1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/cred.h> 33 #include <sys/proc.h> 34 #include <sys/session.h> 35 #include <sys/strsubr.h> 36 #include <sys/signal.h> 37 #include <sys/user.h> 38 #include <sys/priocntl.h> 39 #include <sys/class.h> 40 #include <sys/disp.h> 41 #include <sys/procset.h> 42 #include <sys/debug.h> 43 #include <sys/ts.h> 44 #include <sys/tspriocntl.h> 45 #include <sys/iapriocntl.h> 46 #include <sys/kmem.h> 47 #include <sys/errno.h> 48 #include <sys/cpuvar.h> 49 #include <sys/systm.h> /* for lbolt */ 50 #include <sys/vtrace.h> 51 #include <sys/vmsystm.h> 52 #include <sys/schedctl.h> 53 #include <sys/tnf_probe.h> 54 #include <sys/atomic.h> 55 #include <sys/policy.h> 56 #include <sys/sdt.h> 57 #include <sys/cpupart.h> 58 #include <vm/rm.h> 59 #include <vm/seg_kmem.h> 60 #include <sys/modctl.h> 61 #include <sys/cpucaps.h> 62 63 static pri_t ts_init(id_t, int, classfuncs_t **); 64 65 static struct sclass csw = { 66 "TS", 67 ts_init, 68 0 69 }; 70 71 static struct modlsched modlsched = { 72 &mod_schedops, "time sharing sched class", &csw 73 }; 74 75 static struct modlinkage modlinkage = { 76 MODREV_1, (void *)&modlsched, NULL 77 }; 78 79 int 80 _init() 81 { 82 return (mod_install(&modlinkage)); 83 } 84 85 int 86 _fini() 87 { 88 return (EBUSY); /* don't remove TS for now */ 89 } 90 91 int 92 _info(struct modinfo *modinfop) 93 { 94 return (mod_info(&modlinkage, modinfop)); 95 } 96 97 /* 98 * Class specific code for the time-sharing class 99 */ 100 101 102 /* 103 * Extern declarations for variables defined in the ts master file 104 */ 105 #define TSMAXUPRI 60 106 107 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 108 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 109 110 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 111 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 112 113 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 114 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 115 /* sleeping or running in kernel after sleep */ 116 117 static id_t ia_cid; 118 119 int ts_sleep_promote = 1; 120 121 #define tsmedumdpri (ts_maxumdpri >> 1) 122 123 #define TS_NEWUMDPRI(tspp) \ 124 { \ 125 pri_t pri; \ 126 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 127 if (pri > ts_maxumdpri) \ 128 (tspp)->ts_umdpri = ts_maxumdpri; \ 129 else if (pri < 0) \ 130 (tspp)->ts_umdpri = 0; \ 131 else \ 132 (tspp)->ts_umdpri = pri; \ 133 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 134 } 135 136 /* 137 * The tsproc_t structures are kept in an array of circular doubly linked 138 * lists. A hash on the thread pointer is used to determine which list 139 * each thread should be placed. Each list has a dummy "head" which is 140 * never removed, so the list is never empty. ts_update traverses these 141 * lists to update the priorities of threads that have been waiting on 142 * the run queue. 143 */ 144 145 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 146 147 /* hash function, argument is a thread pointer */ 148 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 149 150 /* iterate to the next list */ 151 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 152 153 /* 154 * Insert thread into the appropriate tsproc list. 155 */ 156 #define TS_LIST_INSERT(tspp) \ 157 { \ 158 int index = TS_LIST_HASH(tspp->ts_tp); \ 159 kmutex_t *lockp = &ts_list_lock[index]; \ 160 tsproc_t *headp = &ts_plisthead[index]; \ 161 mutex_enter(lockp); \ 162 tspp->ts_next = headp->ts_next; \ 163 tspp->ts_prev = headp; \ 164 headp->ts_next->ts_prev = tspp; \ 165 headp->ts_next = tspp; \ 166 mutex_exit(lockp); \ 167 } 168 169 /* 170 * Remove thread from tsproc list. 171 */ 172 #define TS_LIST_DELETE(tspp) \ 173 { \ 174 int index = TS_LIST_HASH(tspp->ts_tp); \ 175 kmutex_t *lockp = &ts_list_lock[index]; \ 176 mutex_enter(lockp); \ 177 tspp->ts_prev->ts_next = tspp->ts_next; \ 178 tspp->ts_next->ts_prev = tspp->ts_prev; \ 179 mutex_exit(lockp); \ 180 } 181 182 183 static int ts_admin(caddr_t, cred_t *); 184 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 185 static int ts_fork(kthread_t *, kthread_t *, void *); 186 static int ts_getclinfo(void *); 187 static int ts_getclpri(pcpri_t *); 188 static int ts_parmsin(void *); 189 static int ts_parmsout(void *, pc_vaparms_t *); 190 static int ts_vaparmsin(void *, pc_vaparms_t *); 191 static int ts_vaparmsout(void *, pc_vaparms_t *); 192 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 193 static void ts_exit(kthread_t *); 194 static int ts_donice(kthread_t *, cred_t *, int, int *); 195 static int ts_doprio(kthread_t *, cred_t *, int, int *); 196 static void ts_exitclass(void *); 197 static int ts_canexit(kthread_t *, cred_t *); 198 static void ts_forkret(kthread_t *, kthread_t *); 199 static void ts_nullsys(); 200 static void ts_parmsget(kthread_t *, void *); 201 static void ts_preempt(kthread_t *); 202 static void ts_setrun(kthread_t *); 203 static void ts_sleep(kthread_t *); 204 static pri_t ts_swapin(kthread_t *, int); 205 static pri_t ts_swapout(kthread_t *, int); 206 static void ts_tick(kthread_t *); 207 static void ts_trapret(kthread_t *); 208 static void ts_update(void *); 209 static int ts_update_list(int); 210 static void ts_wakeup(kthread_t *); 211 static pri_t ts_globpri(kthread_t *); 212 static void ts_yield(kthread_t *); 213 extern tsdpent_t *ts_getdptbl(void); 214 extern pri_t *ts_getkmdpris(void); 215 extern pri_t td_getmaxumdpri(void); 216 static int ts_alloc(void **, int); 217 static void ts_free(void *); 218 219 pri_t ia_init(id_t, int, classfuncs_t **); 220 static int ia_getclinfo(void *); 221 static int ia_getclpri(pcpri_t *); 222 static int ia_parmsin(void *); 223 static int ia_vaparmsin(void *, pc_vaparms_t *); 224 static int ia_vaparmsout(void *, pc_vaparms_t *); 225 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 226 static void ia_parmsget(kthread_t *, void *); 227 static void ia_set_process_group(pid_t, pid_t, pid_t); 228 229 static void ts_change_priority(kthread_t *, tsproc_t *); 230 231 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 232 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 233 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 234 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 235 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 236 237 static gid_t IA_gid = 0; 238 239 static struct classfuncs ts_classfuncs = { 240 /* class functions */ 241 ts_admin, 242 ts_getclinfo, 243 ts_parmsin, 244 ts_parmsout, 245 ts_vaparmsin, 246 ts_vaparmsout, 247 ts_getclpri, 248 ts_alloc, 249 ts_free, 250 251 /* thread functions */ 252 ts_enterclass, 253 ts_exitclass, 254 ts_canexit, 255 ts_fork, 256 ts_forkret, 257 ts_parmsget, 258 ts_parmsset, 259 ts_nullsys, /* stop */ 260 ts_exit, 261 ts_nullsys, /* active */ 262 ts_nullsys, /* inactive */ 263 ts_swapin, 264 ts_swapout, 265 ts_trapret, 266 ts_preempt, 267 ts_setrun, 268 ts_sleep, 269 ts_tick, 270 ts_wakeup, 271 ts_donice, 272 ts_globpri, 273 ts_nullsys, /* set_process_group */ 274 ts_yield, 275 ts_doprio, 276 }; 277 278 /* 279 * ia_classfuncs is used for interactive class threads; IA threads are stored 280 * on the same class list as TS threads, and most of the class functions are 281 * identical, but a few have different enough functionality to require their 282 * own functions. 283 */ 284 static struct classfuncs ia_classfuncs = { 285 /* class functions */ 286 ts_admin, 287 ia_getclinfo, 288 ia_parmsin, 289 ts_parmsout, 290 ia_vaparmsin, 291 ia_vaparmsout, 292 ia_getclpri, 293 ts_alloc, 294 ts_free, 295 296 /* thread functions */ 297 ts_enterclass, 298 ts_exitclass, 299 ts_canexit, 300 ts_fork, 301 ts_forkret, 302 ia_parmsget, 303 ia_parmsset, 304 ts_nullsys, /* stop */ 305 ts_exit, 306 ts_nullsys, /* active */ 307 ts_nullsys, /* inactive */ 308 ts_swapin, 309 ts_swapout, 310 ts_trapret, 311 ts_preempt, 312 ts_setrun, 313 ts_sleep, 314 ts_tick, 315 ts_wakeup, 316 ts_donice, 317 ts_globpri, 318 ia_set_process_group, 319 ts_yield, 320 ts_doprio, 321 }; 322 323 324 /* 325 * Time sharing class initialization. Called by dispinit() at boot time. 326 * We can ignore the clparmsz argument since we know that the smallest 327 * possible parameter buffer is big enough for us. 328 */ 329 /* ARGSUSED */ 330 static pri_t 331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 332 { 333 int i; 334 extern pri_t ts_getmaxumdpri(void); 335 336 ts_dptbl = ts_getdptbl(); 337 ts_kmdpris = ts_getkmdpris(); 338 ts_maxumdpri = ts_getmaxumdpri(); 339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 340 341 /* 342 * Initialize the tsproc lists. 