1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/cred.h> 34 #include <sys/proc.h> 35 #include <sys/session.h> 36 #include <sys/strsubr.h> 37 #include <sys/signal.h> 38 #include <sys/user.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/disp.h> 42 #include <sys/procset.h> 43 #include <sys/debug.h> 44 #include <sys/ts.h> 45 #include <sys/tspriocntl.h> 46 #include <sys/iapriocntl.h> 47 #include <sys/kmem.h> 48 #include <sys/errno.h> 49 #include <sys/cpuvar.h> 50 #include <sys/systm.h> /* for lbolt */ 51 #include <sys/vtrace.h> 52 #include <sys/vmsystm.h> 53 #include <sys/schedctl.h> 54 #include <sys/atomic.h> 55 #include <sys/policy.h> 56 #include <sys/sdt.h> 57 #include <sys/cpupart.h> 58 #include <vm/rm.h> 59 #include <vm/seg_kmem.h> 60 #include <sys/modctl.h> 61 #include <sys/cpucaps.h> 62 63 static pri_t ts_init(id_t, int, classfuncs_t **); 64 65 static struct sclass csw = { 66 "TS", 67 ts_init, 68 0 69 }; 70 71 static struct modlsched modlsched = { 72 &mod_schedops, "time sharing sched class", &csw 73 }; 74 75 static struct modlinkage modlinkage = { 76 MODREV_1, (void *)&modlsched, NULL 77 }; 78 79 int 80 _init() 81 { 82 return (mod_install(&modlinkage)); 83 } 84 85 int 86 _fini() 87 { 88 return (EBUSY); /* don't remove TS for now */ 89 } 90 91 int 92 _info(struct modinfo *modinfop) 93 { 94 return (mod_info(&modlinkage, modinfop)); 95 } 96 97 /* 98 * Class specific code for the time-sharing class 99 */ 100 101 102 /* 103 * Extern declarations for variables defined in the ts master file 104 */ 105 #define TSMAXUPRI 60 106 107 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 108 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 109 110 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 111 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 112 113 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 114 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 115 /* sleeping or running in kernel after sleep */ 116 117 static id_t ia_cid; 118 119 int ts_sleep_promote = 1; 120 121 #define tsmedumdpri (ts_maxumdpri >> 1) 122 123 #define TS_NEWUMDPRI(tspp) \ 124 { \ 125 pri_t pri; \ 126 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 127 if (pri > ts_maxumdpri) \ 128 (tspp)->ts_umdpri = ts_maxumdpri; \ 129 else if (pri < 0) \ 130 (tspp)->ts_umdpri = 0; \ 131 else \ 132 (tspp)->ts_umdpri = pri; \ 133 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 134 } 135 136 /* 137 * The tsproc_t structures are kept in an array of circular doubly linked 138 * lists. A hash on the thread pointer is used to determine which list 139 * each thread should be placed. Each list has a dummy "head" which is 140 * never removed, so the list is never empty. ts_update traverses these 141 * lists to update the priorities of threads that have been waiting on 142 * the run queue. 143 */ 144 145 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 146 147 /* hash function, argument is a thread pointer */ 148 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 149 150 /* iterate to the next list */ 151 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 152 153 /* 154 * Insert thread into the appropriate tsproc list. 155 */ 156 #define TS_LIST_INSERT(tspp) \ 157 { \ 158 int index = TS_LIST_HASH(tspp->ts_tp); \ 159 kmutex_t *lockp = &ts_list_lock[index]; \ 160 tsproc_t *headp = &ts_plisthead[index]; \ 161 mutex_enter(lockp); \ 162 tspp->ts_next = headp->ts_next; \ 163 tspp->ts_prev = headp; \ 164 headp->ts_next->ts_prev = tspp; \ 165 headp->ts_next = tspp; \ 166 mutex_exit(lockp); \ 167 } 168 169 /* 170 * Remove thread from tsproc list. 171 */ 172 #define TS_LIST_DELETE(tspp) \ 173 { \ 174 int index = TS_LIST_HASH(tspp->ts_tp); \ 175 kmutex_t *lockp = &ts_list_lock[index]; \ 176 mutex_enter(lockp); \ 177 tspp->ts_prev->ts_next = tspp->ts_next; \ 178 tspp->ts_next->ts_prev = tspp->ts_prev; \ 179 mutex_exit(lockp); \ 180 } 181 182 183 static int ts_admin(caddr_t, cred_t *); 184 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 185 static int ts_fork(kthread_t *, kthread_t *, void *); 186 static int ts_getclinfo(void *); 187 static int ts_getclpri(pcpri_t *); 188 static int ts_parmsin(void *); 189 static int ts_parmsout(void *, pc_vaparms_t *); 190 static int ts_vaparmsin(void *, pc_vaparms_t *); 191 static int ts_vaparmsout(void *, pc_vaparms_t *); 192 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 193 static void ts_exit(kthread_t *); 194 static int ts_donice(kthread_t *, cred_t *, int, int *); 195 static int ts_doprio(kthread_t *, cred_t *, int, int *); 196 static void ts_exitclass(void *); 197 static int ts_canexit(kthread_t *, cred_t *); 198 static void ts_forkret(kthread_t *, kthread_t *); 199 static void ts_nullsys(); 200 static void ts_parmsget(kthread_t *, void *); 201 static void ts_preempt(kthread_t *); 202 static void ts_setrun(kthread_t *); 203 static void ts_sleep(kthread_t *); 204 static pri_t ts_swapin(kthread_t *, int); 205 static pri_t ts_swapout(kthread_t *, int); 206 static void ts_tick(kthread_t *); 207 static void ts_trapret(kthread_t *); 208 static void ts_update(void *); 209 static int ts_update_list(int); 210 static void ts_wakeup(kthread_t *); 211 static pri_t ts_globpri(kthread_t *); 212 static void ts_yield(kthread_t *); 213 extern tsdpent_t *ts_getdptbl(void); 214 extern pri_t *ts_getkmdpris(void); 215 extern pri_t td_getmaxumdpri(void); 216 static int ts_alloc(void **, int); 217 static void ts_free(void *); 218 219 pri_t ia_init(id_t, int, classfuncs_t **); 220 static int ia_getclinfo(void *); 221 static int ia_getclpri(pcpri_t *); 222 static int ia_parmsin(void *); 223 static int ia_vaparmsin(void *, pc_vaparms_t *); 224 static int ia_vaparmsout(void *, pc_vaparms_t *); 225 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 226 static void ia_parmsget(kthread_t *, void *); 227 static void ia_set_process_group(pid_t, pid_t, pid_t); 228 229 static void ts_change_priority(kthread_t *, tsproc_t *); 230 231 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 232 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 233 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 234 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 235 236 static gid_t IA_gid = 0; 237 238 static struct classfuncs ts_classfuncs = { 239 /* class functions */ 240 ts_admin, 241 ts_getclinfo, 242 ts_parmsin, 243 ts_parmsout, 244 ts_vaparmsin, 245 ts_vaparmsout, 246 ts_getclpri, 247 ts_alloc, 248 ts_free, 249 250 /* thread functions */ 251 ts_enterclass, 252 ts_exitclass, 253 ts_canexit, 254 ts_fork, 255 ts_forkret, 256 ts_parmsget, 257 ts_parmsset, 258 ts_nullsys, /* stop */ 259 ts_exit, 260 ts_nullsys, /* active */ 261 ts_nullsys, /* inactive */ 262 ts_swapin, 263 ts_swapout, 264 ts_trapret, 265 ts_preempt, 266 ts_setrun, 267 ts_sleep, 268 ts_tick, 269 ts_wakeup, 270 ts_donice, 271 ts_globpri, 272 ts_nullsys, /* set_process_group */ 273 ts_yield, 274 ts_doprio, 275 }; 276 277 /* 278 * ia_classfuncs is used for interactive class threads; IA threads are stored 279 * on the same class list as TS threads, and most of the class functions are 280 * identical, but a few have different enough functionality to require their 281 * own functions. 282 */ 283 static struct classfuncs ia_classfuncs = { 284 /* class functions */ 285 ts_admin, 286 ia_getclinfo, 287 ia_parmsin, 288 ts_parmsout, 289 ia_vaparmsin, 290 ia_vaparmsout, 291 ia_getclpri, 292 ts_alloc, 293 ts_free, 294 295 /* thread functions */ 296 ts_enterclass, 297 ts_exitclass, 298 ts_canexit, 299 ts_fork, 300 ts_forkret, 301 ia_parmsget, 302 ia_parmsset, 303 ts_nullsys, /* stop */ 304 ts_exit, 305 ts_nullsys, /* active */ 306 ts_nullsys, /* inactive */ 307 ts_swapin, 308 ts_swapout, 309 ts_trapret, 310 ts_preempt, 311 ts_setrun, 312 ts_sleep, 313 ts_tick, 314 ts_wakeup, 315 ts_donice, 316 ts_globpri, 317 ia_set_process_group, 318 ts_yield, 319 ts_doprio, 320 }; 321 322 323 /* 324 * Time sharing class initialization. Called by dispinit() at boot time. 325 * We can ignore the clparmsz argument since we know that the smallest 326 * possible parameter buffer is big enough for us. 327 */ 328 /* ARGSUSED */ 329 static pri_t 330 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 331 { 332 int i; 333 extern pri_t ts_getmaxumdpri(void); 334 335 ts_dptbl = ts_getdptbl(); 336 ts_kmdpris = ts_getkmdpris(); 337 ts_maxumdpri = ts_getmaxumdpri(); 338 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 339 340 /* 341 * Initialize the tsproc lists. 