_enabling_retract(dtrace_state_t *state) 12254 { 12255 dtrace_enabling_t *enab, *next; 12256 12257 ASSERT(MUTEX_HELD(&dtrace_lock)); 12258 12259 /* 12260 * Iterate over all retained enablings, destroy the enablings retained 12261 * for the specified state. 12262 */ 12263 for (enab = dtrace_retained; enab != NULL; enab = next) { 12264 next = enab->dten_next; 12265 12266 /* 12267 * dtvs_state can only be NULL for helper enablings -- and 12268 * helper enablings can't be retained. 12269 */ 12270 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12271 12272 if (enab->dten_vstate->dtvs_state == state) { 12273 ASSERT(state->dts_nretained > 0); 12274 dtrace_enabling_destroy(enab); 12275 } 12276 } 12277 12278 ASSERT(state->dts_nretained == 0); 12279 } 12280 12281 static int 12282 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12283 { 12284 int i = 0; 12285 int total_matched = 0, matched = 0; 12286 12287 ASSERT(MUTEX_HELD(&cpu_lock)); 12288 ASSERT(MUTEX_HELD(&dtrace_lock)); 12289 12290 for (i = 0; i < enab->dten_ndesc; i++) { 12291 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12292 12293 enab->dten_current = ep; 12294 enab->dten_error = 0; 12295 12296 /* 12297 * If a provider failed to enable a probe then get out and 12298 * let the consumer know we failed. 12299 */ 12300 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12301 return (EBUSY); 12302 12303 total_matched += matched; 12304 12305 if (enab->dten_error != 0) { 12306 /* 12307 * If we get an error half-way through enabling the 12308 * probes, we kick out -- perhaps with some number of 12309 * them enabled. Leaving enabled probes enabled may 12310 * be slightly confusing for user-level, but we expect 12311 * that no one will attempt to actually drive on in 12312 * the face of such errors. If this is an anonymous 12313 * enabling (indicated with a NULL nmatched pointer), 12314 * we cmn_err() a message. We aren't expecting to 12315 * get such an error -- such as it can exist at all, 12316 * it would be a result of corrupted DOF in the driver 12317 * properties. 12318 */ 12319 if (nmatched == NULL) { 12320 cmn_err(CE_WARN, "dtrace_enabling_match() " 12321 "error on %p: %d", (void *)ep, 12322 enab->dten_error); 12323 } 12324 12325 return (enab->dten_error); 12326 } 12327 } 12328 12329 enab->dten_probegen = dtrace_probegen; 12330 if (nmatched != NULL) 12331 *nmatched = total_matched; 12332 12333 return (0); 12334 } 12335 12336 static void 12337 dtrace_enabling_matchall(void) 12338 { 12339 dtrace_enabling_t *enab; 12340 12341 mutex_enter(&cpu_lock); 12342 mutex_enter(&dtrace_lock); 12343 12344 /* 12345 * Iterate over all retained enablings to see if any probes match 12346 * against them. We only perform this operation on enablings for which 12347 * we have sufficient permissions by virtue of being in the global zone 12348 * or in the same zone as the DTrace client. Because we can be called 12349 * after dtrace_detach() has been called, we cannot assert that there 12350 * are retained enablings. We can safely load from dtrace_retained, 12351 * however: the taskq_destroy() at the end of dtrace_detach() will 12352 * block pending our completion. 12353 */ 12354 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12355 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12356 cred_t *cr = dcr->dcr_cred; 12357 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12358 12359 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12360 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12361 (void) dtrace_enabling_match(enab, NULL); 12362 } 12363 12364 mutex_exit(&dtrace_lock); 12365 mutex_exit(&cpu_lock); 12366 } 12367 12368 /* 12369 * If an enabling is to be enabled without having matched probes (that is, if 12370 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12371 * enabling must be _primed_ by creating an ECB for every ECB description. 12372 * This must be done to assure that we know the number of speculations, the 12373 * number of aggregations, the minimum buffer size needed, etc. before we 12374 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12375 * enabling any probes, we create ECBs for every ECB decription, but with a 12376 * NULL probe -- which is exactly what this function does. 12377 */ 12378 static void 12379 dtrace_enabling_prime(dtrace_state_t *state) 12380 { 12381 dtrace_enabling_t *enab; 12382 int i; 12383 12384 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12385 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12386 12387 if (enab->dten_vstate->dtvs_state != state) 12388 continue; 12389 12390 /* 12391 * We don't want to prime an enabling more than once, lest 12392 * we allow a malicious user to induce resource exhaustion. 12393 * (The ECBs that result from priming an enabling aren't 12394 * leaked -- but they also aren't deallocated until the 12395 * consumer state is destroyed.) 12396 */ 12397 if (enab->dten_primed) 12398 continue; 12399 12400 for (i = 0; i < enab->dten_ndesc; i++) { 12401 enab->dten_current = enab->dten_desc[i]; 12402 (void) dtrace_probe_enable(NULL, enab); 12403 } 12404 12405 enab->dten_primed = 1; 12406 } 12407 } 12408 12409 /* 12410 * Called to indicate that probes should be provided due to retained 12411 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12412 * must take an initial lap through the enabling calling the dtps_provide() 12413 * entry point explicitly to allow for autocreated probes. 12414 */ 12415 static void 12416 dtrace_enabling_provide(dtrace_provider_t *prv) 12417 { 12418 int i, all = 0; 12419 dtrace_probedesc_t desc; 12420 dtrace_genid_t gen; 12421 12422 ASSERT(MUTEX_HELD(&dtrace_lock)); 12423 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12424 12425 if (prv == NULL) { 12426 all = 1; 12427 prv = dtrace_provider; 12428 } 12429 12430 do { 12431 dtrace_enabling_t *enab; 12432 void *parg = prv->dtpv_arg; 12433 12434 retry: 12435 gen = dtrace_retained_gen; 12436 for (enab = dtrace_retained; enab != NULL; 12437 enab = enab->dten_next) { 12438 for (i = 0; i < enab->dten_ndesc; i++) { 12439 desc = enab->dten_desc[i]->dted_probe; 12440 mutex_exit(&dtrace_lock); 12441 prv->dtpv_pops.dtps_provide(parg, &desc); 12442 mutex_enter(&dtrace_lock); 12443 /* 12444 * Process the retained enablings again if 12445 * they have changed while we weren't holding 12446 * dtrace_lock. 12447 */ 12448 if (gen != dtrace_retained_gen) 12449 goto retry; 12450 } 12451 } 12452 } while (all && (prv = prv->dtpv_next) != NULL); 12453 12454 mutex_exit(&dtrace_lock); 12455 dtrace_probe_provide(NULL, all ? NULL : prv); 12456 mutex_enter(&dtrace_lock); 12457 } 12458 12459 /* 12460 * Called to reap ECBs that are attached to probes from defunct providers. 12461 */ 12462 static void 12463 dtrace_enabling_reap(void) 12464 { 12465 dtrace_provider_t *prov; 12466 dtrace_probe_t *probe; 12467 dtrace_ecb_t *ecb; 12468 hrtime_t when; 12469 int i; 12470 12471 mutex_enter(&cpu_lock); 12472 mutex_enter(&dtrace_lock); 12473 12474 for (i = 0; i < dtrace_nprobes; i++) { 12475 if ((probe = dtrace_probes[i]) == NULL) 12476 continue; 12477 12478 if (probe->dtpr_ecb == NULL) 12479 continue; 12480 12481 prov = probe->dtpr_provider; 12482 12483 if ((when = prov->dtpv_defunct) == 0) 12484 continue; 12485 12486 /* 12487 * We have ECBs on a defunct provider: we want to reap these 12488 * ECBs to allow the provider to unregister. The destruction 12489 * of these ECBs must be done carefully: if we destroy the ECB 12490 * and the consumer later wishes to consume an EPID that 12491 * corresponds to the destroyed ECB (and if the EPID metadata 12492 * has not been previously consumed), the consumer will abort 12493 * processing on the unknown EPID. To reduce (but not, sadly, 12494 * eliminate) the possibility of this, we will only destroy an 12495 * ECB for a defunct provider if, for the state that 12496 * corresponds to the ECB: 12497 * 12498 * (a) There is no speculative tracing (which can effectively 12499 * cache an EPID for an arbitrary amount of time). 12500 * 12501 * (b) The principal buffers have been switched twice since the 12502 * provider became defunct. 12503 * 12504 * (c) The aggregation buffers are of zero size or have been 12505 * switched twice since the provider became defunct. 12506 * 12507 * We use dts_speculates to determine (a) and call a function 12508 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12509 * that as soon as we've been unable to destroy one of the ECBs 12510 * associated with the probe, we quit trying -- reaping is only 12511 * fruitful in as much as we can destroy all ECBs associated 12512 * with the defunct provider's probes. 12513 */ 12514 while ((ecb = probe->dtpr_ecb) != NULL) { 12515 dtrace_state_t *state = ecb->dte_state; 12516 dtrace_buffer_t *buf = state->dts_buffer; 12517 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12518 12519 if (state->dts_speculates) 12520 break; 12521 12522 if (!dtrace_buffer_consumed(buf, when)) 12523 break; 12524 12525 if (!dtrace_buffer_consumed(aggbuf, when)) 12526 break; 12527 12528 dtrace_ecb_disable(ecb); 12529 ASSERT(probe->dtpr_ecb != ecb); 12530 dtrace_ecb_destroy(ecb); 12531 } 12532 } 12533 12534 mutex_exit(&dtrace_lock); 12535 mutex_exit(&cpu_lock); 12536 } 12537 12538 /* 12539 * DTrace DOF Functions 12540 */ 12541 /*ARGSUSED*/ 12542 static void 12543 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12544 { 12545 if (dtrace_err_verbose) 12546 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12547 12548 #ifdef DTRACE_ERRDEBUG 12549 dtrace_errdebug(str); 12550 #endif 12551 } 12552 12553 /* 12554 * Create DOF out of a currently enabled state. Right now, we only create 12555 * DOF containing the run-time options -- but this could be expanded to create 12556 * complete DOF representing the enabled state. 12557 */ 12558 static dof_hdr_t * 12559 dtrace_dof_create(dtrace_state_t *state) 12560 { 12561 dof_hdr_t *dof; 12562 dof_sec_t *sec; 12563 dof_optdesc_t *opt; 12564 int i, len = sizeof (dof_hdr_t) + 12565 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12566 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12567 12568 ASSERT(MUTEX_HELD(&dtrace_lock)); 12569 12570 dof = kmem_zalloc(len, KM_SLEEP); 12571 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12572 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12573 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12574 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12575 12576 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12577 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12578 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12579 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12580 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12581 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12582 12583 dof->dofh_flags = 0; 12584 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12585 dof->dofh_secsize = sizeof (dof_sec_t); 12586 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12587 dof->dofh_secoff = sizeof (dof_hdr_t); 12588 dof->dofh_loadsz = len; 12589 dof->dofh_filesz = len; 12590 dof->dofh_pad = 0; 12591 12592 /* 12593 * Fill in the option section header... 12594 */ 12595 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12596 sec->dofs_type = DOF_SECT_OPTDESC; 12597 sec->dofs_align = sizeof (uint64_t); 12598 sec->dofs_flags = DOF_SECF_LOAD; 12599 sec->dofs_entsize = sizeof (dof_optdesc_t); 12600 12601 opt = (dof_optdesc_t *)((uintptr_t)sec + 12602 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12603 12604 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12605 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12606 12607 for (i = 0; i < DTRACEOPT_MAX; i++) { 12608 opt[i].dofo_option = i; 12609 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12610 opt[i].dofo_value = state->dts_options[i]; 12611 } 12612 12613 return (dof); 12614 } 12615 12616 static dof_hdr_t * 12617 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12618 { 12619 dof_hdr_t hdr, *dof; 12620 12621 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12622 12623 /* 12624 * First, we're going to copyin() the sizeof (dof_hdr_t). 12625 */ 12626 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12627 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12628 *errp = EFAULT; 12629 return (NULL); 12630 } 12631 12632 /* 12633 * Now we'll allocate the entire DOF and copy it in -- provided 12634 * that the length isn't outrageous. 12635 */ 12636 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12637 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12638 *errp = E2BIG; 12639 return (NULL); 12640 } 12641 12642 if (hdr.dofh_loadsz < sizeof (hdr)) { 12643 dtrace_dof_error(&hdr, "invalid load size"); 12644 *errp = EINVAL; 12645 return (NULL); 12646 } 12647 12648 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12649 12650 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12651 dof->dofh_loadsz != hdr.dofh_loadsz) { 12652 kmem_free(dof, hdr.dofh_loadsz); 12653 *errp = EFAULT; 12654 return (NULL); 12655 } 12656 12657 return (dof); 12658 } 12659 12660 static dof_hdr_t * 12661 dtrace_dof_property(const char *name) 12662 { 12663 uchar_t *buf; 12664 uint64_t loadsz; 12665 unsigned int len, i; 12666 dof_hdr_t *dof; 12667 12668 /* 12669 * Unfortunately, array of values in .conf files are always (and 12670 * only) interpreted to be integer arrays. We must read our DOF 12671 * as an integer array, and then squeeze it into a byte array. 12672 */ 12673 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12674 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12675 return (NULL); 12676 12677 for (i = 0; i < len; i++) 12678 buf[i] = (uchar_t)(((int *)buf)[i]); 12679 12680 if (len < sizeof (dof_hdr_t)) { 12681 ddi_prop_free(buf); 12682 dtrace_dof_error(NULL, "truncated header"); 12683 return (NULL); 12684 } 12685 12686 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12687 ddi_prop_free(buf); 12688 dtrace_dof_error(NULL, "truncated DOF"); 12689 return (NULL); 12690 } 12691 12692 if (loadsz >= dtrace_dof_maxsize) { 12693 ddi_prop_free(buf); 12694 dtrace_dof_error(NULL, "oversized DOF"); 12695 return (NULL); 12696 } 12697 12698 dof = kmem_alloc(loadsz, KM_SLEEP); 12699 bcopy(buf, dof, loadsz); 12700 ddi_prop_free(buf); 12701 12702 return (dof); 12703 } 12704 12705 static void 12706 dtrace_dof_destroy(dof_hdr_t *dof) 12707 { 12708 kmem_free(dof, dof->dofh_loadsz); 12709 } 12710 12711 /* 12712 * Return the dof_sec_t pointer corresponding to a given section index. If the 12713 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12714 * a type other than DOF_SECT_NONE is specified, the header is checked against 12715 * this type and NULL is returned if the types do not match. 12716 */ 12717 static dof_sec_t * 12718 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12719 { 12720 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12721 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12722 12723 if (i >= dof->dofh_secnum) { 12724 dtrace_dof_error(dof, "referenced section index is invalid"); 12725 return (NULL); 12726 } 12727 12728 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12729 dtrace_dof_error(dof, "referenced section is not loadable"); 12730 return (NULL); 12731 } 12732 12733 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12734 dtrace_dof_error(dof, "referenced section is the wrong type"); 12735 return (NULL); 12736 } 12737 12738 return (sec); 12739 } 12740 12741 static dtrace_probedesc_t * 12742 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12743 { 12744 dof_probedesc_t *probe; 12745 dof_sec_t *strtab; 12746 uintptr_t daddr = (uintptr_t)dof; 12747 uintptr_t str; 12748 size_t size; 12749 12750 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12751 dtrace_dof_error(dof, "invalid probe section"); 12752 return (NULL); 12753 } 12754 12755 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12756 dtrace_dof_error(dof, "bad alignment in probe description"); 12757 return (NULL); 12758 } 12759 12760 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12761 dtrace_dof_error(dof, "truncated probe description"); 12762 return (NULL); 12763 } 12764 12765 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12766 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12767 12768 if (strtab == NULL) 12769 return (NULL); 12770 12771 str = daddr + strtab->dofs_offset; 12772 size = strtab->dofs_size; 12773 12774 if (probe->dofp_provider >= strtab->dofs_size) { 12775 dtrace_dof_error(dof, "corrupt probe provider"); 12776 return (NULL); 12777 } 12778 12779 (void) strncpy(desc->dtpd_provider, 12780 (char *)(str + probe->dofp_provider), 12781 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12782 12783 if (probe->dofp_mod >= strtab->dofs_size) { 12784 dtrace_dof_error(dof, "corrupt probe module"); 12785 return (NULL); 12786 } 12787 12788 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12789 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12790 12791 if (probe->dofp_func >= strtab->dofs_size) { 12792 dtrace_dof_error(dof, "corrupt probe function"); 12793 return (NULL); 12794 } 12795 12796 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12797 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12798 12799 if (probe->dofp_name >= strtab->dofs_size) { 12800 dtrace_dof_error(dof, "corrupt probe name"); 12801 return (NULL); 12802 } 12803 12804 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12805 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12806 12807 return (desc); 12808 } 12809 12810 static dtrace_difo_t * 12811 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12812 cred_t *cr) 12813 { 12814 dtrace_difo_t *dp; 12815 size_t ttl = 0; 12816 dof_difohdr_t *dofd; 12817 uintptr_t daddr = (uintptr_t)dof; 12818 size_t max = dtrace_difo_maxsize; 12819 int i, l, n; 12820 12821 static const struct { 12822 int section; 12823 int bufoffs; 12824 int lenoffs; 12825 int entsize; 12826 int align; 12827 const char *msg; 12828 } difo[] = { 12829 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12830 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12831 sizeof (dif_instr_t), "multiple DIF sections" }, 12832 12833 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12834 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12835 sizeof (uint64_t), "multiple integer tables" }, 12836 12837 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12838 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12839 sizeof (char), "multiple string tables" }, 12840 12841 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12842 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12843 sizeof (uint_t), "multiple variable tables" }, 12844 12845 { DOF_SECT_NONE, 0, 0, 0, NULL } 12846 }; 12847 12848 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12849 