343 */ 344 for (i = 0; i < TS_LISTS; i++) { 345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 346 &ts_plisthead[i]; 347 } 348 349 /* 350 * We're required to return a pointer to our classfuncs 351 * structure and the highest global priority value we use. 352 */ 353 *clfuncspp = &ts_classfuncs; 354 return (ts_maxglobpri); 355 } 356 357 358 /* 359 * Interactive class scheduler initialization 360 */ 361 /* ARGSUSED */ 362 pri_t 363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 364 { 365 /* 366 * We're required to return a pointer to our classfuncs 367 * structure and the highest global priority value we use. 368 */ 369 ia_cid = cid; 370 *clfuncspp = &ia_classfuncs; 371 return (ts_maxglobpri); 372 } 373 374 375 /* 376 * Get or reset the ts_dptbl values per the user's request. 377 */ 378 static int 379 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 380 { 381 tsadmin_t tsadmin; 382 tsdpent_t *tmpdpp; 383 int userdpsz; 384 int i; 385 size_t tsdpsz; 386 387 if (get_udatamodel() == DATAMODEL_NATIVE) { 388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 389 return (EFAULT); 390 } 391 #ifdef _SYSCALL32_IMPL 392 else { 393 /* get tsadmin struct from ILP32 caller */ 394 tsadmin32_t tsadmin32; 395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 396 return (EFAULT); 397 tsadmin.ts_dpents = 398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 400 tsadmin.ts_cmd = tsadmin32.ts_cmd; 401 } 402 #endif /* _SYSCALL32_IMPL */ 403 404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 405 406 switch (tsadmin.ts_cmd) { 407 case TS_GETDPSIZE: 408 tsadmin.ts_ndpents = ts_maxumdpri + 1; 409 410 if (get_udatamodel() == DATAMODEL_NATIVE) { 411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 412 return (EFAULT); 413 } 414 #ifdef _SYSCALL32_IMPL 415 else { 416 /* return tsadmin struct to ILP32 caller */ 417 tsadmin32_t tsadmin32; 418 tsadmin32.ts_dpents = 419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 421 tsadmin32.ts_cmd = tsadmin.ts_cmd; 422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 423 return (EFAULT); 424 } 425 #endif /* _SYSCALL32_IMPL */ 426 break; 427 428 case TS_GETDPTBL: 429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 430 tsdpsz); 431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 432 return (EFAULT); 433 434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 435 436 if (get_udatamodel() == DATAMODEL_NATIVE) { 437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 438 return (EFAULT); 439 } 440 #ifdef _SYSCALL32_IMPL 441 else { 442 /* return tsadmin struct to ILP32 callers */ 443 tsadmin32_t tsadmin32; 444 tsadmin32.ts_dpents = 445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 447 tsadmin32.ts_cmd = tsadmin.ts_cmd; 448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 449 return (EFAULT); 450 } 451 #endif /* _SYSCALL32_IMPL */ 452 break; 453 454 case TS_SETDPTBL: 455 /* 456 * We require that the requesting process has sufficient 457 * priveleges. We also require that the table supplied by 458 * the user exactly match the current ts_dptbl in size. 459 */ 460 if (secpolicy_dispadm(reqpcredp) != 0) 461 return (EPERM); 462 463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 464 return (EINVAL); 465 } 466 467 /* 468 * We read the user supplied table into a temporary buffer 469 * where it is validated before being copied over the 470 * ts_dptbl. 471 */ 472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 474 tsdpsz)) { 475 kmem_free(tmpdpp, tsdpsz); 476 return (EFAULT); 477 } 478 for (i = 0; i < tsadmin.ts_ndpents; i++) { 479 480 /* 481 * Validate the user supplied values. All we are doing 482 * here is verifying that the values are within their 483 * allowable ranges and will not panic the system. We 484 * make no attempt to ensure that the resulting 485 * configuration makes sense or results in reasonable 486 * performance. 487 */ 488 if (tmpdpp[i].ts_quantum <= 0) { 489 kmem_free(tmpdpp, tsdpsz); 490 return (EINVAL); 491 } 492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 493 tmpdpp[i].ts_tqexp < 0) { 494 kmem_free(tmpdpp, tsdpsz); 495 return (EINVAL); 496 } 497 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 498 tmpdpp[i].ts_slpret < 0) { 499 kmem_free(tmpdpp, tsdpsz); 500 return (EINVAL); 501 } 502 if (tmpdpp[i].ts_maxwait < 0) { 503 kmem_free(tmpdpp, tsdpsz); 504 return (EINVAL); 505 } 506 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 507 tmpdpp[i].ts_lwait < 0) { 508 kmem_free(tmpdpp, tsdpsz); 509 return (EINVAL); 510 } 511 } 512 513 /* 514 * Copy the user supplied values over the current ts_dptbl 515 * values. The ts_globpri member is read-only so we don't 516 * overwrite it. 517 */ 518 mutex_enter(&ts_dptblock); 519 for (i = 0; i < tsadmin.ts_ndpents; i++) { 520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 525 } 526 mutex_exit(&ts_dptblock); 527 kmem_free(tmpdpp, tsdpsz); 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 return (0); 534 } 535 536 537 /* 538 * Allocate a time-sharing class specific thread structure and 539 * initialize it with the parameters supplied. Also move the thread 540 * to specified time-sharing priority. 541 */ 542 static int 543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 544 cred_t *reqpcredp, void *bufp) 545 { 546 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 547 tsproc_t *tspp; 548 pri_t reqtsuprilim; 549 pri_t reqtsupri; 550 static uint32_t tspexists = 0; /* set on first occurrence of */ 551 /* a time-sharing process */ 552 553 tspp = (tsproc_t *)bufp; 554 ASSERT(tspp != NULL); 555 556 /* 557 * Initialize the tsproc structure. 558 */ 559 tspp->ts_cpupri = tsmedumdpri; 560 if (cid == ia_cid) { 561 /* 562 * Check to make sure caller is either privileged or the 563 * window system. When the window system is converted 564 * to using privileges, the second check can go away. 565 */ 566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 567 secpolicy_setpriority(reqpcredp) != 0) 568 return (EPERM); 569 /* 570 * Belongs to IA "class", so set appropriate flags. 571 * Mark as 'on' so it will not be a swap victim 572 * while forking. 573 */ 574 tspp->ts_flags = TSIA | TSIASET; 575 tspp->ts_boost = ia_boost; 576 } else { 577 tspp->ts_flags = 0; 578 tspp->ts_boost = 0; 579 } 580 581 if (tsparmsp == NULL) { 582 /* 583 * Use default values. 584 */ 585 tspp->ts_uprilim = tspp->ts_upri = 0; 586 tspp->ts_nice = NZERO; 587 } else { 588 /* 589 * Use supplied values. 590 */ 591 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 592 reqtsuprilim = 0; 593 else { 594 if (tsparmsp->ts_uprilim > 0 && 595 secpolicy_setpriority(reqpcredp) != 0) 596 return (EPERM); 597 reqtsuprilim = tsparmsp->ts_uprilim; 598 } 599 600 if (tsparmsp->ts_upri == TS_NOCHANGE) { 601 reqtsupri = reqtsuprilim; 602 } else { 603 if (tsparmsp->ts_upri > 0 && 604 secpolicy_setpriority(reqpcredp) != 0) 605 return (EPERM); 606 /* 607 * Set the user priority to the requested value 608 * or the upri limit, whichever is lower. 609 */ 610 reqtsupri = tsparmsp->ts_upri; 611 if (reqtsupri > reqtsuprilim) 612 reqtsupri = reqtsuprilim; 613 } 614 615 616 tspp->ts_uprilim = reqtsuprilim; 617 tspp->ts_upri = reqtsupri; 618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri; 619 } 620 TS_NEWUMDPRI(tspp); 621 622 tspp->ts_dispwait = 0; 623 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 624 tspp->ts_tp = t; 625 cpucaps_sc_init(&tspp->ts_caps); 626 627 /* 628 * Reset priority. Process goes to a "user mode" priority 629 * here regardless of whether or not it has slept since 630 * entering the kernel. 631 */ 632 thread_lock(t); /* get dispatcher lock on thread */ 633 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 634 t->t_cid = cid; 635 t->t_cldata = (void *)tspp; 636 t->t_schedflag &= ~TS_RUNQMATCH; 637 ts_change_priority(t, tspp); 638 thread_unlock(t); 639 640 /* 641 * Link new structure into tsproc list. 642 */ 643 TS_LIST_INSERT(tspp); 644 645 /* 646 * If this is the first time-sharing thread to occur since 647 * boot we set up the initial call to ts_update() here. 648 * Use an atomic compare-and-swap since that's easier and 649 * faster than a mutex (but check with an ordinary load first 650 * since most of the time this will already be done). 651 */ 652 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 653 (void) timeout(ts_update, NULL, hz); 654 655 return (0); 656 } 657 658 659 /* 660 * Free tsproc structure of thread. 