xref: /illumos-gate/usr/src/uts/common/disp/thread.c (revision dc25fd745d311a1cf9d98d7b7897caa0877adff0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 
78 struct kmem_cache *thread_cache;	/* cache of free threads */
79 struct kmem_cache *lwp_cache;		/* cache of free lwps */
80 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81 
82 /*
83  * allthreads is only for use by kmem_readers.  All kernel loops can use
84  * the current thread as a start/end point.
85  */
86 static kthread_t *allthreads = &t0;	/* circular list of all threads */
87 
88 static kcondvar_t reaper_cv;		/* synchronization var */
89 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92 int	thread_reapcnt = 0;		/* number of threads on deathrow */
93 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
94 int	reaplimit = 16;			/* delay reaping until reaplimit */
95 
96 thread_free_lock_t	*thread_free_lock;
97 					/* protects tick thread from reaper */
98 
99 extern int nthread;
100 
101 /* System Scheduling classes. */
102 id_t	syscid;				/* system scheduling class ID */
103 id_t	sysdccid = CLASS_UNUSED;	/* reset when SDC loads */
104 
105 void	*segkp_thread;			/* cookie for segkp pool */
106 
107 int lwp_cache_sz = 32;
108 int t_cache_sz = 8;
109 static kt_did_t next_t_id = 1;
110 
111 /* Default mode for thread binding to CPUs and processor sets */
112 int default_binding_mode = TB_ALLHARD;
113 
114 /*
115  * Min/Max stack sizes for stack size parameters
116  */
117 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
118 #define	MIN_STKSIZE	DEFAULTSTKSZ
119 
120 /*
121  * default_stksize overrides lwp_default_stksize if it is set.
122  */
123 int	default_stksize;
124 int	lwp_default_stksize;
125 
126 static zone_key_t zone_thread_key;
127 
128 unsigned int kmem_stackinfo;		/* stackinfo feature on-off */
129 kmem_stkinfo_t *kmem_stkinfo_log;	/* stackinfo circular log */
130 static kmutex_t kmem_stkinfo_lock;	/* protects kmem_stkinfo_log */
131 
132 /*
133  * forward declarations for internal thread specific data (tsd)
134  */
135 static void *tsd_realloc(void *, size_t, size_t);
136 
137 void thread_reaper(void);
138 
139 /* forward declarations for stackinfo feature */
140 static void stkinfo_begin(kthread_t *);
141 static void stkinfo_end(kthread_t *);
142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
143 
144 /*ARGSUSED*/
145 static int
146 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
147 {
148 	bzero(buf, sizeof (turnstile_t));
149 	return (0);
150 }
151 
152 /*ARGSUSED*/
153 static void
154 turnstile_destructor(void *buf, void *cdrarg)
155 {
156 	turnstile_t *ts = buf;
157 
158 	ASSERT(ts->ts_free == NULL);
159 	ASSERT(ts->ts_waiters == 0);
160 	ASSERT(ts->ts_inheritor == NULL);
161 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
162 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
163 }
164 
165 void
166 thread_init(void)
167 {
168 	kthread_t *tp;
169 	extern char sys_name[];
170 	extern void idle();
171 	struct cpu *cpu = CPU;
172 	int i;
173 	kmutex_t *lp;
174 
175 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
176 	thread_free_lock =
177 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
178 	for (i = 0; i < THREAD_FREE_NUM; i++) {
179 		lp = &thread_free_lock[i].tf_lock;
180 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
181 	}
182 
183 #if defined(__i386) || defined(__amd64)
184 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
185 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
186 
187 	/*
188 	 * "struct _klwp" includes a "struct pcb", which includes a
189 	 * "struct fpu", which needs to be 16-byte aligned on amd64
190 	 * (and even on i386 for fxsave/fxrstor).
191 	 */
192 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
193 	    16, NULL, NULL, NULL, NULL, NULL, 0);
194 #else
195 	/*
196 	 * Allocate thread structures from static_arena.  This prevents
197 	 * issues where a thread tries to relocate its own thread
198 	 * structure and touches it after the mapping has been suspended.
199 	 */
200 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
201 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
202 
203 	lwp_stk_cache_init();
204 
205 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
206 	    0, NULL, NULL, NULL, NULL, NULL, 0);
207 #endif
208 
209 	turnstile_cache = kmem_cache_create("turnstile_cache",
210 	    sizeof (turnstile_t), 0,
211 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
212 
213 	label_init();
214 	cred_init();
215 
216 	/*
217 	 * Initialize various resource management facilities.
