1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/cred.h> 34 #include <sys/proc.h> 35 #include <sys/session.h> 36 #include <sys/strsubr.h> 37 #include <sys/signal.h> 38 #include <sys/user.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/disp.h> 42 #include <sys/procset.h> 43 #include <sys/debug.h> 44 #include <sys/ts.h> 45 #include <sys/tspriocntl.h> 46 #include <sys/iapriocntl.h> 47 #include <sys/kmem.h> 48 #include <sys/errno.h> 49 #include <sys/cpuvar.h> 50 #include <sys/systm.h> /* for lbolt */ 51 #include <sys/vtrace.h> 52 #include <sys/vmsystm.h> 53 #include <sys/schedctl.h> 54 #include <sys/tnf_probe.h> 55 #include <sys/atomic.h> 56 #include <sys/policy.h> 57 #include <sys/sdt.h> 58 #include <sys/cpupart.h> 59 #include <vm/rm.h> 60 #include <vm/seg_kmem.h> 61 #include <sys/modctl.h> 62 #include <sys/cpucaps.h> 63 64 static pri_t ts_init(id_t, int, classfuncs_t **); 65 66 static struct sclass csw = { 67 "TS", 68 ts_init, 69 0 70 }; 71 72 static struct modlsched modlsched = { 73 &mod_schedops, "time sharing sched class", &csw 74 }; 75 76 static struct modlinkage modlinkage = { 77 MODREV_1, (void *)&modlsched, NULL 78 }; 79 80 int 81 _init() 82 { 83 return (mod_install(&modlinkage)); 84 } 85 86 int 87 _fini() 88 { 89 return (EBUSY); /* don't remove TS for now */ 90 } 91 92 int 93 _info(struct modinfo *modinfop) 94 { 95 return (mod_info(&modlinkage, modinfop)); 96 } 97 98 /* 99 * Class specific code for the time-sharing class 100 */ 101 102 103 /* 104 * Extern declarations for variables defined in the ts master file 105 */ 106 #define TSMAXUPRI 60 107 108 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 109 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 110 111 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 112 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 113 114 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 115 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 116 /* sleeping or running in kernel after sleep */ 117 118 static id_t ia_cid; 119 120 int ts_sleep_promote = 1; 121 122 #define tsmedumdpri (ts_maxumdpri >> 1) 123 124 #define TS_NEWUMDPRI(tspp) \ 125 { \ 126 pri_t pri; \ 127 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 128 if (pri > ts_maxumdpri) \ 129 (tspp)->ts_umdpri = ts_maxumdpri; \ 130 else if (pri < 0) \ 131 (tspp)->ts_umdpri = 0; \ 132 else \ 133 (tspp)->ts_umdpri = pri; \ 134 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 135 } 136 137 /* 138 * The tsproc_t structures are kept in an array of circular doubly linked 139 * lists. A hash on the thread pointer is used to determine which list 140 * each thread should be placed. Each list has a dummy "head" which is 141 * never removed, so the list is never empty. ts_update traverses these 142 * lists to update the priorities of threads that have been waiting on 143 * the run queue. 144 */ 145 146 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 147 148 /* hash function, argument is a thread pointer */ 149 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 150 151 /* iterate to the next list */ 152 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 153 154 /* 155 * Insert thread into the appropriate tsproc list. 156 */ 157 #define TS_LIST_INSERT(tspp) \ 158 { \ 159 int index = TS_LIST_HASH(tspp->ts_tp); \ 160 kmutex_t *lockp = &ts_list_lock[index]; \ 161 tsproc_t *headp = &ts_plisthead[index]; \ 162 mutex_enter(lockp); \ 163 tspp->ts_next = headp->ts_next; \ 164 tspp->ts_prev = headp; \ 165 headp->ts_next->ts_prev = tspp; \ 166 headp->ts_next = tspp; \ 167 mutex_exit(lockp); \ 168 } 169 170 /* 171 * Remove thread from tsproc list. 172 */ 173 #define TS_LIST_DELETE(tspp) \ 174 { \ 175 int index = TS_LIST_HASH(tspp->ts_tp); \ 176 kmutex_t *lockp = &ts_list_lock[index]; \ 177 mutex_enter(lockp); \ 178 tspp->ts_prev->ts_next = tspp->ts_next; \ 179 tspp->ts_next->ts_prev = tspp->ts_prev; \ 180 mutex_exit(lockp); \ 181 } 182 183 184 static int ts_admin(caddr_t, cred_t *); 185 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 186 static int ts_fork(kthread_t *, kthread_t *, void *); 187 static int ts_getclinfo(void *); 188 static int ts_getclpri(pcpri_t *); 189 static int ts_parmsin(void *); 190 static int ts_parmsout(void *, pc_vaparms_t *); 191 static int ts_vaparmsin(void *, pc_vaparms_t *); 192 static int ts_vaparmsout(void *, pc_vaparms_t *); 193 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 194 static void ts_exit(kthread_t *); 195 static int ts_donice(kthread_t *, cred_t *, int, int *); 196 static int ts_doprio(kthread_t *, cred_t *, int, int *); 197 static void ts_exitclass(void *); 198 static int ts_canexit(kthread_t *, cred_t *); 199 static void ts_forkret(kthread_t *, kthread_t *); 200 static void ts_nullsys(); 201 static void ts_parmsget(kthread_t *, void *); 202 static void ts_preempt(kthread_t *); 203 static void ts_setrun(kthread_t *); 204 static void ts_sleep(kthread_t *); 205 static pri_t ts_swapin(kthread_t *, int); 206 static pri_t ts_swapout(kthread_t *, int); 207 static void ts_tick(kthread_t *); 208 static void ts_trapret(kthread_t *); 209 static void ts_update(void *); 210 static int ts_update_list(int); 211 static void ts_wakeup(kthread_t *); 212 static pri_t ts_globpri(kthread_t *); 213 static void ts_yield(kthread_t *); 214 extern tsdpent_t *ts_getdptbl(void); 215 extern pri_t *ts_getkmdpris(void); 216 extern pri_t td_getmaxumdpri(void); 217 static int ts_alloc(void **, int); 218 static void ts_free(void *); 219 220 pri_t ia_init(id_t, int, classfuncs_t **); 221 static int ia_getclinfo(void *); 222 static int ia_getclpri(pcpri_t *); 223 static int ia_parmsin(void *); 224 static int ia_vaparmsin(void *, pc_vaparms_t *); 225 static int ia_vaparmsout(void *, pc_vaparms_t *); 226 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 227 static void ia_parmsget(kthread_t *, void *); 228 static void ia_set_process_group(pid_t, pid_t, pid_t); 229 230 static void ts_change_priority(kthread_t *, tsproc_t *); 231 232 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 233 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 234 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 235 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 236 237 static gid_t IA_gid = 0; 238 239 static struct classfuncs ts_classfuncs = { 240 /* class functions */ 241 ts_admin, 242 ts_getclinfo, 243 ts_parmsin, 244 ts_parmsout, 245 ts_vaparmsin, 246 ts_vaparmsout, 247 ts_getclpri, 248 ts_alloc, 249 ts_free, 250 251 /* thread functions */ 252 ts_enterclass, 253 ts_exitclass, 254 ts_canexit, 255 ts_fork, 256 ts_forkret, 257 ts_parmsget, 258 ts_parmsset, 259 ts_nullsys, /* stop */ 260 ts_exit, 261 ts_nullsys, /* active */ 262 ts_nullsys, /* inactive */ 263 ts_swapin, 264 ts_swapout, 265 ts_trapret, 266 ts_preempt, 267 ts_setrun, 268 ts_sleep, 269 ts_tick, 270 ts_wakeup, 271 ts_donice, 272 ts_globpri, 273 ts_nullsys, /* set_process_group */ 274 ts_yield, 275 ts_doprio, 276 }; 277 278 /* 279 * ia_classfuncs is used for interactive class threads; IA threads are stored 280 * on the same class list as TS threads, and most of the class functions are 281 * identical, but a few have different enough functionality to require their 282 * own functions. 283 */ 284 static struct classfuncs ia_classfuncs = { 285 /* class functions */ 286 ts_admin, 287 ia_getclinfo, 288 ia_parmsin, 289 ts_parmsout, 290 ia_vaparmsin, 291 ia_vaparmsout, 292 ia_getclpri, 293 ts_alloc, 294 ts_free, 295 296 /* thread functions */ 297 ts_enterclass, 298 ts_exitclass, 299 ts_canexit, 300 ts_fork, 301 ts_forkret, 302 ia_parmsget, 303 ia_parmsset, 304 ts_nullsys, /* stop */ 305 ts_exit, 306 ts_nullsys, /* active */ 307 ts_nullsys, /* inactive */ 308 ts_swapin, 309 ts_swapout, 310 ts_trapret, 311 ts_preempt, 312 ts_setrun, 313 ts_sleep, 314 ts_tick, 315 ts_wakeup, 316 ts_donice, 317 ts_globpri, 318 ia_set_process_group, 319 ts_yield, 320 ts_doprio, 321 }; 322 323 324 /* 325 * Time sharing class initialization. Called by dispinit() at boot time. 326 * We can ignore the clparmsz argument since we know that the smallest 327 * possible parameter buffer is big enough for us. 328 */ 329 /* ARGSUSED */ 330 static pri_t 331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 332 { 333 int i; 334 extern pri_t ts_getmaxumdpri(void); 335 336 ts_dptbl = ts_getdptbl(); 337 ts_kmdpris = ts_getkmdpris(); 338 ts_maxumdpri = ts_getmaxumdpri(); 339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 340 341 /* 342 * Initialize the tsproc lists. 