661 */ 662 static void 663 ts_exitclass(void *procp) 664 { 665 tsproc_t *tspp = (tsproc_t *)procp; 666 667 /* Remove tsproc_t structure from list */ 668 TS_LIST_DELETE(tspp); 669 kmem_free(tspp, sizeof (tsproc_t)); 670 } 671 672 /* ARGSUSED */ 673 static int 674 ts_canexit(kthread_t *t, cred_t *cred) 675 { 676 /* 677 * A thread can always leave a TS/IA class 678 */ 679 return (0); 680 } 681 682 static int 683 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 684 { 685 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 686 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 687 688 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 689 690 ctspp = (tsproc_t *)bufp; 691 ASSERT(ctspp != NULL); 692 ptspp = (tsproc_t *)t->t_cldata; 693 /* 694 * Initialize child's tsproc structure. 695 */ 696 thread_lock(t); 697 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 698 ctspp->ts_cpupri = ptspp->ts_cpupri; 699 ctspp->ts_boost = ptspp->ts_boost; 700 ctspp->ts_uprilim = ptspp->ts_uprilim; 701 ctspp->ts_upri = ptspp->ts_upri; 702 TS_NEWUMDPRI(ctspp); 703 ctspp->ts_nice = ptspp->ts_nice; 704 ctspp->ts_dispwait = 0; 705 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 706 ctspp->ts_tp = ct; 707 cpucaps_sc_init(&ctspp->ts_caps); 708 thread_unlock(t); 709 710 /* 711 * Link new structure into tsproc list. 712 */ 713 ct->t_cldata = (void *)ctspp; 714 TS_LIST_INSERT(ctspp); 715 return (0); 716 } 717 718 719 /* 720 * Child is placed at back of dispatcher queue and parent gives 721 * up processor so that the child runs first after the fork. 722 * This allows the child immediately execing to break the multiple 723 * use of copy on write pages with no disk home. The parent will 724 * get to steal them back rather than uselessly copying them. 725 */ 726 static void 727 ts_forkret(kthread_t *t, kthread_t *ct) 728 { 729 proc_t *pp = ttoproc(t); 730 proc_t *cp = ttoproc(ct); 731 tsproc_t *tspp; 732 733 ASSERT(t == curthread); 734 ASSERT(MUTEX_HELD(&pidlock)); 735 736 /* 737 * Grab the child's p_lock before dropping pidlock to ensure 738 * the process does not disappear before we set it running. 739 */ 740 mutex_enter(&cp->p_lock); 741 continuelwps(cp); 742 mutex_exit(&cp->p_lock); 743 744 mutex_enter(&pp->p_lock); 745 mutex_exit(&pidlock); 746 continuelwps(pp); 747 748 thread_lock(t); 749 tspp = (tsproc_t *)(t->t_cldata); 750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 751 TS_NEWUMDPRI(tspp); 752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 753 tspp->ts_dispwait = 0; 754 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 756 tspp->ts_flags &= ~TSKPRI; 757 THREAD_TRANSITION(t); 758 ts_setrun(t); 759 thread_unlock(t); 760 /* 761 * Safe to drop p_lock now since since it is safe to change 762 * the scheduling class after this point. 763 */ 764 mutex_exit(&pp->p_lock); 765 766 swtch(); 767 } 768 769 770 /* 771 * Get information about the time-sharing class into the buffer 772 * pointed to by tsinfop. The maximum configured user priority 773 * is the only information we supply. ts_getclinfo() is called 774 * for TS threads, and ia_getclinfo() is called for IA threads. 775 */ 776 static int 777 ts_getclinfo(void *infop) 778 { 779 tsinfo_t *tsinfop = (tsinfo_t *)infop; 780 tsinfop->ts_maxupri = ts_maxupri; 781 return (0); 782 } 783 784 static int 785 ia_getclinfo(void *infop) 786 { 787 iainfo_t *iainfop = (iainfo_t *)infop; 788 iainfop->ia_maxupri = ia_maxupri; 789 return (0); 790 } 791 792 793 /* 794 * Return the user mode scheduling priority range. 795 */ 796 static int 797 ts_getclpri(pcpri_t *pcprip) 798 { 799 pcprip->pc_clpmax = ts_maxupri; 800 pcprip->pc_clpmin = -ts_maxupri; 801 return (0); 802 } 803 804 805 static int 806 ia_getclpri(pcpri_t *pcprip) 807 { 808 pcprip->pc_clpmax = ia_maxupri; 809 pcprip->pc_clpmin = -ia_maxupri; 810 return (0); 811 } 812 813 814 static void 815 ts_nullsys() 816 {} 817 818 819 /* 820 * Get the time-sharing parameters of the thread pointed to by 821 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 822 * is called for TS threads, and ia_parmsget() is called for IA 823 * threads. 824 */ 825 static void 826 ts_parmsget(kthread_t *t, void *parmsp) 827 { 828 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 829 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 830 831 tsparmsp->ts_uprilim = tspp->ts_uprilim; 832 tsparmsp->ts_upri = tspp->ts_upri; 833 } 834 835 static void 836 ia_parmsget(kthread_t *t, void *parmsp) 837 { 838 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 839 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 840 841 iaparmsp->ia_uprilim = tspp->ts_uprilim; 842 iaparmsp->ia_upri = tspp->ts_upri; 843 if (tspp->ts_flags & TSIASET) 844 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 845 else 846 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 847 } 848 849 850 /* 851 * Check the validity of the time-sharing parameters in the buffer 852 * pointed to by tsparmsp. 853 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 854 * for IA threads. 855 */ 856 static int 857 ts_parmsin(void *parmsp) 858 { 859 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 860 /* 861 * Check validity of parameters. 862 */ 863 if ((tsparmsp->ts_uprilim > ts_maxupri || 864 tsparmsp->ts_uprilim < -ts_maxupri) && 865 tsparmsp->ts_uprilim != TS_NOCHANGE) 866 return (EINVAL); 867 868 if ((tsparmsp->ts_upri > ts_maxupri || 869 tsparmsp->ts_upri < -ts_maxupri) && 870 tsparmsp->ts_upri != TS_NOCHANGE) 871 return (EINVAL); 872 873 return (0); 874 } 875 876 static int 877 ia_parmsin(void *parmsp) 878 { 879 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 880 881 if ((iaparmsp->ia_uprilim > ia_maxupri || 882 iaparmsp->ia_uprilim < -ia_maxupri) && 883 iaparmsp->ia_uprilim != IA_NOCHANGE) { 884 return (EINVAL); 885 } 886 887 if ((iaparmsp->ia_upri > ia_maxupri || 888 iaparmsp->ia_upri < -ia_maxupri) && 889 iaparmsp->ia_upri != IA_NOCHANGE) { 890 return (EINVAL); 891 } 892 893 return (0); 894 } 895 896 897 /* 898 * Check the validity of the time-sharing parameters in the pc_vaparms_t 899 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 900 * pc_vaparms_t contains (key, value) pairs of parameter. 901 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 902 * for IA threads. ts_vaparmsin() is the variable parameter version of 903 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 904 * ia_parmsin(). 905 */ 906 static int 907 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 908 { 909 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 910 int priflag = 0; 911 int limflag = 0; 912 uint_t cnt; 913 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 914 915 916 /* 917 * TS_NOCHANGE (-32768) is outside of the range of values for 918 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 919 * TS_NOCHANGE should be replaced by a flag word (in the same manner 920 * as in rt.c). 921 */ 922 tsparmsp->ts_uprilim = TS_NOCHANGE; 923 tsparmsp->ts_upri = TS_NOCHANGE; 924 925 /* 926 * Get the varargs parameter and check validity of parameters. 927 */ 928 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 929 return (EINVAL); 930 931 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 932 933 switch (vpp->pc_key) { 934 case TS_KY_UPRILIM: 935 if (limflag++) 936 return (EINVAL); 937 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 938 if (tsparmsp->ts_uprilim > ts_maxupri || 939 tsparmsp->ts_uprilim < -ts_maxupri) 940 return (EINVAL); 941 break; 942 943 case TS_KY_UPRI: 944 if (priflag++) 945 return (EINVAL); 946 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 947 if (tsparmsp->ts_upri > ts_maxupri || 948 tsparmsp->ts_upri < -ts_maxupri) 949 return (EINVAL); 950 break; 951 952 default: 953 return (EINVAL); 954 } 955 } 956 957 if (vaparmsp->pc_vaparmscnt == 0) { 958 /* 959 * Use default parameters. 960 */ 961 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 962 } 963 964 return (0); 965 } 966 967 static int 968 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 969 { 970 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 971 int priflag = 0; 972 int limflag = 0; 973 int mflag = 0; 974 uint_t cnt; 975 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 976 977 /* 978 * IA_NOCHANGE (-32768) is outside of the range of values for 979 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 980 * changed, IA_NOCHANGE should be replaced by a flag word (in the 981 * same manner as in rt.c). 