1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/cred.h> 36 #include <sys/proc.h> 37 #include <sys/session.h> 38 #include <sys/strsubr.h> 39 #include <sys/signal.h> 40 #include <sys/user.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/disp.h> 44 #include <sys/procset.h> 45 #include <sys/debug.h> 46 #include <sys/ts.h> 47 #include <sys/tspriocntl.h> 48 #include <sys/iapriocntl.h> 49 #include <sys/kmem.h> 50 #include <sys/errno.h> 51 #include <sys/cpuvar.h> 52 #include <sys/systm.h> /* for lbolt */ 53 #include <sys/vtrace.h> 54 #include <sys/vmsystm.h> 55 #include <sys/schedctl.h> 56 #include <sys/tnf_probe.h> 57 #include <sys/atomic.h> 58 #include <sys/policy.h> 59 #include <sys/sdt.h> 60 #include <sys/cpupart.h> 61 #include <vm/rm.h> 62 #include <vm/seg_kmem.h> 63 #include <sys/modctl.h> 64 #include <sys/cpucaps.h> 65 66 static pri_t ts_init(id_t, int, classfuncs_t **); 67 68 static struct sclass csw = { 69 "TS", 70 ts_init, 71 0 72 }; 73 74 static struct modlsched modlsched = { 75 &mod_schedops, "time sharing sched class", &csw 76 }; 77 78 static struct modlinkage modlinkage = { 79 MODREV_1, (void *)&modlsched, NULL 80 }; 81 82 int 83 _init() 84 { 85 return (mod_install(&modlinkage)); 86 } 87 88 int 89 _fini() 90 { 91 return (EBUSY); /* don't remove TS for now */ 92 } 93 94 int 95 _info(struct modinfo *modinfop) 96 { 97 return (mod_info(&modlinkage, modinfop)); 98 } 99 100 /* 101 * Class specific code for the time-sharing class 102 */ 103 104 105 /* 106 * Extern declarations for variables defined in the ts master file 107 */ 108 #define TSMAXUPRI 60 109 110 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 111 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 112 113 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 114 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 115 116 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 117 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 118 /* sleeping or running in kernel after sleep */ 119 120 static id_t ia_cid; 121 122 int ts_sleep_promote = 1; 123 124 #define tsmedumdpri (ts_maxumdpri >> 1) 125 126 #define TS_NEWUMDPRI(tspp) \ 127 { \ 128 pri_t pri; \ 129 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 130 if (pri > ts_maxumdpri) \ 131 (tspp)->ts_umdpri = ts_maxumdpri; \ 132 else if (pri < 0) \ 133 (tspp)->ts_umdpri = 0; \ 134 else \ 135 (tspp)->ts_umdpri = pri; \ 136 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 137 } 138 139 /* 140 * The tsproc_t structures are kept in an array of circular doubly linked 141 * lists. A hash on the thread pointer is used to determine which list 142 * each thread should be placed. Each list has a dummy "head" which is 143 * never removed, so the list is never empty. ts_update traverses these 144 * lists to update the priorities of threads that have been waiting on 145 * the run queue. 146 */ 147 148 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 149 150 /* hash function, argument is a thread pointer */ 151 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 152 153 /* iterate to the next list */ 154 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 155 156 /* 157 * Insert thread into the appropriate tsproc list. 158 */ 159 #define TS_LIST_INSERT(tspp) \ 160 { \ 161 int index = TS_LIST_HASH(tspp->ts_tp); \ 162 kmutex_t *lockp = &ts_list_lock[index]; \ 163 tsproc_t *headp = &ts_plisthead[index]; \ 164 mutex_enter(lockp); \ 165 tspp->ts_next = headp->ts_next; \ 166 tspp->ts_prev = headp; \ 167 headp->ts_next->ts_prev = tspp; \ 168 headp->ts_next = tspp; \ 169 mutex_exit(lockp); \ 170 } 171 172 /* 173 * Remove thread from tsproc list. 174 */ 175 #define TS_LIST_DELETE(tspp) \ 176 { \ 177 int index = TS_LIST_HASH(tspp->ts_tp); \ 178 kmutex_t *lockp = &ts_list_lock[index]; \ 179 mutex_enter(lockp); \ 180 tspp->ts_prev->ts_next = tspp->ts_next; \ 181 tspp->ts_next->ts_prev = tspp->ts_prev; \ 182 mutex_exit(lockp); \ 183 } 184 185 186 static int ts_admin(caddr_t, cred_t *); 187 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 188 static int ts_fork(kthread_t *, kthread_t *, void *); 189 static int ts_getclinfo(void *); 190 static int ts_getclpri(pcpri_t *); 191 static int ts_parmsin(void *); 192 static int ts_parmsout(void *, pc_vaparms_t *); 193 static int ts_vaparmsin(void *, pc_vaparms_t *); 194 static int ts_vaparmsout(void *, pc_vaparms_t *); 195 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 196 static void ts_exit(kthread_t *); 197 static int ts_donice(kthread_t *, cred_t *, int, int *); 198 static int ts_doprio(kthread_t *, cred_t *, int, int *); 199 static void ts_exitclass(void *); 200 static int ts_canexit(kthread_t *, cred_t *); 201 static void ts_forkret(kthread_t *, kthread_t *); 202 static void ts_nullsys(); 203 static void ts_parmsget(kthread_t *, void *); 204 static void ts_preempt(kthread_t *); 205 static void ts_setrun(kthread_t *); 206 static void ts_sleep(kthread_t *); 207 static pri_t ts_swapin(kthread_t *, int); 208 static pri_t ts_swapout(kthread_t *, int); 209 static void ts_tick(kthread_t *); 210 static void ts_trapret(kthread_t *); 211 static void ts_update(void *); 212 static int ts_update_list(int); 213 static void ts_wakeup(kthread_t *); 214 static pri_t ts_globpri(kthread_t *); 215 static void ts_yield(kthread_t *); 216 extern tsdpent_t *ts_getdptbl(void); 217 extern pri_t *ts_getkmdpris(void); 218 extern pri_t td_getmaxumdpri(void); 219 static int ts_alloc(void **, int); 220 static void ts_free(void *); 221 222 pri_t ia_init(id_t, int, classfuncs_t **); 223 static int ia_getclinfo(void *); 224 static int ia_getclpri(pcpri_t *); 225 static int ia_parmsin(void *); 226 static int ia_vaparmsin(void *, pc_vaparms_t *); 227 static int ia_vaparmsout(void *, pc_vaparms_t *); 228 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 229 static void ia_parmsget(kthread_t *, void *); 230 static void ia_set_process_group(pid_t, pid_t, pid_t); 231 232 static void ts_change_priority(kthread_t *, tsproc_t *); 233 234 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 235 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 236 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 237 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 238 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 239 240 static gid_t IA_gid = 0; 241 242 static struct classfuncs ts_classfuncs = { 243 /* class functions */ 244 ts_admin, 245 ts_getclinfo, 246 ts_parmsin, 247 ts_parmsout, 248 ts_vaparmsin, 249 ts_vaparmsout, 250 ts_getclpri, 251 ts_alloc, 252 ts_free, 253 254 /* thread functions */ 255 ts_enterclass, 256 ts_exitclass, 257 ts_canexit, 258 ts_fork, 259 ts_forkret, 260 ts_parmsget, 261 ts_parmsset, 262 ts_nullsys, /* stop */ 263 ts_exit, 264 ts_nullsys, /* active */ 265 ts_nullsys, /* inactive */ 266 ts_swapin, 267 ts_swapout, 268 ts_trapret, 269 ts_preempt, 270 ts_setrun, 271 ts_sleep, 272 ts_tick, 273 ts_wakeup, 274 ts_donice, 275 ts_globpri, 276 ts_nullsys, /* set_process_group */ 277 ts_yield, 278 ts_doprio, 279 }; 280 281 /* 282 * ia_classfuncs is used for interactive class threads; IA threads are stored 283 * on the same class list as TS threads, and most of the class functions are 284 * identical, but a few have different enough functionality to require their 285 * own functions. 286 */ 287 static struct classfuncs ia_classfuncs = { 288 /* class functions */ 289 ts_admin, 290 ia_getclinfo, 291 ia_parmsin, 292 ts_parmsout, 293 ia_vaparmsin, 294 ia_vaparmsout, 295 ia_getclpri, 296 ts_alloc, 297 ts_free, 298 299 /* thread functions */ 300 ts_enterclass, 301 ts_exitclass, 302 ts_canexit, 303 ts_fork, 304 ts_forkret, 305 ia_parmsget, 306 ia_parmsset, 307 ts_nullsys, /* stop */ 308 ts_exit, 309 ts_nullsys, /* active */ 310 ts_nullsys, /* inactive */ 311 ts_swapin, 312 ts_swapout, 313 ts_trapret, 314 ts_preempt, 315 ts_setrun, 316 ts_sleep, 317 ts_tick, 318 ts_wakeup, 319 ts_donice, 320 ts_globpri, 321 ia_set_process_group, 322 ts_yield, 323 ts_doprio, 324 }; 325 326 327 /* 328 * Time sharing class initialization. Called by dispinit() at boot time. 329 * We can ignore the clparmsz argument since we know that the smallest 330 * possible parameter buffer is big enough for us. 331 */ 332 /* ARGSUSED */ 333 static pri_t 334 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 335 { 336 int i; 337 extern pri_t ts_getmaxumdpri(void); 338 339 ts_dptbl = ts_getdptbl(); 340 ts_kmdpris = ts_getkmdpris(); 341 ts_maxumdpri = ts_getmaxumdpri(); 342 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 343 344 /* 345 * Initialize the tsproc lists. 