218 	 */
219 	rctl_init();
220 	cpucaps_init();
221 	/*
222 	 * Zone_init() should be called before project_init() so that project ID
223 	 * for the first project is initialized correctly.
224 	 */
225 	zone_init();
226 	project_init();
227 	brand_init();
228 	kiconv_init();
229 	task_init();
230 	tcache_init();
231 	pool_init();
232 
233 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
234 
235 	/*
236 	 * Originally, we had two parameters to set default stack
237 	 * size: one for lwp's (lwp_default_stksize), and one for
238 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
239 	 * Now we have a third parameter that overrides both if it is
240 	 * set to a legal stack size, called default_stksize.
241 	 */
242 
243 	if (default_stksize == 0) {
244 		default_stksize = DEFAULTSTKSZ;
245 	} else if (default_stksize % PAGESIZE != 0 ||
246 	    default_stksize > MAX_STKSIZE ||
247 	    default_stksize < MIN_STKSIZE) {
248 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
249 		    (int)DEFAULTSTKSZ);
250 		default_stksize = DEFAULTSTKSZ;
251 	} else {
252 		lwp_default_stksize = default_stksize;
253 	}
254 
255 	if (lwp_default_stksize == 0) {
256 		lwp_default_stksize = default_stksize;
257 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
258 	    lwp_default_stksize > MAX_STKSIZE ||
259 	    lwp_default_stksize < MIN_STKSIZE) {
260 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
261 		    default_stksize);
262 		lwp_default_stksize = default_stksize;
263 	}
264 
265 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
266 	    lwp_default_stksize,
267 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
268 
269 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
270 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
271 
272 	(void) getcid(sys_name, &syscid);
273 	curthread->t_cid = syscid;	/* current thread is t0 */
274 
275 	/*
276 	 * Set up the first CPU's idle thread.
277 	 * It runs whenever the CPU has nothing worthwhile to do.
278 	 */
279 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
280 	cpu->cpu_idle_thread = tp;
281 	tp->t_preempt = 1;
282 	tp->t_disp_queue = cpu->cpu_disp;
283 	ASSERT(tp->t_disp_queue != NULL);
284 	tp->t_bound_cpu = cpu;
285 	tp->t_affinitycnt = 1;
286 
287 	/*
288 	 * Registering a thread in the callback table is usually
289 	 * done in the initialization code of the thread. In this
290 	 * case, we do it right after thread creation to avoid
291 	 * blocking idle thread while registering itself. It also
292 	 * avoids the possibility of reregistration in case a CPU
293 	 * restarts its idle thread.
294 	 */
295 	CALLB_CPR_INIT_SAFE(tp, "idle");
296 
297 	/*
298 	 * Create the thread_reaper daemon. From this point on, exited
299 	 * threads will get reaped.
300 	 */
301 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
302 	    NULL, 0, &p0, TS_RUN, minclsyspri);
303 
304 	/*
305 	 * Finish initializing the kernel memory allocator now that
306 	 * thread_create() is available.
307 	 */
308 	kmem_thread_init();
309 
310 	if (boothowto & RB_DEBUG)
311 		kdi_dvec_thravail();
312 }
313 
314 /*
315  * Create a thread.
316  *
317  * thread_create() blocks for memory if necessary.  It never fails.
318  *
319  * If stk is NULL, the thread is created at the base of the stack
320  * and cannot be swapped.
321  */
322 kthread_t *
323 thread_create(
324 	caddr_t	stk,
325 	size_t	stksize,
326 	void	(*proc)(),
327 	void	*arg,
328 	size_t	len,
329 	proc_t	 *pp,
330 	int	state,
331 	pri_t	pri)
332 {
333 	kthread_t *t;
334 	extern struct classfuncs sys_classfuncs;
335 	turnstile_t *ts;
336 
337 	/*
338 	 * Every thread keeps a turnstile around in case it needs to block.
339 	 * The only reason the turnstile is not simply part of the thread
340 	 * structure is that we may have to break the association whenever
341 	 * more than one thread blocks on a given synchronization object.
342 	 * From a memory-management standpoint, turnstiles are like the
343 	 * "attached mblks" that hang off dblks in the streams allocator.