982 */ 983 iaparmsp->ia_uprilim = IA_NOCHANGE; 984 iaparmsp->ia_upri = IA_NOCHANGE; 985 iaparmsp->ia_mode = IA_NOCHANGE; 986 987 /* 988 * Get the varargs parameter and check validity of parameters. 989 */ 990 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 991 return (EINVAL); 992 993 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 994 995 switch (vpp->pc_key) { 996 case IA_KY_UPRILIM: 997 if (limflag++) 998 return (EINVAL); 999 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 1000 if (iaparmsp->ia_uprilim > ia_maxupri || 1001 iaparmsp->ia_uprilim < -ia_maxupri) 1002 return (EINVAL); 1003 break; 1004 1005 case IA_KY_UPRI: 1006 if (priflag++) 1007 return (EINVAL); 1008 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 1009 if (iaparmsp->ia_upri > ia_maxupri || 1010 iaparmsp->ia_upri < -ia_maxupri) 1011 return (EINVAL); 1012 break; 1013 1014 case IA_KY_MODE: 1015 if (mflag++) 1016 return (EINVAL); 1017 iaparmsp->ia_mode = (int)vpp->pc_parm; 1018 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1019 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1020 return (EINVAL); 1021 break; 1022 1023 default: 1024 return (EINVAL); 1025 } 1026 } 1027 1028 if (vaparmsp->pc_vaparmscnt == 0) { 1029 /* 1030 * Use default parameters. 1031 */ 1032 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1033 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1034 } 1035 1036 return (0); 1037 } 1038 1039 /* 1040 * Nothing to do here but return success. 1041 */ 1042 /* ARGSUSED */ 1043 static int 1044 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1045 { 1046 return (0); 1047 } 1048 1049 1050 /* 1051 * Copy all selected time-sharing class parameters to the user. 1052 * The parameters are specified by a key. 1053 */ 1054 static int 1055 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1056 { 1057 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1058 int priflag = 0; 1059 int limflag = 0; 1060 uint_t cnt; 1061 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1062 1063 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1064 1065 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1066 return (EINVAL); 1067 1068 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1069 1070 switch (vpp->pc_key) { 1071 case TS_KY_UPRILIM: 1072 if (limflag++) 1073 return (EINVAL); 1074 if (copyout(&tsprmsp->ts_uprilim, 1075 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1076 return (EFAULT); 1077 break; 1078 1079 case TS_KY_UPRI: 1080 if (priflag++) 1081 return (EINVAL); 1082 if (copyout(&tsprmsp->ts_upri, 1083 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1084 return (EFAULT); 1085 break; 1086 1087 default: 1088 return (EINVAL); 1089 } 1090 } 1091 1092 return (0); 1093 } 1094 1095 1096 /* 1097 * Copy all selected interactive class parameters to the user. 1098 * The parameters are specified by a key. 1099 */ 1100 static int 1101 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1102 { 1103 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1104 int priflag = 0; 1105 int limflag = 0; 1106 int mflag = 0; 1107 uint_t cnt; 1108 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1109 1110 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1111 1112 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1113 return (EINVAL); 1114 1115 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1116 1117 switch (vpp->pc_key) { 1118 case IA_KY_UPRILIM: 1119 if (limflag++) 1120 return (EINVAL); 1121 if (copyout(&iaprmsp->ia_uprilim, 1122 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1123 return (EFAULT); 1124 break; 1125 1126 case IA_KY_UPRI: 1127 if (priflag++) 1128 return (EINVAL); 1129 if (copyout(&iaprmsp->ia_upri, 1130 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1131 return (EFAULT); 1132 break; 1133 1134 case IA_KY_MODE: 1135 if (mflag++) 1136 return (EINVAL); 1137 if (copyout(&iaprmsp->ia_mode, 1138 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1139 return (EFAULT); 1140 break; 1141 1142 default: 1143 return (EINVAL); 1144 } 1145 } 1146 return (0); 1147 } 1148 1149 1150 /* 1151 * Set the scheduling parameters of the thread pointed to by tsprocp 1152 * to those specified in the buffer pointed to by tsparmsp. 1153 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1154 * called for IA threads. 1155 */ 1156 /* ARGSUSED */ 1157 static int 1158 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1159 { 1160 char nice; 1161 pri_t reqtsuprilim; 1162 pri_t reqtsupri; 1163 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1164 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1165 1166 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1167 1168 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1169 reqtsuprilim = tspp->ts_uprilim; 1170 else 1171 reqtsuprilim = tsparmsp->ts_uprilim; 1172 1173 if (tsparmsp->ts_upri == TS_NOCHANGE) 1174 reqtsupri = tspp->ts_upri; 1175 else 1176 reqtsupri = tsparmsp->ts_upri; 1177 1178 /* 1179 * Make sure the user priority doesn't exceed the upri limit. 1180 */ 1181 if (reqtsupri > reqtsuprilim) 1182 reqtsupri = reqtsuprilim; 1183 1184 /* 1185 * Basic permissions enforced by generic kernel code 1186 * for all classes require that a thread attempting 1187 * to change the scheduling parameters of a target 1188 * thread be privileged or have a real or effective 1189 * UID matching that of the target thread. We are not 1190 * called unless these basic permission checks have 1191 * already passed. The time-sharing class requires in 1192 * addition that the calling thread be privileged if it 1193 * is attempting to raise the upri limit above its current 1194 * value This may have been checked previously but if our 1195 * caller passed us a non-NULL credential pointer we assume 1196 * it hasn't and we check it here. 1197 */ 1198 if (reqpcredp != NULL && 1199 reqtsuprilim > tspp->ts_uprilim && 1200 secpolicy_setpriority(reqpcredp) != 0) 1201 return (EPERM); 1202 1203 /* 1204 * Set ts_nice to the nice value corresponding to the user 1205 * priority we are setting. Note that setting the nice field 1206 * of the parameter struct won't affect upri or nice. 1207 */ 1208 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1209 if (nice >= 2 * NZERO) 1210 nice = 2 * NZERO - 1; 1211 1212 thread_lock(tx); 1213 1214 tspp->ts_uprilim = reqtsuprilim; 1215 tspp->ts_upri = reqtsupri; 1216 TS_NEWUMDPRI(tspp); 1217 tspp->ts_nice = nice; 1218 1219 if ((tspp->ts_flags & TSKPRI) != 0) { 1220 thread_unlock(tx); 1221 return (0); 1222 } 1223 1224 tspp->ts_dispwait = 0; 1225 ts_change_priority(tx, tspp); 1226 thread_unlock(tx); 1227 return (0); 1228 } 1229 1230 1231 static int 1232 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1233 { 1234 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1235 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1236 proc_t *p; 1237 pid_t pid, pgid, sid; 1238 pid_t on, off; 1239 struct stdata *stp; 1240 int sess_held; 1241 1242 /* 1243 * Handle user priority changes 1244 */ 1245 if (iaparmsp->ia_mode == IA_NOCHANGE) 1246 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1247 1248 /* 1249 * Check permissions for changing modes. 1250 */ 1251 1252 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1253 secpolicy_setpriority(reqpcredp) != 0) { 1254 /* 1255 * Silently fail in case this is just a priocntl 1256 * call with upri and uprilim set to IA_NOCHANGE. 