346 */ 347 for (i = 0; i < TS_LISTS; i++) { 348 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 349 &ts_plisthead[i]; 350 } 351 352 /* 353 * We're required to return a pointer to our classfuncs 354 * structure and the highest global priority value we use. 355 */ 356 *clfuncspp = &ts_classfuncs; 357 return (ts_maxglobpri); 358 } 359 360 361 /* 362 * Interactive class scheduler initialization 363 */ 364 /* ARGSUSED */ 365 pri_t 366 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 367 { 368 /* 369 * We're required to return a pointer to our classfuncs 370 * structure and the highest global priority value we use. 371 */ 372 ia_cid = cid; 373 *clfuncspp = &ia_classfuncs; 374 return (ts_maxglobpri); 375 } 376 377 378 /* 379 * Get or reset the ts_dptbl values per the user's request. 380 */ 381 static int 382 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 383 { 384 tsadmin_t tsadmin; 385 tsdpent_t *tmpdpp; 386 int userdpsz; 387 int i; 388 size_t tsdpsz; 389 390 if (get_udatamodel() == DATAMODEL_NATIVE) { 391 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 392 return (EFAULT); 393 } 394 #ifdef _SYSCALL32_IMPL 395 else { 396 /* get tsadmin struct from ILP32 caller */ 397 tsadmin32_t tsadmin32; 398 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 399 return (EFAULT); 400 tsadmin.ts_dpents = 401 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 402 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 403 tsadmin.ts_cmd = tsadmin32.ts_cmd; 404 } 405 #endif /* _SYSCALL32_IMPL */ 406 407 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 408 409 switch (tsadmin.ts_cmd) { 410 case TS_GETDPSIZE: 411 tsadmin.ts_ndpents = ts_maxumdpri + 1; 412 413 if (get_udatamodel() == DATAMODEL_NATIVE) { 414 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 415 return (EFAULT); 416 } 417 #ifdef _SYSCALL32_IMPL 418 else { 419 /* return tsadmin struct to ILP32 caller */ 420 tsadmin32_t tsadmin32; 421 tsadmin32.ts_dpents = 422 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 423 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 424 tsadmin32.ts_cmd = tsadmin.ts_cmd; 425 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 426 return (EFAULT); 427 } 428 #endif /* _SYSCALL32_IMPL */ 429 break; 430 431 case TS_GETDPTBL: 432 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 433 tsdpsz); 434 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 435 return (EFAULT); 436 437 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 438 439 if (get_udatamodel() == DATAMODEL_NATIVE) { 440 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 441 return (EFAULT); 442 } 443 #ifdef _SYSCALL32_IMPL 444 else { 445 /* return tsadmin struct to ILP32 callers */ 446 tsadmin32_t tsadmin32; 447 tsadmin32.ts_dpents = 448 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 449 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 450 tsadmin32.ts_cmd = tsadmin.ts_cmd; 451 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 452 return (EFAULT); 453 } 454 #endif /* _SYSCALL32_IMPL */ 455 break; 456 457 case TS_SETDPTBL: 458 /* 459 * We require that the requesting process has sufficient 460 * priveleges. We also require that the table supplied by 461 * the user exactly match the current ts_dptbl in size. 462 */ 463 if (secpolicy_dispadm(reqpcredp) != 0) 464 return (EPERM); 465 466 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 467 return (EINVAL); 468 } 469 470 /* 471 * We read the user supplied table into a temporary buffer 472 * where it is validated before being copied over the 473 * ts_dptbl. 474 */ 475 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 476 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 477 tsdpsz)) { 478 kmem_free(tmpdpp, tsdpsz); 479 return (EFAULT); 480 } 481 for (i = 0; i < tsadmin.ts_ndpents; i++) { 482 483 /* 484 * Validate the user supplied values. All we are doing 485 * here is verifying that the values are within their 486 * allowable ranges and will not panic the system. We 487 * make no attempt to ensure that the resulting 488 * configuration makes sense or results in reasonable 489 * performance. 490 */ 491 if (tmpdpp[i].ts_quantum <= 0) { 492 kmem_free(tmpdpp, tsdpsz); 493 return (EINVAL); 494 } 495 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 496 tmpdpp[i].ts_tqexp < 0) { 497 kmem_free(tmpdpp, tsdpsz); 498 return (EINVAL); 499 } 500 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 501 tmpdpp[i].ts_slpret < 0) { 502 kmem_free(tmpdpp, tsdpsz); 503 return (EINVAL); 504 } 505 if (tmpdpp[i].ts_maxwait < 0) { 506 kmem_free(tmpdpp, tsdpsz); 507 return (EINVAL); 508 } 509 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 510 tmpdpp[i].ts_lwait < 0) { 511 kmem_free(tmpdpp, tsdpsz); 512 return (EINVAL); 513 } 514 } 515 516 /* 517 * Copy the user supplied values over the current ts_dptbl 518 * values. The ts_globpri member is read-only so we don't 519 * overwrite it. 520 */ 521 mutex_enter(&ts_dptblock); 522 for (i = 0; i < tsadmin.ts_ndpents; i++) { 523 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 524 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 525 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 526 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 527 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 528 } 529 mutex_exit(&ts_dptblock); 530 kmem_free(tmpdpp, tsdpsz); 531 break; 532 533 default: 534 return (EINVAL); 535 } 536 return (0); 537 } 538 539 540 /* 541 * Allocate a time-sharing class specific thread structure and 542 * initialize it with the parameters supplied. Also move the thread 543 * to specified time-sharing priority. 544 */ 545 static int 546 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 547 cred_t *reqpcredp, void *bufp) 548 { 549 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 550 tsproc_t *tspp; 551 pri_t reqtsuprilim; 552 pri_t reqtsupri; 553 static uint32_t tspexists = 0; /* set on first occurrence of */ 554 /* a time-sharing process */ 555 556 tspp = (tsproc_t *)bufp; 557 ASSERT(tspp != NULL); 558 559 /* 560 * Initialize the tsproc structure. 561 */ 562 tspp->ts_cpupri = tsmedumdpri; 563 if (cid == ia_cid) { 564 /* 565 * Check to make sure caller is either privileged or the 566 * window system. When the window system is converted 567 * to using privileges, the second check can go away. 568 */ 569 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 570 secpolicy_setpriority(reqpcredp) != 0) 571 return (EPERM); 572 /* 573 * Belongs to IA "class", so set appropriate flags. 574 * Mark as 'on' so it will not be a swap victim 575 * while forking. 576 */ 577 tspp->ts_flags = TSIA | TSIASET; 578 tspp->ts_boost = ia_boost; 579 } else { 580 tspp->ts_flags = 0; 581 tspp->ts_boost = 0; 582 } 583 584 if (tsparmsp == NULL) { 585 /* 586 * Use default values. 587 */ 588 tspp->ts_uprilim = tspp->ts_upri = 0; 589 tspp->ts_nice = NZERO; 590 } else { 591 /* 592 * Use supplied values. 593 */ 594 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 595 reqtsuprilim = 0; 596 else { 597 if (tsparmsp->ts_uprilim > 0 && 598 secpolicy_setpriority(reqpcredp) != 0) 599 return (EPERM); 600 reqtsuprilim = tsparmsp->ts_uprilim; 601 } 602 603 if (tsparmsp->ts_upri == TS_NOCHANGE) { 604 reqtsupri = reqtsuprilim; 605 } else { 606 if (tsparmsp->ts_upri > 0 && 607 secpolicy_setpriority(reqpcredp) != 0) 608 return (EPERM); 609 /* 610 * Set the user priority to the requested value 611 * or the upri limit, whichever is lower. 612 */ 613 reqtsupri = tsparmsp->ts_upri; 614 if (reqtsupri > reqtsuprilim) 615 reqtsupri = reqtsuprilim; 616 } 617 618 619 tspp->ts_uprilim = reqtsuprilim; 620 tspp->ts_upri = reqtsupri; 621 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri; 622 } 623 TS_NEWUMDPRI(tspp); 624 625 tspp->ts_dispwait = 0; 626 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 627 tspp->ts_tp = t; 628 cpucaps_sc_init(&tspp->ts_caps); 629 630 /* 631 * Reset priority. Process goes to a "user mode" priority 632 * here regardless of whether or not it has slept since 633 * entering the kernel. 634 */ 635 thread_lock(t); /* get dispatcher lock on thread */ 636 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 637 t->t_cid = cid; 638 t->t_cldata = (void *)tspp; 639 t->t_schedflag &= ~TS_RUNQMATCH; 640 ts_change_priority(t, tspp); 641 thread_unlock(t); 642 643 /* 644 * Link new structure into tsproc list. 645 */ 646 TS_LIST_INSERT(tspp); 647 648 /* 649 * If this is the first time-sharing thread to occur since 650 * boot we set up the initial call to ts_update() here. 651 * Use an atomic compare-and-swap since that's easier and 652 * faster than a mutex (but check with an ordinary load first 653 * since most of the time this will already be done). 