343 */ 344 for (i = 0; i < TS_LISTS; i++) { 345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 346 &ts_plisthead[i]; 347 } 348 349 /* 350 * We're required to return a pointer to our classfuncs 351 * structure and the highest global priority value we use. 352 */ 353 *clfuncspp = &ts_classfuncs; 354 return (ts_maxglobpri); 355 } 356 357 358 /* 359 * Interactive class scheduler initialization 360 */ 361 /* ARGSUSED */ 362 pri_t 363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 364 { 365 /* 366 * We're required to return a pointer to our classfuncs 367 * structure and the highest global priority value we use. 368 */ 369 ia_cid = cid; 370 *clfuncspp = &ia_classfuncs; 371 return (ts_maxglobpri); 372 } 373 374 375 /* 376 * Get or reset the ts_dptbl values per the user's request. 377 */ 378 static int 379 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 380 { 381 tsadmin_t tsadmin; 382 tsdpent_t *tmpdpp; 383 int userdpsz; 384 int i; 385 size_t tsdpsz; 386 387 if (get_udatamodel() == DATAMODEL_NATIVE) { 388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 389 return (EFAULT); 390 } 391 #ifdef _SYSCALL32_IMPL 392 else { 393 /* get tsadmin struct from ILP32 caller */ 394 tsadmin32_t tsadmin32; 395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 396 return (EFAULT); 397 tsadmin.ts_dpents = 398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 400 tsadmin.ts_cmd = tsadmin32.ts_cmd; 401 } 402 #endif /* _SYSCALL32_IMPL */ 403 404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 405 406 switch (tsadmin.ts_cmd) { 407 case TS_GETDPSIZE: 408 tsadmin.ts_ndpents = ts_maxumdpri + 1; 409 410 if (get_udatamodel() == DATAMODEL_NATIVE) { 411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 412 return (EFAULT); 413 } 414 #ifdef _SYSCALL32_IMPL 415 else { 416 /* return tsadmin struct to ILP32 caller */ 417 tsadmin32_t tsadmin32; 418 tsadmin32.ts_dpents = 419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 421 tsadmin32.ts_cmd = tsadmin.ts_cmd; 422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 423 return (EFAULT); 424 } 425 #endif /* _SYSCALL32_IMPL */ 426 break; 427 428 case TS_GETDPTBL: 429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 430 tsdpsz); 431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 432 return (EFAULT); 433 434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 435 436 if (get_udatamodel() == DATAMODEL_NATIVE) { 437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 438 return (EFAULT); 439 } 440 #ifdef _SYSCALL32_IMPL 441 else { 442 /* return tsadmin struct to ILP32 callers */ 443 tsadmin32_t tsadmin32; 444 tsadmin32.ts_dpents = 445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 447 tsadmin32.ts_cmd = tsadmin.ts_cmd; 448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 449 return (EFAULT); 450 } 451 #endif /* _SYSCALL32_IMPL */ 452 break; 453 454 case TS_SETDPTBL: 455 /* 456 * We require that the requesting process has sufficient 457 * priveleges. We also require that the table supplied by 458 * the user exactly match the current ts_dptbl in size. 459 */ 460 if (secpolicy_dispadm(reqpcredp) != 0) 461 return (EPERM); 462 463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 464 return (EINVAL); 465 } 466 467 /* 468 * We read the user supplied table into a temporary buffer 469 * where it is validated before being copied over the 470 * ts_dptbl. 471 */ 472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 474 tsdpsz)) { 475 kmem_free(tmpdpp, tsdpsz); 476 return (EFAULT); 477 } 478 for (i = 0; i < tsadmin.ts_ndpents; i++) { 479 480 /* 481 * Validate the user supplied values. All we are doing 482 * here is verifying that the values are within their 483 * allowable ranges and will not panic the system. We 484 * make no attempt to ensure that the resulting 485 * configuration makes sense or results in reasonable 486 * performance. 487 */ 488 if (tmpdpp[i].ts_quantum <= 0) { 489 kmem_free(tmpdpp, tsdpsz); 490 return (EINVAL); 491 } 492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 493 tmpdpp[i].ts_tqexp < 0) { 494 kmem_free(tmpdpp, tsdpsz); 495 return (EINVAL); 496 } 497 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 498 tmpdpp[i].ts_slpret < 0) { 499 kmem_free(tmpdpp, tsdpsz); 500 return (EINVAL); 501 } 502 if (tmpdpp[i].ts_maxwait < 0) { 503 kmem_free(tmpdpp, tsdpsz); 504 return (EINVAL); 505 } 506 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 507 tmpdpp[i].ts_lwait < 0) { 508 kmem_free(tmpdpp, tsdpsz); 509 return (EINVAL); 510 } 511 } 512 513 /* 514 * Copy the user supplied values over the current ts_dptbl 515 * values. The ts_globpri member is read-only so we don't 516 * overwrite it. 517 */ 518 mutex_enter(&ts_dptblock); 519 for (i = 0; i < tsadmin.ts_ndpents; i++) { 520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 525 } 526 mutex_exit(&ts_dptblock); 527 kmem_free(tmpdpp, tsdpsz); 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 return (0); 534 } 535 536 537 /* 538 * Allocate a time-sharing class specific thread structure and 539 * initialize it with the parameters supplied. Also move the thread 540 * to specified time-sharing priority. 541 */ 542 static int 543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 544 void *bufp) 545 { 546 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 547 tsproc_t *tspp; 548 pri_t reqtsuprilim; 549 pri_t reqtsupri; 550 static uint32_t tspexists = 0; /* set on first occurrence of */ 551 /* a time-sharing process */ 552 553 tspp = (tsproc_t *)bufp; 554 ASSERT(tspp != NULL); 555 556 /* 557 * Initialize the tsproc structure. 558 */ 559 tspp->ts_cpupri = tsmedumdpri; 560 if (cid == ia_cid) { 561 /* 562 * Check to make sure caller is either privileged or the 563 * window system. When the window system is converted 564 * to using privileges, the second check can go away. 565 */ 566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 567 secpolicy_setpriority(reqpcredp) != 0) 568 return (EPERM); 569 /* 570 * Belongs to IA "class", so set appropriate flags. 571 * Mark as 'on' so it will not be a swap victim 572 * while forking. 573 */ 574 tspp->ts_flags = TSIA | TSIASET; 575 tspp->ts_boost = ia_boost; 576 } else { 577 tspp->ts_flags = 0; 578 tspp->ts_boost = 0; 579 } 580 581 if (tsparmsp == NULL) { 582 /* 583 * Use default values. 584 */ 585 tspp->ts_uprilim = tspp->ts_upri = 0; 586 tspp->ts_nice = NZERO; 587 } else { 588 /* 589 * Use supplied values. 590 */ 591 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 592 reqtsuprilim = 0; 593 else { 594 if (tsparmsp->ts_uprilim > 0 && 595 secpolicy_setpriority(reqpcredp) != 0) 596 return (EPERM); 597 reqtsuprilim = tsparmsp->ts_uprilim; 598 } 599 600 if (tsparmsp->ts_upri == TS_NOCHANGE) { 601 reqtsupri = reqtsuprilim; 602 } else { 603 if (tsparmsp->ts_upri > 0 && 604 secpolicy_setpriority(reqpcredp) != 0) 605 return (EPERM); 606 /* 607 * Set the user priority to the requested value 608 * or the upri limit, whichever is lower. 609 */ 610 reqtsupri = tsparmsp->ts_upri; 611 if (reqtsupri > reqtsuprilim) 612 reqtsupri = reqtsuprilim; 613 } 614 615 616 tspp->ts_uprilim = reqtsuprilim; 617 tspp->ts_upri = reqtsupri; 618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri; 619 } 620 TS_NEWUMDPRI(tspp); 621 622 tspp->ts_dispwait = 0; 623 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 624 tspp->ts_tp = t; 625 cpucaps_sc_init(&tspp->ts_caps); 626 627 /* 628 * Reset priority. Process goes to a "user mode" priority 629 * here regardless of whether or not it has slept since 630 * entering the kernel. 