342 */ 343 for (i = 0; i < TS_LISTS; i++) { 344 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 345 &ts_plisthead[i]; 346 } 347 348 /* 349 * We're required to return a pointer to our classfuncs 350 * structure and the highest global priority value we use. 351 */ 352 *clfuncspp = &ts_classfuncs; 353 return (ts_maxglobpri); 354 } 355 356 357 /* 358 * Interactive class scheduler initialization 359 */ 360 /* ARGSUSED */ 361 pri_t 362 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 363 { 364 /* 365 * We're required to return a pointer to our classfuncs 366 * structure and the highest global priority value we use. 367 */ 368 ia_cid = cid; 369 *clfuncspp = &ia_classfuncs; 370 return (ts_maxglobpri); 371 } 372 373 374 /* 375 * Get or reset the ts_dptbl values per the user's request. 376 */ 377 static int 378 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 379 { 380 tsadmin_t tsadmin; 381 tsdpent_t *tmpdpp; 382 int userdpsz; 383 int i; 384 size_t tsdpsz; 385 386 if (get_udatamodel() == DATAMODEL_NATIVE) { 387 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 388 return (EFAULT); 389 } 390 #ifdef _SYSCALL32_IMPL 391 else { 392 /* get tsadmin struct from ILP32 caller */ 393 tsadmin32_t tsadmin32; 394 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 395 return (EFAULT); 396 tsadmin.ts_dpents = 397 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 398 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 399 tsadmin.ts_cmd = tsadmin32.ts_cmd; 400 } 401 #endif /* _SYSCALL32_IMPL */ 402 403 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 404 405 switch (tsadmin.ts_cmd) { 406 case TS_GETDPSIZE: 407 tsadmin.ts_ndpents = ts_maxumdpri + 1; 408 409 if (get_udatamodel() == DATAMODEL_NATIVE) { 410 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 411 return (EFAULT); 412 } 413 #ifdef _SYSCALL32_IMPL 414 else { 415 /* return tsadmin struct to ILP32 caller */ 416 tsadmin32_t tsadmin32; 417 tsadmin32.ts_dpents = 418 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 419 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 420 tsadmin32.ts_cmd = tsadmin.ts_cmd; 421 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 422 return (EFAULT); 423 } 424 #endif /* _SYSCALL32_IMPL */ 425 break; 426 427 case TS_GETDPTBL: 428 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 429 tsdpsz); 430 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 431 return (EFAULT); 432 433 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 434 435 if (get_udatamodel() == DATAMODEL_NATIVE) { 436 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 437 return (EFAULT); 438 } 439 #ifdef _SYSCALL32_IMPL 440 else { 441 /* return tsadmin struct to ILP32 callers */ 442 tsadmin32_t tsadmin32; 443 tsadmin32.ts_dpents = 444 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 445 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 446 tsadmin32.ts_cmd = tsadmin.ts_cmd; 447 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 448 return (EFAULT); 449 } 450 #endif /* _SYSCALL32_IMPL */ 451 break; 452 453 case TS_SETDPTBL: 454 /* 455 * We require that the requesting process has sufficient 456 * priveleges. We also require that the table supplied by 457 * the user exactly match the current ts_dptbl in size. 458 */ 459 if (secpolicy_dispadm(reqpcredp) != 0) 460 return (EPERM); 461 462 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 463 return (EINVAL); 464 } 465 466 /* 467 * We read the user supplied table into a temporary buffer 468 * where it is validated before being copied over the 469 * ts_dptbl. 470 */ 471 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 472 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 473 tsdpsz)) { 474 kmem_free(tmpdpp, tsdpsz); 475 return (EFAULT); 476 } 477 for (i = 0; i < tsadmin.ts_ndpents; i++) { 478 479 /* 480 * Validate the user supplied values. All we are doing 481 * here is verifying that the values are within their 482 * allowable ranges and will not panic the system. We 483 * make no attempt to ensure that the resulting 484 * configuration makes sense or results in reasonable 485 * performance. 486 */ 487 if (tmpdpp[i].ts_quantum <= 0) { 488 kmem_free(tmpdpp, tsdpsz); 489 return (EINVAL); 490 } 491 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 492 tmpdpp[i].ts_tqexp < 0) { 493 kmem_free(tmpdpp, tsdpsz); 494 return (EINVAL); 495 } 496 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 497 tmpdpp[i].ts_slpret < 0) { 498 kmem_free(tmpdpp, tsdpsz); 499 return (EINVAL); 500 } 501 if (tmpdpp[i].ts_maxwait < 0) { 502 kmem_free(tmpdpp, tsdpsz); 503 return (EINVAL); 504 } 505 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 506 tmpdpp[i].ts_lwait < 0) { 507 kmem_free(tmpdpp, tsdpsz); 508 return (EINVAL); 509 } 510 } 511 512 /* 513 * Copy the user supplied values over the current ts_dptbl 514 * values. The ts_globpri member is read-only so we don't 515 * overwrite it. 516 */ 517 mutex_enter(&ts_dptblock); 518 for (i = 0; i < tsadmin.ts_ndpents; i++) { 519 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 520 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 521 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 522 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 523 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 524 } 525 mutex_exit(&ts_dptblock); 526 kmem_free(tmpdpp, tsdpsz); 527 break; 528 529 default: 530 return (EINVAL); 531 } 532 return (0); 533 } 534 535 536 /* 537 * Allocate a time-sharing class specific thread structure and 538 * initialize it with the parameters supplied. Also move the thread 539 * to specified time-sharing priority. 540 */ 541 static int 542 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 543 void *bufp) 544 { 545 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 546 tsproc_t *tspp; 547 pri_t reqtsuprilim; 548 pri_t reqtsupri; 549 static uint32_t tspexists = 0; /* set on first occurrence of */ 550 /* a time-sharing process */ 551 552 tspp = (tsproc_t *)bufp; 553 ASSERT(tspp != NULL); 554 555 /* 556 * Initialize the tsproc structure. 557 */ 558 tspp->ts_cpupri = tsmedumdpri; 559 if (cid == ia_cid) { 560 /* 561 * Check to make sure caller is either privileged or the 562 * window system. When the window system is converted 563 * to using privileges, the second check can go away. 564 */ 565 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 566 secpolicy_setpriority(reqpcredp) != 0) 567 return (EPERM); 568 /* 569 * Belongs to IA "class", so set appropriate flags. 570 * Mark as 'on' so it will not be a swap victim 571 * while forking. 572 */ 573 tspp->ts_flags = TSIA | TSIASET; 574 tspp->ts_boost = ia_boost; 575 } else { 576 tspp->ts_flags = 0; 577 tspp->ts_boost = 0; 578 } 579 580 if (tsparmsp == NULL) { 581 /* 582 * Use default values. 583 */ 584 tspp->ts_uprilim = tspp->ts_upri = 0; 585 tspp->ts_nice = NZERO; 586 } else { 587 /* 588 * Use supplied values. 589 */ 590 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 591 reqtsuprilim = 0; 592 else { 593 if (tsparmsp->ts_uprilim > 0 && 594 secpolicy_setpriority(reqpcredp) != 0) 595 return (EPERM); 596 reqtsuprilim = tsparmsp->ts_uprilim; 597 } 598 599 if (tsparmsp->ts_upri == TS_NOCHANGE) { 600 reqtsupri = reqtsuprilim; 601 } else { 602 if (tsparmsp->ts_upri > 0 && 603 secpolicy_setpriority(reqpcredp) != 0) 604 return (EPERM); 605 /* 606 * Set the user priority to the requested value 607 * or the upri limit, whichever is lower. 