654 */ 655 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 656 (void) timeout(ts_update, NULL, hz); 657 658 return (0); 659 } 660 661 662 /* 663 * Free tsproc structure of thread. 664 */ 665 static void 666 ts_exitclass(void *procp) 667 { 668 tsproc_t *tspp = (tsproc_t *)procp; 669 670 /* Remove tsproc_t structure from list */ 671 TS_LIST_DELETE(tspp); 672 kmem_free(tspp, sizeof (tsproc_t)); 673 } 674 675 /* ARGSUSED */ 676 static int 677 ts_canexit(kthread_t *t, cred_t *cred) 678 { 679 /* 680 * A thread can always leave a TS/IA class 681 */ 682 return (0); 683 } 684 685 static int 686 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 687 { 688 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 689 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 690 691 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 692 693 ctspp = (tsproc_t *)bufp; 694 ASSERT(ctspp != NULL); 695 ptspp = (tsproc_t *)t->t_cldata; 696 /* 697 * Initialize child's tsproc structure. 698 */ 699 thread_lock(t); 700 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 701 ctspp->ts_cpupri = ptspp->ts_cpupri; 702 ctspp->ts_boost = ptspp->ts_boost; 703 ctspp->ts_uprilim = ptspp->ts_uprilim; 704 ctspp->ts_upri = ptspp->ts_upri; 705 TS_NEWUMDPRI(ctspp); 706 ctspp->ts_nice = ptspp->ts_nice; 707 ctspp->ts_dispwait = 0; 708 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 709 ctspp->ts_tp = ct; 710 cpucaps_sc_init(&ctspp->ts_caps); 711 thread_unlock(t); 712 713 /* 714 * Link new structure into tsproc list. 715 */ 716 ct->t_cldata = (void *)ctspp; 717 TS_LIST_INSERT(ctspp); 718 return (0); 719 } 720 721 722 /* 723 * Child is placed at back of dispatcher queue and parent gives 724 * up processor so that the child runs first after the fork. 725 * This allows the child immediately execing to break the multiple 726 * use of copy on write pages with no disk home. The parent will 727 * get to steal them back rather than uselessly copying them. 728 */ 729 static void 730 ts_forkret(kthread_t *t, kthread_t *ct) 731 { 732 proc_t *pp = ttoproc(t); 733 proc_t *cp = ttoproc(ct); 734 tsproc_t *tspp; 735 736 ASSERT(t == curthread); 737 ASSERT(MUTEX_HELD(&pidlock)); 738 739 /* 740 * Grab the child's p_lock before dropping pidlock to ensure 741 * the process does not disappear before we set it running. 742 */ 743 mutex_enter(&cp->p_lock); 744 mutex_exit(&pidlock); 745 continuelwps(cp); 746 mutex_exit(&cp->p_lock); 747 748 mutex_enter(&pp->p_lock); 749 continuelwps(pp); 750 mutex_exit(&pp->p_lock); 751 752 thread_lock(t); 753 tspp = (tsproc_t *)(t->t_cldata); 754 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 755 TS_NEWUMDPRI(tspp); 756 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 757 tspp->ts_dispwait = 0; 758 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 759 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 760 tspp->ts_flags &= ~TSKPRI; 761 THREAD_TRANSITION(t); 762 ts_setrun(t); 763 thread_unlock(t); 764 765 swtch(); 766 } 767 768 769 /* 770 * Get information about the time-sharing class into the buffer 771 * pointed to by tsinfop. The maximum configured user priority 772 * is the only information we supply. ts_getclinfo() is called 773 * for TS threads, and ia_getclinfo() is called for IA threads. 774 */ 775 static int 776 ts_getclinfo(void *infop) 777 { 778 tsinfo_t *tsinfop = (tsinfo_t *)infop; 779 tsinfop->ts_maxupri = ts_maxupri; 780 return (0); 781 } 782 783 static int 784 ia_getclinfo(void *infop) 785 { 786 iainfo_t *iainfop = (iainfo_t *)infop; 787 iainfop->ia_maxupri = ia_maxupri; 788 return (0); 789 } 790 791 792 /* 793 * Return the user mode scheduling priority range. 794 */ 795 static int 796 ts_getclpri(pcpri_t *pcprip) 797 { 798 pcprip->pc_clpmax = ts_maxupri; 799 pcprip->pc_clpmin = -ts_maxupri; 800 return (0); 801 } 802 803 804 static int 805 ia_getclpri(pcpri_t *pcprip) 806 { 807 pcprip->pc_clpmax = ia_maxupri; 808 pcprip->pc_clpmin = -ia_maxupri; 809 return (0); 810 } 811 812 813 static void 814 ts_nullsys() 815 {} 816 817 818 /* 819 * Get the time-sharing parameters of the thread pointed to by 820 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 821 * is called for TS threads, and ia_parmsget() is called for IA 822 * threads. 823 */ 824 static void 825 ts_parmsget(kthread_t *t, void *parmsp) 826 { 827 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 828 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 829 830 tsparmsp->ts_uprilim = tspp->ts_uprilim; 831 tsparmsp->ts_upri = tspp->ts_upri; 832 } 833 834 static void 835 ia_parmsget(kthread_t *t, void *parmsp) 836 { 837 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 838 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 839 840 iaparmsp->ia_uprilim = tspp->ts_uprilim; 841 iaparmsp->ia_upri = tspp->ts_upri; 842 if (tspp->ts_flags & TSIASET) 843 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 844 else 845 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 846 } 847 848 849 /* 850 * Check the validity of the time-sharing parameters in the buffer 851 * pointed to by tsparmsp. 852 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 853 * for IA threads. 854 */ 855 static int 856 ts_parmsin(void *parmsp) 857 { 858 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 859 /* 860 * Check validity of parameters. 861 */ 862 if ((tsparmsp->ts_uprilim > ts_maxupri || 863 tsparmsp->ts_uprilim < -ts_maxupri) && 864 tsparmsp->ts_uprilim != TS_NOCHANGE) 865 return (EINVAL); 866 867 if ((tsparmsp->ts_upri > ts_maxupri || 868 tsparmsp->ts_upri < -ts_maxupri) && 869 tsparmsp->ts_upri != TS_NOCHANGE) 870 return (EINVAL); 871 872 return (0); 873 } 874 875 static int 876 ia_parmsin(void *parmsp) 877 { 878 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 879 880 if ((iaparmsp->ia_uprilim > ia_maxupri || 881 iaparmsp->ia_uprilim < -ia_maxupri) && 882 iaparmsp->ia_uprilim != IA_NOCHANGE) { 883 return (EINVAL); 884 } 885 886 if ((iaparmsp->ia_upri > ia_maxupri || 887 iaparmsp->ia_upri < -ia_maxupri) && 888 iaparmsp->ia_upri != IA_NOCHANGE) { 889 return (EINVAL); 890 } 891 892 return (0); 893 } 894 895 896 /* 897 * Check the validity of the time-sharing parameters in the pc_vaparms_t 898 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 899 * pc_vaparms_t contains (key, value) pairs of parameter. 900 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 901 * for IA threads. ts_vaparmsin() is the variable parameter version of 902 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 903 * ia_parmsin(). 904 */ 905 static int 906 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 907 { 908 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 909 int priflag = 0; 910 int limflag = 0; 911 uint_t cnt; 912 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 913 914 915 /* 916 * TS_NOCHANGE (-32768) is outside of the range of values for 917 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 918 * TS_NOCHANGE should be replaced by a flag word (in the same manner 919 * as in rt.c). 920 */ 921 tsparmsp->ts_uprilim = TS_NOCHANGE; 922 tsparmsp->ts_upri = TS_NOCHANGE; 923 924 /* 925 * Get the varargs parameter and check validity of parameters. 926 */ 927 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 928 return (EINVAL); 929 930 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 931 932 switch (vpp->pc_key) { 933 case TS_KY_UPRILIM: 934 if (limflag++) 935 return (EINVAL); 936 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 937 if (tsparmsp->ts_uprilim > ts_maxupri || 938 tsparmsp->ts_uprilim < -ts_maxupri) 939 return (EINVAL); 940 break; 941 942 case TS_KY_UPRI: 943 if (priflag++) 944 return (EINVAL); 945 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 946 if (tsparmsp->ts_upri > ts_maxupri || 947 tsparmsp->ts_upri < -ts_maxupri) 948 return (EINVAL); 949 break; 950 951 default: 952 return (EINVAL); 953 } 954 } 955 956 if (vaparmsp->pc_vaparmscnt == 0) { 957 /* 958 * Use default parameters. 