dtrace_dof_error(dof, "invalid DIFO header section"); 12850 return (NULL); 12851 } 12852 12853 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12854 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12855 return (NULL); 12856 } 12857 12858 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12859 sec->dofs_size % sizeof (dof_secidx_t)) { 12860 dtrace_dof_error(dof, "bad size in DIFO header"); 12861 return (NULL); 12862 } 12863 12864 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12865 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12866 12867 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12868 dp->dtdo_rtype = dofd->dofd_rtype; 12869 12870 for (l = 0; l < n; l++) { 12871 dof_sec_t *subsec; 12872 void **bufp; 12873 uint32_t *lenp; 12874 12875 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12876 dofd->dofd_links[l])) == NULL) 12877 goto err; /* invalid section link */ 12878 12879 if (ttl + subsec->dofs_size > max) { 12880 dtrace_dof_error(dof, "exceeds maximum size"); 12881 goto err; 12882 } 12883 12884 ttl += subsec->dofs_size; 12885 12886 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12887 if (subsec->dofs_type != difo[i].section) 12888 continue; 12889 12890 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12891 dtrace_dof_error(dof, "section not loaded"); 12892 goto err; 12893 } 12894 12895 if (subsec->dofs_align != difo[i].align) { 12896 dtrace_dof_error(dof, "bad alignment"); 12897 goto err; 12898 } 12899 12900 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12901 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12902 12903 if (*bufp != NULL) { 12904 dtrace_dof_error(dof, difo[i].msg); 12905 goto err; 12906 } 12907 12908 if (difo[i].entsize != subsec->dofs_entsize) { 12909 dtrace_dof_error(dof, "entry size mismatch"); 12910 goto err; 12911 } 12912 12913 if (subsec->dofs_entsize != 0 && 12914 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12915 dtrace_dof_error(dof, "corrupt entry size"); 12916 goto err; 12917 } 12918 12919 *lenp = subsec->dofs_size; 12920 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12921 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12922 *bufp, subsec->dofs_size); 12923 12924 if (subsec->dofs_entsize != 0) 12925 *lenp /= subsec->dofs_entsize; 12926 12927 break; 12928 } 12929 12930 /* 12931 * If we encounter a loadable DIFO sub-section that is not 12932 * known to us, assume this is a broken program and fail. 12933 */ 12934 if (difo[i].section == DOF_SECT_NONE && 12935 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12936 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12937 goto err; 12938 } 12939 } 12940 12941 if (dp->dtdo_buf == NULL) { 12942 /* 12943 * We can't have a DIF object without DIF text. 12944 */ 12945 dtrace_dof_error(dof, "missing DIF text"); 12946 goto err; 12947 } 12948 12949 /* 12950 * Before we validate the DIF object, run through the variable table 12951 * looking for the strings -- if any of their size are under, we'll set 12952 * their size to be the system-wide default string size. Note that 12953 * this should _not_ happen if the "strsize" option has been set -- 12954 * in this case, the compiler should have set the size to reflect the 12955 * setting of the option. 12956 */ 12957 for (i = 0; i < dp->dtdo_varlen; i++) { 12958 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12959 dtrace_diftype_t *t = &v->dtdv_type; 12960 12961 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12962 continue; 12963 12964 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12965 t->dtdt_size = dtrace_strsize_default; 12966 } 12967 12968 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12969 goto err; 12970 12971 dtrace_difo_init(dp, vstate); 12972 return (dp); 12973 12974 err: 12975 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12976 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12977 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12978 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12979 12980 kmem_free(dp, sizeof (dtrace_difo_t)); 12981 return (NULL); 12982 } 12983 12984 static dtrace_predicate_t * 12985 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12986 cred_t *cr) 12987 { 12988 dtrace_difo_t *dp; 12989 12990 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12991 return (NULL); 12992 12993 return (dtrace_predicate_create(dp)); 12994 } 12995 12996 static dtrace_actdesc_t * 12997 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12998 cred_t *cr) 12999 { 13000 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13001 dof_actdesc_t *desc; 13002 dof_sec_t *difosec; 13003 size_t offs; 13004 uintptr_t daddr = (uintptr_t)dof; 13005 uint64_t arg; 13006 dtrace_actkind_t kind; 13007 13008 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13009 dtrace_dof_error(dof, "invalid action section"); 13010 return (NULL); 13011 } 13012 13013 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13014 dtrace_dof_error(dof, "truncated action description"); 13015 return (NULL); 13016 } 13017 13018 if (sec->dofs_align != sizeof (uint64_t)) { 13019 dtrace_dof_error(dof, "bad alignment in action description"); 13020 return (NULL); 13021 } 13022 13023 if (sec->dofs_size < sec->dofs_entsize) { 13024 dtrace_dof_error(dof, "section entry size exceeds total size"); 13025 return (NULL); 13026 } 13027 13028 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13029 dtrace_dof_error(dof, "bad entry size in action description"); 13030 return (NULL); 13031 } 13032 13033 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13034 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13035 return (NULL); 13036 } 13037 13038 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13039 desc = (dof_actdesc_t *)(daddr + 13040 (uintptr_t)sec->dofs_offset + offs); 13041 kind = (dtrace_actkind_t)desc->dofa_kind; 13042 13043 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13044 (kind != DTRACEACT_PRINTA || 13045 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13046 (kind == DTRACEACT_DIFEXPR && 13047 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13048 dof_sec_t *strtab; 13049 char *str, *fmt; 13050 uint64_t i; 13051 13052 /* 13053 * The argument to these actions is an index into the 13054 * DOF string table. For printf()-like actions, this 13055 * is the format string. For print(), this is the 13056 * CTF type of the expression result. 13057 */ 13058 if ((strtab = dtrace_dof_sect(dof, 13059 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13060 goto err; 13061 13062 str = (char *)((uintptr_t)dof + 13063 (uintptr_t)strtab->dofs_offset); 13064 13065 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13066 if (str[i] == '\0') 13067 break; 13068 } 13069 13070 if (i >= strtab->dofs_size) { 13071 dtrace_dof_error(dof, "bogus format string"); 13072 goto err; 13073 } 13074 13075 if (i == desc->dofa_arg) { 13076 dtrace_dof_error(dof, "empty format string"); 13077 goto err; 13078 } 13079 13080 i -= desc->dofa_arg; 13081 fmt = kmem_alloc(i + 1, KM_SLEEP); 13082 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13083 arg = (uint64_t)(uintptr_t)fmt; 13084 } else { 13085 if (kind == DTRACEACT_PRINTA) { 13086 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13087 arg = 0; 13088 } else { 13089 arg = desc->dofa_arg; 13090 } 13091 } 13092 13093 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13094 desc->dofa_uarg, arg); 13095 13096 if (last != NULL) { 13097 last->dtad_next = act; 13098 } else { 13099 first = act; 13100 } 13101 13102 last = act; 13103 13104 if (desc->dofa_difo == DOF_SECIDX_NONE) 13105 continue; 13106 13107 if ((difosec = dtrace_dof_sect(dof, 13108 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13109 goto err; 13110 13111 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13112 13113 if (act->dtad_difo == NULL) 13114 goto err; 13115 } 13116 13117 ASSERT(first != NULL); 13118 return (first); 13119 13120 err: 13121 for (act = first; act != NULL; act = next) { 13122 next = act->dtad_next; 13123 dtrace_actdesc_release(act, vstate); 13124 } 13125 13126 return (NULL); 13127 } 13128 13129 static dtrace_ecbdesc_t * 13130 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13131 cred_t *cr) 13132 { 13133 dtrace_ecbdesc_t *ep; 13134 dof_ecbdesc_t *ecb; 13135 dtrace_probedesc_t *desc; 13136 dtrace_predicate_t *pred = NULL; 13137 13138 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13139 dtrace_dof_error(dof, "truncated ECB description"); 13140 return (NULL); 13141 } 13142 13143 if (sec->dofs_align != sizeof (uint64_t)) { 13144 dtrace_dof_error(dof, "bad alignment in ECB description"); 13145 return (NULL); 13146 } 13147 13148 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13149 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13150 13151 if (sec == NULL) 13152 return (NULL); 13153 13154 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13155 ep->dted_uarg = ecb->dofe_uarg; 13156 desc = &ep->dted_probe; 13157 13158 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13159 goto err; 13160 13161 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13162 if ((sec = dtrace_dof_sect(dof, 13163 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13164 goto err; 13165 13166 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13167 goto err; 13168 13169 ep->dted_pred.dtpdd_predicate = pred; 13170 } 13171 13172 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13173 if ((sec = dtrace_dof_sect(dof, 13174 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13175 goto err; 13176 13177 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13178 13179 if (ep->dted_action == NULL) 13180 goto err; 13181 } 13182 13183 return (ep); 13184 13185 err: 13186 if (pred != NULL) 13187 dtrace_predicate_release(pred, vstate); 13188 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13189 return (NULL); 13190 } 13191 13192 /* 13193 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13194 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13195 * site of any user SETX relocations to account for load object base address. 13196 * In the future, if we need other relocations, this function can be extended. 13197 */ 13198 static int 13199 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13200 { 13201 uintptr_t daddr = (uintptr_t)dof; 13202 uintptr_t ts_end; 13203 dof_relohdr_t *dofr = 13204 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13205 dof_sec_t *ss, *rs, *ts; 13206 dof_relodesc_t *r; 13207 uint_t i, n; 13208 13209 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13210 sec->dofs_align != sizeof (dof_secidx_t)) { 13211 dtrace_dof_error(dof, "invalid relocation header"); 13212 return (-1); 13213 } 13214 13215 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13216 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13217 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13218 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 13219 13220 if (ss == NULL || rs == NULL || ts == NULL) 13221 return (-1); /* dtrace_dof_error() has been called already */ 13222 13223 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13224 rs->dofs_align != sizeof (uint64_t)) { 13225 dtrace_dof_error(dof, "invalid relocation section"); 13226 return (-1); 13227 } 13228 13229 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13230 n = rs->dofs_size / rs->dofs_entsize; 13231 13232 for (i = 0; i < n; i++) { 13233 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13234 13235 switch (r->dofr_type) { 13236 case DOF_RELO_NONE: 13237 break; 13238 case DOF_RELO_SETX: 13239 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13240 sizeof (uint64_t) > ts->dofs_size) { 13241 dtrace_dof_error(dof, "bad relocation offset"); 13242 return (-1); 13243 } 13244 13245 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 13246 dtrace_dof_error(dof, "bad relocation offset"); 13247 return (-1); 13248 } 13249 13250 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13251 dtrace_dof_error(dof, "misaligned setx relo"); 13252 return (-1); 13253 } 13254 13255 *(uint64_t *)taddr += ubase; 13256 break; 13257 default: 13258 dtrace_dof_error(dof, "invalid relocation type"); 13259 return (-1); 13260 } 13261 13262 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13263 } 13264 13265 return (0); 13266 } 13267 13268 /* 13269 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13270 * header: it should be at the front of a memory region that is at least 13271 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13272 * size. It need not be validated in any other way. 13273 */ 13274 static int 13275 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13276 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13277 { 13278 uint64_t len = dof->dofh_loadsz, seclen; 13279 uintptr_t daddr = (uintptr_t)dof; 13280 dtrace_ecbdesc_t *ep; 13281 dtrace_enabling_t *enab; 13282 uint_t i; 13283 13284 ASSERT(MUTEX_HELD(&dtrace_lock)); 13285 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13286 13287 /* 13288 * Check the DOF header identification bytes. In addition to checking 13289 * valid settings, we also verify that unused bits/bytes are zeroed so 13290 * we can use them later without fear of regressing existing binaries. 13291 */ 13292 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13293 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13294 dtrace_dof_error(dof, "DOF magic string mismatch"); 13295 return (-1); 13296 } 13297 13298 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13299 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13300 dtrace_dof_error(dof, "DOF has invalid data model"); 13301 return (-1); 13302 } 13303 13304 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13305 dtrace_dof_error(dof, "DOF encoding mismatch"); 13306 return (-1); 13307 } 13308 13309 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13310 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13311 dtrace_dof_error(dof, "DOF version mismatch"); 13312 return (-1); 13313 } 13314 13315 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13316 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13317 return (-1); 13318 } 13319 13320 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13321 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13322 return (-1); 13323 } 13324 13325 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13326 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13327 return (-1); 13328 } 13329 13330 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13331 if (dof->dofh_ident[i] != 0) { 13332 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13333 return (-1); 13334 } 13335 } 13336 13337 if (dof->dofh_flags & ~DOF_FL_VALID) { 13338 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13339 return (-1); 13340 } 13341 13342 if (dof->dofh_secsize == 0) { 13343 dtrace_dof_error(dof, "zero section header size"); 13344 return (-1); 13345 } 13346 13347 /* 13348 * Check that the section headers don't exceed the amount of DOF 13349 * data. Note that we cast the section size and number of sections 13350 * to uint64_t's to prevent possible overflow in the multiplication. 13351 */ 13352 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13353 13354 if (dof->dofh_secoff > len || seclen > len || 13355 dof->dofh_secoff + seclen > len) { 13356 dtrace_dof_error(dof, "truncated section headers"); 13357 return (-1); 13358 } 13359 13360 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13361 dtrace_dof_error(dof, "misaligned section headers"); 13362 return (-1); 13363 } 13364 13365 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13366 dtrace_dof_error(dof, "misaligned section size"); 13367 return (-1); 13368 } 13369 13370 /* 13371 * Take an initial pass through the section headers to be sure that 13372 * the headers don't have stray offsets. If the 'noprobes' flag is 13373 * set, do not permit sections relating to providers, probes, or args. 13374 */ 13375 for (i = 0; i < dof->dofh_secnum; i++) { 13376 dof_sec_t *sec = (dof_sec_t *)(daddr + 13377 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13378 13379 if (noprobes) { 13380 switch (sec->dofs_type) { 13381 case DOF_SECT_PROVIDER: 13382 case DOF_SECT_PROBES: 13383 case DOF_SECT_PRARGS: 13384 case DOF_SECT_PROFFS: 13385 dtrace_dof_error(dof, "illegal sections " 13386 "for enabling"); 13387 return (-1); 13388 } 13389 } 13390 13391 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13392 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13393 dtrace_dof_error(dof, "loadable section with load " 13394 "flag unset"); 13395 return (-1); 13396 } 13397 13398 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13399 continue; /* just ignore non-loadable sections */ 13400 13401 if (!ISP2(sec->dofs_align)) { 13402 dtrace_dof_error(dof, "bad section alignment"); 13403 return (-1); 13404 } 13405 13406 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13407 dtrace_dof_error(dof, "misaligned section"); 13408 return (-1); 13409 } 13410 13411 if (sec->dofs_offset > len || sec->dofs_size > len || 13412 sec->dofs_offset + sec->dofs_size > len) { 13413 dtrace_dof_error(dof, "corrupt section header"); 13414 return (-1); 13415 } 13416 13417 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13418 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13419 dtrace_dof_error(dof, "non-terminating string table"); 13420 return (-1); 13421 } 13422 } 13423 13424 /* 13425 * Take a second pass through the sections and locate and perform any 13426 * relocations that are present. We do this after the first pass to 13427 * be sure that all sections have had their headers validated. 13428 */ 13429 for (i = 0; i < dof->dofh_secnum; i++) { 13430 dof_sec_t *sec = (dof_sec_t *)(daddr + 13431 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13432 13433 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13434 continue; /* skip sections that are not loadable */ 13435 13436 switch (sec->dofs_type) { 13437 case DOF_SECT_URELHDR: 13438 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13439 return (-1); 13440 break; 13441 } 13442 } 13443 13444 if ((enab = *enabp) == NULL) 13445 enab = *enabp = dtrace_enabling_create(vstate); 13446 13447 for (i = 0; i < dof->dofh_secnum; i++) { 13448 dof_sec_t *sec = (dof_sec_t *)(daddr + 13449 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13450 13451 if (sec->dofs_type != DOF_SECT_ECBDESC) 13452 continue; 13453 13454 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13455 dtrace_enabling_destroy(enab); 13456 *enabp = NULL; 13457 return (-1); 13458 } 13459 13460 dtrace_enabling_add(enab, ep); 13461 } 13462 13463 return (0); 13464 } 13465 13466 /* 13467 * Process DOF for any options. This routine assumes that the DOF has been 13468 * at least processed by dtrace_dof_slurp(). 