608 */ 609 reqtsupri = tsparmsp->ts_upri; 610 if (reqtsupri > reqtsuprilim) 611 reqtsupri = reqtsuprilim; 612 } 613 614 615 tspp->ts_uprilim = reqtsuprilim; 616 tspp->ts_upri = reqtsupri; 617 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri; 618 } 619 TS_NEWUMDPRI(tspp); 620 621 tspp->ts_dispwait = 0; 622 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 623 tspp->ts_tp = t; 624 cpucaps_sc_init(&tspp->ts_caps); 625 626 /* 627 * Reset priority. Process goes to a "user mode" priority 628 * here regardless of whether or not it has slept since 629 * entering the kernel. 630 */ 631 thread_lock(t); /* get dispatcher lock on thread */ 632 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 633 t->t_cid = cid; 634 t->t_cldata = (void *)tspp; 635 t->t_schedflag &= ~TS_RUNQMATCH; 636 ts_change_priority(t, tspp); 637 thread_unlock(t); 638 639 /* 640 * Link new structure into tsproc list. 641 */ 642 TS_LIST_INSERT(tspp); 643 644 /* 645 * If this is the first time-sharing thread to occur since 646 * boot we set up the initial call to ts_update() here. 647 * Use an atomic compare-and-swap since that's easier and 648 * faster than a mutex (but check with an ordinary load first 649 * since most of the time this will already be done). 650 */ 651 if (tspexists == 0 && atomic_cas_32(&tspexists, 0, 1) == 0) 652 (void) timeout(ts_update, NULL, hz); 653 654 return (0); 655 } 656 657 658 /* 659 * Free tsproc structure of thread. 660 */ 661 static void 662 ts_exitclass(void *procp) 663 { 664 tsproc_t *tspp = (tsproc_t *)procp; 665 666 /* Remove tsproc_t structure from list */ 667 TS_LIST_DELETE(tspp); 668 kmem_free(tspp, sizeof (tsproc_t)); 669 } 670 671 /* ARGSUSED */ 672 static int 673 ts_canexit(kthread_t *t, cred_t *cred) 674 { 675 /* 676 * A thread can always leave a TS/IA class 677 */ 678 return (0); 679 } 680 681 static int 682 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 683 { 684 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 685 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 686 687 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 688 689 ctspp = (tsproc_t *)bufp; 690 ASSERT(ctspp != NULL); 691 ptspp = (tsproc_t *)t->t_cldata; 692 /* 693 * Initialize child's tsproc structure. 694 */ 695 thread_lock(t); 696 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 697 ctspp->ts_cpupri = ptspp->ts_cpupri; 698 ctspp->ts_boost = ptspp->ts_boost; 699 ctspp->ts_uprilim = ptspp->ts_uprilim; 700 ctspp->ts_upri = ptspp->ts_upri; 701 TS_NEWUMDPRI(ctspp); 702 ctspp->ts_nice = ptspp->ts_nice; 703 ctspp->ts_dispwait = 0; 704 ctspp->ts_flags = ptspp->ts_flags & ~(TSBACKQ | TSRESTORE); 705 ctspp->ts_tp = ct; 706 cpucaps_sc_init(&ctspp->ts_caps); 707 thread_unlock(t); 708 709 /* 710 * Link new structure into tsproc list. 711 */ 712 ct->t_cldata = (void *)ctspp; 713 TS_LIST_INSERT(ctspp); 714 return (0); 715 } 716 717 718 /* 719 * Child is placed at back of dispatcher queue and parent gives 720 * up processor so that the child runs first after the fork. 721 * This allows the child immediately execing to break the multiple 722 * use of copy on write pages with no disk home. The parent will 723 * get to steal them back rather than uselessly copying them. 724 */ 725 static void 726 ts_forkret(kthread_t *t, kthread_t *ct) 727 { 728 proc_t *pp = ttoproc(t); 729 proc_t *cp = ttoproc(ct); 730 tsproc_t *tspp; 731 732 ASSERT(t == curthread); 733 ASSERT(MUTEX_HELD(&pidlock)); 734 735 /* 736 * Grab the child's p_lock before dropping pidlock to ensure 737 * the process does not disappear before we set it running. 738 */ 739 mutex_enter(&cp->p_lock); 740 continuelwps(cp); 741 mutex_exit(&cp->p_lock); 742 743 mutex_enter(&pp->p_lock); 744 mutex_exit(&pidlock); 745 continuelwps(pp); 746 747 thread_lock(t); 748 tspp = (tsproc_t *)(t->t_cldata); 749 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 750 TS_NEWUMDPRI(tspp); 751 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 752 tspp->ts_dispwait = 0; 753 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 754 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 755 THREAD_TRANSITION(t); 756 ts_setrun(t); 757 thread_unlock(t); 758 /* 759 * Safe to drop p_lock now since since it is safe to change 760 * the scheduling class after this point. 761 */ 762 mutex_exit(&pp->p_lock); 763 764 swtch(); 765 } 766 767 768 /* 769 * Get information about the time-sharing class into the buffer 770 * pointed to by tsinfop. The maximum configured user priority 771 * is the only information we supply. ts_getclinfo() is called 772 * for TS threads, and ia_getclinfo() is called for IA threads. 773 */ 774 static int 775 ts_getclinfo(void *infop) 776 { 777 tsinfo_t *tsinfop = (tsinfo_t *)infop; 778 tsinfop->ts_maxupri = ts_maxupri; 779 return (0); 780 } 781 782 static int 783 ia_getclinfo(void *infop) 784 { 785 iainfo_t *iainfop = (iainfo_t *)infop; 786 iainfop->ia_maxupri = ia_maxupri; 787 return (0); 788 } 789 790 791 /* 792 * Return the user mode scheduling priority range. 793 */ 794 static int 795 ts_getclpri(pcpri_t *pcprip) 796 { 797 pcprip->pc_clpmax = ts_maxupri; 798 pcprip->pc_clpmin = -ts_maxupri; 799 return (0); 800 } 801 802 803 static int 804 ia_getclpri(pcpri_t *pcprip) 805 { 806 pcprip->pc_clpmax = ia_maxupri; 807 pcprip->pc_clpmin = -ia_maxupri; 808 return (0); 809 } 810 811 812 static void 813 ts_nullsys() 814 {} 815 816 817 /* 818 * Get the time-sharing parameters of the thread pointed to by 819 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 820 * is called for TS threads, and ia_parmsget() is called for IA 821 * threads. 822 */ 823 static void 824 ts_parmsget(kthread_t *t, void *parmsp) 825 { 826 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 827 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 828 829 tsparmsp->ts_uprilim = tspp->ts_uprilim; 830 tsparmsp->ts_upri = tspp->ts_upri; 831 } 832 833 static void 834 ia_parmsget(kthread_t *t, void *parmsp) 835 { 836 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 837 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 838 839 iaparmsp->ia_uprilim = tspp->ts_uprilim; 840 iaparmsp->ia_upri = tspp->ts_upri; 841 if (tspp->ts_flags & TSIASET) 842 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 843 else 844 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 845 } 846 847 848 /* 849 * Check the validity of the time-sharing parameters in the buffer 850 * pointed to by tsparmsp. 851 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 852 * for IA threads. 853 */ 854 static int 855 ts_parmsin(void *parmsp) 856 { 857 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 858 /* 859 * Check validity of parameters. 860 */ 861 if ((tsparmsp->ts_uprilim > ts_maxupri || 862 tsparmsp->ts_uprilim < -ts_maxupri) && 863 tsparmsp->ts_uprilim != TS_NOCHANGE) 864 return (EINVAL); 865 866 if ((tsparmsp->ts_upri > ts_maxupri || 867 tsparmsp->ts_upri < -ts_maxupri) && 868 tsparmsp->ts_upri != TS_NOCHANGE) 869 return (EINVAL); 870 871 return (0); 872 } 873 874 static int 875 ia_parmsin(void *parmsp) 876 { 877 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 878 879 if ((iaparmsp->ia_uprilim > ia_maxupri || 880 iaparmsp->ia_uprilim < -ia_maxupri) && 881 iaparmsp->ia_uprilim != IA_NOCHANGE) { 882 return (EINVAL); 883 } 884 885 if ((iaparmsp->ia_upri > ia_maxupri || 886 iaparmsp->ia_upri < -ia_maxupri) && 887 iaparmsp->ia_upri != IA_NOCHANGE) { 888 return (EINVAL); 889 } 890 891 return (0); 892 } 893 894 895 /* 896 * Check the validity of the time-sharing parameters in the pc_vaparms_t 897 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 898 * pc_vaparms_t contains (key, value) pairs of parameter. 899 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 900 * for IA threads. ts_vaparmsin() is the variable parameter version of 901 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 902 * ia_parmsin(). 903 */ 904 static int 905 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 906 { 907 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 908 int priflag = 0; 909 int limflag = 0; 910 uint_t cnt; 911 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 912 913 914 /* 915 * TS_NOCHANGE (-32768) is outside of the range of values for 916 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 917 * TS_NOCHANGE should be replaced by a flag word (in the same manner 918 * as in rt.c). 