959 */ 960 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 961 } 962 963 return (0); 964 } 965 966 static int 967 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 968 { 969 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 970 int priflag = 0; 971 int limflag = 0; 972 int mflag = 0; 973 uint_t cnt; 974 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 975 976 /* 977 * IA_NOCHANGE (-32768) is outside of the range of values for 978 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 979 * changed, IA_NOCHANGE should be replaced by a flag word (in the 980 * same manner as in rt.c). 981 */ 982 iaparmsp->ia_uprilim = IA_NOCHANGE; 983 iaparmsp->ia_upri = IA_NOCHANGE; 984 iaparmsp->ia_mode = IA_NOCHANGE; 985 986 /* 987 * Get the varargs parameter and check validity of parameters. 988 */ 989 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 990 return (EINVAL); 991 992 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 993 994 switch (vpp->pc_key) { 995 case IA_KY_UPRILIM: 996 if (limflag++) 997 return (EINVAL); 998 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 999 if (iaparmsp->ia_uprilim > ia_maxupri || 1000 iaparmsp->ia_uprilim < -ia_maxupri) 1001 return (EINVAL); 1002 break; 1003 1004 case IA_KY_UPRI: 1005 if (priflag++) 1006 return (EINVAL); 1007 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 1008 if (iaparmsp->ia_upri > ia_maxupri || 1009 iaparmsp->ia_upri < -ia_maxupri) 1010 return (EINVAL); 1011 break; 1012 1013 case IA_KY_MODE: 1014 if (mflag++) 1015 return (EINVAL); 1016 iaparmsp->ia_mode = (int)vpp->pc_parm; 1017 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1018 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1019 return (EINVAL); 1020 break; 1021 1022 default: 1023 return (EINVAL); 1024 } 1025 } 1026 1027 if (vaparmsp->pc_vaparmscnt == 0) { 1028 /* 1029 * Use default parameters. 1030 */ 1031 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1032 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1033 } 1034 1035 return (0); 1036 } 1037 1038 /* 1039 * Nothing to do here but return success. 1040 */ 1041 /* ARGSUSED */ 1042 static int 1043 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1044 { 1045 return (0); 1046 } 1047 1048 1049 /* 1050 * Copy all selected time-sharing class parameters to the user. 1051 * The parameters are specified by a key. 1052 */ 1053 static int 1054 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1055 { 1056 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1057 int priflag = 0; 1058 int limflag = 0; 1059 uint_t cnt; 1060 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1061 1062 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1063 1064 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1065 return (EINVAL); 1066 1067 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1068 1069 switch (vpp->pc_key) { 1070 case TS_KY_UPRILIM: 1071 if (limflag++) 1072 return (EINVAL); 1073 if (copyout(&tsprmsp->ts_uprilim, 1074 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1075 return (EFAULT); 1076 break; 1077 1078 case TS_KY_UPRI: 1079 if (priflag++) 1080 return (EINVAL); 1081 if (copyout(&tsprmsp->ts_upri, 1082 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1083 return (EFAULT); 1084 break; 1085 1086 default: 1087 return (EINVAL); 1088 } 1089 } 1090 1091 return (0); 1092 } 1093 1094 1095 /* 1096 * Copy all selected interactive class parameters to the user. 1097 * The parameters are specified by a key. 1098 */ 1099 static int 1100 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1101 { 1102 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1103 int priflag = 0; 1104 int limflag = 0; 1105 int mflag = 0; 1106 uint_t cnt; 1107 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1108 1109 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1110 1111 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1112 return (EINVAL); 1113 1114 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1115 1116 switch (vpp->pc_key) { 1117 case IA_KY_UPRILIM: 1118 if (limflag++) 1119 return (EINVAL); 1120 if (copyout(&iaprmsp->ia_uprilim, 1121 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1122 return (EFAULT); 1123 break; 1124 1125 case IA_KY_UPRI: 1126 if (priflag++) 1127 return (EINVAL); 1128 if (copyout(&iaprmsp->ia_upri, 1129 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1130 return (EFAULT); 1131 break; 1132 1133 case IA_KY_MODE: 1134 if (mflag++) 1135 return (EINVAL); 1136 if (copyout(&iaprmsp->ia_mode, 1137 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1138 return (EFAULT); 1139 break; 1140 1141 default: 1142 return (EINVAL); 1143 } 1144 } 1145 return (0); 1146 } 1147 1148 1149 /* 1150 * Set the scheduling parameters of the thread pointed to by tsprocp 1151 * to those specified in the buffer pointed to by tsparmsp. 1152 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1153 * called for IA threads. 1154 */ 1155 /* ARGSUSED */ 1156 static int 1157 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1158 { 1159 char nice; 1160 pri_t reqtsuprilim; 1161 pri_t reqtsupri; 1162 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1163 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1164 1165 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1166 1167 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1168 reqtsuprilim = tspp->ts_uprilim; 1169 else 1170 reqtsuprilim = tsparmsp->ts_uprilim; 1171 1172 if (tsparmsp->ts_upri == TS_NOCHANGE) 1173 reqtsupri = tspp->ts_upri; 1174 else 1175 reqtsupri = tsparmsp->ts_upri; 1176 1177 /* 1178 * Make sure the user priority doesn't exceed the upri limit. 1179 */ 1180 if (reqtsupri > reqtsuprilim) 1181 reqtsupri = reqtsuprilim; 1182 1183 /* 1184 * Basic permissions enforced by generic kernel code 1185 * for all classes require that a thread attempting 1186 * to change the scheduling parameters of a target 1187 * thread be privileged or have a real or effective 1188 * UID matching that of the target thread. We are not 1189 * called unless these basic permission checks have 1190 * already passed. The time-sharing class requires in 1191 * addition that the calling thread be privileged if it 1192 * is attempting to raise the upri limit above its current 1193 * value This may have been checked previously but if our 1194 * caller passed us a non-NULL credential pointer we assume 1195 * it hasn't and we check it here. 1196 */ 1197 if (reqpcredp != NULL && 1198 reqtsuprilim > tspp->ts_uprilim && 1199 secpolicy_setpriority(reqpcredp) != 0) 1200 return (EPERM); 1201 1202 /* 1203 * Set ts_nice to the nice value corresponding to the user 1204 * priority we are setting. Note that setting the nice field 1205 * of the parameter struct won't affect upri or nice. 1206 */ 1207 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1208 if (nice >= 2 * NZERO) 1209 nice = 2 * NZERO - 1; 1210 1211 thread_lock(tx); 1212 1213 tspp->ts_uprilim = reqtsuprilim; 1214 tspp->ts_upri = reqtsupri; 1215 TS_NEWUMDPRI(tspp); 1216 tspp->ts_nice = nice; 1217 1218 if ((tspp->ts_flags & TSKPRI) != 0) { 1219 thread_unlock(tx); 1220 return (0); 1221 } 1222 1223 tspp->ts_dispwait = 0; 1224 ts_change_priority(tx, tspp); 1225 thread_unlock(tx); 1226 return (0); 1227 } 1228 1229 1230 static int 1231 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1232 { 1233 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1234 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1235 proc_t *p; 1236 pid_t pid, pgid, sid; 1237 pid_t on, off; 1238 struct stdata *stp; 1239 int sess_held; 1240 1241 /* 1242 * Handle user priority changes 1243 */ 1244 if (iaparmsp->ia_mode == IA_NOCHANGE) 1245 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1246 1247 /* 1248 * Check permissions for changing modes. 1249 */ 1250 1251 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1252 secpolicy_setpriority(reqpcredp) != 0) { 1253 /* 1254 * Silently fail in case this is just a priocntl 1255 * call with upri and uprilim set to IA_NOCHANGE. 