13469 */ 13470 static int 13471 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13472 { 13473 int i, rval; 13474 uint32_t entsize; 13475 size_t offs; 13476 dof_optdesc_t *desc; 13477 13478 for (i = 0; i < dof->dofh_secnum; i++) { 13479 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13480 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13481 13482 if (sec->dofs_type != DOF_SECT_OPTDESC) 13483 continue; 13484 13485 if (sec->dofs_align != sizeof (uint64_t)) { 13486 dtrace_dof_error(dof, "bad alignment in " 13487 "option description"); 13488 return (EINVAL); 13489 } 13490 13491 if ((entsize = sec->dofs_entsize) == 0) { 13492 dtrace_dof_error(dof, "zeroed option entry size"); 13493 return (EINVAL); 13494 } 13495 13496 if (entsize < sizeof (dof_optdesc_t)) { 13497 dtrace_dof_error(dof, "bad option entry size"); 13498 return (EINVAL); 13499 } 13500 13501 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13502 desc = (dof_optdesc_t *)((uintptr_t)dof + 13503 (uintptr_t)sec->dofs_offset + offs); 13504 13505 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13506 dtrace_dof_error(dof, "non-zero option string"); 13507 return (EINVAL); 13508 } 13509 13510 if (desc->dofo_value == DTRACEOPT_UNSET) { 13511 dtrace_dof_error(dof, "unset option"); 13512 return (EINVAL); 13513 } 13514 13515 if ((rval = dtrace_state_option(state, 13516 desc->dofo_option, desc->dofo_value)) != 0) { 13517 dtrace_dof_error(dof, "rejected option"); 13518 return (rval); 13519 } 13520 } 13521 } 13522 13523 return (0); 13524 } 13525 13526 /* 13527 * DTrace Consumer State Functions 13528 */ 13529 int 13530 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13531 { 13532 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13533 void *base; 13534 uintptr_t limit; 13535 dtrace_dynvar_t *dvar, *next, *start; 13536 int i; 13537 13538 ASSERT(MUTEX_HELD(&dtrace_lock)); 13539 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13540 13541 bzero(dstate, sizeof (dtrace_dstate_t)); 13542 13543 if ((dstate->dtds_chunksize = chunksize) == 0) 13544 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13545 13546 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13547 13548 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13549 size = min; 13550 13551 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13552 return (ENOMEM); 13553 13554 dstate->dtds_size = size; 13555 dstate->dtds_base = base; 13556 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13557 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13558 13559 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13560 13561 if (hashsize != 1 && (hashsize & 1)) 13562 hashsize--; 13563 13564 dstate->dtds_hashsize = hashsize; 13565 dstate->dtds_hash = dstate->dtds_base; 13566 13567 /* 13568 * Set all of our hash buckets to point to the single sink, and (if 13569 * it hasn't already been set), set the sink's hash value to be the 13570 * sink sentinel value. The sink is needed for dynamic variable 13571 * lookups to know that they have iterated over an entire, valid hash 13572 * chain. 13573 */ 13574 for (i = 0; i < hashsize; i++) 13575 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13576 13577 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13578 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13579 13580 /* 13581 * Determine number of active CPUs. Divide free list evenly among 13582 * active CPUs. 13583 */ 13584 start = (dtrace_dynvar_t *) 13585 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13586 limit = (uintptr_t)base + size; 13587 13588 VERIFY((uintptr_t)start < limit); 13589 VERIFY((uintptr_t)start >= (uintptr_t)base); 13590 13591 maxper = (limit - (uintptr_t)start) / NCPU; 13592 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13593 13594 for (i = 0; i < NCPU; i++) { 13595 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13596 13597 /* 13598 * If we don't even have enough chunks to make it once through 13599 * NCPUs, we're just going to allocate everything to the first 13600 * CPU. And if we're on the last CPU, we're going to allocate 13601 * whatever is left over. In either case, we set the limit to 13602 * be the limit of the dynamic variable space. 13603 */ 13604 if (maxper == 0 || i == NCPU - 1) { 13605 limit = (uintptr_t)base + size; 13606 start = NULL; 13607 } else { 13608 limit = (uintptr_t)start + maxper; 13609 start = (dtrace_dynvar_t *)limit; 13610 } 13611 13612 VERIFY(limit <= (uintptr_t)base + size); 13613 13614 for (;;) { 13615 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13616 dstate->dtds_chunksize); 13617 13618 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13619 break; 13620 13621 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13622 (uintptr_t)dvar <= (uintptr_t)base + size); 13623 dvar->dtdv_next = next; 13624 dvar = next; 13625 } 13626 13627 if (maxper == 0) 13628 break; 13629 } 13630 13631 return (0); 13632 } 13633 13634 void 13635 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13636 { 13637 ASSERT(MUTEX_HELD(&cpu_lock)); 13638 13639 if (dstate->dtds_base == NULL) 13640 return; 13641 13642 kmem_free(dstate->dtds_base, dstate->dtds_size); 13643 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13644 } 13645 13646 static void 13647 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13648 { 13649 /* 13650 * Logical XOR, where are you? 13651 */ 13652 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13653 13654 if (vstate->dtvs_nglobals > 0) { 13655 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13656 sizeof (dtrace_statvar_t *)); 13657 } 13658 13659 if (vstate->dtvs_ntlocals > 0) { 13660 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13661 sizeof (dtrace_difv_t)); 13662 } 13663 13664 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13665 13666 if (vstate->dtvs_nlocals > 0) { 13667 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13668 sizeof (dtrace_statvar_t *)); 13669 } 13670 } 13671 13672 static void 13673 dtrace_state_clean(dtrace_state_t *state) 13674 { 13675 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13676 return; 13677 13678 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13679 dtrace_speculation_clean(state); 13680 } 13681 13682 static void 13683 dtrace_state_deadman(dtrace_state_t *state) 13684 { 13685 hrtime_t now; 13686 13687 dtrace_sync(); 13688 13689 now = dtrace_gethrtime(); 13690 13691 if (state != dtrace_anon.dta_state && 13692 now - state->dts_laststatus >= dtrace_deadman_user) 13693 return; 13694 13695 /* 13696 * We must be sure that dts_alive never appears to be less than the 13697 * value upon entry to dtrace_state_deadman(), and because we lack a 13698 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13699 * store INT64_MAX to it, followed by a memory barrier, followed by 13700 * the new value. This assures that dts_alive never appears to be 13701 * less than its true value, regardless of the order in which the 13702 * stores to the underlying storage are issued. 13703 */ 13704 state->dts_alive = INT64_MAX; 13705 dtrace_membar_producer(); 13706 state->dts_alive = now; 13707 } 13708 13709 dtrace_state_t * 13710 dtrace_state_create(dev_t *devp, cred_t *cr) 13711 { 13712 minor_t minor; 13713 major_t major; 13714 char c[30]; 13715 dtrace_state_t *state; 13716 dtrace_optval_t *opt; 13717 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13718 13719 ASSERT(MUTEX_HELD(&dtrace_lock)); 13720 ASSERT(MUTEX_HELD(&cpu_lock)); 13721 13722 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13723 VM_BESTFIT | VM_SLEEP); 13724 13725 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13726 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13727 return (NULL); 13728 } 13729 13730 state = ddi_get_soft_state(dtrace_softstate, minor); 13731 state->dts_epid = DTRACE_EPIDNONE + 1; 13732 13733 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13734 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13735 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13736 13737 if (devp != NULL) { 13738 major = getemajor(*devp); 13739 } else { 13740 major = ddi_driver_major(dtrace_devi); 13741 } 13742 13743 state->dts_dev = makedevice(major, minor); 13744 13745 if (devp != NULL) 13746 *devp = state->dts_dev; 13747 13748 /* 13749 * We allocate NCPU buffers. On the one hand, this can be quite 13750 * a bit of memory per instance (nearly 36K on a Starcat). On the 13751 * other hand, it saves an additional memory reference in the probe 13752 * path. 13753 */ 13754 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13755 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13756 state->dts_cleaner = CYCLIC_NONE; 13757 state->dts_deadman = CYCLIC_NONE; 13758 state->dts_vstate.dtvs_state = state; 13759 13760 for (i = 0; i < DTRACEOPT_MAX; i++) 13761 state->dts_options[i] = DTRACEOPT_UNSET; 13762 13763 /* 13764 * Set the default options. 13765 */ 13766 opt = state->dts_options; 13767 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13768 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13769 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13770 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13771 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13772 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13773 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13774 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13775 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13776 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13777 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13778 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13779 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13780 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13781 13782 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13783 13784 /* 13785 * Depending on the user credentials, we set flag bits which alter probe 13786 * visibility or the amount of destructiveness allowed. In the case of 13787 * actual anonymous tracing, or the possession of all privileges, all of 13788 * the normal checks are bypassed. 13789 */ 13790 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13791 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13792 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13793 } else { 13794 /* 13795 * Set up the credentials for this instantiation. We take a 13796 * hold on the credential to prevent it from disappearing on 13797 * us; this in turn prevents the zone_t referenced by this 13798 * credential from disappearing. This means that we can 13799 * examine the credential and the zone from probe context. 13800 */ 13801 crhold(cr); 13802 state->dts_cred.dcr_cred = cr; 13803 13804 /* 13805 * CRA_PROC means "we have *some* privilege for dtrace" and 13806 * unlocks the use of variables like pid, zonename, etc. 13807 */ 13808 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13809 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13810 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13811 } 13812 13813 /* 13814 * dtrace_user allows use of syscall and profile providers. 13815 * If the user also has proc_owner and/or proc_zone, we 13816 * extend the scope to include additional visibility and 13817 * destructive power. 13818 */ 13819 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13820 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13821 state->dts_cred.dcr_visible |= 13822 DTRACE_CRV_ALLPROC; 13823 13824 state->dts_cred.dcr_action |= 13825 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13826 } 13827 13828 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13829 state->dts_cred.dcr_visible |= 13830 DTRACE_CRV_ALLZONE; 13831 13832 state->dts_cred.dcr_action |= 13833 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13834 } 13835 13836 /* 13837 * If we have all privs in whatever zone this is, 13838 * we can do destructive things to processes which 13839 * have altered credentials. 13840 */ 13841 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13842 cr->cr_zone->zone_privset)) { 13843 state->dts_cred.dcr_action |= 13844 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13845 } 13846 } 13847 13848 /* 13849 * Holding the dtrace_kernel privilege also implies that 13850 * the user has the dtrace_user privilege from a visibility 13851 * perspective. But without further privileges, some 13852 * destructive actions are not available. 13853 */ 13854 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13855 /* 13856 * Make all probes in all zones visible. However, 13857 * this doesn't mean that all actions become available 13858 * to all zones. 13859 */ 13860 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13861 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13862 13863 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13864 DTRACE_CRA_PROC; 13865 /* 13866 * Holding proc_owner means that destructive actions 13867 * for *this* zone are allowed. 13868 */ 13869 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13870 state->dts_cred.dcr_action |= 13871 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13872 13873 /* 13874 * Holding proc_zone means that destructive actions 13875 * for this user/group ID in all zones is allowed. 13876 */ 13877 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13878 state->dts_cred.dcr_action |= 13879 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13880 13881 /* 13882 * If we have all privs in whatever zone this is, 13883 * we can do destructive things to processes which 13884 * have altered credentials. 13885 */ 13886 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13887 cr->cr_zone->zone_privset)) { 13888 state->dts_cred.dcr_action |= 13889 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13890 } 13891 } 13892 13893 /* 13894 * Holding the dtrace_proc privilege gives control over fasttrap 13895 * and pid providers. We need to grant wider destructive 13896 * privileges in the event that the user has proc_owner and/or 13897 * proc_zone. 13898 */ 13899 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13900 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13901 state->dts_cred.dcr_action |= 13902 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13903 13904 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13905 state->dts_cred.dcr_action |= 13906 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13907 } 13908 } 13909 13910 return (state); 13911 } 13912 13913 static int 13914 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13915 { 13916 dtrace_optval_t *opt = state->dts_options, size; 13917 processorid_t cpu; 13918 int flags = 0, rval, factor, divisor = 1; 13919 13920 ASSERT(MUTEX_HELD(&dtrace_lock)); 13921 ASSERT(MUTEX_HELD(&cpu_lock)); 13922 ASSERT(which < DTRACEOPT_MAX); 13923 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13924 (state == dtrace_anon.dta_state && 13925 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13926 13927 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13928 return (0); 13929 13930 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13931 cpu = opt[DTRACEOPT_CPU]; 13932 13933 if (which == DTRACEOPT_SPECSIZE) 13934 flags |= DTRACEBUF_NOSWITCH; 13935 13936 if (which == DTRACEOPT_BUFSIZE) { 13937 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13938 flags |= DTRACEBUF_RING; 13939 13940 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13941 flags |= DTRACEBUF_FILL; 13942 13943 if (state != dtrace_anon.dta_state || 13944 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13945 flags |= DTRACEBUF_INACTIVE; 13946 } 13947 13948 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13949 /* 13950 * The size must be 8-byte aligned. If the size is not 8-byte 13951 * aligned, drop it down by the difference. 13952 */ 13953 if (size & (sizeof (uint64_t) - 1)) 13954 size -= size & (sizeof (uint64_t) - 1); 13955 13956 if (size < state->dts_reserve) { 13957 /* 13958 * Buffers always must be large enough to accommodate 13959 * their prereserved space. We return E2BIG instead 13960 * of ENOMEM in this case to allow for user-level 13961 * software to differentiate the cases. 13962 */ 13963 return (E2BIG); 13964 } 13965 13966 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13967 13968 if (rval != ENOMEM) { 13969 opt[which] = size; 13970 return (rval); 13971 } 13972 13973 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13974 return (rval); 13975 13976 for (divisor = 2; divisor < factor; divisor <<= 1) 13977 continue; 13978 } 13979 13980 return (ENOMEM); 13981 } 13982 13983 static int 13984 dtrace_state_buffers(dtrace_state_t *state) 13985 { 13986 dtrace_speculation_t *spec = state->dts_speculations; 13987 int rval, i; 13988 13989 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13990 DTRACEOPT_BUFSIZE)) != 0) 13991 return (rval); 13992 13993 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13994 DTRACEOPT_AGGSIZE)) != 0) 13995 return (rval); 13996 13997 for (i = 0; i < state->dts_nspeculations; i++) { 13998 if ((rval = dtrace_state_buffer(state, 13999 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14000 return (rval); 14001 } 14002 14003 return (0); 14004 } 14005 14006 static void 14007 dtrace_state_prereserve(dtrace_state_t *state) 14008 { 14009 dtrace_ecb_t *ecb; 14010 dtrace_probe_t *probe; 14011 14012 state->dts_reserve = 0; 14013 14014 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14015 return; 14016 14017 /* 14018 * If our buffer policy is a "fill" buffer policy, we need to set the 14019 * prereserved space to be the space required by the END probes. 14020 */ 14021 probe = dtrace_probes[dtrace_probeid_end - 1]; 14022 ASSERT(probe != NULL); 14023 14024 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14025 if (ecb->dte_state != state) 14026 continue; 14027 14028 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14029 } 14030 } 14031 14032 static int 14033 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14034 { 14035 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14036 dtrace_speculation_t *spec; 14037 dtrace_buffer_t *buf; 14038 cyc_handler_t hdlr; 14039 cyc_time_t when; 14040 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14041 dtrace_icookie_t cookie; 14042 14043 mutex_enter(&cpu_lock); 14044 mutex_enter(&dtrace_lock); 14045 14046 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14047 rval = EBUSY; 14048 goto out; 14049 } 14050 14051 /* 14052 * Before we can perform any checks, we must prime all of the 14053 * retained enablings that correspond to this state. 14054 */ 14055 dtrace_enabling_prime(state); 14056 14057 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14058 rval = EACCES; 14059 goto out; 14060 } 14061 14062 dtrace_state_prereserve(state); 14063 14064 /* 14065 * Now we want to do is try to allocate our speculations. 