631 */ 632 thread_lock(t); /* get dispatcher lock on thread */ 633 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 634 t->t_cid = cid; 635 t->t_cldata = (void *)tspp; 636 t->t_schedflag &= ~TS_RUNQMATCH; 637 ts_change_priority(t, tspp); 638 thread_unlock(t); 639 640 /* 641 * Link new structure into tsproc list. 642 */ 643 TS_LIST_INSERT(tspp); 644 645 /* 646 * If this is the first time-sharing thread to occur since 647 * boot we set up the initial call to ts_update() here. 648 * Use an atomic compare-and-swap since that's easier and 649 * faster than a mutex (but check with an ordinary load first 650 * since most of the time this will already be done). 651 */ 652 if (tspexists == 0 && atomic_cas_32(&tspexists, 0, 1) == 0) 653 (void) timeout(ts_update, NULL, hz); 654 655 return (0); 656 } 657 658 659 /* 660 * Free tsproc structure of thread. 661 */ 662 static void 663 ts_exitclass(void *procp) 664 { 665 tsproc_t *tspp = (tsproc_t *)procp; 666 667 /* Remove tsproc_t structure from list */ 668 TS_LIST_DELETE(tspp); 669 kmem_free(tspp, sizeof (tsproc_t)); 670 } 671 672 /* ARGSUSED */ 673 static int 674 ts_canexit(kthread_t *t, cred_t *cred) 675 { 676 /* 677 * A thread can always leave a TS/IA class 678 */ 679 return (0); 680 } 681 682 static int 683 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 684 { 685 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 686 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 687 688 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 689 690 ctspp = (tsproc_t *)bufp; 691 ASSERT(ctspp != NULL); 692 ptspp = (tsproc_t *)t->t_cldata; 693 /* 694 * Initialize child's tsproc structure. 695 */ 696 thread_lock(t); 697 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 698 ctspp->ts_cpupri = ptspp->ts_cpupri; 699 ctspp->ts_boost = ptspp->ts_boost; 700 ctspp->ts_uprilim = ptspp->ts_uprilim; 701 ctspp->ts_upri = ptspp->ts_upri; 702 TS_NEWUMDPRI(ctspp); 703 ctspp->ts_nice = ptspp->ts_nice; 704 ctspp->ts_dispwait = 0; 705 ctspp->ts_flags = ptspp->ts_flags & ~(TSBACKQ | TSRESTORE); 706 ctspp->ts_tp = ct; 707 cpucaps_sc_init(&ctspp->ts_caps); 708 thread_unlock(t); 709 710 /* 711 * Link new structure into tsproc list. 712 */ 713 ct->t_cldata = (void *)ctspp; 714 TS_LIST_INSERT(ctspp); 715 return (0); 716 } 717 718 719 /* 720 * Child is placed at back of dispatcher queue and parent gives 721 * up processor so that the child runs first after the fork. 722 * This allows the child immediately execing to break the multiple 723 * use of copy on write pages with no disk home. The parent will 724 * get to steal them back rather than uselessly copying them. 725 */ 726 static void 727 ts_forkret(kthread_t *t, kthread_t *ct) 728 { 729 proc_t *pp = ttoproc(t); 730 proc_t *cp = ttoproc(ct); 731 tsproc_t *tspp; 732 733 ASSERT(t == curthread); 734 ASSERT(MUTEX_HELD(&pidlock)); 735 736 /* 737 * Grab the child's p_lock before dropping pidlock to ensure 738 * the process does not disappear before we set it running. 739 */ 740 mutex_enter(&cp->p_lock); 741 continuelwps(cp); 742 mutex_exit(&cp->p_lock); 743 744 mutex_enter(&pp->p_lock); 745 mutex_exit(&pidlock); 746 continuelwps(pp); 747 748 thread_lock(t); 749 tspp = (tsproc_t *)(t->t_cldata); 750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 751 TS_NEWUMDPRI(tspp); 752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 753 tspp->ts_dispwait = 0; 754 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 756 THREAD_TRANSITION(t); 757 ts_setrun(t); 758 thread_unlock(t); 759 /* 760 * Safe to drop p_lock now since since it is safe to change 761 * the scheduling class after this point. 762 */ 763 mutex_exit(&pp->p_lock); 764 765 swtch(); 766 } 767 768 769 /* 770 * Get information about the time-sharing class into the buffer 771 * pointed to by tsinfop. The maximum configured user priority 772 * is the only information we supply. ts_getclinfo() is called 773 * for TS threads, and ia_getclinfo() is called for IA threads. 774 */ 775 static int 776 ts_getclinfo(void *infop) 777 { 778 tsinfo_t *tsinfop = (tsinfo_t *)infop; 779 tsinfop->ts_maxupri = ts_maxupri; 780 return (0); 781 } 782 783 static int 784 ia_getclinfo(void *infop) 785 { 786 iainfo_t *iainfop = (iainfo_t *)infop; 787 iainfop->ia_maxupri = ia_maxupri; 788 return (0); 789 } 790 791 792 /* 793 * Return the user mode scheduling priority range. 794 */ 795 static int 796 ts_getclpri(pcpri_t *pcprip) 797 { 798 pcprip->pc_clpmax = ts_maxupri; 799 pcprip->pc_clpmin = -ts_maxupri; 800 return (0); 801 } 802 803 804 static int 805 ia_getclpri(pcpri_t *pcprip) 806 { 807 pcprip->pc_clpmax = ia_maxupri; 808 pcprip->pc_clpmin = -ia_maxupri; 809 return (0); 810 } 811 812 813 static void 814 ts_nullsys() 815 {} 816 817 818 /* 819 * Get the time-sharing parameters of the thread pointed to by 820 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 821 * is called for TS threads, and ia_parmsget() is called for IA 822 * threads. 823 */ 824 static void 825 ts_parmsget(kthread_t *t, void *parmsp) 826 { 827 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 828 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 829 830 tsparmsp->ts_uprilim = tspp->ts_uprilim; 831 tsparmsp->ts_upri = tspp->ts_upri; 832 } 833 834 static void 835 ia_parmsget(kthread_t *t, void *parmsp) 836 { 837 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 838 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 839 840 iaparmsp->ia_uprilim = tspp->ts_uprilim; 841 iaparmsp->ia_upri = tspp->ts_upri; 842 if (tspp->ts_flags & TSIASET) 843 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 844 else 845 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 846 } 847 848 849 /* 850 * Check the validity of the time-sharing parameters in the buffer 851 * pointed to by tsparmsp. 852 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 853 * for IA threads. 854 */ 855 static int 856 ts_parmsin(void *parmsp) 857 { 858 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 859 /* 860 * Check validity of parameters. 861 */ 862 if ((tsparmsp->ts_uprilim > ts_maxupri || 863 tsparmsp->ts_uprilim < -ts_maxupri) && 864 tsparmsp->ts_uprilim != TS_NOCHANGE) 865 return (EINVAL); 866 867 if ((tsparmsp->ts_upri > ts_maxupri || 868 tsparmsp->ts_upri < -ts_maxupri) && 869 tsparmsp->ts_upri != TS_NOCHANGE) 870 return (EINVAL); 871 872 return (0); 873 } 874 875 static int 876 ia_parmsin(void *parmsp) 877 { 878 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 879 880 if ((iaparmsp->ia_uprilim > ia_maxupri || 881 iaparmsp->ia_uprilim < -ia_maxupri) && 882 iaparmsp->ia_uprilim != IA_NOCHANGE) { 883 return (EINVAL); 884 } 885 886 if ((iaparmsp->ia_upri > ia_maxupri || 887 iaparmsp->ia_upri < -ia_maxupri) && 888 iaparmsp->ia_upri != IA_NOCHANGE) { 889 return (EINVAL); 890 } 891 892 return (0); 893 } 894 895 896 /* 897 * Check the validity of the time-sharing parameters in the pc_vaparms_t 898 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 899 * pc_vaparms_t contains (key, value) pairs of parameter. 900 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 901 * for IA threads. ts_vaparmsin() is the variable parameter version of 902 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 903 * ia_parmsin(). 904 */ 905 static int 906 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 907 { 908 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 909 int priflag = 0; 910 int limflag = 0; 911 uint_t cnt; 912 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 913 914 915 /* 916 * TS_NOCHANGE (-32768) is outside of the range of values for 917 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 918 * TS_NOCHANGE should be replaced by a flag word (in the same manner 919 * as in rt.c). 920 */ 921 tsparmsp->ts_uprilim = TS_NOCHANGE; 922 tsparmsp->ts_upri = TS_NOCHANGE; 923 924 /* 925 * Get the varargs parameter and check validity of parameters. 