919 */ 920 tsparmsp->ts_uprilim = TS_NOCHANGE; 921 tsparmsp->ts_upri = TS_NOCHANGE; 922 923 /* 924 * Get the varargs parameter and check validity of parameters. 925 */ 926 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 927 return (EINVAL); 928 929 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 930 931 switch (vpp->pc_key) { 932 case TS_KY_UPRILIM: 933 if (limflag++) 934 return (EINVAL); 935 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 936 if (tsparmsp->ts_uprilim > ts_maxupri || 937 tsparmsp->ts_uprilim < -ts_maxupri) 938 return (EINVAL); 939 break; 940 941 case TS_KY_UPRI: 942 if (priflag++) 943 return (EINVAL); 944 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 945 if (tsparmsp->ts_upri > ts_maxupri || 946 tsparmsp->ts_upri < -ts_maxupri) 947 return (EINVAL); 948 break; 949 950 default: 951 return (EINVAL); 952 } 953 } 954 955 if (vaparmsp->pc_vaparmscnt == 0) { 956 /* 957 * Use default parameters. 958 */ 959 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 960 } 961 962 return (0); 963 } 964 965 static int 966 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 967 { 968 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 969 int priflag = 0; 970 int limflag = 0; 971 int mflag = 0; 972 uint_t cnt; 973 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 974 975 /* 976 * IA_NOCHANGE (-32768) is outside of the range of values for 977 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 978 * changed, IA_NOCHANGE should be replaced by a flag word (in the 979 * same manner as in rt.c). 980 */ 981 iaparmsp->ia_uprilim = IA_NOCHANGE; 982 iaparmsp->ia_upri = IA_NOCHANGE; 983 iaparmsp->ia_mode = IA_NOCHANGE; 984 985 /* 986 * Get the varargs parameter and check validity of parameters. 987 */ 988 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 989 return (EINVAL); 990 991 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 992 993 switch (vpp->pc_key) { 994 case IA_KY_UPRILIM: 995 if (limflag++) 996 return (EINVAL); 997 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 998 if (iaparmsp->ia_uprilim > ia_maxupri || 999 iaparmsp->ia_uprilim < -ia_maxupri) 1000 return (EINVAL); 1001 break; 1002 1003 case IA_KY_UPRI: 1004 if (priflag++) 1005 return (EINVAL); 1006 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 1007 if (iaparmsp->ia_upri > ia_maxupri || 1008 iaparmsp->ia_upri < -ia_maxupri) 1009 return (EINVAL); 1010 break; 1011 1012 case IA_KY_MODE: 1013 if (mflag++) 1014 return (EINVAL); 1015 iaparmsp->ia_mode = (int)vpp->pc_parm; 1016 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1017 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1018 return (EINVAL); 1019 break; 1020 1021 default: 1022 return (EINVAL); 1023 } 1024 } 1025 1026 if (vaparmsp->pc_vaparmscnt == 0) { 1027 /* 1028 * Use default parameters. 1029 */ 1030 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1031 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1032 } 1033 1034 return (0); 1035 } 1036 1037 /* 1038 * Nothing to do here but return success. 1039 */ 1040 /* ARGSUSED */ 1041 static int 1042 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1043 { 1044 return (0); 1045 } 1046 1047 1048 /* 1049 * Copy all selected time-sharing class parameters to the user. 1050 * The parameters are specified by a key. 1051 */ 1052 static int 1053 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1054 { 1055 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1056 int priflag = 0; 1057 int limflag = 0; 1058 uint_t cnt; 1059 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1060 1061 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1062 1063 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1064 return (EINVAL); 1065 1066 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1067 1068 switch (vpp->pc_key) { 1069 case TS_KY_UPRILIM: 1070 if (limflag++) 1071 return (EINVAL); 1072 if (copyout(&tsprmsp->ts_uprilim, 1073 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1074 return (EFAULT); 1075 break; 1076 1077 case TS_KY_UPRI: 1078 if (priflag++) 1079 return (EINVAL); 1080 if (copyout(&tsprmsp->ts_upri, 1081 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1082 return (EFAULT); 1083 break; 1084 1085 default: 1086 return (EINVAL); 1087 } 1088 } 1089 1090 return (0); 1091 } 1092 1093 1094 /* 1095 * Copy all selected interactive class parameters to the user. 1096 * The parameters are specified by a key. 1097 */ 1098 static int 1099 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1100 { 1101 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1102 int priflag = 0; 1103 int limflag = 0; 1104 int mflag = 0; 1105 uint_t cnt; 1106 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1107 1108 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1109 1110 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1111 return (EINVAL); 1112 1113 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1114 1115 switch (vpp->pc_key) { 1116 case IA_KY_UPRILIM: 1117 if (limflag++) 1118 return (EINVAL); 1119 if (copyout(&iaprmsp->ia_uprilim, 1120 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1121 return (EFAULT); 1122 break; 1123 1124 case IA_KY_UPRI: 1125 if (priflag++) 1126 return (EINVAL); 1127 if (copyout(&iaprmsp->ia_upri, 1128 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1129 return (EFAULT); 1130 break; 1131 1132 case IA_KY_MODE: 1133 if (mflag++) 1134 return (EINVAL); 1135 if (copyout(&iaprmsp->ia_mode, 1136 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1137 return (EFAULT); 1138 break; 1139 1140 default: 1141 return (EINVAL); 1142 } 1143 } 1144 return (0); 1145 } 1146 1147 1148 /* 1149 * Set the scheduling parameters of the thread pointed to by tsprocp 1150 * to those specified in the buffer pointed to by tsparmsp. 1151 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1152 * called for IA threads. 1153 */ 1154 /* ARGSUSED */ 1155 static int 1156 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1157 { 1158 char nice; 1159 pri_t reqtsuprilim; 1160 pri_t reqtsupri; 1161 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1162 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1163 1164 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1165 1166 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1167 reqtsuprilim = tspp->ts_uprilim; 1168 else 1169 reqtsuprilim = tsparmsp->ts_uprilim; 1170 1171 if (tsparmsp->ts_upri == TS_NOCHANGE) 1172 reqtsupri = tspp->ts_upri; 1173 else 1174 reqtsupri = tsparmsp->ts_upri; 1175 1176 /* 1177 * Make sure the user priority doesn't exceed the upri limit. 1178 */ 1179 if (reqtsupri > reqtsuprilim) 1180 reqtsupri = reqtsuprilim; 1181 1182 /* 1183 * Basic permissions enforced by generic kernel code 1184 * for all classes require that a thread attempting 1185 * to change the scheduling parameters of a target 1186 * thread be privileged or have a real or effective 1187 * UID matching that of the target thread. We are not 1188 * called unless these basic permission checks have 1189 * already passed. The time-sharing class requires in 1190 * addition that the calling thread be privileged if it 1191 * is attempting to raise the upri limit above its current 1192 * value This may have been checked previously but if our 1193 * caller passed us a non-NULL credential pointer we assume 1194 * it hasn't and we check it here. 1195 */ 1196 if (reqpcredp != NULL && 1197 reqtsuprilim > tspp->ts_uprilim && 1198 secpolicy_raisepriority(reqpcredp) != 0) 1199 return (EPERM); 1200 1201 /* 1202 * Set ts_nice to the nice value corresponding to the user 1203 * priority we are setting. Note that setting the nice field 1204 * of the parameter struct won't affect upri or nice. 1205 */ 1206 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1207 if (nice >= 2 * NZERO) 1208 nice = 2 * NZERO - 1; 1209 1210 thread_lock(tx); 1211 1212 tspp->ts_uprilim = reqtsuprilim; 1213 tspp->ts_upri = reqtsupri; 1214 TS_NEWUMDPRI(tspp); 1215 tspp->ts_nice = nice; 1216 1217 tspp->ts_dispwait = 0; 1218 ts_change_priority(tx, tspp); 1219 thread_unlock(tx); 1220 return (0); 1221 } 1222 1223 1224 static int 1225 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1226 { 1227 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1228 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1229 proc_t *p; 1230 pid_t pid, pgid, sid; 1231 pid_t on, off; 1232 struct stdata *stp; 1233 int sess_held; 1234 1235 /* 1236 * Handle user priority changes 1237 */ 1238 if (iaparmsp->ia_mode == IA_NOCHANGE) 1239 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1240 1241 /* 1242 * Check permissions for changing modes. 