1256 */ 1257 return (0); 1258 } 1259 1260 ASSERT(MUTEX_HELD(&pidlock)); 1261 if ((p = ttoproc(tx)) == NULL) { 1262 return (0); 1263 } 1264 ASSERT(MUTEX_HELD(&p->p_lock)); 1265 if (p->p_stat == SIDL) { 1266 return (0); 1267 } 1268 pid = p->p_pid; 1269 sid = p->p_sessp->s_sid; 1270 pgid = p->p_pgrp; 1271 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1272 /* 1273 * session leaders must be turned on now so all processes 1274 * in the group controlling the tty will be turned on or off. 1275 * if the ia_mode is off for the session leader, 1276 * ia_set_process_group will return without setting the 1277 * processes in the group controlling the tty on. 1278 */ 1279 thread_lock(tx); 1280 tspp->ts_flags |= TSIASET; 1281 thread_unlock(tx); 1282 } 1283 mutex_enter(&p->p_sessp->s_lock); 1284 sess_held = 1; 1285 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1286 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1287 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1288 pgid = stp->sd_pgidp->pid_id; 1289 sess_held = 0; 1290 mutex_exit(&p->p_sessp->s_lock); 1291 if (iaparmsp->ia_mode == 1292 IA_SET_INTERACTIVE) { 1293 off = 0; 1294 on = pgid; 1295 } else { 1296 off = pgid; 1297 on = 0; 1298 } 1299 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1300 "active chain:pid %d gid %d %p", 1301 pid, pgid, p); 1302 ia_set_process_group(sid, off, on); 1303 } 1304 } 1305 if (sess_held) 1306 mutex_exit(&p->p_sessp->s_lock); 1307 1308 thread_lock(tx); 1309 1310 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1311 tspp->ts_flags |= TSIASET; 1312 tspp->ts_boost = ia_boost; 1313 } else { 1314 tspp->ts_flags &= ~TSIASET; 1315 tspp->ts_boost = -ia_boost; 1316 } 1317 thread_unlock(tx); 1318 1319 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1320 } 1321 1322 static void 1323 ts_exit(kthread_t *t) 1324 { 1325 tsproc_t *tspp; 1326 1327 if (CPUCAPS_ON()) { 1328 /* 1329 * A thread could be exiting in between clock ticks, 1330 * so we need to calculate how much CPU time it used 1331 * since it was charged last time. 1332 * 1333 * CPU caps are not enforced on exiting processes - it is 1334 * usually desirable to exit as soon as possible to free 1335 * resources. 1336 */ 1337 thread_lock(t); 1338 tspp = (tsproc_t *)t->t_cldata; 1339 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1340 thread_unlock(t); 1341 } 1342 } 1343 1344 /* 1345 * Return the global scheduling priority that would be assigned 1346 * to a thread entering the time-sharing class with the ts_upri. 1347 */ 1348 static pri_t 1349 ts_globpri(kthread_t *t) 1350 { 1351 tsproc_t *tspp; 1352 pri_t tspri; 1353 1354 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1355 tspp = (tsproc_t *)t->t_cldata; 1356 tspri = tsmedumdpri + tspp->ts_upri; 1357 if (tspri > ts_maxumdpri) 1358 tspri = ts_maxumdpri; 1359 else if (tspri < 0) 1360 tspri = 0; 1361 return (ts_dptbl[tspri].ts_globpri); 1362 } 1363 1364 /* 1365 * Arrange for thread to be placed in appropriate location 1366 * on dispatcher queue. 1367 * 1368 * This is called with the current thread in TS_ONPROC and locked. 1369 */ 1370 static void 1371 ts_preempt(kthread_t *t) 1372 { 1373 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1374 klwp_t *lwp = curthread->t_lwp; 1375 pri_t oldpri = t->t_pri; 1376 1377 ASSERT(t == curthread); 1378 ASSERT(THREAD_LOCK_HELD(curthread)); 1379 1380 /* 1381 * If preempted in the kernel, make sure the thread has 1382 * a kernel priority if needed. 1383 */ 1384 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1385 tspp->ts_flags |= TSKPRI; 1386 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1387 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1388 t->t_trapret = 1; /* so ts_trapret will run */ 1389 aston(t); 1390 } 1391 1392 /* 1393 * This thread may be placed on wait queue by CPU Caps. In this case we 1394 * do not need to do anything until it is removed from the wait queue. 1395 * Do not enforce CPU caps on threads running at a kernel priority 1396 */ 1397 if (CPUCAPS_ON()) { 1398 (void) cpucaps_charge(t, &tspp->ts_caps, 1399 CPUCAPS_CHARGE_ENFORCE); 1400 if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t)) 1401 return; 1402 } 1403 1404 /* 1405 * If thread got preempted in the user-land then we know 1406 * it isn't holding any locks. Mark it as swappable. 1407 */ 1408 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1409 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1410 t->t_schedflag &= ~TS_DONT_SWAP; 1411 1412 /* 1413 * Check to see if we're doing "preemption control" here. If 1414 * we are, and if the user has requested that this thread not 1415 * be preempted, and if preemptions haven't been put off for 1416 * too long, let the preemption happen here but try to make 1417 * sure the thread is rescheduled as soon as possible. We do 1418 * this by putting it on the front of the highest priority run 1419 * queue in the TS class. If the preemption has been put off 1420 * for too long, clear the "nopreempt" bit and let the thread 1421 * be preempted. 1422 */ 1423 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1424 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1425 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1426 if (!(tspp->ts_flags & TSKPRI)) { 1427 /* 1428 * If not already remembered, remember current 1429 * priority for restoration in ts_yield(). 1430 */ 1431 if (!(tspp->ts_flags & TSRESTORE)) { 1432 tspp->ts_scpri = t->t_pri; 1433 tspp->ts_flags |= TSRESTORE; 1434 } 1435 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1436 t->t_schedflag |= TS_DONT_SWAP; 1437 } 1438 schedctl_set_yield(t, 1); 1439 setfrontdq(t); 1440 goto done; 1441 } else { 1442 if (tspp->ts_flags & TSRESTORE) { 1443 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1444 tspp->ts_flags &= ~TSRESTORE; 1445 } 1446 schedctl_set_nopreempt(t, 0); 1447 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1448 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1449 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1450 tnf_lwpid, lwpid, t->t_tid); 1451 /* 1452 * Fall through and be preempted below. 1453 */ 1454 } 1455 } 1456 1457 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1458 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1459 tspp->ts_dispwait = 0; 1460 tspp->ts_flags &= ~TSBACKQ; 1461 setbackdq(t); 1462 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1463 tspp->ts_flags &= ~TSBACKQ; 1464 setbackdq(t); 1465 } else { 1466 setfrontdq(t); 1467 } 1468 1469 done: 1470 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1471 "preempt:tid %p old pri %d", t, oldpri); 1472 } 1473 1474 static void 1475 ts_setrun(kthread_t *t) 1476 { 1477 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1478 1479 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1480 1481 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1482 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1483 TS_NEWUMDPRI(tspp); 1484 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1485 tspp->ts_dispwait = 0; 1486 if ((tspp->ts_flags & TSKPRI) == 0) { 1487 THREAD_CHANGE_PRI(t, 1488 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1489 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1490 } 1491 } 1492 1493 tspp->ts_flags &= ~TSBACKQ; 1494 1495 if (tspp->ts_flags & TSIA) { 1496 if (tspp->ts_flags & TSIASET) 1497 setfrontdq(t); 1498 else 1499 setbackdq(t); 1500 } else { 1501 if (t->t_disp_time != lbolt) 1502 setbackdq(t); 1503 else 1504 setfrontdq(t); 1505 } 1506 } 1507 1508 1509 /* 1510 * Prepare thread for sleep. We reset the thread priority so it will 1511 * run at the kernel priority level when it wakes up. 1512 */ 1513 static void 1514 ts_sleep(kthread_t *t) 1515 { 1516 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1517 int flags; 1518 pri_t old_pri = t->t_pri; 1519 1520 ASSERT(t == curthread); 1521 ASSERT(THREAD_LOCK_HELD(t)); 1522 1523 /* 1524 * Account for time spent on CPU before going to sleep. 1525 */ 1526 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1527 1528 flags = tspp->ts_flags; 1529 if (t->t_kpri_req) { 1530 tspp->ts_flags = flags | TSKPRI; 1531 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1532 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1533 t->t_trapret = 1; /* so ts_trapret will run */ 1534 aston(t); 1535 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1536 /* 1537 * If thread has blocked in the kernel (as opposed to 1538 * being merely preempted), recompute the user mode priority. 1539 */ 1540 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1541 TS_NEWUMDPRI(tspp); 1542 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1543 tspp->ts_dispwait = 0; 1544 1545 THREAD_CHANGE_PRI(curthread, 1546 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1547 ASSERT(curthread->t_pri >= 0 && 1548 curthread->t_pri <= ts_maxglobpri); 1549 tspp->ts_flags = flags & ~TSKPRI; 1550 1551 if (DISP_MUST_SURRENDER(curthread)) 1552 cpu_surrender(curthread); 1553 } else if (flags & TSKPRI) { 1554 THREAD_CHANGE_PRI(curthread, 1555 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1556 ASSERT(curthread->t_pri >= 0 && 1557 curthread->t_pri <= ts_maxglobpri); 1558 tspp->ts_flags = flags & ~TSKPRI; 1559 1560 if (DISP_MUST_SURRENDER(curthread)) 1561 cpu_surrender(curthread); 1562 } 1563 t->t_stime = lbolt; /* time stamp for the swapper */ 1564 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1565 "sleep:tid %p old pri %d", t, old_pri); 1566 } 1567 1568 1569 /* 1570 * Return Values: 1571 * 1572 * -1 if the thread is loaded or is not eligible to be swapped in. 1573 * 1574 * effective priority of the specified thread based on swapout time 1575 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1576 */ 1577 /* ARGSUSED */ 1578 static pri_t 1579 ts_swapin(kthread_t *t, int flags) 1580 { 1581 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1582 long epri = -1; 1583 proc_t *pp = ttoproc(t); 1584 1585 ASSERT(THREAD_LOCK_HELD(t)); 1586 1587 /* 1588 * We know that pri_t is a short. 