926 */ 927 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 928 return (EINVAL); 929 930 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 931 932 switch (vpp->pc_key) { 933 case TS_KY_UPRILIM: 934 if (limflag++) 935 return (EINVAL); 936 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 937 if (tsparmsp->ts_uprilim > ts_maxupri || 938 tsparmsp->ts_uprilim < -ts_maxupri) 939 return (EINVAL); 940 break; 941 942 case TS_KY_UPRI: 943 if (priflag++) 944 return (EINVAL); 945 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 946 if (tsparmsp->ts_upri > ts_maxupri || 947 tsparmsp->ts_upri < -ts_maxupri) 948 return (EINVAL); 949 break; 950 951 default: 952 return (EINVAL); 953 } 954 } 955 956 if (vaparmsp->pc_vaparmscnt == 0) { 957 /* 958 * Use default parameters. 959 */ 960 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 961 } 962 963 return (0); 964 } 965 966 static int 967 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 968 { 969 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 970 int priflag = 0; 971 int limflag = 0; 972 int mflag = 0; 973 uint_t cnt; 974 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 975 976 /* 977 * IA_NOCHANGE (-32768) is outside of the range of values for 978 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 979 * changed, IA_NOCHANGE should be replaced by a flag word (in the 980 * same manner as in rt.c). 981 */ 982 iaparmsp->ia_uprilim = IA_NOCHANGE; 983 iaparmsp->ia_upri = IA_NOCHANGE; 984 iaparmsp->ia_mode = IA_NOCHANGE; 985 986 /* 987 * Get the varargs parameter and check validity of parameters. 988 */ 989 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 990 return (EINVAL); 991 992 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 993 994 switch (vpp->pc_key) { 995 case IA_KY_UPRILIM: 996 if (limflag++) 997 return (EINVAL); 998 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 999 if (iaparmsp->ia_uprilim > ia_maxupri || 1000 iaparmsp->ia_uprilim < -ia_maxupri) 1001 return (EINVAL); 1002 break; 1003 1004 case IA_KY_UPRI: 1005 if (priflag++) 1006 return (EINVAL); 1007 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 1008 if (iaparmsp->ia_upri > ia_maxupri || 1009 iaparmsp->ia_upri < -ia_maxupri) 1010 return (EINVAL); 1011 break; 1012 1013 case IA_KY_MODE: 1014 if (mflag++) 1015 return (EINVAL); 1016 iaparmsp->ia_mode = (int)vpp->pc_parm; 1017 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1018 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1019 return (EINVAL); 1020 break; 1021 1022 default: 1023 return (EINVAL); 1024 } 1025 } 1026 1027 if (vaparmsp->pc_vaparmscnt == 0) { 1028 /* 1029 * Use default parameters. 1030 */ 1031 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1032 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1033 } 1034 1035 return (0); 1036 } 1037 1038 /* 1039 * Nothing to do here but return success. 1040 */ 1041 /* ARGSUSED */ 1042 static int 1043 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1044 { 1045 return (0); 1046 } 1047 1048 1049 /* 1050 * Copy all selected time-sharing class parameters to the user. 1051 * The parameters are specified by a key. 1052 */ 1053 static int 1054 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1055 { 1056 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1057 int priflag = 0; 1058 int limflag = 0; 1059 uint_t cnt; 1060 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1061 1062 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1063 1064 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1065 return (EINVAL); 1066 1067 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1068 1069 switch (vpp->pc_key) { 1070 case TS_KY_UPRILIM: 1071 if (limflag++) 1072 return (EINVAL); 1073 if (copyout(&tsprmsp->ts_uprilim, 1074 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1075 return (EFAULT); 1076 break; 1077 1078 case TS_KY_UPRI: 1079 if (priflag++) 1080 return (EINVAL); 1081 if (copyout(&tsprmsp->ts_upri, 1082 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1083 return (EFAULT); 1084 break; 1085 1086 default: 1087 return (EINVAL); 1088 } 1089 } 1090 1091 return (0); 1092 } 1093 1094 1095 /* 1096 * Copy all selected interactive class parameters to the user. 1097 * The parameters are specified by a key. 1098 */ 1099 static int 1100 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1101 { 1102 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1103 int priflag = 0; 1104 int limflag = 0; 1105 int mflag = 0; 1106 uint_t cnt; 1107 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1108 1109 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1110 1111 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1112 return (EINVAL); 1113 1114 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1115 1116 switch (vpp->pc_key) { 1117 case IA_KY_UPRILIM: 1118 if (limflag++) 1119 return (EINVAL); 1120 if (copyout(&iaprmsp->ia_uprilim, 1121 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1122 return (EFAULT); 1123 break; 1124 1125 case IA_KY_UPRI: 1126 if (priflag++) 1127 return (EINVAL); 1128 if (copyout(&iaprmsp->ia_upri, 1129 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1130 return (EFAULT); 1131 break; 1132 1133 case IA_KY_MODE: 1134 if (mflag++) 1135 return (EINVAL); 1136 if (copyout(&iaprmsp->ia_mode, 1137 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1138 return (EFAULT); 1139 break; 1140 1141 default: 1142 return (EINVAL); 1143 } 1144 } 1145 return (0); 1146 } 1147 1148 1149 /* 1150 * Set the scheduling parameters of the thread pointed to by tsprocp 1151 * to those specified in the buffer pointed to by tsparmsp. 1152 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1153 * called for IA threads. 1154 */ 1155 /* ARGSUSED */ 1156 static int 1157 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1158 { 1159 char nice; 1160 pri_t reqtsuprilim; 1161 pri_t reqtsupri; 1162 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1163 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1164 1165 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1166 1167 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1168 reqtsuprilim = tspp->ts_uprilim; 1169 else 1170 reqtsuprilim = tsparmsp->ts_uprilim; 1171 1172 if (tsparmsp->ts_upri == TS_NOCHANGE) 1173 reqtsupri = tspp->ts_upri; 1174 else 1175 reqtsupri = tsparmsp->ts_upri; 1176 1177 /* 1178 * Make sure the user priority doesn't exceed the upri limit. 1179 */ 1180 if (reqtsupri > reqtsuprilim) 1181 reqtsupri = reqtsuprilim; 1182 1183 /* 1184 * Basic permissions enforced by generic kernel code 1185 * for all classes require that a thread attempting 1186 * to change the scheduling parameters of a target 1187 * thread be privileged or have a real or effective 1188 * UID matching that of the target thread. We are not 1189 * called unless these basic permission checks have 1190 * already passed. The time-sharing class requires in 1191 * addition that the calling thread be privileged if it 1192 * is attempting to raise the upri limit above its current 1193 * value This may have been checked previously but if our 1194 * caller passed us a non-NULL credential pointer we assume 1195 * it hasn't and we check it here. 1196 */ 1197 if (reqpcredp != NULL && 1198 reqtsuprilim > tspp->ts_uprilim && 1199 secpolicy_raisepriority(reqpcredp) != 0) 1200 return (EPERM); 1201 1202 /* 1203 * Set ts_nice to the nice value corresponding to the user 1204 * priority we are setting. Note that setting the nice field 1205 * of the parameter struct won't affect upri or nice. 1206 */ 1207 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1208 if (nice >= 2 * NZERO) 1209 nice = 2 * NZERO - 1; 1210 1211 thread_lock(tx); 1212 1213 tspp->ts_uprilim = reqtsuprilim; 1214 tspp->ts_upri = reqtsupri; 1215 TS_NEWUMDPRI(tspp); 1216 tspp->ts_nice = nice; 1217 1218 tspp->ts_dispwait = 0; 1219 ts_change_priority(tx, tspp); 1220 thread_unlock(tx); 1221 return (0); 1222 } 1223 1224 1225 static int 1226 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1227 { 1228 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1229 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1230 proc_t *p; 1231 pid_t pid, pgid, sid; 1232 pid_t on, off; 1233 struct stdata *stp; 1234 int sess_held; 1235 1236 /* 1237 * Handle user priority changes 1238 */ 1239 if (iaparmsp->ia_mode == IA_NOCHANGE) 1240 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1241 1242 /* 1243 * Check permissions for changing modes. 