1243 */ 1244 1245 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1246 secpolicy_raisepriority(reqpcredp) != 0) { 1247 /* 1248 * Silently fail in case this is just a priocntl 1249 * call with upri and uprilim set to IA_NOCHANGE. 1250 */ 1251 return (0); 1252 } 1253 1254 ASSERT(MUTEX_HELD(&pidlock)); 1255 if ((p = ttoproc(tx)) == NULL) { 1256 return (0); 1257 } 1258 ASSERT(MUTEX_HELD(&p->p_lock)); 1259 if (p->p_stat == SIDL) { 1260 return (0); 1261 } 1262 pid = p->p_pid; 1263 sid = p->p_sessp->s_sid; 1264 pgid = p->p_pgrp; 1265 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1266 /* 1267 * session leaders must be turned on now so all processes 1268 * in the group controlling the tty will be turned on or off. 1269 * if the ia_mode is off for the session leader, 1270 * ia_set_process_group will return without setting the 1271 * processes in the group controlling the tty on. 1272 */ 1273 thread_lock(tx); 1274 tspp->ts_flags |= TSIASET; 1275 thread_unlock(tx); 1276 } 1277 mutex_enter(&p->p_sessp->s_lock); 1278 sess_held = 1; 1279 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1280 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1281 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1282 pgid = stp->sd_pgidp->pid_id; 1283 sess_held = 0; 1284 mutex_exit(&p->p_sessp->s_lock); 1285 if (iaparmsp->ia_mode == 1286 IA_SET_INTERACTIVE) { 1287 off = 0; 1288 on = pgid; 1289 } else { 1290 off = pgid; 1291 on = 0; 1292 } 1293 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1294 "active chain:pid %d gid %d %p", 1295 pid, pgid, p); 1296 ia_set_process_group(sid, off, on); 1297 } 1298 } 1299 if (sess_held) 1300 mutex_exit(&p->p_sessp->s_lock); 1301 1302 thread_lock(tx); 1303 1304 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1305 tspp->ts_flags |= TSIASET; 1306 tspp->ts_boost = ia_boost; 1307 } else { 1308 tspp->ts_flags &= ~TSIASET; 1309 tspp->ts_boost = -ia_boost; 1310 } 1311 thread_unlock(tx); 1312 1313 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1314 } 1315 1316 static void 1317 ts_exit(kthread_t *t) 1318 { 1319 tsproc_t *tspp; 1320 1321 if (CPUCAPS_ON()) { 1322 /* 1323 * A thread could be exiting in between clock ticks, 1324 * so we need to calculate how much CPU time it used 1325 * since it was charged last time. 1326 * 1327 * CPU caps are not enforced on exiting processes - it is 1328 * usually desirable to exit as soon as possible to free 1329 * resources. 1330 */ 1331 thread_lock(t); 1332 tspp = (tsproc_t *)t->t_cldata; 1333 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1334 thread_unlock(t); 1335 } 1336 } 1337 1338 /* 1339 * Return the global scheduling priority that would be assigned 1340 * to a thread entering the time-sharing class with the ts_upri. 1341 */ 1342 static pri_t 1343 ts_globpri(kthread_t *t) 1344 { 1345 tsproc_t *tspp; 1346 pri_t tspri; 1347 1348 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1349 tspp = (tsproc_t *)t->t_cldata; 1350 tspri = tsmedumdpri + tspp->ts_upri; 1351 if (tspri > ts_maxumdpri) 1352 tspri = ts_maxumdpri; 1353 else if (tspri < 0) 1354 tspri = 0; 1355 return (ts_dptbl[tspri].ts_globpri); 1356 } 1357 1358 /* 1359 * Arrange for thread to be placed in appropriate location 1360 * on dispatcher queue. 1361 * 1362 * This is called with the current thread in TS_ONPROC and locked. 1363 */ 1364 static void 1365 ts_preempt(kthread_t *t) 1366 { 1367 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1368 klwp_t *lwp = ttolwp(t); 1369 pri_t oldpri = t->t_pri; 1370 1371 ASSERT(t == curthread); 1372 ASSERT(THREAD_LOCK_HELD(curthread)); 1373 1374 /* 1375 * This thread may be placed on wait queue by CPU Caps. In this case we 1376 * do not need to do anything until it is removed from the wait queue. 1377 */ 1378 if (CPUCAPS_ON()) { 1379 (void) cpucaps_charge(t, &tspp->ts_caps, 1380 CPUCAPS_CHARGE_ENFORCE); 1381 if (CPUCAPS_ENFORCE(t)) 1382 return; 1383 } 1384 1385 /* 1386 * If thread got preempted in the user-land then we know 1387 * it isn't holding any locks. Mark it as swappable. 1388 */ 1389 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1390 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1391 t->t_schedflag &= ~TS_DONT_SWAP; 1392 1393 /* 1394 * Check to see if we're doing "preemption control" here. If 1395 * we are, and if the user has requested that this thread not 1396 * be preempted, and if preemptions haven't been put off for 1397 * too long, let the preemption happen here but try to make 1398 * sure the thread is rescheduled as soon as possible. We do 1399 * this by putting it on the front of the highest priority run 1400 * queue in the TS class. If the preemption has been put off 1401 * for too long, clear the "nopreempt" bit and let the thread 1402 * be preempted. 1403 */ 1404 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1405 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1406 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1407 /* 1408 * If not already remembered, remember current 1409 * priority for restoration in ts_yield(). 1410 */ 1411 if (!(tspp->ts_flags & TSRESTORE)) { 1412 tspp->ts_scpri = t->t_pri; 1413 tspp->ts_flags |= TSRESTORE; 1414 } 1415 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1416 t->t_schedflag |= TS_DONT_SWAP; 1417 schedctl_set_yield(t, 1); 1418 setfrontdq(t); 1419 goto done; 1420 } else { 1421 if (tspp->ts_flags & TSRESTORE) { 1422 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1423 tspp->ts_flags &= ~TSRESTORE; 1424 } 1425 schedctl_set_nopreempt(t, 0); 1426 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1427 /* 1428 * Fall through and be preempted below. 1429 */ 1430 } 1431 } 1432 1433 if ((tspp->ts_flags & TSBACKQ) != 0) { 1434 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1435 tspp->ts_dispwait = 0; 1436 tspp->ts_flags &= ~TSBACKQ; 1437 setbackdq(t); 1438 } else { 1439 setfrontdq(t); 1440 } 1441 1442 done: 1443 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1444 "preempt:tid %p old pri %d", t, oldpri); 1445 } 1446 1447 static void 1448 ts_setrun(kthread_t *t) 1449 { 1450 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1451 1452 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1453 1454 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1455 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1456 TS_NEWUMDPRI(tspp); 1457 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1458 tspp->ts_dispwait = 0; 1459 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1460 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1461 } 1462 1463 tspp->ts_flags &= ~TSBACKQ; 1464 1465 if (tspp->ts_flags & TSIA) { 1466 if (tspp->ts_flags & TSIASET) 1467 setfrontdq(t); 1468 else 1469 setbackdq(t); 1470 } else { 1471 if (t->t_disp_time != ddi_get_lbolt()) 1472 setbackdq(t); 1473 else 1474 setfrontdq(t); 1475 } 1476 } 1477 1478 1479 /* 1480 * Prepare thread for sleep. 1481 */ 1482 static void 1483 ts_sleep(kthread_t *t) 1484 { 1485 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1486 pri_t old_pri = t->t_pri; 1487 1488 ASSERT(t == curthread); 1489 ASSERT(THREAD_LOCK_HELD(t)); 1490 1491 /* 1492 * Account for time spent on CPU before going to sleep. 