344 	 */
345 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
346 
347 	if (stk == NULL) {
348 		/*
349 		 * alloc both thread and stack in segkp chunk
350 		 */
351 
352 		if (stksize < default_stksize)
353 			stksize = default_stksize;
354 
355 		if (stksize == default_stksize) {
356 			stk = (caddr_t)segkp_cache_get(segkp_thread);
357 		} else {
358 			stksize = roundup(stksize, PAGESIZE);
359 			stk = (caddr_t)segkp_get(segkp, stksize,
360 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
361 		}
362 
363 		ASSERT(stk != NULL);
364 
365 		/*
366 		 * The machine-dependent mutex code may require that
367 		 * thread pointers (since they may be used for mutex owner
368 		 * fields) have certain alignment requirements.
369 		 * PTR24_ALIGN is the size of the alignment quanta.
370 		 * XXX - assumes stack grows toward low addresses.
371 		 */
372 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
373 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
374 			    " too small to hold thread.");
375 #ifdef STACK_GROWTH_DOWN
376 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
377 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
378 		t = (kthread_t *)(stk + stksize);
379 		bzero(t, sizeof (kthread_t));
380 		if (audit_active)
381 			audit_thread_create(t);
382 		t->t_stk = stk + stksize;
383 		t->t_stkbase = stk;
384 #else	/* stack grows to larger addresses */
385 		stksize -= SA(sizeof (kthread_t));
386 		t = (kthread_t *)(stk);
387 		bzero(t, sizeof (kthread_t));
388 		t->t_stk = stk + sizeof (kthread_t);
389 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
390 #endif	/* STACK_GROWTH_DOWN */
391 		t->t_flag |= T_TALLOCSTK;
392 		t->t_swap = stk;
393 	} else {
394 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
395 		bzero(t, sizeof (kthread_t));
396 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
397 		if (audit_active)
398 			audit_thread_create(t);
399 		/*
400 		 * Initialize t_stk to the kernel stack pointer to use
401 		 * upon entry to the kernel
402 		 */
403 #ifdef STACK_GROWTH_DOWN
404 		t->t_stk = stk + stksize;
405 		t->t_stkbase = stk;
406 #else
407 		t->t_stk = stk;			/* 3b2-like */
408 		t->t_stkbase = stk + stksize;
409 #endif /* STACK_GROWTH_DOWN */
410 	}
411 
412 	if (kmem_stackinfo != 0) {
413 		stkinfo_begin(t);
414 	}
415 
416 	t->t_ts = ts;
417 
418 	/*
419 	 * p_cred could be NULL if it thread_create is called before cred_init
420 	 * is called in main.
421 	 */
422 	mutex_enter(&pp->p_crlock);
423 	if (pp->p_cred)
424 		crhold(t->t_cred = pp->p_cred);
425 	mutex_exit(&pp->p_crlock);
426 	t->t_start = gethrestime_sec();
427 	t->t_startpc = proc;
428 	t->t_procp = pp;
429 	t->t_clfuncs = &sys_classfuncs.thread;
430 	t->t_cid = syscid;
431 	t->t_pri = pri;
432 	t->t_stime = ddi_get_lbolt();
433 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
434 	t->t_bind_cpu = PBIND_NONE;
435 	t->t_bindflag = (uchar_t)default_binding_mode;
436 	t->t_bind_pset = PS_NONE;
437 	t->t_plockp = &pp->p_lock;
438 	t->t_copyops = NULL;
439 	t->t_taskq = NULL;
440 	t->t_anttime = 0;
441 	t->t_hatdepth = 0;
442 
443 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
444 
445 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
446 #ifndef NPROBE
447 	/* Kernel probe */
448 	tnf_thread_create(t);
449 #endif /* NPROBE */
450 	LOCK_INIT_CLEAR(&t->t_lock);
451 
452 	/*
453 	 * Callers who give us a NULL proc must do their own
454 	 * stack initialization.  e.g. lwp_create()
455 	 */
456 	if (proc != NULL) {
457 		t->t_stk = thread_stk_init(t->t_stk);
458 		thread_load(t, proc, arg, len);
459 	}
460 
461 	/*
462 	 * Put a hold on project0. If this thread is actually in a
463 	 * different project, then t_proj will be changed later in
464 	 * lwp_create().  All kernel-only threads must be in project 0.
465 	 */
466 	t->t_proj = project_hold(proj0p);
467 
468 	lgrp_affinity_init(&t->t_lgrp_affinity);
469 
470 	mutex_enter(&pidlock);
471 	nthread++;
472 	t->t_did = next_t_id++;
473 	t->t_prev = curthread->t_prev;
474 	t->t_next = curthread;
475 
476 	/*
477 	 * Add the thread to the list of all threads, and initialize
478 	 * its t_cpu pointer.  We need to block preemption since
479 	 * cpu_offline walks the thread list looking for threads
480 	 * with t_cpu pointing to the CPU being offlined.  We want
481 	 * to make sure that the list is consistent and that if t_cpu
482 	 * is set, the thread is on the list.