1257 */ 1258 return (0); 1259 } 1260 1261 ASSERT(MUTEX_HELD(&pidlock)); 1262 if ((p = ttoproc(tx)) == NULL) { 1263 return (0); 1264 } 1265 ASSERT(MUTEX_HELD(&p->p_lock)); 1266 if (p->p_stat == SIDL) { 1267 return (0); 1268 } 1269 pid = p->p_pid; 1270 sid = p->p_sessp->s_sid; 1271 pgid = p->p_pgrp; 1272 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1273 /* 1274 * session leaders must be turned on now so all processes 1275 * in the group controlling the tty will be turned on or off. 1276 * if the ia_mode is off for the session leader, 1277 * ia_set_process_group will return without setting the 1278 * processes in the group controlling the tty on. 1279 */ 1280 thread_lock(tx); 1281 tspp->ts_flags |= TSIASET; 1282 thread_unlock(tx); 1283 } 1284 mutex_enter(&p->p_sessp->s_lock); 1285 sess_held = 1; 1286 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1287 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1288 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1289 pgid = stp->sd_pgidp->pid_id; 1290 sess_held = 0; 1291 mutex_exit(&p->p_sessp->s_lock); 1292 if (iaparmsp->ia_mode == 1293 IA_SET_INTERACTIVE) { 1294 off = 0; 1295 on = pgid; 1296 } else { 1297 off = pgid; 1298 on = 0; 1299 } 1300 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1301 "active chain:pid %d gid %d %p", 1302 pid, pgid, p); 1303 ia_set_process_group(sid, off, on); 1304 } 1305 } 1306 if (sess_held) 1307 mutex_exit(&p->p_sessp->s_lock); 1308 1309 thread_lock(tx); 1310 1311 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1312 tspp->ts_flags |= TSIASET; 1313 tspp->ts_boost = ia_boost; 1314 } else { 1315 tspp->ts_flags &= ~TSIASET; 1316 tspp->ts_boost = -ia_boost; 1317 } 1318 thread_unlock(tx); 1319 1320 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1321 } 1322 1323 static void 1324 ts_exit(kthread_t *t) 1325 { 1326 tsproc_t *tspp; 1327 1328 if (CPUCAPS_ON()) { 1329 /* 1330 * A thread could be exiting in between clock ticks, 1331 * so we need to calculate how much CPU time it used 1332 * since it was charged last time. 1333 * 1334 * CPU caps are not enforced on exiting processes - it is 1335 * usually desirable to exit as soon as possible to free 1336 * resources. 1337 */ 1338 thread_lock(t); 1339 tspp = (tsproc_t *)t->t_cldata; 1340 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1341 thread_unlock(t); 1342 } 1343 } 1344 1345 /* 1346 * Return the global scheduling priority that would be assigned 1347 * to a thread entering the time-sharing class with the ts_upri. 1348 */ 1349 static pri_t 1350 ts_globpri(kthread_t *t) 1351 { 1352 tsproc_t *tspp; 1353 pri_t tspri; 1354 1355 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1356 tspp = (tsproc_t *)t->t_cldata; 1357 tspri = tsmedumdpri + tspp->ts_upri; 1358 if (tspri > ts_maxumdpri) 1359 tspri = ts_maxumdpri; 1360 else if (tspri < 0) 1361 tspri = 0; 1362 return (ts_dptbl[tspri].ts_globpri); 1363 } 1364 1365 /* 1366 * Arrange for thread to be placed in appropriate location 1367 * on dispatcher queue. 1368 * 1369 * This is called with the current thread in TS_ONPROC and locked. 1370 */ 1371 static void 1372 ts_preempt(kthread_t *t) 1373 { 1374 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1375 klwp_t *lwp = curthread->t_lwp; 1376 pri_t oldpri = t->t_pri; 1377 1378 ASSERT(t == curthread); 1379 ASSERT(THREAD_LOCK_HELD(curthread)); 1380 1381 /* 1382 * If preempted in the kernel, make sure the thread has 1383 * a kernel priority if needed. 1384 */ 1385 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1386 tspp->ts_flags |= TSKPRI; 1387 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1388 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1389 t->t_trapret = 1; /* so ts_trapret will run */ 1390 aston(t); 1391 } 1392 1393 /* 1394 * This thread may be placed on wait queue by CPU Caps. In this case we 1395 * do not need to do anything until it is removed from the wait queue. 1396 * Do not enforce CPU caps on threads running at a kernel priority 1397 */ 1398 if (CPUCAPS_ON()) { 1399 (void) cpucaps_charge(t, &tspp->ts_caps, 1400 CPUCAPS_CHARGE_ENFORCE); 1401 if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t)) 1402 return; 1403 } 1404 1405 /* 1406 * If thread got preempted in the user-land then we know 1407 * it isn't holding any locks. Mark it as swappable. 1408 */ 1409 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1410 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1411 t->t_schedflag &= ~TS_DONT_SWAP; 1412 1413 /* 1414 * Check to see if we're doing "preemption control" here. If 1415 * we are, and if the user has requested that this thread not 1416 * be preempted, and if preemptions haven't been put off for 1417 * too long, let the preemption happen here but try to make 1418 * sure the thread is rescheduled as soon as possible. We do 1419 * this by putting it on the front of the highest priority run 1420 * queue in the TS class. If the preemption has been put off 1421 * for too long, clear the "nopreempt" bit and let the thread 1422 * be preempted. 1423 */ 1424 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1425 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1426 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1427 if (!(tspp->ts_flags & TSKPRI)) { 1428 /* 1429 * If not already remembered, remember current 1430 * priority for restoration in ts_yield(). 1431 */ 1432 if (!(tspp->ts_flags & TSRESTORE)) { 1433 tspp->ts_scpri = t->t_pri; 1434 tspp->ts_flags |= TSRESTORE; 1435 } 1436 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1437 t->t_schedflag |= TS_DONT_SWAP; 1438 } 1439 schedctl_set_yield(t, 1); 1440 setfrontdq(t); 1441 goto done; 1442 } else { 1443 if (tspp->ts_flags & TSRESTORE) { 1444 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1445 tspp->ts_flags &= ~TSRESTORE; 1446 } 1447 schedctl_set_nopreempt(t, 0); 1448 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1449 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1450 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1451 tnf_lwpid, lwpid, t->t_tid); 1452 /* 1453 * Fall through and be preempted below. 1454 */ 1455 } 1456 } 1457 1458 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1459 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1460 tspp->ts_dispwait = 0; 1461 tspp->ts_flags &= ~TSBACKQ; 1462 setbackdq(t); 1463 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1464 tspp->ts_flags &= ~TSBACKQ; 1465 setbackdq(t); 1466 } else { 1467 setfrontdq(t); 1468 } 1469 1470 done: 1471 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1472 "preempt:tid %p old pri %d", t, oldpri); 1473 } 1474 1475 static void 1476 ts_setrun(kthread_t *t) 1477 { 1478 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1479 1480 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1481 1482 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1483 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1484 TS_NEWUMDPRI(tspp); 1485 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1486 tspp->ts_dispwait = 0; 1487 if ((tspp->ts_flags & TSKPRI) == 0) { 1488 THREAD_CHANGE_PRI(t, 1489 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1490 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1491 } 1492 } 1493 1494 tspp->ts_flags &= ~TSBACKQ; 1495 1496 if (tspp->ts_flags & TSIA) { 1497 if (tspp->ts_flags & TSIASET) 1498 setfrontdq(t); 1499 else 1500 setbackdq(t); 1501 } else { 1502 if (t->t_disp_time != ddi_get_lbolt()) 1503 setbackdq(t); 1504 else 1505 setfrontdq(t); 1506 } 1507 } 1508 1509 1510 /* 1511 * Prepare thread for sleep. We reset the thread priority so it will 1512 * run at the kernel priority level when it wakes up. 1513 */ 1514 static void 1515 ts_sleep(kthread_t *t) 1516 { 1517 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1518 int flags; 1519 pri_t old_pri = t->t_pri; 1520 1521 ASSERT(t == curthread); 1522 ASSERT(THREAD_LOCK_HELD(t)); 1523 1524 /* 1525 * Account for time spent on CPU before going to sleep. 1526 */ 1527 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1528 1529 flags = tspp->ts_flags; 1530 if (t->t_kpri_req) { 1531 tspp->ts_flags = flags | TSKPRI; 1532 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1533 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1534 t->t_trapret = 1; /* so ts_trapret will run */ 1535 aston(t); 1536 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1537 /* 1538 * If thread has blocked in the kernel (as opposed to 1539 * being merely preempted), recompute the user mode priority. 1540 */ 1541 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1542 TS_NEWUMDPRI(tspp); 1543 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1544 tspp->ts_dispwait = 0; 1545 1546 THREAD_CHANGE_PRI(curthread, 1547 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1548 ASSERT(curthread->t_pri >= 0 && 1549 curthread->t_pri <= ts_maxglobpri); 1550 tspp->ts_flags = flags & ~TSKPRI; 1551 1552 if (DISP_MUST_SURRENDER(curthread)) 1553 cpu_surrender(curthread); 1554 } else if (flags & TSKPRI) { 1555 THREAD_CHANGE_PRI(curthread, 1556 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1557 ASSERT(curthread->t_pri >= 0 && 1558 curthread->t_pri <= ts_maxglobpri); 1559 tspp->ts_flags = flags & ~TSKPRI; 1560 1561 if (DISP_MUST_SURRENDER(curthread)) 1562 cpu_surrender(curthread); 1563 } 1564 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1565 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1566 "sleep:tid %p old pri %d", t, old_pri); 1567 } 1568 1569 1570 /* 1571 * Return Values: 1572 * 1573 * -1 if the thread is loaded or is not eligible to be swapped in. 1574 * 1575 * effective priority of the specified thread based on swapout time 1576 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1577 */ 1578 /* ARGSUSED */ 1579 static pri_t 1580 ts_swapin(kthread_t *t, int flags) 1581 { 1582 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1583 long epri = -1; 1584 proc_t *pp = ttoproc(t); 1585 1586 ASSERT(THREAD_LOCK_HELD(t)); 1587 1588 /* 1589 * We know that pri_t is a short. 