1493 */ 1494 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1495 1496 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1497 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1498 TS_NEWUMDPRI(tspp); 1499 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1500 tspp->ts_dispwait = 0; 1501 1502 THREAD_CHANGE_PRI(curthread, 1503 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1504 ASSERT(curthread->t_pri >= 0 && 1505 curthread->t_pri <= ts_maxglobpri); 1506 1507 if (DISP_MUST_SURRENDER(curthread)) 1508 cpu_surrender(curthread); 1509 } 1510 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1511 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1512 "sleep:tid %p old pri %d", t, old_pri); 1513 } 1514 1515 1516 /* 1517 * Return Values: 1518 * 1519 * -1 if the thread is loaded or is not eligible to be swapped in. 1520 * 1521 * effective priority of the specified thread based on swapout time 1522 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1523 */ 1524 /* ARGSUSED */ 1525 static pri_t 1526 ts_swapin(kthread_t *t, int flags) 1527 { 1528 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1529 long epri = -1; 1530 proc_t *pp = ttoproc(t); 1531 1532 ASSERT(THREAD_LOCK_HELD(t)); 1533 1534 /* 1535 * We know that pri_t is a short. 1536 * Be sure not to overrun its range. 1537 */ 1538 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1539 time_t swapout_time; 1540 1541 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 1542 if (INHERITED(t) || (tspp->ts_flags & TSIASET)) { 1543 epri = (long)DISP_PRIO(t) + swapout_time; 1544 } else { 1545 /* 1546 * Threads which have been out for a long time, 1547 * have high user mode priority and are associated 1548 * with a small address space are more deserving 1549 */ 1550 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1551 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1552 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1553 } 1554 /* 1555 * Scale epri so SHRT_MAX/2 represents zero priority. 1556 */ 1557 epri += SHRT_MAX/2; 1558 if (epri < 0) 1559 epri = 0; 1560 else if (epri > SHRT_MAX) 1561 epri = SHRT_MAX; 1562 } 1563 return ((pri_t)epri); 1564 } 1565 1566 /* 1567 * Return Values 1568 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1569 * 1570 * effective priority of the specified thread based on if the swapper 1571 * is in softswap or hardswap mode. 1572 * 1573 * Softswap: Return a low effective priority for threads 1574 * sleeping for more than maxslp secs. 1575 * 1576 * Hardswap: Return an effective priority such that threads 1577 * which have been in memory for a while and are 1578 * associated with a small address space are swapped 1579 * in before others. 1580 * 1581 * (epri >= 0 , epri <= SHRT_MAX). 1582 */ 1583 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1584 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1585 1586 static pri_t 1587 ts_swapout(kthread_t *t, int flags) 1588 { 1589 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1590 long epri = -1; 1591 proc_t *pp = ttoproc(t); 1592 time_t swapin_time; 1593 1594 ASSERT(THREAD_LOCK_HELD(t)); 1595 1596 if (INHERITED(t) || (tspp->ts_flags & TSIASET) || 1597 (t->t_proc_flag & TP_LWPEXIT) || 1598 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1599 TS_ONPROC | TS_WAIT)) || 1600 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1601 return (-1); 1602 1603 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1604 1605 /* 1606 * We know that pri_t is a short. 1607 * Be sure not to overrun its range. 1608 */ 1609 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 1610 if (flags == SOFTSWAP) { 1611 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1612 epri = 0; 1613 } else { 1614 return ((pri_t)epri); 1615 } 1616 } else { 1617 pri_t pri; 1618 1619 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1620 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1621 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1622 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1623 epri = swapin_time - 1624 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1625 } else { 1626 return ((pri_t)epri); 1627 } 1628 } 1629 1630 /* 1631 * Scale epri so SHRT_MAX/2 represents zero priority. 1632 */ 1633 epri += SHRT_MAX/2; 1634 if (epri < 0) 1635 epri = 0; 1636 else if (epri > SHRT_MAX) 1637 epri = SHRT_MAX; 1638 1639 return ((pri_t)epri); 1640 } 1641 1642 /* 1643 * Check for time slice expiration. If time slice has expired 1644 * move thread to priority specified in tsdptbl for time slice expiration 1645 * and set runrun to cause preemption. 1646 */ 1647 static void 1648 ts_tick(kthread_t *t) 1649 { 1650 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1651 klwp_t *lwp; 1652 boolean_t call_cpu_surrender = B_FALSE; 1653 pri_t oldpri = t->t_pri; 1654 1655 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1656 1657 thread_lock(t); 1658 1659 /* 1660 * Keep track of thread's project CPU usage. Note that projects 1661 * get charged even when threads are running in the kernel. 1662 */ 1663 if (CPUCAPS_ON()) { 1664 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1665 CPUCAPS_CHARGE_ENFORCE); 1666 } 1667 1668 if (--tspp->ts_timeleft <= 0) { 1669 pri_t new_pri; 1670 1671 /* 1672 * If we're doing preemption control and trying to avoid 1673 * preempting this thread, just note that the thread should 1674 * yield soon and let it keep running (unless it's been a 1675 * while). 1676 */ 1677 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1678 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1679 DTRACE_SCHED1(schedctl__nopreempt, 1680 kthread_t *, t); 1681 schedctl_set_yield(t, 1); 1682 thread_unlock_nopreempt(t); 1683 return; 1684 } 1685 1686 DTRACE_SCHED1(schedctl__failsafe, 1687 kthread_t *, t); 1688 } 1689 tspp->ts_flags &= ~TSRESTORE; 1690 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1691 TS_NEWUMDPRI(tspp); 1692 tspp->ts_dispwait = 0; 1693 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1694 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1695 /* 1696 * When the priority of a thread is changed, it may be 1697 * necessary to adjust its position on a sleep queue or 1698 * dispatch queue. The function thread_change_pri accomplishes 1699 * this. 1700 */ 1701 if (thread_change_pri(t, new_pri, 0)) { 1702 if ((t->t_schedflag & TS_LOAD) && 1703 (lwp = t->t_lwp) && 1704 lwp->lwp_state == LWP_USER) 1705 t->t_schedflag &= ~TS_DONT_SWAP; 1706 tspp->ts_timeleft = 1707 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1708 } else { 1709 call_cpu_surrender = B_TRUE; 1710 } 1711 TRACE_2(TR_FAC_DISP, TR_TICK, 1712 "tick:tid %p old pri %d", t, oldpri); 1713 } else if (t->t_state == TS_ONPROC && 1714 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1715 call_cpu_surrender = B_TRUE; 1716 } 1717 1718 if (call_cpu_surrender) { 1719 tspp->ts_flags |= TSBACKQ; 1720 cpu_surrender(t); 1721 } 1722 1723 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1724 } 1725 1726 1727 /* 1728 * If we are lowering the thread's priority below that of other runnable 1729 * threads we will normally set runrun via cpu_surrender() to cause preemption. 1730 */ 1731 static void 1732 ts_trapret(kthread_t *t) 1733 { 1734 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1735 cpu_t *cp = CPU; 1736 pri_t old_pri = curthread->t_pri; 1737 1738 ASSERT(THREAD_LOCK_HELD(t)); 1739 ASSERT(t == curthread); 1740 ASSERT(cp->cpu_dispthread == t); 1741 ASSERT(t->t_state == TS_ONPROC); 1742 1743 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1744 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1745 TS_NEWUMDPRI(tspp); 1746 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1747 tspp->ts_dispwait = 0; 1748 1749 /* 1750 * If thread has blocked in the kernel (as opposed to 1751 * being merely preempted), recompute the user mode priority. 1752 */ 1753 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1754 cp->cpu_dispatch_pri = DISP_PRIO(t); 1755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1756 1757 if (DISP_MUST_SURRENDER(t)) 1758 cpu_surrender(t); 1759 } 1760 1761 /* 1762 * Swapout lwp if the swapper is waiting for this thread to reach a 1763 * safe point. 