1244 */ 1245 1246 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1247 secpolicy_raisepriority(reqpcredp) != 0) { 1248 /* 1249 * Silently fail in case this is just a priocntl 1250 * call with upri and uprilim set to IA_NOCHANGE. 1251 */ 1252 return (0); 1253 } 1254 1255 ASSERT(MUTEX_HELD(&pidlock)); 1256 if ((p = ttoproc(tx)) == NULL) { 1257 return (0); 1258 } 1259 ASSERT(MUTEX_HELD(&p->p_lock)); 1260 if (p->p_stat == SIDL) { 1261 return (0); 1262 } 1263 pid = p->p_pid; 1264 sid = p->p_sessp->s_sid; 1265 pgid = p->p_pgrp; 1266 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1267 /* 1268 * session leaders must be turned on now so all processes 1269 * in the group controlling the tty will be turned on or off. 1270 * if the ia_mode is off for the session leader, 1271 * ia_set_process_group will return without setting the 1272 * processes in the group controlling the tty on. 1273 */ 1274 thread_lock(tx); 1275 tspp->ts_flags |= TSIASET; 1276 thread_unlock(tx); 1277 } 1278 mutex_enter(&p->p_sessp->s_lock); 1279 sess_held = 1; 1280 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1281 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1282 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1283 pgid = stp->sd_pgidp->pid_id; 1284 sess_held = 0; 1285 mutex_exit(&p->p_sessp->s_lock); 1286 if (iaparmsp->ia_mode == 1287 IA_SET_INTERACTIVE) { 1288 off = 0; 1289 on = pgid; 1290 } else { 1291 off = pgid; 1292 on = 0; 1293 } 1294 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1295 "active chain:pid %d gid %d %p", 1296 pid, pgid, p); 1297 ia_set_process_group(sid, off, on); 1298 } 1299 } 1300 if (sess_held) 1301 mutex_exit(&p->p_sessp->s_lock); 1302 1303 thread_lock(tx); 1304 1305 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1306 tspp->ts_flags |= TSIASET; 1307 tspp->ts_boost = ia_boost; 1308 } else { 1309 tspp->ts_flags &= ~TSIASET; 1310 tspp->ts_boost = -ia_boost; 1311 } 1312 thread_unlock(tx); 1313 1314 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1315 } 1316 1317 static void 1318 ts_exit(kthread_t *t) 1319 { 1320 tsproc_t *tspp; 1321 1322 if (CPUCAPS_ON()) { 1323 /* 1324 * A thread could be exiting in between clock ticks, 1325 * so we need to calculate how much CPU time it used 1326 * since it was charged last time. 1327 * 1328 * CPU caps are not enforced on exiting processes - it is 1329 * usually desirable to exit as soon as possible to free 1330 * resources. 1331 */ 1332 thread_lock(t); 1333 tspp = (tsproc_t *)t->t_cldata; 1334 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1335 thread_unlock(t); 1336 } 1337 } 1338 1339 /* 1340 * Return the global scheduling priority that would be assigned 1341 * to a thread entering the time-sharing class with the ts_upri. 1342 */ 1343 static pri_t 1344 ts_globpri(kthread_t *t) 1345 { 1346 tsproc_t *tspp; 1347 pri_t tspri; 1348 1349 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1350 tspp = (tsproc_t *)t->t_cldata; 1351 tspri = tsmedumdpri + tspp->ts_upri; 1352 if (tspri > ts_maxumdpri) 1353 tspri = ts_maxumdpri; 1354 else if (tspri < 0) 1355 tspri = 0; 1356 return (ts_dptbl[tspri].ts_globpri); 1357 } 1358 1359 /* 1360 * Arrange for thread to be placed in appropriate location 1361 * on dispatcher queue. 1362 * 1363 * This is called with the current thread in TS_ONPROC and locked. 1364 */ 1365 static void 1366 ts_preempt(kthread_t *t) 1367 { 1368 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1369 klwp_t *lwp = ttolwp(t); 1370 pri_t oldpri = t->t_pri; 1371 1372 ASSERT(t == curthread); 1373 ASSERT(THREAD_LOCK_HELD(curthread)); 1374 1375 /* 1376 * This thread may be placed on wait queue by CPU Caps. In this case we 1377 * do not need to do anything until it is removed from the wait queue. 1378 */ 1379 if (CPUCAPS_ON()) { 1380 (void) cpucaps_charge(t, &tspp->ts_caps, 1381 CPUCAPS_CHARGE_ENFORCE); 1382 if (CPUCAPS_ENFORCE(t)) 1383 return; 1384 } 1385 1386 /* 1387 * If thread got preempted in the user-land then we know 1388 * it isn't holding any locks. Mark it as swappable. 1389 */ 1390 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1391 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1392 t->t_schedflag &= ~TS_DONT_SWAP; 1393 1394 /* 1395 * Check to see if we're doing "preemption control" here. If 1396 * we are, and if the user has requested that this thread not 1397 * be preempted, and if preemptions haven't been put off for 1398 * too long, let the preemption happen here but try to make 1399 * sure the thread is rescheduled as soon as possible. We do 1400 * this by putting it on the front of the highest priority run 1401 * queue in the TS class. If the preemption has been put off 1402 * for too long, clear the "nopreempt" bit and let the thread 1403 * be preempted. 1404 */ 1405 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1406 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1407 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1408 /* 1409 * If not already remembered, remember current 1410 * priority for restoration in ts_yield(). 1411 */ 1412 if (!(tspp->ts_flags & TSRESTORE)) { 1413 tspp->ts_scpri = t->t_pri; 1414 tspp->ts_flags |= TSRESTORE; 1415 } 1416 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1417 t->t_schedflag |= TS_DONT_SWAP; 1418 schedctl_set_yield(t, 1); 1419 setfrontdq(t); 1420 goto done; 1421 } else { 1422 if (tspp->ts_flags & TSRESTORE) { 1423 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1424 tspp->ts_flags &= ~TSRESTORE; 1425 } 1426 schedctl_set_nopreempt(t, 0); 1427 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1428 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1429 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1430 tnf_lwpid, lwpid, t->t_tid); 1431 /* 1432 * Fall through and be preempted below. 1433 */ 1434 } 1435 } 1436 1437 if ((tspp->ts_flags & TSBACKQ) != 0) { 1438 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1439 tspp->ts_dispwait = 0; 1440 tspp->ts_flags &= ~TSBACKQ; 1441 setbackdq(t); 1442 } else { 1443 setfrontdq(t); 1444 } 1445 1446 done: 1447 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1448 "preempt:tid %p old pri %d", t, oldpri); 1449 } 1450 1451 static void 1452 ts_setrun(kthread_t *t) 1453 { 1454 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1455 1456 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1457 1458 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1459 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1460 TS_NEWUMDPRI(tspp); 1461 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1462 tspp->ts_dispwait = 0; 1463 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1464 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1465 } 1466 1467 tspp->ts_flags &= ~TSBACKQ; 1468 1469 if (tspp->ts_flags & TSIA) { 1470 if (tspp->ts_flags & TSIASET) 1471 setfrontdq(t); 1472 else 1473 setbackdq(t); 1474 } else { 1475 if (t->t_disp_time != ddi_get_lbolt()) 1476 setbackdq(t); 1477 else 1478 setfrontdq(t); 1479 } 1480 } 1481 1482 1483 /* 1484 * Prepare thread for sleep. 1485 */ 1486 static void 1487 ts_sleep(kthread_t *t) 1488 { 1489 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1490 pri_t old_pri = t->t_pri; 1491 1492 ASSERT(t == curthread); 1493 ASSERT(THREAD_LOCK_HELD(t)); 1494 1495 /* 1496 * Account for time spent on CPU before going to sleep. 