1590 * Be sure not to overrun its range. 1591 */ 1592 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1593 time_t swapout_time; 1594 1595 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 1596 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1597 epri = (long)DISP_PRIO(t) + swapout_time; 1598 else { 1599 /* 1600 * Threads which have been out for a long time, 1601 * have high user mode priority and are associated 1602 * with a small address space are more deserving 1603 */ 1604 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1605 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1606 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1607 } 1608 /* 1609 * Scale epri so SHRT_MAX/2 represents zero priority. 1610 */ 1611 epri += SHRT_MAX/2; 1612 if (epri < 0) 1613 epri = 0; 1614 else if (epri > SHRT_MAX) 1615 epri = SHRT_MAX; 1616 } 1617 return ((pri_t)epri); 1618 } 1619 1620 /* 1621 * Return Values 1622 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1623 * 1624 * effective priority of the specified thread based on if the swapper 1625 * is in softswap or hardswap mode. 1626 * 1627 * Softswap: Return a low effective priority for threads 1628 * sleeping for more than maxslp secs. 1629 * 1630 * Hardswap: Return an effective priority such that threads 1631 * which have been in memory for a while and are 1632 * associated with a small address space are swapped 1633 * in before others. 1634 * 1635 * (epri >= 0 , epri <= SHRT_MAX). 1636 */ 1637 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1638 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1639 1640 static pri_t 1641 ts_swapout(kthread_t *t, int flags) 1642 { 1643 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1644 long epri = -1; 1645 proc_t *pp = ttoproc(t); 1646 time_t swapin_time; 1647 1648 ASSERT(THREAD_LOCK_HELD(t)); 1649 1650 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1651 (t->t_proc_flag & TP_LWPEXIT) || 1652 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1653 TS_ONPROC | TS_WAIT)) || 1654 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1655 return (-1); 1656 1657 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1658 1659 /* 1660 * We know that pri_t is a short. 1661 * Be sure not to overrun its range. 1662 */ 1663 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 1664 if (flags == SOFTSWAP) { 1665 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1666 epri = 0; 1667 } else { 1668 return ((pri_t)epri); 1669 } 1670 } else { 1671 pri_t pri; 1672 1673 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1674 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1675 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1676 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1677 epri = swapin_time - 1678 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1679 } else { 1680 return ((pri_t)epri); 1681 } 1682 } 1683 1684 /* 1685 * Scale epri so SHRT_MAX/2 represents zero priority. 1686 */ 1687 epri += SHRT_MAX/2; 1688 if (epri < 0) 1689 epri = 0; 1690 else if (epri > SHRT_MAX) 1691 epri = SHRT_MAX; 1692 1693 return ((pri_t)epri); 1694 } 1695 1696 /* 1697 * Check for time slice expiration. If time slice has expired 1698 * move thread to priority specified in tsdptbl for time slice expiration 1699 * and set runrun to cause preemption. 1700 */ 1701 static void 1702 ts_tick(kthread_t *t) 1703 { 1704 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1705 klwp_t *lwp; 1706 boolean_t call_cpu_surrender = B_FALSE; 1707 pri_t oldpri = t->t_pri; 1708 1709 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1710 1711 thread_lock(t); 1712 1713 /* 1714 * Keep track of thread's project CPU usage. Note that projects 1715 * get charged even when threads are running in the kernel. 1716 */ 1717 if (CPUCAPS_ON()) { 1718 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1719 CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI); 1720 } 1721 1722 if ((tspp->ts_flags & TSKPRI) == 0) { 1723 if (--tspp->ts_timeleft <= 0) { 1724 pri_t new_pri; 1725 1726 /* 1727 * If we're doing preemption control and trying to 1728 * avoid preempting this thread, just note that 1729 * the thread should yield soon and let it keep 1730 * running (unless it's been a while). 1731 */ 1732 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1733 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1734 DTRACE_SCHED1(schedctl__nopreempt, 1735 kthread_t *, t); 1736 schedctl_set_yield(t, 1); 1737 thread_unlock_nopreempt(t); 1738 return; 1739 } 1740 1741 TNF_PROBE_2(schedctl_failsafe, 1742 "schedctl TS ts_tick", /* CSTYLED */, 1743 tnf_pid, pid, ttoproc(t)->p_pid, 1744 tnf_lwpid, lwpid, t->t_tid); 1745 } 1746 tspp->ts_flags &= ~TSRESTORE; 1747 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1748 TS_NEWUMDPRI(tspp); 1749 tspp->ts_dispwait = 0; 1750 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1751 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1752 /* 1753 * When the priority of a thread is changed, 1754 * it may be necessary to adjust its position 1755 * on a sleep queue or dispatch queue. 1756 * The function thread_change_pri accomplishes 1757 * this. 1758 */ 1759 if (thread_change_pri(t, new_pri, 0)) { 1760 if ((t->t_schedflag & TS_LOAD) && 1761 (lwp = t->t_lwp) && 1762 lwp->lwp_state == LWP_USER) 1763 t->t_schedflag &= ~TS_DONT_SWAP; 1764 tspp->ts_timeleft = 1765 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1766 } else { 1767 call_cpu_surrender = B_TRUE; 1768 } 1769 TRACE_2(TR_FAC_DISP, TR_TICK, 1770 "tick:tid %p old pri %d", t, oldpri); 1771 } else if (t->t_state == TS_ONPROC && 1772 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1773 call_cpu_surrender = B_TRUE; 1774 } 1775 } 1776 1777 if (call_cpu_surrender) { 1778 tspp->ts_flags |= TSBACKQ; 1779 cpu_surrender(t); 1780 } 1781 1782 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1783 } 1784 1785 1786 /* 1787 * If thread is currently at a kernel mode priority (has slept) 1788 * we assign it the appropriate user mode priority and time quantum 1789 * here. If we are lowering the thread's priority below that of 1790 * other runnable threads we will normally set runrun via cpu_surrender() to 1791 * cause preemption. 1792 */ 1793 static void 1794 ts_trapret(kthread_t *t) 1795 { 1796 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1797 cpu_t *cp = CPU; 1798 pri_t old_pri = curthread->t_pri; 1799 1800 ASSERT(THREAD_LOCK_HELD(t)); 1801 ASSERT(t == curthread); 1802 ASSERT(cp->cpu_dispthread == t); 1803 ASSERT(t->t_state == TS_ONPROC); 1804 1805 t->t_kpri_req = 0; 1806 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1807 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1808 TS_NEWUMDPRI(tspp); 1809 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1810 tspp->ts_dispwait = 0; 1811 1812 /* 1813 * If thread has blocked in the kernel (as opposed to 1814 * being merely preempted), recompute the user mode priority. 1815 */ 1816 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1817 cp->cpu_dispatch_pri = DISP_PRIO(t); 1818 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1819 tspp->ts_flags &= ~TSKPRI; 1820 1821 if (DISP_MUST_SURRENDER(t)) 1822 cpu_surrender(t); 1823 } else if (tspp->ts_flags & TSKPRI) { 1824 /* 1825 * If thread has blocked in the kernel (as opposed to 1826 * being merely preempted), recompute the user mode priority. 1827 */ 1828 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1829 cp->cpu_dispatch_pri = DISP_PRIO(t); 1830 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1831 tspp->ts_flags &= ~TSKPRI; 1832 1833 if (DISP_MUST_SURRENDER(t)) 1834 cpu_surrender(t); 1835 } 1836 1837 /* 1838 * Swapout lwp if the swapper is waiting for this thread to 1839 * reach a safe point. 