1764 */ 1765 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1766 thread_unlock(t); 1767 swapout_lwp(ttolwp(t)); 1768 thread_lock(t); 1769 } 1770 1771 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1772 "trapret:tid %p old pri %d", t, old_pri); 1773 } 1774 1775 1776 /* 1777 * Update the ts_dispwait values of all time sharing threads that 1778 * are currently runnable at a user mode priority and bump the priority 1779 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1780 * timeout which we reset here. 1781 * 1782 * There are several lists of time sharing threads broken up by a hash on 1783 * the thread pointer. Each list has its own lock. This avoids blocking 1784 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1785 * runs. ts_update traverses each list in turn. 1786 * 1787 * If multiple threads have their priorities updated to the same value, 1788 * the system implicitly favors the one that is updated first (since it 1789 * winds up first on the run queue). To avoid this unfairness, the 1790 * traversal of threads starts at the list indicated by a marker. When 1791 * threads in more than one list have their priorities updated, the marker 1792 * is moved. This changes the order the threads will be placed on the run 1793 * queue the next time ts_update is called and preserves fairness over the 1794 * long run. The marker doesn't need to be protected by a lock since it's 1795 * only accessed by ts_update, which is inherently single-threaded (only 1796 * one instance can be running at a time). 1797 */ 1798 static void 1799 ts_update(void *arg) 1800 { 1801 int i; 1802 int new_marker = -1; 1803 static int ts_update_marker; 1804 1805 /* 1806 * Start with the ts_update_marker list, then do the rest. 1807 */ 1808 i = ts_update_marker; 1809 do { 1810 /* 1811 * If this is the first list after the current marker to 1812 * have threads with priorities updated, advance the marker 1813 * to this list for the next time ts_update runs. 1814 */ 1815 if (ts_update_list(i) && new_marker == -1 && 1816 i != ts_update_marker) { 1817 new_marker = i; 1818 } 1819 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1820 1821 /* advance marker for next ts_update call */ 1822 if (new_marker != -1) 1823 ts_update_marker = new_marker; 1824 1825 (void) timeout(ts_update, arg, hz); 1826 } 1827 1828 /* 1829 * Updates priority for a list of threads. Returns 1 if the priority of 1830 * one of the threads was actually updated, 0 if none were for various 1831 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1832 * hasn't waited long enough, has the preemption control no-preempt bit 1833 * set, etc.) 1834 */ 1835 static int 1836 ts_update_list(int i) 1837 { 1838 tsproc_t *tspp; 1839 kthread_t *tx; 1840 int updated = 0; 1841 1842 mutex_enter(&ts_list_lock[i]); 1843 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1844 tspp = tspp->ts_next) { 1845 tx = tspp->ts_tp; 1846 /* 1847 * Lock the thread and verify state. 1848 */ 1849 thread_lock(tx); 1850 /* 1851 * Skip the thread if it is no longer in the TS (or IA) class. 1852 */ 1853 if (tx->t_clfuncs != &ts_classfuncs.thread && 1854 tx->t_clfuncs != &ia_classfuncs.thread) 1855 goto next; 1856 tspp->ts_dispwait++; 1857 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1858 goto next; 1859 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1860 goto next; 1861 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1862 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1863 /* make next syscall/trap do CL_TRAPRET */ 1864 tx->t_trapret = 1; 1865 aston(tx); 1866 goto next; 1867 } 1868 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1869 TS_NEWUMDPRI(tspp); 1870 tspp->ts_dispwait = 0; 1871 updated = 1; 1872 1873 /* 1874 * Only dequeue it if needs to move; otherwise it should 1875 * just round-robin here. 1876 */ 1877 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1878 pri_t oldpri = tx->t_pri; 1879 ts_change_priority(tx, tspp); 1880 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1881 "update:tid %p old pri %d", tx, oldpri); 1882 } 1883 next: 1884 thread_unlock(tx); 1885 } 1886 mutex_exit(&ts_list_lock[i]); 1887 1888 return (updated); 1889 } 1890 1891 /* 1892 * Processes waking up go to the back of their queue. 1893 */ 1894 static void 1895 ts_wakeup(kthread_t *t) 1896 { 1897 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1898 1899 ASSERT(THREAD_LOCK_HELD(t)); 1900 1901 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1902 1903 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1904 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1905 TS_NEWUMDPRI(tspp); 1906 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1907 tspp->ts_dispwait = 0; 1908 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1909 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1910 } 1911 1912 tspp->ts_flags &= ~TSBACKQ; 1913 1914 if (tspp->ts_flags & TSIA) { 1915 if (tspp->ts_flags & TSIASET) 1916 setfrontdq(t); 1917 else 1918 setbackdq(t); 1919 } else { 1920 if (t->t_disp_time != ddi_get_lbolt()) 1921 setbackdq(t); 1922 else 1923 setfrontdq(t); 1924 } 1925 } 1926 1927 1928 /* 1929 * When a thread yields, put it on the back of the run queue. 1930 */ 1931 static void 1932 ts_yield(kthread_t *t) 1933 { 1934 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1935 1936 ASSERT(t == curthread); 1937 ASSERT(THREAD_LOCK_HELD(t)); 1938 1939 /* 1940 * Collect CPU usage spent before yielding 1941 */ 1942 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1943 1944 /* 1945 * Clear the preemption control "yield" bit since the user is 1946 * doing a yield. 1947 */ 1948 if (t->t_schedctl) 1949 schedctl_set_yield(t, 0); 1950 /* 1951 * If ts_preempt() artifically increased the thread's priority 1952 * to avoid preemption, restore the original priority now. 1953 */ 1954 if (tspp->ts_flags & TSRESTORE) { 1955 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1956 tspp->ts_flags &= ~TSRESTORE; 1957 } 1958 if (tspp->ts_timeleft <= 0) { 1959 /* 1960 * Time slice was artificially extended to avoid 1961 * preemption, so pretend we're preempting it now. 1962 */ 1963 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 1964 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1965 TS_NEWUMDPRI(tspp); 1966 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1967 tspp->ts_dispwait = 0; 1968 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1969 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1970 } 1971 tspp->ts_flags &= ~TSBACKQ; 1972 setbackdq(t); 1973 } 1974 1975 1976 /* 1977 * Increment the nice value of the specified thread by incr and 1978 * return the new value in *retvalp. 1979 */ 1980 static int 1981 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 1982 { 1983 int newnice; 1984 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1985 tsparms_t tsparms; 1986 1987 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1988 1989 /* If there's no change to priority, just return current setting */ 1990 if (incr == 0) { 1991 if (retvalp) { 1992 *retvalp = tspp->ts_nice - NZERO; 1993 } 1994 return (0); 1995 } 1996 1997 if ((incr < 0 || incr > 2 * NZERO) && 1998 secpolicy_raisepriority(cr) != 0) 1999 return (EPERM); 2000 2001 /* 2002 * Specifying a nice increment greater than the upper limit of 2003 * 2 * NZERO - 1 will result in the thread's nice value being 2004 * set to the upper limit. We check for this before computing 2005 * the new value because otherwise we could get overflow 2006 * if a privileged process specified some ridiculous increment. 2007 */ 2008 if (incr > 2 * NZERO - 1) 2009 incr = 2 * NZERO - 1; 2010 2011 newnice = tspp->ts_nice + incr; 2012 if (newnice >= 2 * NZERO) 2013 newnice = 2 * NZERO - 1; 2014 else if (newnice < 0) 2015 newnice = 0; 2016 2017 tsparms.ts_uprilim = tsparms.ts_upri = 2018 -((newnice - NZERO) * ts_maxupri) / NZERO; 2019 /* 2020 * Reset the uprilim and upri values of the thread. 