14066 * We do not automatically resize the number of speculations; if 14067 * this fails, we will fail the operation. 14068 */ 14069 nspec = opt[DTRACEOPT_NSPEC]; 14070 ASSERT(nspec != DTRACEOPT_UNSET); 14071 14072 if (nspec > INT_MAX) { 14073 rval = ENOMEM; 14074 goto out; 14075 } 14076 14077 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14078 KM_NOSLEEP | KM_NORMALPRI); 14079 14080 if (spec == NULL) { 14081 rval = ENOMEM; 14082 goto out; 14083 } 14084 14085 state->dts_speculations = spec; 14086 state->dts_nspeculations = (int)nspec; 14087 14088 for (i = 0; i < nspec; i++) { 14089 if ((buf = kmem_zalloc(bufsize, 14090 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14091 rval = ENOMEM; 14092 goto err; 14093 } 14094 14095 spec[i].dtsp_buffer = buf; 14096 } 14097 14098 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14099 if (dtrace_anon.dta_state == NULL) { 14100 rval = ENOENT; 14101 goto out; 14102 } 14103 14104 if (state->dts_necbs != 0) { 14105 rval = EALREADY; 14106 goto out; 14107 } 14108 14109 state->dts_anon = dtrace_anon_grab(); 14110 ASSERT(state->dts_anon != NULL); 14111 state = state->dts_anon; 14112 14113 /* 14114 * We want "grabanon" to be set in the grabbed state, so we'll 14115 * copy that option value from the grabbing state into the 14116 * grabbed state. 14117 */ 14118 state->dts_options[DTRACEOPT_GRABANON] = 14119 opt[DTRACEOPT_GRABANON]; 14120 14121 *cpu = dtrace_anon.dta_beganon; 14122 14123 /* 14124 * If the anonymous state is active (as it almost certainly 14125 * is if the anonymous enabling ultimately matched anything), 14126 * we don't allow any further option processing -- but we 14127 * don't return failure. 14128 */ 14129 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14130 goto out; 14131 } 14132 14133 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14134 opt[DTRACEOPT_AGGSIZE] != 0) { 14135 if (state->dts_aggregations == NULL) { 14136 /* 14137 * We're not going to create an aggregation buffer 14138 * because we don't have any ECBs that contain 14139 * aggregations -- set this option to 0. 14140 */ 14141 opt[DTRACEOPT_AGGSIZE] = 0; 14142 } else { 14143 /* 14144 * If we have an aggregation buffer, we must also have 14145 * a buffer to use as scratch. 14146 */ 14147 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14148 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14149 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14150 } 14151 } 14152 } 14153 14154 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14155 opt[DTRACEOPT_SPECSIZE] != 0) { 14156 if (!state->dts_speculates) { 14157 /* 14158 * We're not going to create speculation buffers 14159 * because we don't have any ECBs that actually 14160 * speculate -- set the speculation size to 0. 14161 */ 14162 opt[DTRACEOPT_SPECSIZE] = 0; 14163 } 14164 } 14165 14166 /* 14167 * The bare minimum size for any buffer that we're actually going to 14168 * do anything to is sizeof (uint64_t). 14169 */ 14170 sz = sizeof (uint64_t); 14171 14172 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14173 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14174 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14175 /* 14176 * A buffer size has been explicitly set to 0 (or to a size 14177 * that will be adjusted to 0) and we need the space -- we 14178 * need to return failure. We return ENOSPC to differentiate 14179 * it from failing to allocate a buffer due to failure to meet 14180 * the reserve (for which we return E2BIG). 14181 */ 14182 rval = ENOSPC; 14183 goto out; 14184 } 14185 14186 if ((rval = dtrace_state_buffers(state)) != 0) 14187 goto err; 14188 14189 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14190 sz = dtrace_dstate_defsize; 14191 14192 do { 14193 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14194 14195 if (rval == 0) 14196 break; 14197 14198 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14199 goto err; 14200 } while (sz >>= 1); 14201 14202 opt[DTRACEOPT_DYNVARSIZE] = sz; 14203 14204 if (rval != 0) 14205 goto err; 14206 14207 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14208 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14209 14210 if (opt[DTRACEOPT_CLEANRATE] == 0) 14211 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14212 14213 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14214 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14215 14216 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14217 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14218 14219 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14220 hdlr.cyh_arg = state; 14221 hdlr.cyh_level = CY_LOW_LEVEL; 14222 14223 when.cyt_when = 0; 14224 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14225 14226 state->dts_cleaner = cyclic_add(&hdlr, &when); 14227 14228 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14229 hdlr.cyh_arg = state; 14230 hdlr.cyh_level = CY_LOW_LEVEL; 14231 14232 when.cyt_when = 0; 14233 when.cyt_interval = dtrace_deadman_interval; 14234 14235 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14236 state->dts_deadman = cyclic_add(&hdlr, &when); 14237 14238 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14239 14240 if (state->dts_getf != 0 && 14241 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14242 /* 14243 * We don't have kernel privs but we have at least one call 14244 * to getf(); we need to bump our zone's count, and (if 14245 * this is the first enabling to have an unprivileged call 14246 * to getf()) we need to hook into closef(). 14247 */ 14248 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14249 14250 if (dtrace_getf++ == 0) { 14251 ASSERT(dtrace_closef == NULL); 14252 dtrace_closef = dtrace_getf_barrier; 14253 } 14254 } 14255 14256 /* 14257 * Now it's time to actually fire the BEGIN probe. We need to disable 14258 * interrupts here both to record the CPU on which we fired the BEGIN 14259 * probe (the data from this CPU will be processed first at user 14260 * level) and to manually activate the buffer for this CPU. 14261 */ 14262 cookie = dtrace_interrupt_disable(); 14263 *cpu = CPU->cpu_id; 14264 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14265 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14266 14267 dtrace_probe(dtrace_probeid_begin, 14268 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14269 dtrace_interrupt_enable(cookie); 14270 /* 14271 * We may have had an exit action from a BEGIN probe; only change our 14272 * state to ACTIVE if we're still in WARMUP. 14273 */ 14274 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14275 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14276 14277 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14278 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14279 14280 /* 14281 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14282 * want each CPU to transition its principal buffer out of the 14283 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14284 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14285 * atomically transition from processing none of a state's ECBs to 14286 * processing all of them. 14287 */ 14288 dtrace_xcall(DTRACE_CPUALL, 14289 (dtrace_xcall_t)dtrace_buffer_activate, state); 14290 goto out; 14291 14292 err: 14293 dtrace_buffer_free(state->dts_buffer); 14294 dtrace_buffer_free(state->dts_aggbuffer); 14295 14296 if ((nspec = state->dts_nspeculations) == 0) { 14297 ASSERT(state->dts_speculations == NULL); 14298 goto out; 14299 } 14300 14301 spec = state->dts_speculations; 14302 ASSERT(spec != NULL); 14303 14304 for (i = 0; i < state->dts_nspeculations; i++) { 14305 if ((buf = spec[i].dtsp_buffer) == NULL) 14306 break; 14307 14308 dtrace_buffer_free(buf); 14309 kmem_free(buf, bufsize); 14310 } 14311 14312 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14313 state->dts_nspeculations = 0; 14314 state->dts_speculations = NULL; 14315 14316 out: 14317 mutex_exit(&dtrace_lock); 14318 mutex_exit(&cpu_lock); 14319 14320 return (rval); 14321 } 14322 14323 static int 14324 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14325 { 14326 dtrace_icookie_t cookie; 14327 14328 ASSERT(MUTEX_HELD(&dtrace_lock)); 14329 14330 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14331 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14332 return (EINVAL); 14333 14334 /* 14335 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14336 * to be sure that every CPU has seen it. See below for the details 14337 * on why this is done. 14338 */ 14339 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14340 dtrace_sync(); 14341 14342 /* 14343 * By this point, it is impossible for any CPU to be still processing 14344 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14345 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14346 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14347 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14348 * iff we're in the END probe. 14349 */ 14350 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14351 dtrace_sync(); 14352 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14353 14354 /* 14355 * Finally, we can release the reserve and call the END probe. We 14356 * disable interrupts across calling the END probe to allow us to 14357 * return the CPU on which we actually called the END probe. This 14358 * allows user-land to be sure that this CPU's principal buffer is 14359 * processed last. 14360 */ 14361 state->dts_reserve = 0; 14362 14363 cookie = dtrace_interrupt_disable(); 14364 *cpu = CPU->cpu_id; 14365 dtrace_probe(dtrace_probeid_end, 14366 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14367 dtrace_interrupt_enable(cookie); 14368 14369 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14370 dtrace_sync(); 14371 14372 if (state->dts_getf != 0 && 14373 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14374 /* 14375 * We don't have kernel privs but we have at least one call 14376 * to getf(); we need to lower our zone's count, and (if 14377 * this is the last enabling to have an unprivileged call 14378 * to getf()) we need to clear the closef() hook. 14379 */ 14380 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14381 ASSERT(dtrace_closef == dtrace_getf_barrier); 14382 ASSERT(dtrace_getf > 0); 14383 14384 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14385 14386 if (--dtrace_getf == 0) 14387 dtrace_closef = NULL; 14388 } 14389 14390 return (0); 14391 } 14392 14393 static int 14394 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14395 dtrace_optval_t val) 14396 { 14397 ASSERT(MUTEX_HELD(&dtrace_lock)); 14398 14399 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14400 return (EBUSY); 14401 14402 if (option >= DTRACEOPT_MAX) 14403 return (EINVAL); 14404 14405 if (option != DTRACEOPT_CPU && val < 0) 14406 return (EINVAL); 14407 14408 switch (option) { 14409 case DTRACEOPT_DESTRUCTIVE: 14410 if (dtrace_destructive_disallow) 14411 return (EACCES); 14412 14413 state->dts_cred.dcr_destructive = 1; 14414 break; 14415 14416 case DTRACEOPT_BUFSIZE: 14417 case DTRACEOPT_DYNVARSIZE: 14418 case DTRACEOPT_AGGSIZE: 14419 case DTRACEOPT_SPECSIZE: 14420 case DTRACEOPT_STRSIZE: 14421 if (val < 0) 14422 return (EINVAL); 14423 14424 if (val >= LONG_MAX) { 14425 /* 14426 * If this is an otherwise negative value, set it to 14427 * the highest multiple of 128m less than LONG_MAX. 14428 * Technically, we're adjusting the size without 14429 * regard to the buffer resizing policy, but in fact, 14430 * this has no effect -- if we set the buffer size to 14431 * ~LONG_MAX and the buffer policy is ultimately set to 14432 * be "manual", the buffer allocation is guaranteed to 14433 * fail, if only because the allocation requires two 14434 * buffers. (We set the the size to the highest 14435 * multiple of 128m because it ensures that the size 14436 * will remain a multiple of a megabyte when 14437 * repeatedly halved -- all the way down to 15m.) 14438 */ 14439 val = LONG_MAX - (1 << 27) + 1; 14440 } 14441 } 14442 14443 state->dts_options[option] = val; 14444 14445 return (0); 14446 } 14447 14448 static void 14449 dtrace_state_destroy(dtrace_state_t *state) 14450 { 14451 dtrace_ecb_t *ecb; 14452 dtrace_vstate_t *vstate = &state->dts_vstate; 14453 minor_t minor = getminor(state->dts_dev); 14454 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14455 dtrace_speculation_t *spec = state->dts_speculations; 14456 int nspec = state->dts_nspeculations; 14457 uint32_t match; 14458 14459 ASSERT(MUTEX_HELD(&dtrace_lock)); 14460 ASSERT(MUTEX_HELD(&cpu_lock)); 14461 14462 /* 14463 * First, retract any retained enablings for this state. 14464 */ 14465 dtrace_enabling_retract(state); 14466 ASSERT(state->dts_nretained == 0); 14467 14468 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14469 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14470 /* 14471 * We have managed to come into dtrace_state_destroy() on a 14472 * hot enabling -- almost certainly because of a disorderly 14473 * shutdown of a consumer. (That is, a consumer that is 14474 * exiting without having called dtrace_stop().) In this case, 14475 * we're going to set our activity to be KILLED, and then 14476 * issue a sync to be sure that everyone is out of probe 14477 * context before we start blowing away ECBs. 14478 */ 14479 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14480 dtrace_sync(); 14481 } 14482 14483 /* 14484 * Release the credential hold we took in dtrace_state_create(). 14485 */ 14486 if (state->dts_cred.dcr_cred != NULL) 14487 crfree(state->dts_cred.dcr_cred); 14488 14489 /* 14490 * Now we can safely disable and destroy any enabled probes. Because 14491 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14492 * (especially if they're all enabled), we take two passes through the 14493 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14494 * in the second we disable whatever is left over. 14495 */ 14496 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14497 for (i = 0; i < state->dts_necbs; i++) { 14498 if ((ecb = state->dts_ecbs[i]) == NULL) 14499 continue; 14500 14501 if (match && ecb->dte_probe != NULL) { 14502 dtrace_probe_t *probe = ecb->dte_probe; 14503 dtrace_provider_t *prov = probe->dtpr_provider; 14504 14505 if (!(prov->dtpv_priv.dtpp_flags & match)) 14506 continue; 14507 } 14508 14509 dtrace_ecb_disable(ecb); 14510 dtrace_ecb_destroy(ecb); 14511 } 14512 14513 if (!match) 14514 break; 14515 } 14516 14517 /* 14518 * Before we free the buffers, perform one more sync to assure that 14519 * every CPU is out of probe context. 14520 */ 14521 dtrace_sync(); 14522 14523 dtrace_buffer_free(state->dts_buffer); 14524 dtrace_buffer_free(state->dts_aggbuffer); 14525 14526 for (i = 0; i < nspec; i++) 14527 dtrace_buffer_free(spec[i].dtsp_buffer); 14528 14529 if (state->dts_cleaner != CYCLIC_NONE) 14530 cyclic_remove(state->dts_cleaner); 14531 14532 if (state->dts_deadman != CYCLIC_NONE) 14533 cyclic_remove(state->dts_deadman); 14534 14535 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14536 dtrace_vstate_fini(vstate); 14537 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14538 14539 if (state->dts_aggregations != NULL) { 14540 #ifdef DEBUG 14541 for (i = 0; i < state->dts_naggregations; i++) 14542 ASSERT(state->dts_aggregations[i] == NULL); 14543 #endif 14544 ASSERT(state->dts_naggregations > 0); 14545 kmem_free(state->dts_aggregations, 14546 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14547 } 14548 14549 kmem_free(state->dts_buffer, bufsize); 14550 kmem_free(state->dts_aggbuffer, bufsize); 14551 14552 for (i = 0; i < nspec; i++) 14553 kmem_free(spec[i].dtsp_buffer, bufsize); 14554 14555 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14556 14557 dtrace_format_destroy(state); 14558 14559 vmem_destroy(state->dts_aggid_arena); 14560 ddi_soft_state_free(dtrace_softstate, minor); 14561 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14562 } 14563 14564 /* 14565 * DTrace Anonymous Enabling Functions 14566 */ 14567 static dtrace_state_t * 14568 dtrace_anon_grab(void) 14569 { 14570 dtrace_state_t *state; 14571 14572 ASSERT(MUTEX_HELD(&dtrace_lock)); 14573 14574 if ((state = dtrace_anon.dta_state) == NULL) { 14575 ASSERT(dtrace_anon.dta_enabling == NULL); 14576 return (NULL); 14577 } 14578 14579 ASSERT(dtrace_anon.dta_enabling != NULL); 14580 ASSERT(dtrace_retained != NULL); 14581 14582 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14583 dtrace_anon.dta_enabling = NULL; 14584 dtrace_anon.dta_state = NULL; 14585 14586 return (state); 14587 } 14588 14589 static void 14590 dtrace_anon_property(void) 14591 { 14592 int i, rv; 14593 dtrace_state_t *state; 14594 dof_hdr_t *dof; 14595 char c[32]; /* enough for "dof-data-" + digits */ 14596 14597 ASSERT(MUTEX_HELD(&dtrace_lock)); 14598 ASSERT(MUTEX_HELD(&cpu_lock)); 14599 14600 for (i = 0; ; i++) { 14601 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14602 14603 dtrace_err_verbose = 1; 14604 14605 if ((dof = dtrace_dof_property(c)) == NULL) { 14606 dtrace_err_verbose = 0; 14607 break; 14608 } 14609 14610 /* 14611 * We want to create anonymous state, so we need to transition 14612 * the kernel debugger to indicate that DTrace is active. If 14613 * this fails (e.g. because the debugger has modified text in 14614 * some way), we won't continue with the processing. 14615 */ 14616 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14617 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14618 "enabling ignored."); 14619 dtrace_dof_destroy(dof); 14620 break; 14621 } 14622 14623 /* 14624 * If we haven't allocated an anonymous state, we'll do so now. 14625 */ 14626 if ((state = dtrace_anon.dta_state) == NULL) { 14627 state = dtrace_state_create(NULL, NULL); 14628 dtrace_anon.dta_state = state; 14629 14630 if (state == NULL) { 14631 /* 14632 * This basically shouldn't happen: the only 14633 * failure mode from dtrace_state_create() is a 14634 * failure of ddi_soft_state_zalloc() that 14635 * itself should never happen. Still, the 14636 * interface allows for a failure mode, and 14637 * we want to fail as gracefully as possible: 14638 * we'll emit an error message and cease 14639 * processing anonymous state in this case. 14640 */ 14641 cmn_err(CE_WARN, "failed to create " 14642 "anonymous state"); 14643 dtrace_dof_destroy(dof); 14644 break; 14645 } 14646 } 14647 14648 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14649 &dtrace_anon.dta_enabling, 0, B_TRUE); 14650 14651 if (rv == 0) 14652 rv = dtrace_dof_options(dof, state); 14653 14654 dtrace_err_verbose = 0; 14655 dtrace_dof_destroy(dof); 14656 14657 if (rv != 0) { 14658 /* 14659 * This is malformed DOF; chuck any anonymous state 14660 * that we created. 