1840 */ 1841 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1842 thread_unlock(t); 1843 swapout_lwp(ttolwp(t)); 1844 thread_lock(t); 1845 } 1846 1847 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1848 "trapret:tid %p old pri %d", t, old_pri); 1849 } 1850 1851 1852 /* 1853 * Update the ts_dispwait values of all time sharing threads that 1854 * are currently runnable at a user mode priority and bump the priority 1855 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1856 * timeout which we reset here. 1857 * 1858 * There are several lists of time sharing threads broken up by a hash on 1859 * the thread pointer. Each list has its own lock. This avoids blocking 1860 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1861 * runs. ts_update traverses each list in turn. 1862 * 1863 * If multiple threads have their priorities updated to the same value, 1864 * the system implicitly favors the one that is updated first (since it 1865 * winds up first on the run queue). To avoid this unfairness, the 1866 * traversal of threads starts at the list indicated by a marker. When 1867 * threads in more than one list have their priorities updated, the marker 1868 * is moved. This changes the order the threads will be placed on the run 1869 * queue the next time ts_update is called and preserves fairness over the 1870 * long run. The marker doesn't need to be protected by a lock since it's 1871 * only accessed by ts_update, which is inherently single-threaded (only 1872 * one instance can be running at a time). 1873 */ 1874 static void 1875 ts_update(void *arg) 1876 { 1877 int i; 1878 int new_marker = -1; 1879 static int ts_update_marker; 1880 1881 /* 1882 * Start with the ts_update_marker list, then do the rest. 1883 */ 1884 i = ts_update_marker; 1885 do { 1886 /* 1887 * If this is the first list after the current marker to 1888 * have threads with priorities updated, advance the marker 1889 * to this list for the next time ts_update runs. 1890 */ 1891 if (ts_update_list(i) && new_marker == -1 && 1892 i != ts_update_marker) { 1893 new_marker = i; 1894 } 1895 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1896 1897 /* advance marker for next ts_update call */ 1898 if (new_marker != -1) 1899 ts_update_marker = new_marker; 1900 1901 (void) timeout(ts_update, arg, hz); 1902 } 1903 1904 /* 1905 * Updates priority for a list of threads. Returns 1 if the priority of 1906 * one of the threads was actually updated, 0 if none were for various 1907 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1908 * hasn't waited long enough, has the preemption control no-preempt bit 1909 * set, etc.) 1910 */ 1911 static int 1912 ts_update_list(int i) 1913 { 1914 tsproc_t *tspp; 1915 kthread_t *tx; 1916 int updated = 0; 1917 1918 mutex_enter(&ts_list_lock[i]); 1919 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1920 tspp = tspp->ts_next) { 1921 tx = tspp->ts_tp; 1922 /* 1923 * Lock the thread and verify state. 1924 */ 1925 thread_lock(tx); 1926 /* 1927 * Skip the thread if it is no longer in the TS (or IA) class. 1928 */ 1929 if (tx->t_clfuncs != &ts_classfuncs.thread && 1930 tx->t_clfuncs != &ia_classfuncs.thread) 1931 goto next; 1932 tspp->ts_dispwait++; 1933 if ((tspp->ts_flags & TSKPRI) != 0) 1934 goto next; 1935 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1936 goto next; 1937 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1938 goto next; 1939 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1940 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1941 /* make next syscall/trap do CL_TRAPRET */ 1942 tx->t_trapret = 1; 1943 aston(tx); 1944 goto next; 1945 } 1946 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1947 TS_NEWUMDPRI(tspp); 1948 tspp->ts_dispwait = 0; 1949 updated = 1; 1950 1951 /* 1952 * Only dequeue it if needs to move; otherwise it should 1953 * just round-robin here. 1954 */ 1955 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1956 pri_t oldpri = tx->t_pri; 1957 ts_change_priority(tx, tspp); 1958 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1959 "update:tid %p old pri %d", tx, oldpri); 1960 } 1961 next: 1962 thread_unlock(tx); 1963 } 1964 mutex_exit(&ts_list_lock[i]); 1965 1966 return (updated); 1967 } 1968 1969 /* 1970 * Processes waking up go to the back of their queue. We don't 1971 * need to assign a time quantum here because thread is still 1972 * at a kernel mode priority and the time slicing is not done 1973 * for threads running in the kernel after sleeping. The proper 1974 * time quantum will be assigned by ts_trapret before the thread 1975 * returns to user mode. 1976 */ 1977 static void 1978 ts_wakeup(kthread_t *t) 1979 { 1980 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1981 1982 ASSERT(THREAD_LOCK_HELD(t)); 1983 1984 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1985 1986 if (tspp->ts_flags & TSKPRI) { 1987 tspp->ts_flags &= ~TSBACKQ; 1988 if (tspp->ts_flags & TSIASET) 1989 setfrontdq(t); 1990 else 1991 setbackdq(t); 1992 } else if (t->t_kpri_req) { 1993 /* 1994 * Give thread a priority boost if we were asked. 1995 */ 1996 tspp->ts_flags |= TSKPRI; 1997 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1998 setbackdq(t); 1999 t->t_trapret = 1; /* so that ts_trapret will run */ 2000 aston(t); 2001 } else { 2002 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 2003 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 2004 TS_NEWUMDPRI(tspp); 2005 tspp->ts_timeleft = 2006 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2007 tspp->ts_dispwait = 0; 2008 THREAD_CHANGE_PRI(t, 2009 ts_dptbl[tspp->ts_umdpri].ts_globpri); 2010 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2011 } 2012 2013 tspp->ts_flags &= ~TSBACKQ; 2014 2015 if (tspp->ts_flags & TSIA) { 2016 if (tspp->ts_flags & TSIASET) 2017 setfrontdq(t); 2018 else 2019 setbackdq(t); 2020 } else { 2021 if (t->t_disp_time != ddi_get_lbolt()) 2022 setbackdq(t); 2023 else 2024 setfrontdq(t); 2025 } 2026 } 2027 } 2028 2029 2030 /* 2031 * When a thread yields, put it on the back of the run queue. 2032 */ 2033 static void 2034 ts_yield(kthread_t *t) 2035 { 2036 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2037 2038 ASSERT(t == curthread); 2039 ASSERT(THREAD_LOCK_HELD(t)); 2040 2041 /* 2042 * Collect CPU usage spent before yielding 2043 */ 2044 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 2045 2046 /* 2047 * Clear the preemption control "yield" bit since the user is 2048 * doing a yield. 2049 */ 2050 if (t->t_schedctl) 2051 schedctl_set_yield(t, 0); 2052 /* 2053 * If ts_preempt() artifically increased the thread's priority 2054 * to avoid preemption, restore the original priority now. 2055 */ 2056 if (tspp->ts_flags & TSRESTORE) { 2057 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 2058 tspp->ts_flags &= ~TSRESTORE; 2059 } 2060 if (tspp->ts_timeleft <= 0) { 2061 /* 2062 * Time slice was artificially extended to avoid 2063 * preemption, so pretend we're preempting it now. 2064 */ 2065 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2066 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2067 TS_NEWUMDPRI(tspp); 2068 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2069 tspp->ts_dispwait = 0; 2070 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2071 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2072 } 2073 tspp->ts_flags &= ~TSBACKQ; 2074 setbackdq(t); 2075 } 2076 2077 2078 /* 2079 * Increment the nice value of the specified thread by incr and 2080 * return the new value in *retvalp. 2081 */ 2082 static int 2083 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2084 { 2085 int newnice; 2086 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2087 tsparms_t tsparms; 2088 2089 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2090 2091 /* If there's no change to priority, just return current setting */ 2092 if (incr == 0) { 2093 if (retvalp) { 2094 *retvalp = tspp->ts_nice - NZERO; 2095 } 2096 return (0); 2097 } 2098 2099 if ((incr < 0 || incr > 2 * NZERO) && 2100 secpolicy_setpriority(cr) != 0) 2101 return (EPERM); 2102 2103 /* 2104 * Specifying a nice increment greater than the upper limit of 2105 * 2 * NZERO - 1 will result in the thread's nice value being 2106 * set to the upper limit. We check for this before computing 2107 * the new value because otherwise we could get overflow 2108 * if a privileged process specified some ridiculous increment. 2109 */ 2110 if (incr > 2 * NZERO - 1) 2111 incr = 2 * NZERO - 1; 2112 2113 newnice = tspp->ts_nice + incr; 2114 if (newnice >= 2 * NZERO) 2115 newnice = 2 * NZERO - 1; 2116 else if (newnice < 0) 2117 newnice = 0; 2118 2119 tsparms.ts_uprilim = tsparms.ts_upri = 2120 -((newnice - NZERO) * ts_maxupri) / NZERO; 2121 /* 2122 * Reset the uprilim and upri values of the thread. 