483 	 */
484 	kpreempt_disable();
485 	curthread->t_prev->t_next = t;
486 	curthread->t_prev = t;
487 
488 	/*
489 	 * Threads should never have a NULL t_cpu pointer so assign it
490 	 * here.  If the thread is being created with state TS_RUN a
491 	 * better CPU may be chosen when it is placed on the run queue.
492 	 *
493 	 * We need to keep kernel preemption disabled when setting all
494 	 * three fields to keep them in sync.  Also, always create in
495 	 * the default partition since that's where kernel threads go
496 	 * (if this isn't a kernel thread, t_cpupart will be changed
497 	 * in lwp_create before setting the thread runnable).
498 	 */
499 	t->t_cpupart = &cp_default;
500 
501 	/*
502 	 * For now, affiliate this thread with the root lgroup.
503 	 * Since the kernel does not (presently) allocate its memory
504 	 * in a locality aware fashion, the root is an appropriate home.
505 	 * If this thread is later associated with an lwp, it will have
506 	 * it's lgroup re-assigned at that time.
507 	 */
508 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
509 
510 	/*
511 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
512 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
513 	 * is ready to run.
514 	 */
515 	if (CPU->cpu_part == &cp_default)
516 		t->t_cpu = CPU;
517 	else
518 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
519 		    t->t_pri, NULL);
520 
521 	t->t_disp_queue = t->t_cpu->cpu_disp;
522 	kpreempt_enable();
523 
524 	/*
525 	 * Initialize thread state and the dispatcher lock pointer.
526 	 * Need to hold onto pidlock to block allthreads walkers until
527 	 * the state is set.
528 	 */
529 	switch (state) {
530 	case TS_RUN:
531 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
532 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
533 		CL_SETRUN(t);
534 		thread_unlock(t);
535 		break;
536 
537 	case TS_ONPROC:
538 		THREAD_ONPROC(t, t->t_cpu);
539 		break;
540 
541 	case TS_FREE:
542 		/*
543 		 * Free state will be used for intr threads.
544 		 * The interrupt routine must set the thread dispatcher
545 		 * lock pointer (t_lockp) if starting on a CPU
546 		 * other than the current one.
547 		 */
548 		THREAD_FREEINTR(t, CPU);
549 		break;
550 
551 	case TS_STOPPED:
552 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
553 		break;
554 
555 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
556 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
557 	}
558 	mutex_exit(&pidlock);
559 	return (t);
560 }
561 
562 /*
563  * Move thread to project0 and take care of project reference counters.
564  */
565 void
566 thread_rele(kthread_t *t)
567 {
568 	kproject_t *kpj;
569 
570 	thread_lock(t);
571 
572 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
573 	kpj = ttoproj(t);
574 	t->t_proj = proj0p;
575 
576 	thread_unlock(t);
577 
578 	if (kpj != proj0p) {
579 		project_rele(kpj);
580 		(void) project_hold(proj0p);
581 	}
582 }
583 
584 void
585 thread_exit(void)
586 {
587 	kthread_t *t = curthread;
588 
589 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
590 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
591 
592 	tsd_exit();		/* Clean up this thread's TSD */
593 
594 	kcpc_passivate();	/* clean up performance counter state */
595 
596 	/*
597 	 * No kernel thread should have called poll() without arranging
598 	 * calling pollcleanup() here.
599 	 */
600 	ASSERT(t->t_pollstate == NULL);
601 	ASSERT(t->t_schedctl == NULL);
602 	if (t->t_door)
603 		door_slam();	/* in case thread did an upcall */
604 
605 #ifndef NPROBE
606 	/* Kernel probe */
607 	if (t->t_tnf_tpdp)
608 		tnf_thread_exit();
609 #endif /* NPROBE */
610 
611 	thread_rele(t);
612 	t->t_preempt++;
613 
614 	/*
615 	 * remove thread from the all threads list so that
616 	 * death-row can use the same pointers.