14661 */ 14662 ASSERT(dtrace_anon.dta_enabling == NULL); 14663 dtrace_state_destroy(state); 14664 dtrace_anon.dta_state = NULL; 14665 break; 14666 } 14667 14668 ASSERT(dtrace_anon.dta_enabling != NULL); 14669 } 14670 14671 if (dtrace_anon.dta_enabling != NULL) { 14672 int rval; 14673 14674 /* 14675 * dtrace_enabling_retain() can only fail because we are 14676 * trying to retain more enablings than are allowed -- but 14677 * we only have one anonymous enabling, and we are guaranteed 14678 * to be allowed at least one retained enabling; we assert 14679 * that dtrace_enabling_retain() returns success. 14680 */ 14681 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14682 ASSERT(rval == 0); 14683 14684 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14685 } 14686 } 14687 14688 /* 14689 * DTrace Helper Functions 14690 */ 14691 static void 14692 dtrace_helper_trace(dtrace_helper_action_t *helper, 14693 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14694 { 14695 uint32_t size, next, nnext, i; 14696 dtrace_helptrace_t *ent, *buffer; 14697 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14698 14699 if ((buffer = dtrace_helptrace_buffer) == NULL) 14700 return; 14701 14702 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14703 14704 /* 14705 * What would a tracing framework be without its own tracing 14706 * framework? (Well, a hell of a lot simpler, for starters...) 14707 */ 14708 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14709 sizeof (uint64_t) - sizeof (uint64_t); 14710 14711 /* 14712 * Iterate until we can allocate a slot in the trace buffer. 14713 */ 14714 do { 14715 next = dtrace_helptrace_next; 14716 14717 if (next + size < dtrace_helptrace_bufsize) { 14718 nnext = next + size; 14719 } else { 14720 nnext = size; 14721 } 14722 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14723 14724 /* 14725 * We have our slot; fill it in. 14726 */ 14727 if (nnext == size) { 14728 dtrace_helptrace_wrapped++; 14729 next = 0; 14730 } 14731 14732 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14733 ent->dtht_helper = helper; 14734 ent->dtht_where = where; 14735 ent->dtht_nlocals = vstate->dtvs_nlocals; 14736 14737 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14738 mstate->dtms_fltoffs : -1; 14739 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14740 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14741 14742 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14743 dtrace_statvar_t *svar; 14744 14745 if ((svar = vstate->dtvs_locals[i]) == NULL) 14746 continue; 14747 14748 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14749 ent->dtht_locals[i] = 14750 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14751 } 14752 } 14753 14754 static uint64_t 14755 dtrace_helper(int which, dtrace_mstate_t *mstate, 14756 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14757 { 14758 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14759 uint64_t sarg0 = mstate->dtms_arg[0]; 14760 uint64_t sarg1 = mstate->dtms_arg[1]; 14761 uint64_t rval; 14762 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14763 dtrace_helper_action_t *helper; 14764 dtrace_vstate_t *vstate; 14765 dtrace_difo_t *pred; 14766 int i, trace = dtrace_helptrace_buffer != NULL; 14767 14768 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14769 14770 if (helpers == NULL) 14771 return (0); 14772 14773 if ((helper = helpers->dthps_actions[which]) == NULL) 14774 return (0); 14775 14776 vstate = &helpers->dthps_vstate; 14777 mstate->dtms_arg[0] = arg0; 14778 mstate->dtms_arg[1] = arg1; 14779 14780 /* 14781 * Now iterate over each helper. If its predicate evaluates to 'true', 14782 * we'll call the corresponding actions. Note that the below calls 14783 * to dtrace_dif_emulate() may set faults in machine state. This is 14784 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14785 * the stored DIF offset with its own (which is the desired behavior). 14786 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14787 * from machine state; this is okay, too. 14788 */ 14789 for (; helper != NULL; helper = helper->dtha_next) { 14790 if ((pred = helper->dtha_predicate) != NULL) { 14791 if (trace) 14792 dtrace_helper_trace(helper, mstate, vstate, 0); 14793 14794 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14795 goto next; 14796 14797 if (*flags & CPU_DTRACE_FAULT) 14798 goto err; 14799 } 14800 14801 for (i = 0; i < helper->dtha_nactions; i++) { 14802 if (trace) 14803 dtrace_helper_trace(helper, 14804 mstate, vstate, i + 1); 14805 14806 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14807 mstate, vstate, state); 14808 14809 if (*flags & CPU_DTRACE_FAULT) 14810 goto err; 14811 } 14812 14813 next: 14814 if (trace) 14815 dtrace_helper_trace(helper, mstate, vstate, 14816 DTRACE_HELPTRACE_NEXT); 14817 } 14818 14819 if (trace) 14820 dtrace_helper_trace(helper, mstate, vstate, 14821 DTRACE_HELPTRACE_DONE); 14822 14823 /* 14824 * Restore the arg0 that we saved upon entry. 14825 */ 14826 mstate->dtms_arg[0] = sarg0; 14827 mstate->dtms_arg[1] = sarg1; 14828 14829 return (rval); 14830 14831 err: 14832 if (trace) 14833 dtrace_helper_trace(helper, mstate, vstate, 14834 DTRACE_HELPTRACE_ERR); 14835 14836 /* 14837 * Restore the arg0 that we saved upon entry. 14838 */ 14839 mstate->dtms_arg[0] = sarg0; 14840 mstate->dtms_arg[1] = sarg1; 14841 14842 return (NULL); 14843 } 14844 14845 static void 14846 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14847 dtrace_vstate_t *vstate) 14848 { 14849 int i; 14850 14851 if (helper->dtha_predicate != NULL) 14852 dtrace_difo_release(helper->dtha_predicate, vstate); 14853 14854 for (i = 0; i < helper->dtha_nactions; i++) { 14855 ASSERT(helper->dtha_actions[i] != NULL); 14856 dtrace_difo_release(helper->dtha_actions[i], vstate); 14857 } 14858 14859 kmem_free(helper->dtha_actions, 14860 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14861 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14862 } 14863 14864 static int 14865 dtrace_helper_destroygen(int gen) 14866 { 14867 proc_t *p = curproc; 14868 dtrace_helpers_t *help = p->p_dtrace_helpers; 14869 dtrace_vstate_t *vstate; 14870 int i; 14871 14872 ASSERT(MUTEX_HELD(&dtrace_lock)); 14873 14874 if (help == NULL || gen > help->dthps_generation) 14875 return (EINVAL); 14876 14877 vstate = &help->dthps_vstate; 14878 14879 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14880 dtrace_helper_action_t *last = NULL, *h, *next; 14881 14882 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14883 next = h->dtha_next; 14884 14885 if (h->dtha_generation == gen) { 14886 if (last != NULL) { 14887 last->dtha_next = next; 14888 } else { 14889 help->dthps_actions[i] = next; 14890 } 14891 14892 dtrace_helper_action_destroy(h, vstate); 14893 } else { 14894 last = h; 14895 } 14896 } 14897 } 14898 14899 /* 14900 * Interate until we've cleared out all helper providers with the 14901 * given generation number. 14902 */ 14903 for (;;) { 14904 dtrace_helper_provider_t *prov; 14905 14906 /* 14907 * Look for a helper provider with the right generation. We 14908 * have to start back at the beginning of the list each time 14909 * because we drop dtrace_lock. It's unlikely that we'll make 14910 * more than two passes. 14911 */ 14912 for (i = 0; i < help->dthps_nprovs; i++) { 14913 prov = help->dthps_provs[i]; 14914 14915 if (prov->dthp_generation == gen) 14916 break; 14917 } 14918 14919 /* 14920 * If there were no matches, we're done. 14921 */ 14922 if (i == help->dthps_nprovs) 14923 break; 14924 14925 /* 14926 * Move the last helper provider into this slot. 14927 */ 14928 help->dthps_nprovs--; 14929 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14930 help->dthps_provs[help->dthps_nprovs] = NULL; 14931 14932 mutex_exit(&dtrace_lock); 14933 14934 /* 14935 * If we have a meta provider, remove this helper provider. 14936 */ 14937 mutex_enter(&dtrace_meta_lock); 14938 if (dtrace_meta_pid != NULL) { 14939 ASSERT(dtrace_deferred_pid == NULL); 14940 dtrace_helper_provider_remove(&prov->dthp_prov, 14941 p->p_pid); 14942 } 14943 mutex_exit(&dtrace_meta_lock); 14944 14945 dtrace_helper_provider_destroy(prov); 14946 14947 mutex_enter(&dtrace_lock); 14948 } 14949 14950 return (0); 14951 } 14952 14953 static int 14954 dtrace_helper_validate(dtrace_helper_action_t *helper) 14955 { 14956 int err = 0, i; 14957 dtrace_difo_t *dp; 14958 14959 if ((dp = helper->dtha_predicate) != NULL) 14960 err += dtrace_difo_validate_helper(dp); 14961 14962 for (i = 0; i < helper->dtha_nactions; i++) 14963 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14964 14965 return (err == 0); 14966 } 14967 14968 static int 14969 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14970 { 14971 dtrace_helpers_t *help; 14972 dtrace_helper_action_t *helper, *last; 14973 dtrace_actdesc_t *act; 14974 dtrace_vstate_t *vstate; 14975 dtrace_predicate_t *pred; 14976 int count = 0, nactions = 0, i; 14977 14978 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14979 return (EINVAL); 14980 14981 help = curproc->p_dtrace_helpers; 14982 last = help->dthps_actions[which]; 14983 vstate = &help->dthps_vstate; 14984 14985 for (count = 0; last != NULL; last = last->dtha_next) { 14986 count++; 14987 if (last->dtha_next == NULL) 14988 break; 14989 } 14990 14991 /* 14992 * If we already have dtrace_helper_actions_max helper actions for this 14993 * helper action type, we'll refuse to add a new one. 14994 */ 14995 if (count >= dtrace_helper_actions_max) 14996 return (ENOSPC); 14997 14998 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14999 helper->dtha_generation = help->dthps_generation; 15000 15001 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15002 ASSERT(pred->dtp_difo != NULL); 15003 dtrace_difo_hold(pred->dtp_difo); 15004 helper->dtha_predicate = pred->dtp_difo; 15005 } 15006 15007 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15008 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15009 goto err; 15010 15011 if (act->dtad_difo == NULL) 15012 goto err; 15013 15014 nactions++; 15015 } 15016 15017 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15018 (helper->dtha_nactions = nactions), KM_SLEEP); 15019 15020 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15021 dtrace_difo_hold(act->dtad_difo); 15022 helper->dtha_actions[i++] = act->dtad_difo; 15023 } 15024 15025 if (!dtrace_helper_validate(helper)) 15026 goto err; 15027 15028 if (last == NULL) { 15029 help->dthps_actions[which] = helper; 15030 } else { 15031 last->dtha_next = helper; 15032 } 15033 15034 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15035 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15036 dtrace_helptrace_next = 0; 15037 } 15038 15039 return (0); 15040 err: 15041 dtrace_helper_action_destroy(helper, vstate); 15042 return (EINVAL); 15043 } 15044 15045 static void 15046 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15047 dof_helper_t *dofhp) 15048 { 15049 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15050 15051 mutex_enter(&dtrace_meta_lock); 15052 mutex_enter(&dtrace_lock); 15053 15054 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15055 /* 15056 * If the dtrace module is loaded but not attached, or if 15057 * there aren't isn't a meta provider registered to deal with 15058 * these provider descriptions, we need to postpone creating 15059 * the actual providers until later. 15060 */ 15061 15062 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15063 dtrace_deferred_pid != help) { 15064 help->dthps_deferred = 1; 15065 help->dthps_pid = p->p_pid; 15066 help->dthps_next = dtrace_deferred_pid; 15067 help->dthps_prev = NULL; 15068 if (dtrace_deferred_pid != NULL) 15069 dtrace_deferred_pid->dthps_prev = help; 15070 dtrace_deferred_pid = help; 15071 } 15072 15073 mutex_exit(&dtrace_lock); 15074 15075 } else if (dofhp != NULL) { 15076 /* 15077 * If the dtrace module is loaded and we have a particular 15078 * helper provider description, pass that off to the 15079 * meta provider. 15080 */ 15081 15082 mutex_exit(&dtrace_lock); 15083 15084 dtrace_helper_provide(dofhp, p->p_pid); 15085 15086 } else { 15087 /* 15088 * Otherwise, just pass all the helper provider descriptions 15089 * off to the meta provider. 15090 */ 15091 15092 int i; 15093 mutex_exit(&dtrace_lock); 15094 15095 for (i = 0; i < help->dthps_nprovs; i++) { 15096 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15097 p->p_pid); 15098 } 15099 } 15100 15101 mutex_exit(&dtrace_meta_lock); 15102 } 15103 15104 static int 15105 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15106 { 15107 dtrace_helpers_t *help; 15108 dtrace_helper_provider_t *hprov, **tmp_provs; 15109 uint_t tmp_maxprovs, i; 15110 15111 ASSERT(MUTEX_HELD(&dtrace_lock)); 15112 15113 help = curproc->p_dtrace_helpers; 15114 ASSERT(help != NULL); 15115 15116 /* 15117 * If we already have dtrace_helper_providers_max helper providers, 15118 * we're refuse to add a new one. 15119 */ 15120 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15121 return (ENOSPC); 15122 15123 /* 15124 * Check to make sure this isn't a duplicate. 15125 */ 15126 for (i = 0; i < help->dthps_nprovs; i++) { 15127 if (dofhp->dofhp_addr == 15128 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15129 return (EALREADY); 15130 } 15131 15132 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15133 hprov->dthp_prov = *dofhp; 15134 hprov->dthp_ref = 1; 15135 hprov->dthp_generation = gen; 15136 15137 /* 15138 * Allocate a bigger table for helper providers if it's already full. 15139 */ 15140 if (help->dthps_maxprovs == help->dthps_nprovs) { 15141 tmp_maxprovs = help->dthps_maxprovs; 15142 tmp_provs = help->dthps_provs; 15143 15144 if (help->dthps_maxprovs == 0) 15145 help->dthps_maxprovs = 2; 15146 else 15147 help->dthps_maxprovs *= 2; 15148 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15149 help->dthps_maxprovs = dtrace_helper_providers_max; 15150 15151 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15152 15153 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15154 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15155 15156 if (tmp_provs != NULL) { 15157 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15158 sizeof (dtrace_helper_provider_t *)); 15159 kmem_free(tmp_provs, tmp_maxprovs * 15160 sizeof (dtrace_helper_provider_t *)); 15161 } 15162 } 15163 15164 help->dthps_provs[help->dthps_nprovs] = hprov; 15165 help->dthps_nprovs++; 15166 15167 return (0); 15168 } 15169 15170 static void 15171 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15172 { 15173 mutex_enter(&dtrace_lock); 15174 15175 if (--hprov->dthp_ref == 0) { 15176 dof_hdr_t *dof; 15177 mutex_exit(&dtrace_lock); 15178 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15179 dtrace_dof_destroy(dof); 15180 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15181 } else { 15182 mutex_exit(&dtrace_lock); 15183 } 15184 } 15185 15186 static int 15187 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15188 { 15189 uintptr_t daddr = (uintptr_t)dof; 15190 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15191 dof_provider_t *provider; 15192 dof_probe_t *probe; 15193 uint8_t *arg; 15194 char *strtab, *typestr; 15195 dof_stridx_t typeidx; 15196 size_t typesz; 15197 uint_t nprobes, j, k; 15198 15199 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15200 15201 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15202 dtrace_dof_error(dof, "misaligned section offset"); 15203 return (-1); 15204 } 15205 15206 /* 15207 * The section needs to be large enough to contain the DOF provider 15208 * structure appropriate for the given version. 15209 */ 15210 if (sec->dofs_size < 15211 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15212 offsetof(dof_provider_t, dofpv_prenoffs) : 15213 sizeof (dof_provider_t))) { 15214 dtrace_dof_error(dof, "provider section too small"); 15215 return (-1); 15216 } 15217 15218 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15219 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15220 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15221 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15222 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15223 15224 if (str_sec == NULL || prb_sec == NULL || 15225 arg_sec == NULL || off_sec == NULL) 15226 return (-1); 15227 15228 enoff_sec = NULL; 15229 15230 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15231 provider->dofpv_prenoffs != DOF_SECT_NONE && 15232 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15233 provider->dofpv_prenoffs)) == NULL) 15234 return (-1); 15235 15236 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15237 15238 if (provider->dofpv_name >= str_sec->dofs_size || 15239 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15240 dtrace_dof_error(dof, "invalid provider name"); 15241 return (-1); 15242 } 15243 15244 if (prb_sec->dofs_entsize == 0 || 15245 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15246 dtrace_dof_error(dof, "invalid entry size"); 15247 return (-1); 15248 } 15249 15250 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15251 dtrace_dof_error(dof, "misaligned entry size"); 15252 return (-1); 15253 } 15254 15255 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15256 dtrace_dof_error(dof, "invalid entry size"); 15257 return (-1); 15258 } 15259 15260 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15261 dtrace_dof_error(dof, "misaligned section offset"); 15262 return (-1); 15263 } 15264 15265 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15266 dtrace_dof_error(dof, "invalid entry size"); 15267 return (-1); 15268 } 15269 15270 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15271 15272 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15273 15274 /* 15275 * Take a pass through the probes to check for errors. 15276 */ 15277 for (j = 0; j < nprobes; j++) { 15278 probe = (dof_probe_t *)(uintptr_t)(daddr + 15279 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15280 15281 if (probe->dofpr_func >= str_sec->dofs_size) { 15282 dtrace_dof_error(dof, "invalid function name"); 15283 return (-1); 15284 } 15285 15286 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15287 dtrace_dof_error(dof, "function name too long"); 15288 return (-1); 15289 } 15290 15291 if (probe->dofpr_name >= str_sec->dofs_size || 15292 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15293 dtrace_dof_error(dof, "invalid probe name"); 15294 return (-1); 15295 } 15296 15297 /* 15298 * The offset count must not wrap the index, and the offsets 15299 * must also not overflow the section's data. 15300 */ 15301 if (probe->dofpr_offidx + probe->dofpr_noffs < 15302 probe->dofpr_offidx || 15303 (probe->dofpr_offidx + probe->dofpr_noffs) * 15304 off_sec->dofs_entsize > off_sec->dofs_size) { 15305 dtrace_dof_error(dof, "invalid probe offset"); 15306 return (-1); 15307 } 15308 15309 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15310 /* 15311 * If there's no is-enabled offset section, make sure 15312 * there aren't any is-enabled offsets. Otherwise 15313 * perform the same checks as for probe offsets 15314 * (immediately above). 