1497 */ 1498 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1499 1500 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1501 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1502 TS_NEWUMDPRI(tspp); 1503 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1504 tspp->ts_dispwait = 0; 1505 1506 THREAD_CHANGE_PRI(curthread, 1507 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1508 ASSERT(curthread->t_pri >= 0 && 1509 curthread->t_pri <= ts_maxglobpri); 1510 1511 if (DISP_MUST_SURRENDER(curthread)) 1512 cpu_surrender(curthread); 1513 } 1514 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1515 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1516 "sleep:tid %p old pri %d", t, old_pri); 1517 } 1518 1519 1520 /* 1521 * Return Values: 1522 * 1523 * -1 if the thread is loaded or is not eligible to be swapped in. 1524 * 1525 * effective priority of the specified thread based on swapout time 1526 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1527 */ 1528 /* ARGSUSED */ 1529 static pri_t 1530 ts_swapin(kthread_t *t, int flags) 1531 { 1532 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1533 long epri = -1; 1534 proc_t *pp = ttoproc(t); 1535 1536 ASSERT(THREAD_LOCK_HELD(t)); 1537 1538 /* 1539 * We know that pri_t is a short. 1540 * Be sure not to overrun its range. 1541 */ 1542 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1543 time_t swapout_time; 1544 1545 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 1546 if (INHERITED(t) || (tspp->ts_flags & TSIASET)) { 1547 epri = (long)DISP_PRIO(t) + swapout_time; 1548 } else { 1549 /* 1550 * Threads which have been out for a long time, 1551 * have high user mode priority and are associated 1552 * with a small address space are more deserving 1553 */ 1554 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1555 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1556 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1557 } 1558 /* 1559 * Scale epri so SHRT_MAX/2 represents zero priority. 1560 */ 1561 epri += SHRT_MAX/2; 1562 if (epri < 0) 1563 epri = 0; 1564 else if (epri > SHRT_MAX) 1565 epri = SHRT_MAX; 1566 } 1567 return ((pri_t)epri); 1568 } 1569 1570 /* 1571 * Return Values 1572 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1573 * 1574 * effective priority of the specified thread based on if the swapper 1575 * is in softswap or hardswap mode. 1576 * 1577 * Softswap: Return a low effective priority for threads 1578 * sleeping for more than maxslp secs. 1579 * 1580 * Hardswap: Return an effective priority such that threads 1581 * which have been in memory for a while and are 1582 * associated with a small address space are swapped 1583 * in before others. 1584 * 1585 * (epri >= 0 , epri <= SHRT_MAX). 1586 */ 1587 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1588 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1589 1590 static pri_t 1591 ts_swapout(kthread_t *t, int flags) 1592 { 1593 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1594 long epri = -1; 1595 proc_t *pp = ttoproc(t); 1596 time_t swapin_time; 1597 1598 ASSERT(THREAD_LOCK_HELD(t)); 1599 1600 if (INHERITED(t) || (tspp->ts_flags & TSIASET) || 1601 (t->t_proc_flag & TP_LWPEXIT) || 1602 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1603 TS_ONPROC | TS_WAIT)) || 1604 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1605 return (-1); 1606 1607 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1608 1609 /* 1610 * We know that pri_t is a short. 1611 * Be sure not to overrun its range. 1612 */ 1613 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 1614 if (flags == SOFTSWAP) { 1615 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1616 epri = 0; 1617 } else { 1618 return ((pri_t)epri); 1619 } 1620 } else { 1621 pri_t pri; 1622 1623 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1624 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1625 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1626 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1627 epri = swapin_time - 1628 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1629 } else { 1630 return ((pri_t)epri); 1631 } 1632 } 1633 1634 /* 1635 * Scale epri so SHRT_MAX/2 represents zero priority. 1636 */ 1637 epri += SHRT_MAX/2; 1638 if (epri < 0) 1639 epri = 0; 1640 else if (epri > SHRT_MAX) 1641 epri = SHRT_MAX; 1642 1643 return ((pri_t)epri); 1644 } 1645 1646 /* 1647 * Check for time slice expiration. If time slice has expired 1648 * move thread to priority specified in tsdptbl for time slice expiration 1649 * and set runrun to cause preemption. 1650 */ 1651 static void 1652 ts_tick(kthread_t *t) 1653 { 1654 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1655 klwp_t *lwp; 1656 boolean_t call_cpu_surrender = B_FALSE; 1657 pri_t oldpri = t->t_pri; 1658 1659 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1660 1661 thread_lock(t); 1662 1663 /* 1664 * Keep track of thread's project CPU usage. Note that projects 1665 * get charged even when threads are running in the kernel. 1666 */ 1667 if (CPUCAPS_ON()) { 1668 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1669 CPUCAPS_CHARGE_ENFORCE); 1670 } 1671 1672 if (--tspp->ts_timeleft <= 0) { 1673 pri_t new_pri; 1674 1675 /* 1676 * If we're doing preemption control and trying to avoid 1677 * preempting this thread, just note that the thread should 1678 * yield soon and let it keep running (unless it's been a 1679 * while). 1680 */ 1681 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1682 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1683 DTRACE_SCHED1(schedctl__nopreempt, 1684 kthread_t *, t); 1685 schedctl_set_yield(t, 1); 1686 thread_unlock_nopreempt(t); 1687 return; 1688 } 1689 1690 TNF_PROBE_2(schedctl_failsafe, 1691 "schedctl TS ts_tick", /* CSTYLED */, 1692 tnf_pid, pid, ttoproc(t)->p_pid, 1693 tnf_lwpid, lwpid, t->t_tid); 1694 } 1695 tspp->ts_flags &= ~TSRESTORE; 1696 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1697 TS_NEWUMDPRI(tspp); 1698 tspp->ts_dispwait = 0; 1699 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1700 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1701 /* 1702 * When the priority of a thread is changed, it may be 1703 * necessary to adjust its position on a sleep queue or 1704 * dispatch queue. The function thread_change_pri accomplishes 1705 * this. 1706 */ 1707 if (thread_change_pri(t, new_pri, 0)) { 1708 if ((t->t_schedflag & TS_LOAD) && 1709 (lwp = t->t_lwp) && 1710 lwp->lwp_state == LWP_USER) 1711 t->t_schedflag &= ~TS_DONT_SWAP; 1712 tspp->ts_timeleft = 1713 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1714 } else { 1715 call_cpu_surrender = B_TRUE; 1716 } 1717 TRACE_2(TR_FAC_DISP, TR_TICK, 1718 "tick:tid %p old pri %d", t, oldpri); 1719 } else if (t->t_state == TS_ONPROC && 1720 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1721 call_cpu_surrender = B_TRUE; 1722 } 1723 1724 if (call_cpu_surrender) { 1725 tspp->ts_flags |= TSBACKQ; 1726 cpu_surrender(t); 1727 } 1728 1729 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1730 } 1731 1732 1733 /* 1734 * If we are lowering the thread's priority below that of other runnable 1735 * threads we will normally set runrun via cpu_surrender() to cause preemption. 1736 */ 1737 static void 1738 ts_trapret(kthread_t *t) 1739 { 1740 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1741 cpu_t *cp = CPU; 1742 pri_t old_pri = curthread->t_pri; 1743 1744 ASSERT(THREAD_LOCK_HELD(t)); 1745 ASSERT(t == curthread); 1746 ASSERT(cp->cpu_dispthread == t); 1747 ASSERT(t->t_state == TS_ONPROC); 1748 1749 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1751 TS_NEWUMDPRI(tspp); 1752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1753 tspp->ts_dispwait = 0; 1754 1755 /* 1756 * If thread has blocked in the kernel (as opposed to 1757 * being merely preempted), recompute the user mode priority. 1758 */ 1759 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1760 cp->cpu_dispatch_pri = DISP_PRIO(t); 1761 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1762 1763 if (DISP_MUST_SURRENDER(t)) 1764 cpu_surrender(t); 1765 } 1766 1767 /* 1768 * Swapout lwp if the swapper is waiting for this thread to reach a 1769 * safe point. 