2123 * Call ts_parmsset even if thread is interactive since we're 2124 * not changing mode. 2125 */ 2126 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2127 2128 /* 2129 * Although ts_parmsset already reset ts_nice it may 2130 * not have been set to precisely the value calculated above 2131 * because ts_parmsset determines the nice value from the 2132 * user priority and we may have truncated during the integer 2133 * conversion from nice value to user priority and back. 2134 * We reset ts_nice to the value we calculated above. 2135 */ 2136 tspp->ts_nice = (char)newnice; 2137 2138 if (retvalp) 2139 *retvalp = newnice - NZERO; 2140 return (0); 2141 } 2142 2143 /* 2144 * Increment the priority of the specified thread by incr and 2145 * return the new value in *retvalp. 2146 */ 2147 static int 2148 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2149 { 2150 int newpri; 2151 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2152 tsparms_t tsparms; 2153 2154 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2155 2156 /* If there's no change to the priority, just return current setting */ 2157 if (incr == 0) { 2158 *retvalp = tspp->ts_upri; 2159 return (0); 2160 } 2161 2162 newpri = tspp->ts_upri + incr; 2163 if (newpri > ts_maxupri || newpri < -ts_maxupri) 2164 return (EINVAL); 2165 2166 *retvalp = newpri; 2167 tsparms.ts_uprilim = tsparms.ts_upri = newpri; 2168 /* 2169 * Reset the uprilim and upri values of the thread. 2170 * Call ts_parmsset even if thread is interactive since we're 2171 * not changing mode. 2172 */ 2173 return (ts_parmsset(t, &tsparms, 0, cr)); 2174 } 2175 2176 /* 2177 * ia_set_process_group marks foreground processes as interactive 2178 * and background processes as non-interactive iff the session 2179 * leader is interactive. This routine is called from two places: 2180 * strioctl:SPGRP when a new process group gets 2181 * control of the tty. 2182 * ia_parmsset-when the process in question is a session leader. 2183 * ia_set_process_group assumes that pidlock is held by the caller, 2184 * either strioctl or priocntlsys. If the caller is priocntlsys 2185 * (via ia_parmsset) then the p_lock of the session leader is held 2186 * and the code needs to be careful about acquiring other p_locks. 2187 */ 2188 static void 2189 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2190 { 2191 proc_t *leader, *fg, *bg; 2192 tsproc_t *tspp; 2193 kthread_t *tx; 2194 int plocked = 0; 2195 2196 ASSERT(MUTEX_HELD(&pidlock)); 2197 2198 /* 2199 * see if the session leader is interactive AND 2200 * if it is currently "on" AND controlling a tty 2201 * iff it is then make the processes in the foreground 2202 * group interactive and the processes in the background 2203 * group non-interactive. 2204 */ 2205 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2206 return; 2207 } 2208 if (leader->p_stat == SIDL) { 2209 return; 2210 } 2211 if ((tx = proctot(leader)) == NULL) { 2212 return; 2213 } 2214 /* 2215 * XXX do all the threads in the leader 2216 */ 2217 if (tx->t_cid != ia_cid) { 2218 return; 2219 } 2220 tspp = tx->t_cldata; 2221 /* 2222 * session leaders that are not interactive need not have 2223 * any processing done for them. They are typically shells 2224 * that do not have focus and are changing the process group 2225 * attatched to the tty, e.g. a process that is exiting 2226 */ 2227 mutex_enter(&leader->p_sessp->s_lock); 2228 if (!(tspp->ts_flags & TSIASET) || 2229 (leader->p_sessp->s_vp == NULL) || 2230 (leader->p_sessp->s_vp->v_stream == NULL)) { 2231 mutex_exit(&leader->p_sessp->s_lock); 2232 return; 2233 } 2234 mutex_exit(&leader->p_sessp->s_lock); 2235 2236 /* 2237 * If we're already holding the leader's p_lock, we should use 2238 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2239 * lock ordering violations. 2240 */ 2241 if (mutex_owned(&leader->p_lock)) 2242 plocked = 1; 2243 2244 if (fg_pgid == 0) 2245 goto skip; 2246 /* 2247 * now look for all processes in the foreground group and 2248 * make them interactive 2249 */ 2250 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2251 /* 2252 * if the process is SIDL it's begin forked, ignore it 2253 */ 2254 if (fg->p_stat == SIDL) { 2255 continue; 2256 } 2257 /* 2258 * sesssion leaders must be turned on/off explicitly 2259 * not implicitly as happens to other members of 2260 * the process group. 2261 */ 2262 if (fg->p_pid == fg->p_sessp->s_sid) { 2263 continue; 2264 } 2265 2266 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2267 "group on:proc %p", fg); 2268 2269 if (plocked) { 2270 if (mutex_tryenter(&fg->p_lock) == 0) 2271 continue; 2272 } else { 2273 mutex_enter(&fg->p_lock); 2274 } 2275 2276 if ((tx = proctot(fg)) == NULL) { 2277 mutex_exit(&fg->p_lock); 2278 continue; 2279 } 2280 do { 2281 thread_lock(tx); 2282 /* 2283 * if this thread is not interactive continue 2284 */ 2285 if (tx->t_cid != ia_cid) { 2286 thread_unlock(tx); 2287 continue; 2288 } 2289 tspp = tx->t_cldata; 2290 tspp->ts_flags |= TSIASET; 2291 tspp->ts_boost = ia_boost; 2292 TS_NEWUMDPRI(tspp); 2293 if ((tspp->ts_flags & TSKPRI) != 0) { 2294 thread_unlock(tx); 2295 continue; 2296 } 2297 tspp->ts_dispwait = 0; 2298 ts_change_priority(tx, tspp); 2299 thread_unlock(tx); 2300 } while ((tx = tx->t_forw) != fg->p_tlist); 2301 mutex_exit(&fg->p_lock); 2302 } 2303 skip: 2304 if (bg_pgid == 0) 2305 return; 2306 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2307 if (bg->p_stat == SIDL) { 2308 continue; 2309 } 2310 /* 2311 * sesssion leaders must be turned off explicitly 2312 * not implicitly as happens to other members of 2313 * the process group. 2314 */ 2315 if (bg->p_pid == bg->p_sessp->s_sid) { 2316 continue; 2317 } 2318 2319 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2320 "group off:proc %p", bg); 2321 2322 if (plocked) { 2323 if (mutex_tryenter(&bg->p_lock) == 0) 2324 continue; 2325 } else { 2326 mutex_enter(&bg->p_lock); 2327 } 2328 2329 if ((tx = proctot(bg)) == NULL) { 2330 mutex_exit(&bg->p_lock); 2331 continue; 2332 } 2333 do { 2334 thread_lock(tx); 2335 /* 2336 * if this thread is not interactive continue 2337 */ 2338 if (tx->t_cid != ia_cid) { 2339 thread_unlock(tx); 2340 continue; 2341 } 2342 tspp = tx->t_cldata; 2343 tspp->ts_flags &= ~TSIASET; 2344 tspp->ts_boost = -ia_boost; 2345 TS_NEWUMDPRI(tspp); 2346 if ((tspp->ts_flags & TSKPRI) != 0) { 2347 thread_unlock(tx); 2348 continue; 2349 } 2350 2351 tspp->ts_dispwait = 0; 2352 ts_change_priority(tx, tspp); 2353 thread_unlock(tx); 2354 } while ((tx = tx->t_forw) != bg->p_tlist); 2355 mutex_exit(&bg->p_lock); 2356 } 2357 } 2358 2359 2360 static void 2361 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2362 { 2363 pri_t new_pri; 2364 2365 ASSERT(THREAD_LOCK_HELD(t)); 2366 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2367 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2368 tspp->ts_flags &= ~TSRESTORE; 2369 t->t_cpri = tspp->ts_upri; 2370 if (t == curthread || t->t_state == TS_ONPROC) { 2371 /* curthread is always onproc */ 2372 cpu_t *cp = t->t_disp_queue->disp_cpu; 2373 THREAD_CHANGE_PRI(t, new_pri); 2374 if (t == cp->cpu_dispthread) 2375 cp->cpu_dispatch_pri = DISP_PRIO(t); 2376 if (DISP_MUST_SURRENDER(t)) { 2377 tspp->ts_flags |= TSBACKQ; 2378 cpu_surrender(t); 2379 } else { 2380 tspp->ts_timeleft = 2381 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2382 } 2383 } else { 2384 int frontq; 2385 2386 frontq = (tspp->ts_flags & TSIASET) != 0; 2387 /* 2388 * When the priority of a thread is changed, 2389 * it may be necessary to adjust its position 2390 * on a sleep queue or dispatch queue. 2391 * The function thread_change_pri accomplishes 2392 * this. 2393 */ 2394 if (thread_change_pri(t, new_pri, frontq)) { 2395 /* 2396 * The thread was on a run queue. Reset 2397 * its CPU timeleft from the quantum 2398 * associated with the new priority. 2399 */ 2400 tspp->ts_timeleft = 2401 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2402 } else { 2403 tspp->ts_flags |= TSBACKQ; 2404 } 2405 } 2406 } 2407 2408 static int 2409 ts_alloc(void **p, int flag) 2410 { 2411 void *bufp; 2412 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2413 if (bufp == NULL) { 2414 return (ENOMEM); 2415 } else { 2416 *p = bufp; 2417 return (0); 2418 } 2419 } 2420 2421 static void 2422 ts_free(void *bufp) 2423 { 2424 if (bufp) 2425 kmem_free(bufp, sizeof (tsproc_t)); 2426 } 2427