15315 */ 15316 if (enoff_sec == NULL) { 15317 if (probe->dofpr_enoffidx != 0 || 15318 probe->dofpr_nenoffs != 0) { 15319 dtrace_dof_error(dof, "is-enabled " 15320 "offsets with null section"); 15321 return (-1); 15322 } 15323 } else if (probe->dofpr_enoffidx + 15324 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15325 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15326 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15327 dtrace_dof_error(dof, "invalid is-enabled " 15328 "offset"); 15329 return (-1); 15330 } 15331 15332 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15333 dtrace_dof_error(dof, "zero probe and " 15334 "is-enabled offsets"); 15335 return (-1); 15336 } 15337 } else if (probe->dofpr_noffs == 0) { 15338 dtrace_dof_error(dof, "zero probe offsets"); 15339 return (-1); 15340 } 15341 15342 if (probe->dofpr_argidx + probe->dofpr_xargc < 15343 probe->dofpr_argidx || 15344 (probe->dofpr_argidx + probe->dofpr_xargc) * 15345 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15346 dtrace_dof_error(dof, "invalid args"); 15347 return (-1); 15348 } 15349 15350 typeidx = probe->dofpr_nargv; 15351 typestr = strtab + probe->dofpr_nargv; 15352 for (k = 0; k < probe->dofpr_nargc; k++) { 15353 if (typeidx >= str_sec->dofs_size) { 15354 dtrace_dof_error(dof, "bad " 15355 "native argument type"); 15356 return (-1); 15357 } 15358 15359 typesz = strlen(typestr) + 1; 15360 if (typesz > DTRACE_ARGTYPELEN) { 15361 dtrace_dof_error(dof, "native " 15362 "argument type too long"); 15363 return (-1); 15364 } 15365 typeidx += typesz; 15366 typestr += typesz; 15367 } 15368 15369 typeidx = probe->dofpr_xargv; 15370 typestr = strtab + probe->dofpr_xargv; 15371 for (k = 0; k < probe->dofpr_xargc; k++) { 15372 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15373 dtrace_dof_error(dof, "bad " 15374 "native argument index"); 15375 return (-1); 15376 } 15377 15378 if (typeidx >= str_sec->dofs_size) { 15379 dtrace_dof_error(dof, "bad " 15380 "translated argument type"); 15381 return (-1); 15382 } 15383 15384 typesz = strlen(typestr) + 1; 15385 if (typesz > DTRACE_ARGTYPELEN) { 15386 dtrace_dof_error(dof, "translated argument " 15387 "type too long"); 15388 return (-1); 15389 } 15390 15391 typeidx += typesz; 15392 typestr += typesz; 15393 } 15394 } 15395 15396 return (0); 15397 } 15398 15399 static int 15400 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15401 { 15402 dtrace_helpers_t *help; 15403 dtrace_vstate_t *vstate; 15404 dtrace_enabling_t *enab = NULL; 15405 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15406 uintptr_t daddr = (uintptr_t)dof; 15407 15408 ASSERT(MUTEX_HELD(&dtrace_lock)); 15409 15410 if ((help = curproc->p_dtrace_helpers) == NULL) 15411 help = dtrace_helpers_create(curproc); 15412 15413 vstate = &help->dthps_vstate; 15414 15415 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15416 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15417 dtrace_dof_destroy(dof); 15418 return (rv); 15419 } 15420 15421 /* 15422 * Look for helper providers and validate their descriptions. 15423 */ 15424 if (dhp != NULL) { 15425 for (i = 0; i < dof->dofh_secnum; i++) { 15426 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15427 dof->dofh_secoff + i * dof->dofh_secsize); 15428 15429 if (sec->dofs_type != DOF_SECT_PROVIDER) 15430 continue; 15431 15432 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15433 dtrace_enabling_destroy(enab); 15434 dtrace_dof_destroy(dof); 15435 return (-1); 15436 } 15437 15438 nprovs++; 15439 } 15440 } 15441 15442 /* 15443 * Now we need to walk through the ECB descriptions in the enabling. 15444 */ 15445 for (i = 0; i < enab->dten_ndesc; i++) { 15446 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15447 dtrace_probedesc_t *desc = &ep->dted_probe; 15448 15449 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15450 continue; 15451 15452 if (strcmp(desc->dtpd_mod, "helper") != 0) 15453 continue; 15454 15455 if (strcmp(desc->dtpd_func, "ustack") != 0) 15456 continue; 15457 15458 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15459 ep)) != 0) { 15460 /* 15461 * Adding this helper action failed -- we are now going 15462 * to rip out the entire generation and return failure. 15463 */ 15464 (void) dtrace_helper_destroygen(help->dthps_generation); 15465 dtrace_enabling_destroy(enab); 15466 dtrace_dof_destroy(dof); 15467 return (-1); 15468 } 15469 15470 nhelpers++; 15471 } 15472 15473 if (nhelpers < enab->dten_ndesc) 15474 dtrace_dof_error(dof, "unmatched helpers"); 15475 15476 gen = help->dthps_generation++; 15477 dtrace_enabling_destroy(enab); 15478 15479 if (dhp != NULL && nprovs > 0) { 15480 /* 15481 * Now that this is in-kernel, we change the sense of the 15482 * members: dofhp_dof denotes the in-kernel copy of the DOF 15483 * and dofhp_addr denotes the address at user-level. 15484 */ 15485 dhp->dofhp_addr = dhp->dofhp_dof; 15486 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15487 15488 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15489 mutex_exit(&dtrace_lock); 15490 dtrace_helper_provider_register(curproc, help, dhp); 15491 mutex_enter(&dtrace_lock); 15492 15493 destroy = 0; 15494 } 15495 } 15496 15497 if (destroy) 15498 dtrace_dof_destroy(dof); 15499 15500 return (gen); 15501 } 15502 15503 static dtrace_helpers_t * 15504 dtrace_helpers_create(proc_t *p) 15505 { 15506 dtrace_helpers_t *help; 15507 15508 ASSERT(MUTEX_HELD(&dtrace_lock)); 15509 ASSERT(p->p_dtrace_helpers == NULL); 15510 15511 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15512 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15513 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15514 15515 p->p_dtrace_helpers = help; 15516 dtrace_helpers++; 15517 15518 return (help); 15519 } 15520 15521 static void 15522 dtrace_helpers_destroy(proc_t *p) 15523 { 15524 dtrace_helpers_t *help; 15525 dtrace_vstate_t *vstate; 15526 int i; 15527 15528 mutex_enter(&dtrace_lock); 15529 15530 ASSERT(p->p_dtrace_helpers != NULL); 15531 ASSERT(dtrace_helpers > 0); 15532 15533 help = p->p_dtrace_helpers; 15534 vstate = &help->dthps_vstate; 15535 15536 /* 15537 * We're now going to lose the help from this process. 15538 */ 15539 p->p_dtrace_helpers = NULL; 15540 if (p == curproc) { 15541 dtrace_sync(); 15542 } else { 15543 /* 15544 * It is sometimes necessary to clean up dtrace helpers from a 15545 * an incomplete child process as part of a failed fork 15546 * operation. In such situations, a dtrace_sync() call should 15547 * be unnecessary as the process should be devoid of threads, 15548 * much less any in probe context. 15549 */ 15550 VERIFY(p->p_stat == SIDL); 15551 } 15552 15553 /* 15554 * Destroy the helper actions. 15555 */ 15556 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15557 dtrace_helper_action_t *h, *next; 15558 15559 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15560 next = h->dtha_next; 15561 dtrace_helper_action_destroy(h, vstate); 15562 h = next; 15563 } 15564 } 15565 15566 mutex_exit(&dtrace_lock); 15567 15568 /* 15569 * Destroy the helper providers. 15570 */ 15571 if (help->dthps_maxprovs > 0) { 15572 mutex_enter(&dtrace_meta_lock); 15573 if (dtrace_meta_pid != NULL) { 15574 ASSERT(dtrace_deferred_pid == NULL); 15575 15576 for (i = 0; i < help->dthps_nprovs; i++) { 15577 dtrace_helper_provider_remove( 15578 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15579 } 15580 } else { 15581 mutex_enter(&dtrace_lock); 15582 ASSERT(help->dthps_deferred == 0 || 15583 help->dthps_next != NULL || 15584 help->dthps_prev != NULL || 15585 help == dtrace_deferred_pid); 15586 15587 /* 15588 * Remove the helper from the deferred list. 15589 */ 15590 if (help->dthps_next != NULL) 15591 help->dthps_next->dthps_prev = help->dthps_prev; 15592 if (help->dthps_prev != NULL) 15593 help->dthps_prev->dthps_next = help->dthps_next; 15594 if (dtrace_deferred_pid == help) { 15595 dtrace_deferred_pid = help->dthps_next; 15596 ASSERT(help->dthps_prev == NULL); 15597 } 15598 15599 mutex_exit(&dtrace_lock); 15600 } 15601 15602 mutex_exit(&dtrace_meta_lock); 15603 15604 for (i = 0; i < help->dthps_nprovs; i++) { 15605 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15606 } 15607 15608 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15609 sizeof (dtrace_helper_provider_t *)); 15610 } 15611 15612 mutex_enter(&dtrace_lock); 15613 15614 dtrace_vstate_fini(&help->dthps_vstate); 15615 kmem_free(help->dthps_actions, 15616 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15617 kmem_free(help, sizeof (dtrace_helpers_t)); 15618 15619 --dtrace_helpers; 15620 mutex_exit(&dtrace_lock); 15621 } 15622 15623 static void 15624 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15625 { 15626 dtrace_helpers_t *help, *newhelp; 15627 dtrace_helper_action_t *helper, *new, *last; 15628 dtrace_difo_t *dp; 15629 dtrace_vstate_t *vstate; 15630 int i, j, sz, hasprovs = 0; 15631 15632 mutex_enter(&dtrace_lock); 15633 ASSERT(from->p_dtrace_helpers != NULL); 15634 ASSERT(dtrace_helpers > 0); 15635 15636 help = from->p_dtrace_helpers; 15637 newhelp = dtrace_helpers_create(to); 15638 ASSERT(to->p_dtrace_helpers != NULL); 15639 15640 newhelp->dthps_generation = help->dthps_generation; 15641 vstate = &newhelp->dthps_vstate; 15642 15643 /* 15644 * Duplicate the helper actions. 15645 */ 15646 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15647 if ((helper = help->dthps_actions[i]) == NULL) 15648 continue; 15649 15650 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15651 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15652 KM_SLEEP); 15653 new->dtha_generation = helper->dtha_generation; 15654 15655 if ((dp = helper->dtha_predicate) != NULL) { 15656 dp = dtrace_difo_duplicate(dp, vstate); 15657 new->dtha_predicate = dp; 15658 } 15659 15660 new->dtha_nactions = helper->dtha_nactions; 15661 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15662 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15663 15664 for (j = 0; j < new->dtha_nactions; j++) { 15665 dtrace_difo_t *dp = helper->dtha_actions[j]; 15666 15667 ASSERT(dp != NULL); 15668 dp = dtrace_difo_duplicate(dp, vstate); 15669 new->dtha_actions[j] = dp; 15670 } 15671 15672 if (last != NULL) { 15673 last->dtha_next = new; 15674 } else { 15675 newhelp->dthps_actions[i] = new; 15676 } 15677 15678 last = new; 15679 } 15680 } 15681 15682 /* 15683 * Duplicate the helper providers and register them with the 15684 * DTrace framework. 15685 */ 15686 if (help->dthps_nprovs > 0) { 15687 newhelp->dthps_nprovs = help->dthps_nprovs; 15688 newhelp->dthps_maxprovs = help->dthps_nprovs; 15689 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15690 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15691 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15692 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15693 newhelp->dthps_provs[i]->dthp_ref++; 15694 } 15695 15696 hasprovs = 1; 15697 } 15698 15699 mutex_exit(&dtrace_lock); 15700 15701 if (hasprovs) 15702 dtrace_helper_provider_register(to, newhelp, NULL); 15703 } 15704 15705 /* 15706 * DTrace Hook Functions 15707 */ 15708 static void 15709 dtrace_module_loaded(struct modctl *ctl) 15710 { 15711 dtrace_provider_t *prv; 15712 15713 mutex_enter(&dtrace_provider_lock); 15714 mutex_enter(&mod_lock); 15715 15716 ASSERT(ctl->mod_busy); 15717 15718 /* 15719 * We're going to call each providers per-module provide operation 15720 * specifying only this module. 15721 */ 15722 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15723 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15724 15725 mutex_exit(&mod_lock); 15726 mutex_exit(&dtrace_provider_lock); 15727 15728 /* 15729 * If we have any retained enablings, we need to match against them. 15730 * Enabling probes requires that cpu_lock be held, and we cannot hold 15731 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15732 * module. (In particular, this happens when loading scheduling 15733 * classes.) So if we have any retained enablings, we need to dispatch 15734 * our task queue to do the match for us. 15735 */ 15736 mutex_enter(&dtrace_lock); 15737 15738 if (dtrace_retained == NULL) { 15739 mutex_exit(&dtrace_lock); 15740 return; 15741 } 15742 15743 (void) taskq_dispatch(dtrace_taskq, 15744 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15745 15746 mutex_exit(&dtrace_lock); 15747 15748 /* 15749 * And now, for a little heuristic sleaze: in general, we want to 15750 * match modules as soon as they load. However, we cannot guarantee 15751 * this, because it would lead us to the lock ordering violation 15752 * outlined above. The common case, of course, is that cpu_lock is 15753 * _not_ held -- so we delay here for a clock tick, hoping that that's 15754 * long enough for the task queue to do its work. If it's not, it's 15755 * not a serious problem -- it just means that the module that we 15756 * just loaded may not be immediately instrumentable. 15757 */ 15758 delay(1); 15759 } 15760 15761 static void 15762 dtrace_module_unloaded(struct modctl *ctl) 15763 { 15764 dtrace_probe_t template, *probe, *first, *next; 15765 dtrace_provider_t *prov; 15766 15767 template.dtpr_mod = ctl->mod_modname; 15768 15769 mutex_enter(&dtrace_provider_lock); 15770 mutex_enter(&mod_lock); 15771 mutex_enter(&dtrace_lock); 15772 15773 if (dtrace_bymod == NULL) { 15774 /* 15775 * The DTrace module is loaded (obviously) but not attached; 15776 * we don't have any work to do. 15777 */ 15778 mutex_exit(&dtrace_provider_lock); 15779 mutex_exit(&mod_lock); 15780 mutex_exit(&dtrace_lock); 15781 return; 15782 } 15783 15784 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15785 probe != NULL; probe = probe->dtpr_nextmod) { 15786 if (probe->dtpr_ecb != NULL) { 15787 mutex_exit(&dtrace_provider_lock); 15788 mutex_exit(&mod_lock); 15789 mutex_exit(&dtrace_lock); 15790 15791 /* 15792 * This shouldn't _actually_ be possible -- we're 15793 * unloading a module that has an enabled probe in it. 15794 * (It's normally up to the provider to make sure that 15795 * this can't happen.) However, because dtps_enable() 15796 * doesn't have a failure mode, there can be an 15797 * enable/unload race. Upshot: we don't want to 15798 * assert, but we're not going to disable the 15799 * probe, either. 15800 */ 15801 if (dtrace_err_verbose) { 15802 cmn_err(CE_WARN, "unloaded module '%s' had " 15803 "enabled probes", ctl->mod_modname); 15804 } 15805 15806 return; 15807 } 15808 } 15809 15810 probe = first; 15811 15812 for (first = NULL; probe != NULL; probe = next) { 15813 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15814 15815 dtrace_probes[probe->dtpr_id - 1] = NULL; 15816 15817 next = probe->dtpr_nextmod; 15818 dtrace_hash_remove(dtrace_bymod, probe); 15819 dtrace_hash_remove(dtrace_byfunc, probe); 15820 dtrace_hash_remove(dtrace_byname, probe); 15821 15822 if (first == NULL) { 15823 first = probe; 15824 probe->dtpr_nextmod = NULL; 15825 } else { 15826 probe->dtpr_nextmod = first; 15827 first = probe; 15828 } 15829 } 15830 15831 /* 15832 * We've removed all of the module's probes from the hash chains and 15833 * from the probe array. Now issue a dtrace_sync() to be sure that 15834 * everyone has cleared out from any probe array processing. 15835 */ 15836 dtrace_sync(); 15837 15838 for (probe = first; probe != NULL; probe = first) { 15839 first = probe->dtpr_nextmod; 15840 prov = probe->dtpr_provider; 15841 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15842 probe->dtpr_arg); 15843 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15844 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15845 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15846 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15847 kmem_free(probe, sizeof (dtrace_probe_t)); 15848 } 15849 15850 mutex_exit(&dtrace_lock); 15851 mutex_exit(&mod_lock); 15852 mutex_exit(&dtrace_provider_lock); 15853 } 15854 15855 void 15856 dtrace_suspend(void) 15857 { 15858 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15859 } 15860 15861 void 15862 dtrace_resume(void) 15863 { 15864 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15865 } 15866 15867 static int 15868 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15869 { 15870 ASSERT(MUTEX_HELD(&cpu_lock)); 15871 mutex_enter(&dtrace_lock); 15872 15873 switch (what) { 15874 case CPU_CONFIG: { 15875 dtrace_state_t *state; 15876 dtrace_optval_t *opt, rs, c; 15877 15878 /* 15879 * For now, we only allocate a new buffer for anonymous state. 15880 */ 15881 if ((state = dtrace_anon.dta_state) == NULL) 15882 break; 15883 15884 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15885 break; 15886 15887 opt = state->dts_options; 15888 c = opt[DTRACEOPT_CPU]; 15889 15890 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15891 break; 15892 15893 /* 15894 * Regardless of what the actual policy is, we're going to 15895 * temporarily set our resize policy to be manual. We're 15896 * also going to temporarily set our CPU option to denote 15897 * the newly configured CPU. 15898 */ 15899 rs = opt[DTRACEOPT_BUFRESIZE]; 15900 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15901 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15902 15903 (void) dtrace_state_buffers(state); 15904 15905 opt[DTRACEOPT_BUFRESIZE] = rs; 15906 opt[DTRACEOPT_CPU] = c; 15907 15908 break; 15909 } 15910 15911 case CPU_UNCONFIG: 15912 /* 15913 * We don't free the buffer in the CPU_UNCONFIG case. (The 15914 * buffer will be freed when the consumer exits.) 15915 */ 15916 break; 15917 15918 default: 15919 break; 15920 } 15921 15922 mutex_exit(&dtrace_lock); 15923 return (0); 15924 } 15925 15926 static void 15927 dtrace_cpu_setup_initial(processorid_t cpu) 15928 { 15929 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15930 } 15931 15932 static void 15933 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15934 { 15935 if (dtrace_toxranges >= dtrace_toxranges_max) { 15936 int osize, nsize; 15937 dtrace_toxrange_t *range; 15938 15939 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15940 15941 if (osize == 0) { 15942 ASSERT(dtrace_toxrange == NULL); 15943 ASSERT(dtrace_toxranges_max == 0); 15944 dtrace_toxranges_max = 1; 15945 } else { 15946 dtrace_toxranges_max <<= 1; 15947 } 15948 15949 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15950 range = kmem_zalloc(nsize, KM_SLEEP); 15951 15952 if (dtrace_toxrange != NULL) { 15953 ASSERT(osize != 0); 15954 bcopy(dtrace_toxrange, range, osize); 15955 kmem_free(dtrace_toxrange, osize); 15956 } 15957 15958 dtrace_toxrange = range; 15959 } 15960 15961 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15962 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15963 15964 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15965 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15966 dtrace_toxranges++; 15967 } 15968 15969 static void 15970 dtrace_getf_barrier() 15971 { 15972 /* 15973 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15974 * that contain calls to getf(), this routine will be called on every 15975 * closef() before either the underlying vnode is released or the 15976 * file_t itself is freed. By the time we are here, it is essential 15977 * that the file_t can no longer be accessed from a call to getf() 15978 * in probe context -- that assures that a dtrace_sync() can be used 15979 * to clear out any enablings referring to the old structures. 