617 	 */
618 	mutex_enter(&pidlock);
619 	t->t_next->t_prev = t->t_prev;
620 	t->t_prev->t_next = t->t_next;
621 	ASSERT(allthreads != t);	/* t0 never exits */
622 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
623 	mutex_exit(&pidlock);
624 
625 	if (t->t_ctx != NULL)
626 		exitctx(t);
627 	if (t->t_procp->p_pctx != NULL)
628 		exitpctx(t->t_procp);
629 
630 	if (kmem_stackinfo != 0) {
631 		stkinfo_end(t);
632 	}
633 
634 	t->t_state = TS_ZOMB;	/* set zombie thread */
635 
636 	swtch_from_zombie();	/* give up the CPU */
637 	/* NOTREACHED */
638 }
639 
640 /*
641  * Check to see if the specified thread is active (defined as being on
642  * the thread list).  This is certainly a slow way to do this; if there's
643  * ever a reason to speed it up, we could maintain a hash table of active
644  * threads indexed by their t_did.
645  */
646 static kthread_t *
647 did_to_thread(kt_did_t tid)
648 {
649 	kthread_t *t;
650 
651 	ASSERT(MUTEX_HELD(&pidlock));
652 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
653 		if (t->t_did == tid)
654 			break;
655 	}
656 	if (t->t_did == tid)
657 		return (t);
658 	else
659 		return (NULL);
660 }
661 
662 /*
663  * Wait for specified thread to exit.  Returns immediately if the thread
664  * could not be found, meaning that it has either already exited or never
665  * existed.
666  */
667 void
668 thread_join(kt_did_t tid)
669 {
670 	kthread_t *t;
671 
672 	ASSERT(tid != curthread->t_did);
673 	ASSERT(tid != t0.t_did);
674 
675 	mutex_enter(&pidlock);
676 	/*
677 	 * Make sure we check that the thread is on the thread list
678 	 * before blocking on it; otherwise we could end up blocking on
679 	 * a cv that's already been freed.  In other words, don't cache
680 	 * the thread pointer across calls to cv_wait.
681 	 *
682 	 * The choice of loop invariant means that whenever a thread
683 	 * is taken off the allthreads list, a cv_broadcast must be
684 	 * performed on that thread's t_joincv to wake up any waiters.
685 	 * The broadcast doesn't have to happen right away, but it
686 	 * shouldn't be postponed indefinitely (e.g., by doing it in
687 	 * thread_free which may only be executed when the deathrow
688 	 * queue is processed.
689 	 */
690 	while (t = did_to_thread(tid))
691 		cv_wait(&t->t_joincv, &pidlock);
692 	mutex_exit(&pidlock);
693 }
694 
695 void
696 thread_free_prevent(kthread_t *t)
697 {
698 	kmutex_t *lp;
699 
700 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
701 	mutex_enter(lp);
702 }
703 
704 void
705 thread_free_allow(kthread_t *t)
706 {
707 	kmutex_t *lp;
708 
709 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
710 	mutex_exit(lp);
711 }
712 
713 static void
714 thread_free_barrier(kthread_t *t)
715 {
716 	kmutex_t *lp;
717 
718 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
719 	mutex_enter(lp);
720 	mutex_exit(lp);
721 }
722 
723 void
724 thread_free(kthread_t *t)
725 {
726 	boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
727 	klwp_t *lwp = t->t_lwp;
728 	caddr_t swap = t->t_swap;
729 
730 	ASSERT(t != &t0 && t->t_state == TS_FREE);
731 	ASSERT(t->t_door == NULL);
732 	ASSERT(t->t_schedctl == NULL);
733 	ASSERT(t->t_pollstate == NULL);
734 
735 	t->t_pri = 0;
736 	t->t_pc = 0;
737 	t->t_sp = 0;
738 	t->t_wchan0 = NULL;
739 	t->t_wchan = NULL;
740 	if (t->t_cred != NULL) {
741 		crfree(t->t_cred);
742 		t->t_cred = 0;
743 	}
744 	if (t->t_pdmsg) {
745 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
746 		t->t_pdmsg = NULL;
747 	}
748 	if (audit_active)
749 		audit_thread_free(t);
750 #ifndef NPROBE
751 	if (t->t_tnf_tpdp)
752 		tnf_thread_free(t);
753 #endif /* NPROBE */
754 	if (t->t_cldata) {
755 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
756 	}
757 	if (t->t_rprof != NULL) {
758 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
759 		t->t_rprof = NULL;
760 	}
761 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
762 	if (lwp)
763 		lwp_freeregs(lwp, 0);
764 	if (t->t_ctx)
765 		freectx(t, 0);
766 	t->t_stk = NULL;
767 	if (lwp)
768 		lwp_stk_fini(lwp);
769 	lock_clear(&t->t_lock);
770 
771 	if (t->t_ts->ts_waiters > 0)
772 		panic("thread_free: turnstile still active");
773 
774 	kmem_cache_free(turnstile_cache, t->t_ts);
775 
776 	free_afd(&t->t_activefd);
777 
778 	/*
779 	 * Barrier for the tick accounting code.  The tick accounting code
780 	 * holds this lock to keep the thread from going away while it's
781 	 * looking at it.