1589 * Be sure not to overrun its range. 1590 */ 1591 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1592 time_t swapout_time; 1593 1594 swapout_time = (lbolt - t->t_stime) / hz; 1595 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1596 epri = (long)DISP_PRIO(t) + swapout_time; 1597 else { 1598 /* 1599 * Threads which have been out for a long time, 1600 * have high user mode priority and are associated 1601 * with a small address space are more deserving 1602 */ 1603 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1604 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1605 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1606 } 1607 /* 1608 * Scale epri so SHRT_MAX/2 represents zero priority. 1609 */ 1610 epri += SHRT_MAX/2; 1611 if (epri < 0) 1612 epri = 0; 1613 else if (epri > SHRT_MAX) 1614 epri = SHRT_MAX; 1615 } 1616 return ((pri_t)epri); 1617 } 1618 1619 /* 1620 * Return Values 1621 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1622 * 1623 * effective priority of the specified thread based on if the swapper 1624 * is in softswap or hardswap mode. 1625 * 1626 * Softswap: Return a low effective priority for threads 1627 * sleeping for more than maxslp secs. 1628 * 1629 * Hardswap: Return an effective priority such that threads 1630 * which have been in memory for a while and are 1631 * associated with a small address space are swapped 1632 * in before others. 1633 * 1634 * (epri >= 0 , epri <= SHRT_MAX). 1635 */ 1636 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1637 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1638 1639 static pri_t 1640 ts_swapout(kthread_t *t, int flags) 1641 { 1642 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1643 long epri = -1; 1644 proc_t *pp = ttoproc(t); 1645 time_t swapin_time; 1646 1647 ASSERT(THREAD_LOCK_HELD(t)); 1648 1649 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1650 (t->t_proc_flag & TP_LWPEXIT) || 1651 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1652 TS_ONPROC | TS_WAIT)) || 1653 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1654 return (-1); 1655 1656 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1657 1658 /* 1659 * We know that pri_t is a short. 1660 * Be sure not to overrun its range. 1661 */ 1662 swapin_time = (lbolt - t->t_stime) / hz; 1663 if (flags == SOFTSWAP) { 1664 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1665 epri = 0; 1666 } else { 1667 return ((pri_t)epri); 1668 } 1669 } else { 1670 pri_t pri; 1671 1672 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1673 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1674 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1675 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1676 epri = swapin_time - 1677 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1678 } else { 1679 return ((pri_t)epri); 1680 } 1681 } 1682 1683 /* 1684 * Scale epri so SHRT_MAX/2 represents zero priority. 1685 */ 1686 epri += SHRT_MAX/2; 1687 if (epri < 0) 1688 epri = 0; 1689 else if (epri > SHRT_MAX) 1690 epri = SHRT_MAX; 1691 1692 return ((pri_t)epri); 1693 } 1694 1695 /* 1696 * Check for time slice expiration. If time slice has expired 1697 * move thread to priority specified in tsdptbl for time slice expiration 1698 * and set runrun to cause preemption. 1699 */ 1700 static void 1701 ts_tick(kthread_t *t) 1702 { 1703 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1704 klwp_t *lwp; 1705 boolean_t call_cpu_surrender = B_FALSE; 1706 pri_t oldpri = t->t_pri; 1707 1708 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1709 1710 thread_lock(t); 1711 1712 /* 1713 * Keep track of thread's project CPU usage. Note that projects 1714 * get charged even when threads are running in the kernel. 1715 */ 1716 if (CPUCAPS_ON()) { 1717 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1718 CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI); 1719 } 1720 1721 if ((tspp->ts_flags & TSKPRI) == 0) { 1722 if (--tspp->ts_timeleft <= 0) { 1723 pri_t new_pri; 1724 1725 /* 1726 * If we're doing preemption control and trying to 1727 * avoid preempting this thread, just note that 1728 * the thread should yield soon and let it keep 1729 * running (unless it's been a while). 1730 */ 1731 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1732 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1733 DTRACE_SCHED1(schedctl__nopreempt, 1734 kthread_t *, t); 1735 schedctl_set_yield(t, 1); 1736 thread_unlock_nopreempt(t); 1737 return; 1738 } 1739 1740 TNF_PROBE_2(schedctl_failsafe, 1741 "schedctl TS ts_tick", /* CSTYLED */, 1742 tnf_pid, pid, ttoproc(t)->p_pid, 1743 tnf_lwpid, lwpid, t->t_tid); 1744 } 1745 tspp->ts_flags &= ~TSRESTORE; 1746 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1747 TS_NEWUMDPRI(tspp); 1748 tspp->ts_dispwait = 0; 1749 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1750 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1751 /* 1752 * When the priority of a thread is changed, 1753 * it may be necessary to adjust its position 1754 * on a sleep queue or dispatch queue. 1755 * The function thread_change_pri accomplishes 1756 * this. 1757 */ 1758 if (thread_change_pri(t, new_pri, 0)) { 1759 if ((t->t_schedflag & TS_LOAD) && 1760 (lwp = t->t_lwp) && 1761 lwp->lwp_state == LWP_USER) 1762 t->t_schedflag &= ~TS_DONT_SWAP; 1763 tspp->ts_timeleft = 1764 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1765 } else { 1766 call_cpu_surrender = B_TRUE; 1767 } 1768 TRACE_2(TR_FAC_DISP, TR_TICK, 1769 "tick:tid %p old pri %d", t, oldpri); 1770 } else if (t->t_state == TS_ONPROC && 1771 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1772 call_cpu_surrender = B_TRUE; 1773 } 1774 } 1775 1776 if (call_cpu_surrender) { 1777 tspp->ts_flags |= TSBACKQ; 1778 cpu_surrender(t); 1779 } 1780 1781 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1782 } 1783 1784 1785 /* 1786 * If thread is currently at a kernel mode priority (has slept) 1787 * we assign it the appropriate user mode priority and time quantum 1788 * here. If we are lowering the thread's priority below that of 1789 * other runnable threads we will normally set runrun via cpu_surrender() to 1790 * cause preemption. 1791 */ 1792 static void 1793 ts_trapret(kthread_t *t) 1794 { 1795 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1796 cpu_t *cp = CPU; 1797 pri_t old_pri = curthread->t_pri; 1798 1799 ASSERT(THREAD_LOCK_HELD(t)); 1800 ASSERT(t == curthread); 1801 ASSERT(cp->cpu_dispthread == t); 1802 ASSERT(t->t_state == TS_ONPROC); 1803 1804 t->t_kpri_req = 0; 1805 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1806 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1807 TS_NEWUMDPRI(tspp); 1808 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1809 tspp->ts_dispwait = 0; 1810 1811 /* 1812 * If thread has blocked in the kernel (as opposed to 1813 * being merely preempted), recompute the user mode priority. 1814 */ 1815 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1816 cp->cpu_dispatch_pri = DISP_PRIO(t); 1817 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1818 tspp->ts_flags &= ~TSKPRI; 1819 1820 if (DISP_MUST_SURRENDER(t)) 1821 cpu_surrender(t); 1822 } else if (tspp->ts_flags & TSKPRI) { 1823 /* 1824 * If thread has blocked in the kernel (as opposed to 1825 * being merely preempted), recompute the user mode priority. 1826 */ 1827 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1828 cp->cpu_dispatch_pri = DISP_PRIO(t); 1829 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1830 tspp->ts_flags &= ~TSKPRI; 1831 1832 if (DISP_MUST_SURRENDER(t)) 1833 cpu_surrender(t); 1834 } 1835 1836 /* 1837 * Swapout lwp if the swapper is waiting for this thread to 1838 * reach a safe point. 