15980 */ 15981 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15982 kcred->cr_zone->zone_dtrace_getf != 0) 15983 dtrace_sync(); 15984 } 15985 15986 /* 15987 * DTrace Driver Cookbook Functions 15988 */ 15989 /*ARGSUSED*/ 15990 static int 15991 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15992 { 15993 dtrace_provider_id_t id; 15994 dtrace_state_t *state = NULL; 15995 dtrace_enabling_t *enab; 15996 15997 mutex_enter(&cpu_lock); 15998 mutex_enter(&dtrace_provider_lock); 15999 mutex_enter(&dtrace_lock); 16000 16001 if (ddi_soft_state_init(&dtrace_softstate, 16002 sizeof (dtrace_state_t), 0) != 0) { 16003 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16004 mutex_exit(&cpu_lock); 16005 mutex_exit(&dtrace_provider_lock); 16006 mutex_exit(&dtrace_lock); 16007 return (DDI_FAILURE); 16008 } 16009 16010 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16011 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 16012 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16013 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 16014 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16015 ddi_remove_minor_node(devi, NULL); 16016 ddi_soft_state_fini(&dtrace_softstate); 16017 mutex_exit(&cpu_lock); 16018 mutex_exit(&dtrace_provider_lock); 16019 mutex_exit(&dtrace_lock); 16020 return (DDI_FAILURE); 16021 } 16022 16023 ddi_report_dev(devi); 16024 dtrace_devi = devi; 16025 16026 dtrace_modload = dtrace_module_loaded; 16027 dtrace_modunload = dtrace_module_unloaded; 16028 dtrace_cpu_init = dtrace_cpu_setup_initial; 16029 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16030 dtrace_helpers_fork = dtrace_helpers_duplicate; 16031 dtrace_cpustart_init = dtrace_suspend; 16032 dtrace_cpustart_fini = dtrace_resume; 16033 dtrace_debugger_init = dtrace_suspend; 16034 dtrace_debugger_fini = dtrace_resume; 16035 16036 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16037 16038 ASSERT(MUTEX_HELD(&cpu_lock)); 16039 16040 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16041 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16042 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16043 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16044 VM_SLEEP | VMC_IDENTIFIER); 16045 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16046 1, INT_MAX, 0); 16047 16048 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16049 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16050 NULL, NULL, NULL, NULL, NULL, 0); 16051 16052 ASSERT(MUTEX_HELD(&cpu_lock)); 16053 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16054 offsetof(dtrace_probe_t, dtpr_nextmod), 16055 offsetof(dtrace_probe_t, dtpr_prevmod)); 16056 16057 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16058 offsetof(dtrace_probe_t, dtpr_nextfunc), 16059 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16060 16061 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16062 offsetof(dtrace_probe_t, dtpr_nextname), 16063 offsetof(dtrace_probe_t, dtpr_prevname)); 16064 16065 if (dtrace_retain_max < 1) { 16066 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16067 "setting to 1", dtrace_retain_max); 16068 dtrace_retain_max = 1; 16069 } 16070 16071 /* 16072 * Now discover our toxic ranges. 16073 */ 16074 dtrace_toxic_ranges(dtrace_toxrange_add); 16075 16076 /* 16077 * Before we register ourselves as a provider to our own framework, 16078 * we would like to assert that dtrace_provider is NULL -- but that's 16079 * not true if we were loaded as a dependency of a DTrace provider. 16080 * Once we've registered, we can assert that dtrace_provider is our 16081 * pseudo provider. 16082 */ 16083 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16084 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16085 16086 ASSERT(dtrace_provider != NULL); 16087 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16088 16089 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16090 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16091 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16092 dtrace_provider, NULL, NULL, "END", 0, NULL); 16093 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16094 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16095 16096 dtrace_anon_property(); 16097 mutex_exit(&cpu_lock); 16098 16099 /* 16100 * If there are already providers, we must ask them to provide their 16101 * probes, and then match any anonymous enabling against them. Note 16102 * that there should be no other retained enablings at this time: 16103 * the only retained enablings at this time should be the anonymous 16104 * enabling. 16105 */ 16106 if (dtrace_anon.dta_enabling != NULL) { 16107 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16108 16109 dtrace_enabling_provide(NULL); 16110 state = dtrace_anon.dta_state; 16111 16112 /* 16113 * We couldn't hold cpu_lock across the above call to 16114 * dtrace_enabling_provide(), but we must hold it to actually 16115 * enable the probes. We have to drop all of our locks, pick 16116 * up cpu_lock, and regain our locks before matching the 16117 * retained anonymous enabling. 16118 */ 16119 mutex_exit(&dtrace_lock); 16120 mutex_exit(&dtrace_provider_lock); 16121 16122 mutex_enter(&cpu_lock); 16123 mutex_enter(&dtrace_provider_lock); 16124 mutex_enter(&dtrace_lock); 16125 16126 if ((enab = dtrace_anon.dta_enabling) != NULL) 16127 (void) dtrace_enabling_match(enab, NULL); 16128 16129 mutex_exit(&cpu_lock); 16130 } 16131 16132 mutex_exit(&dtrace_lock); 16133 mutex_exit(&dtrace_provider_lock); 16134 16135 if (state != NULL) { 16136 /* 16137 * If we created any anonymous state, set it going now. 16138 */ 16139 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16140 } 16141 16142 return (DDI_SUCCESS); 16143 } 16144 16145 /*ARGSUSED*/ 16146 static int 16147 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16148 { 16149 dtrace_state_t *state; 16150 uint32_t priv; 16151 uid_t uid; 16152 zoneid_t zoneid; 16153 16154 if (getminor(*devp) == DTRACEMNRN_HELPER) 16155 return (0); 16156 16157 /* 16158 * If this wasn't an open with the "helper" minor, then it must be 16159 * the "dtrace" minor. 16160 */ 16161 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16162 return (ENXIO); 16163 16164 /* 16165 * If no DTRACE_PRIV_* bits are set in the credential, then the 16166 * caller lacks sufficient permission to do anything with DTrace. 16167 */ 16168 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16169 if (priv == DTRACE_PRIV_NONE) 16170 return (EACCES); 16171 16172 /* 16173 * Ask all providers to provide all their probes. 16174 */ 16175 mutex_enter(&dtrace_provider_lock); 16176 dtrace_probe_provide(NULL, NULL); 16177 mutex_exit(&dtrace_provider_lock); 16178 16179 mutex_enter(&cpu_lock); 16180 mutex_enter(&dtrace_lock); 16181 dtrace_opens++; 16182 dtrace_membar_producer(); 16183 16184 /* 16185 * If the kernel debugger is active (that is, if the kernel debugger 16186 * modified text in some way), we won't allow the open. 16187 */ 16188 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16189 dtrace_opens--; 16190 mutex_exit(&cpu_lock); 16191 mutex_exit(&dtrace_lock); 16192 return (EBUSY); 16193 } 16194 16195 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16196 /* 16197 * If DTrace helper tracing is enabled, we need to allocate the 16198 * trace buffer and initialize the values. 16199 */ 16200 dtrace_helptrace_buffer = 16201 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16202 dtrace_helptrace_next = 0; 16203 dtrace_helptrace_wrapped = 0; 16204 dtrace_helptrace_enable = 0; 16205 } 16206 16207 state = dtrace_state_create(devp, cred_p); 16208 mutex_exit(&cpu_lock); 16209 16210 if (state == NULL) { 16211 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16212 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16213 mutex_exit(&dtrace_lock); 16214 return (EAGAIN); 16215 } 16216 16217 mutex_exit(&dtrace_lock); 16218 16219 return (0); 16220 } 16221 16222 /*ARGSUSED*/ 16223 static int 16224 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16225 { 16226 minor_t minor = getminor(dev); 16227 dtrace_state_t *state; 16228 dtrace_helptrace_t *buf = NULL; 16229 16230 if (minor == DTRACEMNRN_HELPER) 16231 return (0); 16232 16233 state = ddi_get_soft_state(dtrace_softstate, minor); 16234 16235 mutex_enter(&cpu_lock); 16236 mutex_enter(&dtrace_lock); 16237 16238 if (state->dts_anon) { 16239 /* 16240 * There is anonymous state. Destroy that first. 16241 */ 16242 ASSERT(dtrace_anon.dta_state == NULL); 16243 dtrace_state_destroy(state->dts_anon); 16244 } 16245 16246 if (dtrace_helptrace_disable) { 16247 /* 16248 * If we have been told to disable helper tracing, set the 16249 * buffer to NULL before calling into dtrace_state_destroy(); 16250 * we take advantage of its dtrace_sync() to know that no 16251 * CPU is in probe context with enabled helper tracing 16252 * after it returns. 16253 */ 16254 buf = dtrace_helptrace_buffer; 16255 dtrace_helptrace_buffer = NULL; 16256 } 16257 16258 dtrace_state_destroy(state); 16259 ASSERT(dtrace_opens > 0); 16260 16261 /* 16262 * Only relinquish control of the kernel debugger interface when there 16263 * are no consumers and no anonymous enablings. 16264 */ 16265 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16266 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16267 16268 if (buf != NULL) { 16269 kmem_free(buf, dtrace_helptrace_bufsize); 16270 dtrace_helptrace_disable = 0; 16271 } 16272 16273 mutex_exit(&dtrace_lock); 16274 mutex_exit(&cpu_lock); 16275 16276 return (0); 16277 } 16278 16279 /*ARGSUSED*/ 16280 static int 16281 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16282 { 16283 int rval; 16284 dof_helper_t help, *dhp = NULL; 16285 16286 switch (cmd) { 16287 case DTRACEHIOC_ADDDOF: 16288 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16289 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16290 return (EFAULT); 16291 } 16292 16293 dhp = &help; 16294 arg = (intptr_t)help.dofhp_dof; 16295 /*FALLTHROUGH*/ 16296 16297 case DTRACEHIOC_ADD: { 16298 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16299 16300 if (dof == NULL) 16301 return (rval); 16302 16303 mutex_enter(&dtrace_lock); 16304 16305 /* 16306 * dtrace_helper_slurp() takes responsibility for the dof -- 16307 * it may free it now or it may save it and free it later. 16308 */ 16309 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16310 *rv = rval; 16311 rval = 0; 16312 } else { 16313 rval = EINVAL; 16314 } 16315 16316 mutex_exit(&dtrace_lock); 16317 return (rval); 16318 } 16319 16320 case DTRACEHIOC_REMOVE: { 16321 mutex_enter(&dtrace_lock); 16322 rval = dtrace_helper_destroygen(arg); 16323 mutex_exit(&dtrace_lock); 16324 16325 return (rval); 16326 } 16327 16328 default: 16329 break; 16330 } 16331 16332 return (ENOTTY); 16333 } 16334 16335 /*ARGSUSED*/ 16336 static int 16337 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16338 { 16339 minor_t minor = getminor(dev); 16340 dtrace_state_t *state; 16341 int rval; 16342 16343 if (minor == DTRACEMNRN_HELPER) 16344 return (dtrace_ioctl_helper(cmd, arg, rv)); 16345 16346 state = ddi_get_soft_state(dtrace_softstate, minor); 16347 16348 if (state->dts_anon) { 16349 ASSERT(dtrace_anon.dta_state == NULL); 16350 state = state->dts_anon; 16351 } 16352 16353 switch (cmd) { 16354 case DTRACEIOC_PROVIDER: { 16355 dtrace_providerdesc_t pvd; 16356 dtrace_provider_t *pvp; 16357 16358 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16359 return (EFAULT); 16360 16361 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16362 mutex_enter(&dtrace_provider_lock); 16363 16364 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16365 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16366 break; 16367 } 16368 16369 mutex_exit(&dtrace_provider_lock); 16370 16371 if (pvp == NULL) 16372 return (ESRCH); 16373 16374 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16375 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16376 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16377 return (EFAULT); 16378 16379 return (0); 16380 } 16381 16382 case DTRACEIOC_EPROBE: { 16383 dtrace_eprobedesc_t epdesc; 16384 dtrace_ecb_t *ecb; 16385 dtrace_action_t *act; 16386 void *buf; 16387 size_t size; 16388 uintptr_t dest; 16389 int nrecs; 16390 16391 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16392 return (EFAULT); 16393 16394 mutex_enter(&dtrace_lock); 16395 16396 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16397 mutex_exit(&dtrace_lock); 16398 return (EINVAL); 16399 } 16400 16401 if (ecb->dte_probe == NULL) { 16402 mutex_exit(&dtrace_lock); 16403 return (EINVAL); 16404 } 16405 16406 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16407 epdesc.dtepd_uarg = ecb->dte_uarg; 16408 epdesc.dtepd_size = ecb->dte_size; 16409 16410 nrecs = epdesc.dtepd_nrecs; 16411 epdesc.dtepd_nrecs = 0; 16412 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16413 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16414 continue; 16415 16416 epdesc.dtepd_nrecs++; 16417 } 16418 16419 /* 16420 * Now that we have the size, we need to allocate a temporary 16421 * buffer in which to store the complete description. We need 16422 * the temporary buffer to be able to drop dtrace_lock() 16423 * across the copyout(), below. 16424 */ 16425 size = sizeof (dtrace_eprobedesc_t) + 16426 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16427 16428 buf = kmem_alloc(size, KM_SLEEP); 16429 dest = (uintptr_t)buf; 16430 16431 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16432 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16433 16434 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16435 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16436 continue; 16437 16438 if (nrecs-- == 0) 16439 break; 16440 16441 bcopy(&act->dta_rec, (void *)dest, 16442 sizeof (dtrace_recdesc_t)); 16443 dest += sizeof (dtrace_recdesc_t); 16444 } 16445 16446 mutex_exit(&dtrace_lock); 16447 16448 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16449 kmem_free(buf, size); 16450 return (EFAULT); 16451 } 16452 16453 kmem_free(buf, size); 16454 return (0); 16455 } 16456 16457 case DTRACEIOC_AGGDESC: { 16458 dtrace_aggdesc_t aggdesc; 16459 dtrace_action_t *act; 16460 dtrace_aggregation_t *agg; 16461 int nrecs; 16462 uint32_t offs; 16463 dtrace_recdesc_t *lrec; 16464 void *buf; 16465 size_t size; 16466 uintptr_t dest; 16467 16468 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16469 return (EFAULT); 16470 16471 mutex_enter(&dtrace_lock); 16472 16473 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16474 mutex_exit(&dtrace_lock); 16475 return (EINVAL); 16476 } 16477 16478 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16479 16480 nrecs = aggdesc.dtagd_nrecs; 16481 aggdesc.dtagd_nrecs = 0; 16482 16483 offs = agg->dtag_base; 16484 lrec = &agg->dtag_action.dta_rec; 16485 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16486 16487 for (act = agg->dtag_first; ; act = act->dta_next) { 16488 ASSERT(act->dta_intuple || 16489 DTRACEACT_ISAGG(act->dta_kind)); 16490 16491 /* 16492 * If this action has a record size of zero, it 16493 * denotes an argument to the aggregating action. 16494 * Because the presence of this record doesn't (or 16495 * shouldn't) affect the way the data is interpreted, 16496 * we don't copy it out to save user-level the 16497 * confusion of dealing with a zero-length record. 16498 */ 16499 if (act->dta_rec.dtrd_size == 0) { 16500 ASSERT(agg->dtag_hasarg); 16501 continue; 16502 } 16503 16504 aggdesc.dtagd_nrecs++; 16505 16506 if (act == &agg->dtag_action) 16507 break; 16508 } 16509 16510 /* 16511 * Now that we have the size, we need to allocate a temporary 16512 * buffer in which to store the complete description. We need 16513 * the temporary buffer to be able to drop dtrace_lock() 16514 * across the copyout(), below. 16515 */ 16516 size = sizeof (dtrace_aggdesc_t) + 16517 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16518 16519 buf = kmem_alloc(size, KM_SLEEP); 16520 dest = (uintptr_t)buf; 16521 16522 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16523 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16524 16525 for (act = agg->dtag_first; ; act = act->dta_next) { 16526 dtrace_recdesc_t rec = act->dta_rec; 16527 16528 /* 16529 * See the comment in the above loop for why we pass 16530 * over zero-length records. 16531 */ 16532 if (rec.dtrd_size == 0) { 16533 ASSERT(agg->dtag_hasarg); 16534 continue; 16535 } 16536 16537 if (nrecs-- == 0) 16538 break; 16539 16540 rec.dtrd_offset -= offs; 16541 bcopy(&rec, (void *)dest, sizeof (rec)); 16542 dest += sizeof (dtrace_recdesc_t); 16543 16544 if (act == &agg->dtag_action) 16545 break; 16546 } 16547 16548 mutex_exit(&dtrace_lock); 16549 16550 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16551 kmem_free(buf, size); 16552 return (EFAULT); 16553 } 16554 16555 kmem_free(buf, size); 16556 return (0); 16557 } 16558 16559 case DTRACEIOC_ENABLE: { 16560 dof_hdr_t *dof; 16561 dtrace_enabling_t *enab = NULL; 16562 dtrace_vstate_t *vstate; 16563 int err = 0; 16564 16565 *rv = 0; 16566 16567 /* 16568 * If a NULL argument has been passed, we take this as our 16569 * cue to reevaluate our enablings. 