2021 * Call ts_parmsset even if thread is interactive since we're 2022 * not changing mode. 2023 */ 2024 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2025 2026 /* 2027 * Although ts_parmsset already reset ts_nice it may 2028 * not have been set to precisely the value calculated above 2029 * because ts_parmsset determines the nice value from the 2030 * user priority and we may have truncated during the integer 2031 * conversion from nice value to user priority and back. 2032 * We reset ts_nice to the value we calculated above. 2033 */ 2034 tspp->ts_nice = (char)newnice; 2035 2036 if (retvalp) 2037 *retvalp = newnice - NZERO; 2038 return (0); 2039 } 2040 2041 /* 2042 * Increment the priority of the specified thread by incr and 2043 * return the new value in *retvalp. 2044 */ 2045 static int 2046 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2047 { 2048 int newpri; 2049 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2050 tsparms_t tsparms; 2051 2052 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2053 2054 /* If there's no change to the priority, just return current setting */ 2055 if (incr == 0) { 2056 *retvalp = tspp->ts_upri; 2057 return (0); 2058 } 2059 2060 newpri = tspp->ts_upri + incr; 2061 if (newpri > ts_maxupri || newpri < -ts_maxupri) 2062 return (EINVAL); 2063 2064 *retvalp = newpri; 2065 tsparms.ts_uprilim = tsparms.ts_upri = newpri; 2066 /* 2067 * Reset the uprilim and upri values of the thread. 2068 * Call ts_parmsset even if thread is interactive since we're 2069 * not changing mode. 2070 */ 2071 return (ts_parmsset(t, &tsparms, 0, cr)); 2072 } 2073 2074 /* 2075 * ia_set_process_group marks foreground processes as interactive 2076 * and background processes as non-interactive iff the session 2077 * leader is interactive. This routine is called from two places: 2078 * strioctl:SPGRP when a new process group gets 2079 * control of the tty. 2080 * ia_parmsset-when the process in question is a session leader. 2081 * ia_set_process_group assumes that pidlock is held by the caller, 2082 * either strioctl or priocntlsys. If the caller is priocntlsys 2083 * (via ia_parmsset) then the p_lock of the session leader is held 2084 * and the code needs to be careful about acquiring other p_locks. 2085 */ 2086 static void 2087 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2088 { 2089 proc_t *leader, *fg, *bg; 2090 tsproc_t *tspp; 2091 kthread_t *tx; 2092 int plocked = 0; 2093 2094 ASSERT(MUTEX_HELD(&pidlock)); 2095 2096 /* 2097 * see if the session leader is interactive AND 2098 * if it is currently "on" AND controlling a tty 2099 * iff it is then make the processes in the foreground 2100 * group interactive and the processes in the background 2101 * group non-interactive. 2102 */ 2103 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2104 return; 2105 } 2106 if (leader->p_stat == SIDL) { 2107 return; 2108 } 2109 if ((tx = proctot(leader)) == NULL) { 2110 return; 2111 } 2112 /* 2113 * XXX do all the threads in the leader 2114 */ 2115 if (tx->t_cid != ia_cid) { 2116 return; 2117 } 2118 tspp = tx->t_cldata; 2119 /* 2120 * session leaders that are not interactive need not have 2121 * any processing done for them. They are typically shells 2122 * that do not have focus and are changing the process group 2123 * attatched to the tty, e.g. a process that is exiting 2124 */ 2125 mutex_enter(&leader->p_sessp->s_lock); 2126 if (!(tspp->ts_flags & TSIASET) || 2127 (leader->p_sessp->s_vp == NULL) || 2128 (leader->p_sessp->s_vp->v_stream == NULL)) { 2129 mutex_exit(&leader->p_sessp->s_lock); 2130 return; 2131 } 2132 mutex_exit(&leader->p_sessp->s_lock); 2133 2134 /* 2135 * If we're already holding the leader's p_lock, we should use 2136 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2137 * lock ordering violations. 2138 */ 2139 if (mutex_owned(&leader->p_lock)) 2140 plocked = 1; 2141 2142 if (fg_pgid == 0) 2143 goto skip; 2144 /* 2145 * now look for all processes in the foreground group and 2146 * make them interactive 2147 */ 2148 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2149 /* 2150 * if the process is SIDL it's begin forked, ignore it 2151 */ 2152 if (fg->p_stat == SIDL) { 2153 continue; 2154 } 2155 /* 2156 * sesssion leaders must be turned on/off explicitly 2157 * not implicitly as happens to other members of 2158 * the process group. 2159 */ 2160 if (fg->p_pid == fg->p_sessp->s_sid) { 2161 continue; 2162 } 2163 2164 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2165 "group on:proc %p", fg); 2166 2167 if (plocked) { 2168 if (mutex_tryenter(&fg->p_lock) == 0) 2169 continue; 2170 } else { 2171 mutex_enter(&fg->p_lock); 2172 } 2173 2174 if ((tx = proctot(fg)) == NULL) { 2175 mutex_exit(&fg->p_lock); 2176 continue; 2177 } 2178 do { 2179 thread_lock(tx); 2180 /* 2181 * if this thread is not interactive continue 2182 */ 2183 if (tx->t_cid != ia_cid) { 2184 thread_unlock(tx); 2185 continue; 2186 } 2187 tspp = tx->t_cldata; 2188 tspp->ts_flags |= TSIASET; 2189 tspp->ts_boost = ia_boost; 2190 TS_NEWUMDPRI(tspp); 2191 tspp->ts_dispwait = 0; 2192 ts_change_priority(tx, tspp); 2193 thread_unlock(tx); 2194 } while ((tx = tx->t_forw) != fg->p_tlist); 2195 mutex_exit(&fg->p_lock); 2196 } 2197 skip: 2198 if (bg_pgid == 0) 2199 return; 2200 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2201 if (bg->p_stat == SIDL) { 2202 continue; 2203 } 2204 /* 2205 * sesssion leaders must be turned off explicitly 2206 * not implicitly as happens to other members of 2207 * the process group. 2208 */ 2209 if (bg->p_pid == bg->p_sessp->s_sid) { 2210 continue; 2211 } 2212 2213 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2214 "group off:proc %p", bg); 2215 2216 if (plocked) { 2217 if (mutex_tryenter(&bg->p_lock) == 0) 2218 continue; 2219 } else { 2220 mutex_enter(&bg->p_lock); 2221 } 2222 2223 if ((tx = proctot(bg)) == NULL) { 2224 mutex_exit(&bg->p_lock); 2225 continue; 2226 } 2227 do { 2228 thread_lock(tx); 2229 /* 2230 * if this thread is not interactive continue 2231 */ 2232 if (tx->t_cid != ia_cid) { 2233 thread_unlock(tx); 2234 continue; 2235 } 2236 tspp = tx->t_cldata; 2237 tspp->ts_flags &= ~TSIASET; 2238 tspp->ts_boost = -ia_boost; 2239 TS_NEWUMDPRI(tspp); 2240 2241 tspp->ts_dispwait = 0; 2242 ts_change_priority(tx, tspp); 2243 thread_unlock(tx); 2244 } while ((tx = tx->t_forw) != bg->p_tlist); 2245 mutex_exit(&bg->p_lock); 2246 } 2247 } 2248 2249 2250 static void 2251 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2252 { 2253 pri_t new_pri; 2254 2255 ASSERT(THREAD_LOCK_HELD(t)); 2256 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2257 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2258 tspp->ts_flags &= ~TSRESTORE; 2259 t->t_cpri = tspp->ts_upri; 2260 if (t == curthread || t->t_state == TS_ONPROC) { 2261 /* curthread is always onproc */ 2262 cpu_t *cp = t->t_disp_queue->disp_cpu; 2263 THREAD_CHANGE_PRI(t, new_pri); 2264 if (t == cp->cpu_dispthread) 2265 cp->cpu_dispatch_pri = DISP_PRIO(t); 2266 if (DISP_MUST_SURRENDER(t)) { 2267 tspp->ts_flags |= TSBACKQ; 2268 cpu_surrender(t); 2269 } else { 2270 tspp->ts_timeleft = 2271 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2272 } 2273 } else { 2274 int frontq; 2275 2276 frontq = (tspp->ts_flags & TSIASET) != 0; 2277 /* 2278 * When the priority of a thread is changed, 2279 * it may be necessary to adjust its position 2280 * on a sleep queue or dispatch queue. 2281 * The function thread_change_pri accomplishes 2282 * this. 2283 */ 2284 if (thread_change_pri(t, new_pri, frontq)) { 2285 /* 2286 * The thread was on a run queue. Reset 2287 * its CPU timeleft from the quantum 2288 * associated with the new priority. 2289 */ 2290 tspp->ts_timeleft = 2291 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2292 } else { 2293 tspp->ts_flags |= TSBACKQ; 2294 } 2295 } 2296 } 2297 2298 static int 2299 ts_alloc(void **p, int flag) 2300 { 2301 void *bufp; 2302 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2303 if (bufp == NULL) { 2304 return (ENOMEM); 2305 } else { 2306 *p = bufp; 2307 return (0); 2308 } 2309 } 2310 2311 static void 2312 ts_free(void *bufp) 2313 { 2314 if (bufp) 2315 kmem_free(bufp, sizeof (tsproc_t)); 2316 } 2317