1770 */ 1771 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1772 thread_unlock(t); 1773 swapout_lwp(ttolwp(t)); 1774 thread_lock(t); 1775 } 1776 1777 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1778 "trapret:tid %p old pri %d", t, old_pri); 1779 } 1780 1781 1782 /* 1783 * Update the ts_dispwait values of all time sharing threads that 1784 * are currently runnable at a user mode priority and bump the priority 1785 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1786 * timeout which we reset here. 1787 * 1788 * There are several lists of time sharing threads broken up by a hash on 1789 * the thread pointer. Each list has its own lock. This avoids blocking 1790 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1791 * runs. ts_update traverses each list in turn. 1792 * 1793 * If multiple threads have their priorities updated to the same value, 1794 * the system implicitly favors the one that is updated first (since it 1795 * winds up first on the run queue). To avoid this unfairness, the 1796 * traversal of threads starts at the list indicated by a marker. When 1797 * threads in more than one list have their priorities updated, the marker 1798 * is moved. This changes the order the threads will be placed on the run 1799 * queue the next time ts_update is called and preserves fairness over the 1800 * long run. The marker doesn't need to be protected by a lock since it's 1801 * only accessed by ts_update, which is inherently single-threaded (only 1802 * one instance can be running at a time). 1803 */ 1804 static void 1805 ts_update(void *arg) 1806 { 1807 int i; 1808 int new_marker = -1; 1809 static int ts_update_marker; 1810 1811 /* 1812 * Start with the ts_update_marker list, then do the rest. 1813 */ 1814 i = ts_update_marker; 1815 do { 1816 /* 1817 * If this is the first list after the current marker to 1818 * have threads with priorities updated, advance the marker 1819 * to this list for the next time ts_update runs. 1820 */ 1821 if (ts_update_list(i) && new_marker == -1 && 1822 i != ts_update_marker) { 1823 new_marker = i; 1824 } 1825 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1826 1827 /* advance marker for next ts_update call */ 1828 if (new_marker != -1) 1829 ts_update_marker = new_marker; 1830 1831 (void) timeout(ts_update, arg, hz); 1832 } 1833 1834 /* 1835 * Updates priority for a list of threads. Returns 1 if the priority of 1836 * one of the threads was actually updated, 0 if none were for various 1837 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1838 * hasn't waited long enough, has the preemption control no-preempt bit 1839 * set, etc.) 1840 */ 1841 static int 1842 ts_update_list(int i) 1843 { 1844 tsproc_t *tspp; 1845 kthread_t *tx; 1846 int updated = 0; 1847 1848 mutex_enter(&ts_list_lock[i]); 1849 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1850 tspp = tspp->ts_next) { 1851 tx = tspp->ts_tp; 1852 /* 1853 * Lock the thread and verify state. 1854 */ 1855 thread_lock(tx); 1856 /* 1857 * Skip the thread if it is no longer in the TS (or IA) class. 1858 */ 1859 if (tx->t_clfuncs != &ts_classfuncs.thread && 1860 tx->t_clfuncs != &ia_classfuncs.thread) 1861 goto next; 1862 tspp->ts_dispwait++; 1863 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1864 goto next; 1865 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1866 goto next; 1867 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1868 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1869 /* make next syscall/trap do CL_TRAPRET */ 1870 tx->t_trapret = 1; 1871 aston(tx); 1872 goto next; 1873 } 1874 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1875 TS_NEWUMDPRI(tspp); 1876 tspp->ts_dispwait = 0; 1877 updated = 1; 1878 1879 /* 1880 * Only dequeue it if needs to move; otherwise it should 1881 * just round-robin here. 1882 */ 1883 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1884 pri_t oldpri = tx->t_pri; 1885 ts_change_priority(tx, tspp); 1886 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1887 "update:tid %p old pri %d", tx, oldpri); 1888 } 1889 next: 1890 thread_unlock(tx); 1891 } 1892 mutex_exit(&ts_list_lock[i]); 1893 1894 return (updated); 1895 } 1896 1897 /* 1898 * Processes waking up go to the back of their queue. 1899 */ 1900 static void 1901 ts_wakeup(kthread_t *t) 1902 { 1903 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1904 1905 ASSERT(THREAD_LOCK_HELD(t)); 1906 1907 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1908 1909 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1910 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1911 TS_NEWUMDPRI(tspp); 1912 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1913 tspp->ts_dispwait = 0; 1914 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1915 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1916 } 1917 1918 tspp->ts_flags &= ~TSBACKQ; 1919 1920 if (tspp->ts_flags & TSIA) { 1921 if (tspp->ts_flags & TSIASET) 1922 setfrontdq(t); 1923 else 1924 setbackdq(t); 1925 } else { 1926 if (t->t_disp_time != ddi_get_lbolt()) 1927 setbackdq(t); 1928 else 1929 setfrontdq(t); 1930 } 1931 } 1932 1933 1934 /* 1935 * When a thread yields, put it on the back of the run queue. 1936 */ 1937 static void 1938 ts_yield(kthread_t *t) 1939 { 1940 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1941 1942 ASSERT(t == curthread); 1943 ASSERT(THREAD_LOCK_HELD(t)); 1944 1945 /* 1946 * Collect CPU usage spent before yielding 1947 */ 1948 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1949 1950 /* 1951 * Clear the preemption control "yield" bit since the user is 1952 * doing a yield. 1953 */ 1954 if (t->t_schedctl) 1955 schedctl_set_yield(t, 0); 1956 /* 1957 * If ts_preempt() artifically increased the thread's priority 1958 * to avoid preemption, restore the original priority now. 1959 */ 1960 if (tspp->ts_flags & TSRESTORE) { 1961 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1962 tspp->ts_flags &= ~TSRESTORE; 1963 } 1964 if (tspp->ts_timeleft <= 0) { 1965 /* 1966 * Time slice was artificially extended to avoid 1967 * preemption, so pretend we're preempting it now. 1968 */ 1969 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 1970 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1971 TS_NEWUMDPRI(tspp); 1972 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1973 tspp->ts_dispwait = 0; 1974 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1975 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1976 } 1977 tspp->ts_flags &= ~TSBACKQ; 1978 setbackdq(t); 1979 } 1980 1981 1982 /* 1983 * Increment the nice value of the specified thread by incr and 1984 * return the new value in *retvalp. 1985 */ 1986 static int 1987 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 1988 { 1989 int newnice; 1990 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1991 tsparms_t tsparms; 1992 1993 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1994 1995 /* If there's no change to priority, just return current setting */ 1996 if (incr == 0) { 1997 if (retvalp) { 1998 *retvalp = tspp->ts_nice - NZERO; 1999 } 2000 return (0); 2001 } 2002 2003 if ((incr < 0 || incr > 2 * NZERO) && 2004 secpolicy_raisepriority(cr) != 0) 2005 return (EPERM); 2006 2007 /* 2008 * Specifying a nice increment greater than the upper limit of 2009 * 2 * NZERO - 1 will result in the thread's nice value being 2010 * set to the upper limit. We check for this before computing 2011 * the new value because otherwise we could get overflow 2012 * if a privileged process specified some ridiculous increment. 2013 */ 2014 if (incr > 2 * NZERO - 1) 2015 incr = 2 * NZERO - 1; 2016 2017 newnice = tspp->ts_nice + incr; 2018 if (newnice >= 2 * NZERO) 2019 newnice = 2 * NZERO - 1; 2020 else if (newnice < 0) 2021 newnice = 0; 2022 2023 tsparms.ts_uprilim = tsparms.ts_upri = 2024 -((newnice - NZERO) * ts_maxupri) / NZERO; 2025 /* 2026 * Reset the uprilim and upri values of the thread. 