1839 */ 1840 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1841 thread_unlock(t); 1842 swapout_lwp(ttolwp(t)); 1843 thread_lock(t); 1844 } 1845 1846 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1847 "trapret:tid %p old pri %d", t, old_pri); 1848 } 1849 1850 1851 /* 1852 * Update the ts_dispwait values of all time sharing threads that 1853 * are currently runnable at a user mode priority and bump the priority 1854 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1855 * timeout which we reset here. 1856 * 1857 * There are several lists of time sharing threads broken up by a hash on 1858 * the thread pointer. Each list has its own lock. This avoids blocking 1859 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1860 * runs. ts_update traverses each list in turn. 1861 * 1862 * If multiple threads have their priorities updated to the same value, 1863 * the system implicitly favors the one that is updated first (since it 1864 * winds up first on the run queue). To avoid this unfairness, the 1865 * traversal of threads starts at the list indicated by a marker. When 1866 * threads in more than one list have their priorities updated, the marker 1867 * is moved. This changes the order the threads will be placed on the run 1868 * queue the next time ts_update is called and preserves fairness over the 1869 * long run. The marker doesn't need to be protected by a lock since it's 1870 * only accessed by ts_update, which is inherently single-threaded (only 1871 * one instance can be running at a time). 1872 */ 1873 static void 1874 ts_update(void *arg) 1875 { 1876 int i; 1877 int new_marker = -1; 1878 static int ts_update_marker; 1879 1880 /* 1881 * Start with the ts_update_marker list, then do the rest. 1882 */ 1883 i = ts_update_marker; 1884 do { 1885 /* 1886 * If this is the first list after the current marker to 1887 * have threads with priorities updated, advance the marker 1888 * to this list for the next time ts_update runs. 1889 */ 1890 if (ts_update_list(i) && new_marker == -1 && 1891 i != ts_update_marker) { 1892 new_marker = i; 1893 } 1894 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1895 1896 /* advance marker for next ts_update call */ 1897 if (new_marker != -1) 1898 ts_update_marker = new_marker; 1899 1900 (void) timeout(ts_update, arg, hz); 1901 } 1902 1903 /* 1904 * Updates priority for a list of threads. Returns 1 if the priority of 1905 * one of the threads was actually updated, 0 if none were for various 1906 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1907 * hasn't waited long enough, has the preemption control no-preempt bit 1908 * set, etc.) 1909 */ 1910 static int 1911 ts_update_list(int i) 1912 { 1913 tsproc_t *tspp; 1914 kthread_t *tx; 1915 int updated = 0; 1916 1917 mutex_enter(&ts_list_lock[i]); 1918 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1919 tspp = tspp->ts_next) { 1920 tx = tspp->ts_tp; 1921 /* 1922 * Lock the thread and verify state. 1923 */ 1924 thread_lock(tx); 1925 /* 1926 * Skip the thread if it is no longer in the TS (or IA) class. 1927 */ 1928 if (tx->t_clfuncs != &ts_classfuncs.thread && 1929 tx->t_clfuncs != &ia_classfuncs.thread) 1930 goto next; 1931 tspp->ts_dispwait++; 1932 if ((tspp->ts_flags & TSKPRI) != 0) 1933 goto next; 1934 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1935 goto next; 1936 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1937 goto next; 1938 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1939 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1940 /* make next syscall/trap do CL_TRAPRET */ 1941 tx->t_trapret = 1; 1942 aston(tx); 1943 goto next; 1944 } 1945 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1946 TS_NEWUMDPRI(tspp); 1947 tspp->ts_dispwait = 0; 1948 updated = 1; 1949 1950 /* 1951 * Only dequeue it if needs to move; otherwise it should 1952 * just round-robin here. 1953 */ 1954 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1955 pri_t oldpri = tx->t_pri; 1956 ts_change_priority(tx, tspp); 1957 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1958 "update:tid %p old pri %d", tx, oldpri); 1959 } 1960 next: 1961 thread_unlock(tx); 1962 } 1963 mutex_exit(&ts_list_lock[i]); 1964 1965 return (updated); 1966 } 1967 1968 /* 1969 * Processes waking up go to the back of their queue. We don't 1970 * need to assign a time quantum here because thread is still 1971 * at a kernel mode priority and the time slicing is not done 1972 * for threads running in the kernel after sleeping. The proper 1973 * time quantum will be assigned by ts_trapret before the thread 1974 * returns to user mode. 1975 */ 1976 static void 1977 ts_wakeup(kthread_t *t) 1978 { 1979 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1980 1981 ASSERT(THREAD_LOCK_HELD(t)); 1982 1983 t->t_stime = lbolt; /* time stamp for the swapper */ 1984 1985 if (tspp->ts_flags & TSKPRI) { 1986 tspp->ts_flags &= ~TSBACKQ; 1987 if (tspp->ts_flags & TSIASET) 1988 setfrontdq(t); 1989 else 1990 setbackdq(t); 1991 } else if (t->t_kpri_req) { 1992 /* 1993 * Give thread a priority boost if we were asked. 1994 */ 1995 tspp->ts_flags |= TSKPRI; 1996 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1997 setbackdq(t); 1998 t->t_trapret = 1; /* so that ts_trapret will run */ 1999 aston(t); 2000 } else { 2001 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 2002 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 2003 TS_NEWUMDPRI(tspp); 2004 tspp->ts_timeleft = 2005 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2006 tspp->ts_dispwait = 0; 2007 THREAD_CHANGE_PRI(t, 2008 ts_dptbl[tspp->ts_umdpri].ts_globpri); 2009 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2010 } 2011 2012 tspp->ts_flags &= ~TSBACKQ; 2013 2014 if (tspp->ts_flags & TSIA) { 2015 if (tspp->ts_flags & TSIASET) 2016 setfrontdq(t); 2017 else 2018 setbackdq(t); 2019 } else { 2020 if (t->t_disp_time != lbolt) 2021 setbackdq(t); 2022 else 2023 setfrontdq(t); 2024 } 2025 } 2026 } 2027 2028 2029 /* 2030 * When a thread yields, put it on the back of the run queue. 2031 */ 2032 static void 2033 ts_yield(kthread_t *t) 2034 { 2035 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2036 2037 ASSERT(t == curthread); 2038 ASSERT(THREAD_LOCK_HELD(t)); 2039 2040 /* 2041 * Collect CPU usage spent before yielding 2042 */ 2043 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 2044 2045 /* 2046 * Clear the preemption control "yield" bit since the user is 2047 * doing a yield. 2048 */ 2049 if (t->t_schedctl) 2050 schedctl_set_yield(t, 0); 2051 /* 2052 * If ts_preempt() artifically increased the thread's priority 2053 * to avoid preemption, restore the original priority now. 2054 */ 2055 if (tspp->ts_flags & TSRESTORE) { 2056 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 2057 tspp->ts_flags &= ~TSRESTORE; 2058 } 2059 if (tspp->ts_timeleft <= 0) { 2060 /* 2061 * Time slice was artificially extended to avoid 2062 * preemption, so pretend we're preempting it now. 2063 */ 2064 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2065 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2066 TS_NEWUMDPRI(tspp); 2067 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2068 tspp->ts_dispwait = 0; 2069 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2070 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2071 } 2072 tspp->ts_flags &= ~TSBACKQ; 2073 setbackdq(t); 2074 } 2075 2076 2077 /* 2078 * Increment the nice value of the specified thread by incr and 2079 * return the new value in *retvalp. 2080 */ 2081 static int 2082 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2083 { 2084 int newnice; 2085 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2086 tsparms_t tsparms; 2087 2088 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2089 2090 /* If there's no change to priority, just return current setting */ 2091 if (incr == 0) { 2092 if (retvalp) { 2093 *retvalp = tspp->ts_nice - NZERO; 2094 } 2095 return (0); 2096 } 2097 2098 if ((incr < 0 || incr > 2 * NZERO) && 2099 secpolicy_setpriority(cr) != 0) 2100 return (EPERM); 2101 2102 /* 2103 * Specifying a nice increment greater than the upper limit of 2104 * 2 * NZERO - 1 will result in the thread's nice value being 2105 * set to the upper limit. We check for this before computing 2106 * the new value because otherwise we could get overflow 2107 * if a privileged process specified some ridiculous increment. 2108 */ 2109 if (incr > 2 * NZERO - 1) 2110 incr = 2 * NZERO - 1; 2111 2112 newnice = tspp->ts_nice + incr; 2113 if (newnice >= 2 * NZERO) 2114 newnice = 2 * NZERO - 1; 2115 else if (newnice < 0) 2116 newnice = 0; 2117 2118 tsparms.ts_uprilim = tsparms.ts_upri = 2119 -((newnice - NZERO) * ts_maxupri) / NZERO; 2120 /* 2121 * Reset the uprilim and upri values of the thread. 