16570 */ 16571 if (arg == NULL) { 16572 dtrace_enabling_matchall(); 16573 16574 return (0); 16575 } 16576 16577 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16578 return (rval); 16579 16580 mutex_enter(&cpu_lock); 16581 mutex_enter(&dtrace_lock); 16582 vstate = &state->dts_vstate; 16583 16584 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16585 mutex_exit(&dtrace_lock); 16586 mutex_exit(&cpu_lock); 16587 dtrace_dof_destroy(dof); 16588 return (EBUSY); 16589 } 16590 16591 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16592 mutex_exit(&dtrace_lock); 16593 mutex_exit(&cpu_lock); 16594 dtrace_dof_destroy(dof); 16595 return (EINVAL); 16596 } 16597 16598 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16599 dtrace_enabling_destroy(enab); 16600 mutex_exit(&dtrace_lock); 16601 mutex_exit(&cpu_lock); 16602 dtrace_dof_destroy(dof); 16603 return (rval); 16604 } 16605 16606 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16607 err = dtrace_enabling_retain(enab); 16608 } else { 16609 dtrace_enabling_destroy(enab); 16610 } 16611 16612 mutex_exit(&cpu_lock); 16613 mutex_exit(&dtrace_lock); 16614 dtrace_dof_destroy(dof); 16615 16616 return (err); 16617 } 16618 16619 case DTRACEIOC_REPLICATE: { 16620 dtrace_repldesc_t desc; 16621 dtrace_probedesc_t *match = &desc.dtrpd_match; 16622 dtrace_probedesc_t *create = &desc.dtrpd_create; 16623 int err; 16624 16625 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16626 return (EFAULT); 16627 16628 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16629 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16630 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16631 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16632 16633 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16634 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16635 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16636 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16637 16638 mutex_enter(&dtrace_lock); 16639 err = dtrace_enabling_replicate(state, match, create); 16640 mutex_exit(&dtrace_lock); 16641 16642 return (err); 16643 } 16644 16645 case DTRACEIOC_PROBEMATCH: 16646 case DTRACEIOC_PROBES: { 16647 dtrace_probe_t *probe = NULL; 16648 dtrace_probedesc_t desc; 16649 dtrace_probekey_t pkey; 16650 dtrace_id_t i; 16651 int m = 0; 16652 uint32_t priv; 16653 uid_t uid; 16654 zoneid_t zoneid; 16655 16656 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16657 return (EFAULT); 16658 16659 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16660 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16661 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16662 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16663 16664 /* 16665 * Before we attempt to match this probe, we want to give 16666 * all providers the opportunity to provide it. 16667 */ 16668 if (desc.dtpd_id == DTRACE_IDNONE) { 16669 mutex_enter(&dtrace_provider_lock); 16670 dtrace_probe_provide(&desc, NULL); 16671 mutex_exit(&dtrace_provider_lock); 16672 desc.dtpd_id++; 16673 } 16674 16675 if (cmd == DTRACEIOC_PROBEMATCH) { 16676 dtrace_probekey(&desc, &pkey); 16677 pkey.dtpk_id = DTRACE_IDNONE; 16678 } 16679 16680 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16681 16682 mutex_enter(&dtrace_lock); 16683 16684 if (cmd == DTRACEIOC_PROBEMATCH) { 16685 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16686 if ((probe = dtrace_probes[i - 1]) != NULL && 16687 (m = dtrace_match_probe(probe, &pkey, 16688 priv, uid, zoneid)) != 0) 16689 break; 16690 } 16691 16692 if (m < 0) { 16693 mutex_exit(&dtrace_lock); 16694 return (EINVAL); 16695 } 16696 16697 } else { 16698 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16699 if ((probe = dtrace_probes[i - 1]) != NULL && 16700 dtrace_match_priv(probe, priv, uid, zoneid)) 16701 break; 16702 } 16703 } 16704 16705 if (probe == NULL) { 16706 mutex_exit(&dtrace_lock); 16707 return (ESRCH); 16708 } 16709 16710 dtrace_probe_description(probe, &desc); 16711 mutex_exit(&dtrace_lock); 16712 16713 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16714 return (EFAULT); 16715 16716 return (0); 16717 } 16718 16719 case DTRACEIOC_PROBEARG: { 16720 dtrace_argdesc_t desc; 16721 dtrace_probe_t *probe; 16722 dtrace_provider_t *prov; 16723 16724 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16725 return (EFAULT); 16726 16727 if (desc.dtargd_id == DTRACE_IDNONE) 16728 return (EINVAL); 16729 16730 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16731 return (EINVAL); 16732 16733 mutex_enter(&dtrace_provider_lock); 16734 mutex_enter(&mod_lock); 16735 mutex_enter(&dtrace_lock); 16736 16737 if (desc.dtargd_id > dtrace_nprobes) { 16738 mutex_exit(&dtrace_lock); 16739 mutex_exit(&mod_lock); 16740 mutex_exit(&dtrace_provider_lock); 16741 return (EINVAL); 16742 } 16743 16744 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16745 mutex_exit(&dtrace_lock); 16746 mutex_exit(&mod_lock); 16747 mutex_exit(&dtrace_provider_lock); 16748 return (EINVAL); 16749 } 16750 16751 mutex_exit(&dtrace_lock); 16752 16753 prov = probe->dtpr_provider; 16754 16755 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16756 /* 16757 * There isn't any typed information for this probe. 16758 * Set the argument number to DTRACE_ARGNONE. 16759 */ 16760 desc.dtargd_ndx = DTRACE_ARGNONE; 16761 } else { 16762 desc.dtargd_native[0] = '\0'; 16763 desc.dtargd_xlate[0] = '\0'; 16764 desc.dtargd_mapping = desc.dtargd_ndx; 16765 16766 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16767 probe->dtpr_id, probe->dtpr_arg, &desc); 16768 } 16769 16770 mutex_exit(&mod_lock); 16771 mutex_exit(&dtrace_provider_lock); 16772 16773 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16774 return (EFAULT); 16775 16776 return (0); 16777 } 16778 16779 case DTRACEIOC_GO: { 16780 processorid_t cpuid; 16781 rval = dtrace_state_go(state, &cpuid); 16782 16783 if (rval != 0) 16784 return (rval); 16785 16786 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16787 return (EFAULT); 16788 16789 return (0); 16790 } 16791 16792 case DTRACEIOC_STOP: { 16793 processorid_t cpuid; 16794 16795 mutex_enter(&dtrace_lock); 16796 rval = dtrace_state_stop(state, &cpuid); 16797 mutex_exit(&dtrace_lock); 16798 16799 if (rval != 0) 16800 return (rval); 16801 16802 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16803 return (EFAULT); 16804 16805 return (0); 16806 } 16807 16808 case DTRACEIOC_DOFGET: { 16809 dof_hdr_t hdr, *dof; 16810 uint64_t len; 16811 16812 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16813 return (EFAULT); 16814 16815 mutex_enter(&dtrace_lock); 16816 dof = dtrace_dof_create(state); 16817 mutex_exit(&dtrace_lock); 16818 16819 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16820 rval = copyout(dof, (void *)arg, len); 16821 dtrace_dof_destroy(dof); 16822 16823 return (rval == 0 ? 0 : EFAULT); 16824 } 16825 16826 case DTRACEIOC_AGGSNAP: 16827 case DTRACEIOC_BUFSNAP: { 16828 dtrace_bufdesc_t desc; 16829 caddr_t cached; 16830 dtrace_buffer_t *buf; 16831 16832 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16833 return (EFAULT); 16834 16835 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16836 return (EINVAL); 16837 16838 mutex_enter(&dtrace_lock); 16839 16840 if (cmd == DTRACEIOC_BUFSNAP) { 16841 buf = &state->dts_buffer[desc.dtbd_cpu]; 16842 } else { 16843 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16844 } 16845 16846 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16847 size_t sz = buf->dtb_offset; 16848 16849 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16850 mutex_exit(&dtrace_lock); 16851 return (EBUSY); 16852 } 16853 16854 /* 16855 * If this buffer has already been consumed, we're 16856 * going to indicate that there's nothing left here 16857 * to consume. 16858 */ 16859 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16860 mutex_exit(&dtrace_lock); 16861 16862 desc.dtbd_size = 0; 16863 desc.dtbd_drops = 0; 16864 desc.dtbd_errors = 0; 16865 desc.dtbd_oldest = 0; 16866 sz = sizeof (desc); 16867 16868 if (copyout(&desc, (void *)arg, sz) != 0) 16869 return (EFAULT); 16870 16871 return (0); 16872 } 16873 16874 /* 16875 * If this is a ring buffer that has wrapped, we want 16876 * to copy the whole thing out. 16877 */ 16878 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16879 dtrace_buffer_polish(buf); 16880 sz = buf->dtb_size; 16881 } 16882 16883 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16884 mutex_exit(&dtrace_lock); 16885 return (EFAULT); 16886 } 16887 16888 desc.dtbd_size = sz; 16889 desc.dtbd_drops = buf->dtb_drops; 16890 desc.dtbd_errors = buf->dtb_errors; 16891 desc.dtbd_oldest = buf->dtb_xamot_offset; 16892 desc.dtbd_timestamp = dtrace_gethrtime(); 16893 16894 mutex_exit(&dtrace_lock); 16895 16896 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16897 return (EFAULT); 16898 16899 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16900 16901 return (0); 16902 } 16903 16904 if (buf->dtb_tomax == NULL) { 16905 ASSERT(buf->dtb_xamot == NULL); 16906 mutex_exit(&dtrace_lock); 16907 return (ENOENT); 16908 } 16909 16910 cached = buf->dtb_tomax; 16911 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16912 16913 dtrace_xcall(desc.dtbd_cpu, 16914 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16915 16916 state->dts_errors += buf->dtb_xamot_errors; 16917 16918 /* 16919 * If the buffers did not actually switch, then the cross call 16920 * did not take place -- presumably because the given CPU is 16921 * not in the ready set. If this is the case, we'll return 16922 * ENOENT. 16923 */ 16924 if (buf->dtb_tomax == cached) { 16925 ASSERT(buf->dtb_xamot != cached); 16926 mutex_exit(&dtrace_lock); 16927 return (ENOENT); 16928 } 16929 16930 ASSERT(cached == buf->dtb_xamot); 16931 16932 /* 16933 * We have our snapshot; now copy it out. 16934 */ 16935 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16936 buf->dtb_xamot_offset) != 0) { 16937 mutex_exit(&dtrace_lock); 16938 return (EFAULT); 16939 } 16940 16941 desc.dtbd_size = buf->dtb_xamot_offset; 16942 desc.dtbd_drops = buf->dtb_xamot_drops; 16943 desc.dtbd_errors = buf->dtb_xamot_errors; 16944 desc.dtbd_oldest = 0; 16945 desc.dtbd_timestamp = buf->dtb_switched; 16946 16947 mutex_exit(&dtrace_lock); 16948 16949 /* 16950 * Finally, copy out the buffer description. 16951 */ 16952 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16953 return (EFAULT); 16954 16955 return (0); 16956 } 16957 16958 case DTRACEIOC_CONF: { 16959 dtrace_conf_t conf; 16960 16961 bzero(&conf, sizeof (conf)); 16962 conf.dtc_difversion = DIF_VERSION; 16963 conf.dtc_difintregs = DIF_DIR_NREGS; 16964 conf.dtc_diftupregs = DIF_DTR_NREGS; 16965 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16966 16967 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16968 return (EFAULT); 16969 16970 return (0); 16971 } 16972 16973 case DTRACEIOC_STATUS: { 16974 dtrace_status_t stat; 16975 dtrace_dstate_t *dstate; 16976 int i, j; 16977 uint64_t nerrs; 16978 16979 /* 16980 * See the comment in dtrace_state_deadman() for the reason 16981 * for setting dts_laststatus to INT64_MAX before setting 16982 * it to the correct value. 16983 */ 16984 state->dts_laststatus = INT64_MAX; 16985 dtrace_membar_producer(); 16986 state->dts_laststatus = dtrace_gethrtime(); 16987 16988 bzero(&stat, sizeof (stat)); 16989 16990 mutex_enter(&dtrace_lock); 16991 16992 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16993 mutex_exit(&dtrace_lock); 16994 return (ENOENT); 16995 } 16996 16997 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16998 stat.dtst_exiting = 1; 16999 17000 nerrs = state->dts_errors; 17001 dstate = &state->dts_vstate.dtvs_dynvars; 17002 17003 for (i = 0; i < NCPU; i++) { 17004 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17005 17006 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17007 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17008 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17009 17010 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17011 stat.dtst_filled++; 17012 17013 nerrs += state->dts_buffer[i].dtb_errors; 17014 17015 for (j = 0; j < state->dts_nspeculations; j++) { 17016 dtrace_speculation_t *spec; 17017 dtrace_buffer_t *buf; 17018 17019 spec = &state->dts_speculations[j]; 17020 buf = &spec->dtsp_buffer[i]; 17021 stat.dtst_specdrops += buf->dtb_xamot_drops; 17022 } 17023 } 17024 17025 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17026 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17027 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17028 stat.dtst_dblerrors = state->dts_dblerrors; 17029 stat.dtst_killed = 17030 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17031 stat.dtst_errors = nerrs; 17032 17033 mutex_exit(&dtrace_lock); 17034 17035 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17036 return (EFAULT); 17037 17038 return (0); 17039 } 17040 17041 case DTRACEIOC_FORMAT: { 17042 dtrace_fmtdesc_t fmt; 17043 char *str; 17044 int len; 17045 17046 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17047 return (EFAULT); 17048 17049 mutex_enter(&dtrace_lock); 17050 17051 if (fmt.dtfd_format == 0 || 17052 fmt.dtfd_format > state->dts_nformats) { 17053 mutex_exit(&dtrace_lock); 17054 return (EINVAL); 17055 } 17056 17057 /* 17058 * Format strings are allocated contiguously and they are 17059 * never freed; if a format index is less than the number 17060 * of formats, we can assert that the format map is non-NULL 17061 * and that the format for the specified index is non-NULL. 17062 */ 17063 ASSERT(state->dts_formats != NULL); 17064 str = state->dts_formats[fmt.dtfd_format - 1]; 17065 ASSERT(str != NULL); 17066 17067 len = strlen(str) + 1; 17068 17069 if (len > fmt.dtfd_length) { 17070 fmt.dtfd_length = len; 17071 17072 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17073 mutex_exit(&dtrace_lock); 17074 return (EINVAL); 17075 } 17076 } else { 17077 if (copyout(str, fmt.dtfd_string, len) != 0) { 17078 mutex_exit(&dtrace_lock); 17079 return (EINVAL); 17080 } 17081 } 17082 17083 mutex_exit(&dtrace_lock); 17084 return (0); 17085 } 17086 17087 default: 17088 break; 17089 } 17090 17091 return (ENOTTY); 17092 } 17093 17094 /*ARGSUSED*/ 17095 static int 17096 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17097 { 17098 dtrace_state_t *state; 17099 17100 switch (cmd) { 17101 case DDI_DETACH: 17102 break; 17103 17104 case DDI_SUSPEND: 17105 return (DDI_SUCCESS); 17106 17107 default: 17108 return (DDI_FAILURE); 17109 } 17110 17111 mutex_enter(&cpu_lock); 17112 mutex_enter(&dtrace_provider_lock); 17113 mutex_enter(&dtrace_lock); 17114 17115 ASSERT(dtrace_opens == 0); 17116 17117 if (dtrace_helpers > 0) { 17118 mutex_exit(&dtrace_provider_lock); 17119 mutex_exit(&dtrace_lock); 17120 mutex_exit(&cpu_lock); 17121 return (DDI_FAILURE); 17122 } 17123 17124 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17125 mutex_exit(&dtrace_provider_lock); 17126 mutex_exit(&dtrace_lock); 17127 mutex_exit(&cpu_lock); 17128 return (DDI_FAILURE); 17129 } 17130 17131 dtrace_provider = NULL; 17132 17133 if ((state = dtrace_anon_grab()) != NULL) { 17134 /* 17135 * If there were ECBs on this state, the provider should 17136 * have not been allowed to detach; assert that there is 17137 * none. 17138 */ 17139 ASSERT(state->dts_necbs == 0); 17140 dtrace_state_destroy(state); 17141 17142 /* 17143 * If we're being detached with anonymous state, we need to 17144 * indicate to the kernel debugger that DTrace is now inactive. 17145 */ 17146 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17147 } 17148 17149 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17150 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17151 dtrace_cpu_init = NULL; 17152 dtrace_helpers_cleanup = NULL; 17153 dtrace_helpers_fork = NULL; 17154 dtrace_cpustart_init = NULL; 17155 dtrace_cpustart_fini = NULL; 17156 dtrace_debugger_init = NULL; 17157 dtrace_debugger_fini = NULL; 17158 dtrace_modload = NULL; 17159 dtrace_modunload = NULL; 17160 17161 ASSERT(dtrace_getf == 0); 17162 ASSERT(dtrace_closef == NULL); 17163 17164 mutex_exit(&cpu_lock); 17165 17166 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17167 dtrace_probes = NULL; 17168 dtrace_nprobes = 0; 17169 17170 dtrace_hash_destroy(dtrace_bymod); 17171 dtrace_hash_destroy(dtrace_byfunc); 17172 dtrace_hash_destroy(dtrace_byname); 17173 dtrace_bymod = NULL; 17174 dtrace_byfunc = NULL; 17175 dtrace_byname = NULL; 17176 17177 kmem_cache_destroy(dtrace_state_cache); 17178 vmem_destroy(dtrace_minor); 17179 vmem_destroy(dtrace_arena); 17180 17181 if (dtrace_toxrange != NULL) { 17182 kmem_free(dtrace_toxrange, 17183 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17184 dtrace_toxrange = NULL; 17185 dtrace_toxranges = 0; 17186 dtrace_toxranges_max = 0; 17187 } 17188 17189 ddi_remove_minor_node(dtrace_devi, NULL); 17190 dtrace_devi = NULL; 17191 17192 ddi_soft_state_fini(&dtrace_softstate); 17193 17194 ASSERT(dtrace_vtime_references == 0); 17195 ASSERT(dtrace_opens == 0); 17196 ASSERT(dtrace_retained == NULL); 17197 17198 mutex_exit(&dtrace_lock); 17199 mutex_exit(&dtrace_provider_lock); 17200 17201 /* 17202 * We don't destroy the task queue until after we have dropped our 17203 * locks (taskq_destroy() may block on running tasks). To prevent 17204 * attempting to do work after we have effectively detached but before 17205 * the task queue has been destroyed, all tasks dispatched via the 17206 * task queue must check that DTrace is still attached before 17207 * performing any operation. 17208 */ 17209 taskq_destroy(dtrace_taskq); 17210 dtrace_taskq = NULL; 17211 17212 return (DDI_SUCCESS); 17213 } 17214 17215 /*ARGSUSED*/ 17216 static int 17217 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17218 { 17219 int error; 17220 17221 switch (infocmd) { 17222 case DDI_INFO_DEVT2DEVINFO: 17223 *result = (void *)dtrace_devi; 17224 error = DDI_SUCCESS; 17225 break; 17226 case DDI_INFO_DEVT2INSTANCE: 17227 *result = (void *)0; 17228 error = DDI_SUCCESS; 17229 break; 17230 default: 17231 error = DDI_FAILURE; 17232 } 17233 return (error); 17234 } 17235 17236 static struct cb_ops dtrace_cb_ops = { 17237 dtrace_open, /* open */ 17238 dtrace_close, /* close */ 17239 nulldev, /* strategy */ 17240 nulldev, /* print */ 17241 nodev, /* dump */ 17242 nodev, /* read */ 17243 nodev, /* write */ 17244 dtrace_ioctl, /* ioctl */ 17245 nodev, /* devmap */ 17246 nodev, /* mmap */ 17247 nodev, /* segmap */ 17248 nochpoll, /* poll */ 17249 ddi_prop_op, /* cb_prop_op */ 17250 0, /* streamtab */ 17251 D_NEW | D_MP /* Driver compatibility flag */ 17252 }; 17253 17254 static struct dev_ops dtrace_ops = { 17255 DEVO_REV, /* devo_rev */ 17256 0, /* refcnt */ 17257 dtrace_info, /* get_dev_info */ 17258 nulldev, /* identify */ 17259 nulldev, /* probe */ 17260 dtrace_attach, /* attach */ 17261 dtrace_detach, /* detach */ 17262 nodev, /* reset */ 17263 &dtrace_cb_ops, /* driver operations */ 17264 NULL, /* bus operations */ 17265 nodev, /* dev power */ 17266 ddi_quiesce_not_needed, /* quiesce */ 17267 }; 17268 17269 static struct modldrv modldrv = { 17270 &mod_driverops, /* module type (this is a pseudo driver) */ 17271 "Dynamic Tracing", /* name of module */ 17272 &dtrace_ops, /* driver ops */ 17273 }; 17274 17275 static struct modlinkage modlinkage = { 17276 MODREV_1, 17277 (void *)&modldrv, 17278 NULL 17279 }; 17280 17281 int 17282 _init(void) 17283 { 17284 return (mod_install(&modlinkage)); 17285 } 17286 17287 int 17288 _info(struct modinfo *modinfop) 17289 { 17290 return (mod_info(&modlinkage, modinfop)); 17291 } 17292 17293 int 17294 _fini(void) 17295 { 17296 return (mod_remove(&modlinkage)); 17297 } 17298