2027 * Call ts_parmsset even if thread is interactive since we're 2028 * not changing mode. 2029 */ 2030 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2031 2032 /* 2033 * Although ts_parmsset already reset ts_nice it may 2034 * not have been set to precisely the value calculated above 2035 * because ts_parmsset determines the nice value from the 2036 * user priority and we may have truncated during the integer 2037 * conversion from nice value to user priority and back. 2038 * We reset ts_nice to the value we calculated above. 2039 */ 2040 tspp->ts_nice = (char)newnice; 2041 2042 if (retvalp) 2043 *retvalp = newnice - NZERO; 2044 return (0); 2045 } 2046 2047 /* 2048 * Increment the priority of the specified thread by incr and 2049 * return the new value in *retvalp. 2050 */ 2051 static int 2052 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2053 { 2054 int newpri; 2055 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2056 tsparms_t tsparms; 2057 2058 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2059 2060 /* If there's no change to the priority, just return current setting */ 2061 if (incr == 0) { 2062 *retvalp = tspp->ts_upri; 2063 return (0); 2064 } 2065 2066 newpri = tspp->ts_upri + incr; 2067 if (newpri > ts_maxupri || newpri < -ts_maxupri) 2068 return (EINVAL); 2069 2070 *retvalp = newpri; 2071 tsparms.ts_uprilim = tsparms.ts_upri = newpri; 2072 /* 2073 * Reset the uprilim and upri values of the thread. 2074 * Call ts_parmsset even if thread is interactive since we're 2075 * not changing mode. 2076 */ 2077 return (ts_parmsset(t, &tsparms, 0, cr)); 2078 } 2079 2080 /* 2081 * ia_set_process_group marks foreground processes as interactive 2082 * and background processes as non-interactive iff the session 2083 * leader is interactive. This routine is called from two places: 2084 * strioctl:SPGRP when a new process group gets 2085 * control of the tty. 2086 * ia_parmsset-when the process in question is a session leader. 2087 * ia_set_process_group assumes that pidlock is held by the caller, 2088 * either strioctl or priocntlsys. If the caller is priocntlsys 2089 * (via ia_parmsset) then the p_lock of the session leader is held 2090 * and the code needs to be careful about acquiring other p_locks. 2091 */ 2092 static void 2093 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2094 { 2095 proc_t *leader, *fg, *bg; 2096 tsproc_t *tspp; 2097 kthread_t *tx; 2098 int plocked = 0; 2099 2100 ASSERT(MUTEX_HELD(&pidlock)); 2101 2102 /* 2103 * see if the session leader is interactive AND 2104 * if it is currently "on" AND controlling a tty 2105 * iff it is then make the processes in the foreground 2106 * group interactive and the processes in the background 2107 * group non-interactive. 2108 */ 2109 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2110 return; 2111 } 2112 if (leader->p_stat == SIDL) { 2113 return; 2114 } 2115 if ((tx = proctot(leader)) == NULL) { 2116 return; 2117 } 2118 /* 2119 * XXX do all the threads in the leader 2120 */ 2121 if (tx->t_cid != ia_cid) { 2122 return; 2123 } 2124 tspp = tx->t_cldata; 2125 /* 2126 * session leaders that are not interactive need not have 2127 * any processing done for them. They are typically shells 2128 * that do not have focus and are changing the process group 2129 * attatched to the tty, e.g. a process that is exiting 2130 */ 2131 mutex_enter(&leader->p_sessp->s_lock); 2132 if (!(tspp->ts_flags & TSIASET) || 2133 (leader->p_sessp->s_vp == NULL) || 2134 (leader->p_sessp->s_vp->v_stream == NULL)) { 2135 mutex_exit(&leader->p_sessp->s_lock); 2136 return; 2137 } 2138 mutex_exit(&leader->p_sessp->s_lock); 2139 2140 /* 2141 * If we're already holding the leader's p_lock, we should use 2142 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2143 * lock ordering violations. 2144 */ 2145 if (mutex_owned(&leader->p_lock)) 2146 plocked = 1; 2147 2148 if (fg_pgid == 0) 2149 goto skip; 2150 /* 2151 * now look for all processes in the foreground group and 2152 * make them interactive 2153 */ 2154 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2155 /* 2156 * if the process is SIDL it's begin forked, ignore it 2157 */ 2158 if (fg->p_stat == SIDL) { 2159 continue; 2160 } 2161 /* 2162 * sesssion leaders must be turned on/off explicitly 2163 * not implicitly as happens to other members of 2164 * the process group. 2165 */ 2166 if (fg->p_pid == fg->p_sessp->s_sid) { 2167 continue; 2168 } 2169 2170 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2171 "group on:proc %p", fg); 2172 2173 if (plocked) { 2174 if (mutex_tryenter(&fg->p_lock) == 0) 2175 continue; 2176 } else { 2177 mutex_enter(&fg->p_lock); 2178 } 2179 2180 if ((tx = proctot(fg)) == NULL) { 2181 mutex_exit(&fg->p_lock); 2182 continue; 2183 } 2184 do { 2185 thread_lock(tx); 2186 /* 2187 * if this thread is not interactive continue 2188 */ 2189 if (tx->t_cid != ia_cid) { 2190 thread_unlock(tx); 2191 continue; 2192 } 2193 tspp = tx->t_cldata; 2194 tspp->ts_flags |= TSIASET; 2195 tspp->ts_boost = ia_boost; 2196 TS_NEWUMDPRI(tspp); 2197 tspp->ts_dispwait = 0; 2198 ts_change_priority(tx, tspp); 2199 thread_unlock(tx); 2200 } while ((tx = tx->t_forw) != fg->p_tlist); 2201 mutex_exit(&fg->p_lock); 2202 } 2203 skip: 2204 if (bg_pgid == 0) 2205 return; 2206 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2207 if (bg->p_stat == SIDL) { 2208 continue; 2209 } 2210 /* 2211 * sesssion leaders must be turned off explicitly 2212 * not implicitly as happens to other members of 2213 * the process group. 2214 */ 2215 if (bg->p_pid == bg->p_sessp->s_sid) { 2216 continue; 2217 } 2218 2219 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2220 "group off:proc %p", bg); 2221 2222 if (plocked) { 2223 if (mutex_tryenter(&bg->p_lock) == 0) 2224 continue; 2225 } else { 2226 mutex_enter(&bg->p_lock); 2227 } 2228 2229 if ((tx = proctot(bg)) == NULL) { 2230 mutex_exit(&bg->p_lock); 2231 continue; 2232 } 2233 do { 2234 thread_lock(tx); 2235 /* 2236 * if this thread is not interactive continue 2237 */ 2238 if (tx->t_cid != ia_cid) { 2239 thread_unlock(tx); 2240 continue; 2241 } 2242 tspp = tx->t_cldata; 2243 tspp->ts_flags &= ~TSIASET; 2244 tspp->ts_boost = -ia_boost; 2245 TS_NEWUMDPRI(tspp); 2246 2247 tspp->ts_dispwait = 0; 2248 ts_change_priority(tx, tspp); 2249 thread_unlock(tx); 2250 } while ((tx = tx->t_forw) != bg->p_tlist); 2251 mutex_exit(&bg->p_lock); 2252 } 2253 } 2254 2255 2256 static void 2257 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2258 { 2259 pri_t new_pri; 2260 2261 ASSERT(THREAD_LOCK_HELD(t)); 2262 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2263 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2264 tspp->ts_flags &= ~TSRESTORE; 2265 t->t_cpri = tspp->ts_upri; 2266 if (t == curthread || t->t_state == TS_ONPROC) { 2267 /* curthread is always onproc */ 2268 cpu_t *cp = t->t_disp_queue->disp_cpu; 2269 THREAD_CHANGE_PRI(t, new_pri); 2270 if (t == cp->cpu_dispthread) 2271 cp->cpu_dispatch_pri = DISP_PRIO(t); 2272 if (DISP_MUST_SURRENDER(t)) { 2273 tspp->ts_flags |= TSBACKQ; 2274 cpu_surrender(t); 2275 } else { 2276 tspp->ts_timeleft = 2277 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2278 } 2279 } else { 2280 int frontq; 2281 2282 frontq = (tspp->ts_flags & TSIASET) != 0; 2283 /* 2284 * When the priority of a thread is changed, 2285 * it may be necessary to adjust its position 2286 * on a sleep queue or dispatch queue. 2287 * The function thread_change_pri accomplishes 2288 * this. 2289 */ 2290 if (thread_change_pri(t, new_pri, frontq)) { 2291 /* 2292 * The thread was on a run queue. Reset 2293 * its CPU timeleft from the quantum 2294 * associated with the new priority. 2295 */ 2296 tspp->ts_timeleft = 2297 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2298 } else { 2299 tspp->ts_flags |= TSBACKQ; 2300 } 2301 } 2302 } 2303 2304 static int 2305 ts_alloc(void **p, int flag) 2306 { 2307 void *bufp; 2308 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2309 if (bufp == NULL) { 2310 return (ENOMEM); 2311 } else { 2312 *p = bufp; 2313 return (0); 2314 } 2315 } 2316 2317 static void 2318 ts_free(void *bufp) 2319 { 2320 if (bufp) 2321 kmem_free(bufp, sizeof (tsproc_t)); 2322 } 2323