2122 * Call ts_parmsset even if thread is interactive since we're 2123 * not changing mode. 2124 */ 2125 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2126 2127 /* 2128 * Although ts_parmsset already reset ts_nice it may 2129 * not have been set to precisely the value calculated above 2130 * because ts_parmsset determines the nice value from the 2131 * user priority and we may have truncated during the integer 2132 * conversion from nice value to user priority and back. 2133 * We reset ts_nice to the value we calculated above. 2134 */ 2135 tspp->ts_nice = (char)newnice; 2136 2137 if (retvalp) 2138 *retvalp = newnice - NZERO; 2139 return (0); 2140 } 2141 2142 /* 2143 * Increment the priority of the specified thread by incr and 2144 * return the new value in *retvalp. 2145 */ 2146 static int 2147 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2148 { 2149 int newpri; 2150 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2151 tsparms_t tsparms; 2152 2153 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2154 2155 /* If there's no change to the priority, just return current setting */ 2156 if (incr == 0) { 2157 *retvalp = tspp->ts_upri; 2158 return (0); 2159 } 2160 2161 newpri = tspp->ts_upri + incr; 2162 if (newpri > ts_maxupri || newpri < -ts_maxupri) 2163 return (EINVAL); 2164 2165 *retvalp = newpri; 2166 tsparms.ts_uprilim = tsparms.ts_upri = newpri; 2167 /* 2168 * Reset the uprilim and upri values of the thread. 2169 * Call ts_parmsset even if thread is interactive since we're 2170 * not changing mode. 2171 */ 2172 return (ts_parmsset(t, &tsparms, 0, cr)); 2173 } 2174 2175 /* 2176 * ia_set_process_group marks foreground processes as interactive 2177 * and background processes as non-interactive iff the session 2178 * leader is interactive. This routine is called from two places: 2179 * strioctl:SPGRP when a new process group gets 2180 * control of the tty. 2181 * ia_parmsset-when the process in question is a session leader. 2182 * ia_set_process_group assumes that pidlock is held by the caller, 2183 * either strioctl or priocntlsys. If the caller is priocntlsys 2184 * (via ia_parmsset) then the p_lock of the session leader is held 2185 * and the code needs to be careful about acquiring other p_locks. 2186 */ 2187 static void 2188 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2189 { 2190 proc_t *leader, *fg, *bg; 2191 tsproc_t *tspp; 2192 kthread_t *tx; 2193 int plocked = 0; 2194 2195 ASSERT(MUTEX_HELD(&pidlock)); 2196 2197 /* 2198 * see if the session leader is interactive AND 2199 * if it is currently "on" AND controlling a tty 2200 * iff it is then make the processes in the foreground 2201 * group interactive and the processes in the background 2202 * group non-interactive. 2203 */ 2204 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2205 return; 2206 } 2207 if (leader->p_stat == SIDL) { 2208 return; 2209 } 2210 if ((tx = proctot(leader)) == NULL) { 2211 return; 2212 } 2213 /* 2214 * XXX do all the threads in the leader 2215 */ 2216 if (tx->t_cid != ia_cid) { 2217 return; 2218 } 2219 tspp = tx->t_cldata; 2220 /* 2221 * session leaders that are not interactive need not have 2222 * any processing done for them. They are typically shells 2223 * that do not have focus and are changing the process group 2224 * attatched to the tty, e.g. a process that is exiting 2225 */ 2226 mutex_enter(&leader->p_sessp->s_lock); 2227 if (!(tspp->ts_flags & TSIASET) || 2228 (leader->p_sessp->s_vp == NULL) || 2229 (leader->p_sessp->s_vp->v_stream == NULL)) { 2230 mutex_exit(&leader->p_sessp->s_lock); 2231 return; 2232 } 2233 mutex_exit(&leader->p_sessp->s_lock); 2234 2235 /* 2236 * If we're already holding the leader's p_lock, we should use 2237 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2238 * lock ordering violations. 2239 */ 2240 if (mutex_owned(&leader->p_lock)) 2241 plocked = 1; 2242 2243 if (fg_pgid == 0) 2244 goto skip; 2245 /* 2246 * now look for all processes in the foreground group and 2247 * make them interactive 2248 */ 2249 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2250 /* 2251 * if the process is SIDL it's begin forked, ignore it 2252 */ 2253 if (fg->p_stat == SIDL) { 2254 continue; 2255 } 2256 /* 2257 * sesssion leaders must be turned on/off explicitly 2258 * not implicitly as happens to other members of 2259 * the process group. 2260 */ 2261 if (fg->p_pid == fg->p_sessp->s_sid) { 2262 continue; 2263 } 2264 2265 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2266 "group on:proc %p", fg); 2267 2268 if (plocked) { 2269 if (mutex_tryenter(&fg->p_lock) == 0) 2270 continue; 2271 } else { 2272 mutex_enter(&fg->p_lock); 2273 } 2274 2275 if ((tx = proctot(fg)) == NULL) { 2276 mutex_exit(&fg->p_lock); 2277 continue; 2278 } 2279 do { 2280 thread_lock(tx); 2281 /* 2282 * if this thread is not interactive continue 2283 */ 2284 if (tx->t_cid != ia_cid) { 2285 thread_unlock(tx); 2286 continue; 2287 } 2288 tspp = tx->t_cldata; 2289 tspp->ts_flags |= TSIASET; 2290 tspp->ts_boost = ia_boost; 2291 TS_NEWUMDPRI(tspp); 2292 if ((tspp->ts_flags & TSKPRI) != 0) { 2293 thread_unlock(tx); 2294 continue; 2295 } 2296 tspp->ts_dispwait = 0; 2297 ts_change_priority(tx, tspp); 2298 thread_unlock(tx); 2299 } while ((tx = tx->t_forw) != fg->p_tlist); 2300 mutex_exit(&fg->p_lock); 2301 } 2302 skip: 2303 if (bg_pgid == 0) 2304 return; 2305 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2306 if (bg->p_stat == SIDL) { 2307 continue; 2308 } 2309 /* 2310 * sesssion leaders must be turned off explicitly 2311 * not implicitly as happens to other members of 2312 * the process group. 2313 */ 2314 if (bg->p_pid == bg->p_sessp->s_sid) { 2315 continue; 2316 } 2317 2318 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2319 "group off:proc %p", bg); 2320 2321 if (plocked) { 2322 if (mutex_tryenter(&bg->p_lock) == 0) 2323 continue; 2324 } else { 2325 mutex_enter(&bg->p_lock); 2326 } 2327 2328 if ((tx = proctot(bg)) == NULL) { 2329 mutex_exit(&bg->p_lock); 2330 continue; 2331 } 2332 do { 2333 thread_lock(tx); 2334 /* 2335 * if this thread is not interactive continue 2336 */ 2337 if (tx->t_cid != ia_cid) { 2338 thread_unlock(tx); 2339 continue; 2340 } 2341 tspp = tx->t_cldata; 2342 tspp->ts_flags &= ~TSIASET; 2343 tspp->ts_boost = -ia_boost; 2344 TS_NEWUMDPRI(tspp); 2345 if ((tspp->ts_flags & TSKPRI) != 0) { 2346 thread_unlock(tx); 2347 continue; 2348 } 2349 2350 tspp->ts_dispwait = 0; 2351 ts_change_priority(tx, tspp); 2352 thread_unlock(tx); 2353 } while ((tx = tx->t_forw) != bg->p_tlist); 2354 mutex_exit(&bg->p_lock); 2355 } 2356 } 2357 2358 2359 static void 2360 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2361 { 2362 pri_t new_pri; 2363 2364 ASSERT(THREAD_LOCK_HELD(t)); 2365 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2366 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2367 tspp->ts_flags &= ~TSRESTORE; 2368 t->t_cpri = tspp->ts_upri; 2369 if (t == curthread || t->t_state == TS_ONPROC) { 2370 /* curthread is always onproc */ 2371 cpu_t *cp = t->t_disp_queue->disp_cpu; 2372 THREAD_CHANGE_PRI(t, new_pri); 2373 if (t == cp->cpu_dispthread) 2374 cp->cpu_dispatch_pri = DISP_PRIO(t); 2375 if (DISP_MUST_SURRENDER(t)) { 2376 tspp->ts_flags |= TSBACKQ; 2377 cpu_surrender(t); 2378 } else { 2379 tspp->ts_timeleft = 2380 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2381 } 2382 } else { 2383 int frontq; 2384 2385 frontq = (tspp->ts_flags & TSIASET) != 0; 2386 /* 2387 * When the priority of a thread is changed, 2388 * it may be necessary to adjust its position 2389 * on a sleep queue or dispatch queue. 2390 * The function thread_change_pri accomplishes 2391 * this. 2392 */ 2393 if (thread_change_pri(t, new_pri, frontq)) { 2394 /* 2395 * The thread was on a run queue. Reset 2396 * its CPU timeleft from the quantum 2397 * associated with the new priority. 2398 */ 2399 tspp->ts_timeleft = 2400 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2401 } else { 2402 tspp->ts_flags |= TSBACKQ; 2403 } 2404 } 2405 } 2406 2407 static int 2408 ts_alloc(void **p, int flag) 2409 { 2410 void *bufp; 2411 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2412 if (bufp == NULL) { 2413 return (ENOMEM); 2414 } else { 2415 *p = bufp; 2416 return (0); 2417 } 2418 } 2419 2420 static void 2421 ts_free(void *bufp) 2422 { 2423 if (bufp) 2424 kmem_free(bufp, sizeof (tsproc_t)); 2425 } 2426