782 	 */
783 	thread_free_barrier(t);
784 
785 	ASSERT(ttoproj(t) == proj0p);
786 	project_rele(ttoproj(t));
787 
788 	lgrp_affinity_free(&t->t_lgrp_affinity);
789 
790 	mutex_enter(&pidlock);
791 	nthread--;
792 	mutex_exit(&pidlock);
793 
794 	/*
795 	 * Free thread, lwp and stack.  This needs to be done carefully, since
796 	 * if T_TALLOCSTK is set, the thread is part of the stack.
797 	 */
798 	t->t_lwp = NULL;
799 	t->t_swap = NULL;
800 
801 	if (swap) {
802 		segkp_release(segkp, swap);
803 	}
804 	if (lwp) {
805 		kmem_cache_free(lwp_cache, lwp);
806 	}
807 	if (!allocstk) {
808 		kmem_cache_free(thread_cache, t);
809 	}
810 }
811 
812 /*
813  * Removes threads associated with the given zone from a deathrow queue.
814  * tp is a pointer to the head of the deathrow queue, and countp is a
815  * pointer to the current deathrow count.  Returns a linked list of
816  * threads removed from the list.
817  */
818 static kthread_t *
819 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
820 {
821 	kthread_t *tmp, *list = NULL;
822 	cred_t *cr;
823 
824 	ASSERT(MUTEX_HELD(&reaplock));
825 	while (*tp != NULL) {
826 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
827 			tmp = *tp;
828 			*tp = tmp->t_forw;
829 			tmp->t_forw = list;
830 			list = tmp;
831 			(*countp)--;
832 		} else {
833 			tp = &(*tp)->t_forw;
834 		}
835 	}
836 	return (list);
837 }
838 
839 static void
840 thread_reap_list(kthread_t *t)
841 {
842 	kthread_t *next;
843 
844 	while (t != NULL) {
845 		next = t->t_forw;
846 		thread_free(t);
847 		t = next;
848 	}
849 }
850 
851 /* ARGSUSED */
852 static void
853 thread_zone_destroy(zoneid_t zoneid, void *unused)
854 {
855 	kthread_t *t, *l;
856 
857 	mutex_enter(&reaplock);
858 	/*
859 	 * Pull threads and lwps associated with zone off deathrow lists.
860 	 */
861 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
862 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
863 	mutex_exit(&reaplock);
864 
865 	/*
866 	 * Guard against race condition in mutex_owner_running:
867 	 * 	thread=owner(mutex)
868 	 * 	<interrupt>
869 	 * 				thread exits mutex
870 	 * 				thread exits
871 	 * 				thread reaped
872 	 * 				thread struct freed
873 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
874 	 * A cross call to all cpus will cause the interrupt handler
875 	 * to reset the PC if it is in mutex_owner_running, refreshing
876 	 * stale thread pointers.
877 	 */
878 	mutex_sync();   /* sync with mutex code */
879 
880 	/*
881 	 * Reap threads
882 	 */
883 	thread_reap_list(t);
884 
885 	/*
886 	 * Reap lwps
887 	 */
888 	thread_reap_list(l);
889 }
890 
891 /*
892  * cleanup zombie threads that are on deathrow.
893  */
894 void
895 thread_reaper()
896 {
897 	kthread_t *t, *l;
898 	callb_cpr_t cprinfo;
899 
900 	/*
901 	 * Register callback to clean up threads when zone is destroyed.
902 	 */
903 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
904 
905 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
906 	for (;;) {
907 		mutex_enter(&reaplock);
908 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
909 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
910 			cv_wait(&reaper_cv, &reaplock);
911 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
912 		}
913 		/*
914 		 * mutex_sync() needs to be called when reaping, but
915 		 * not too often.  We limit reaping rate to once
916 		 * per second.  Reaplimit is max rate at which threads can
917 		 * be freed. Does not impact thread destruction/creation.
918 		 */
919 		t = thread_deathrow;
920 		l = lwp_deathrow;
921 		thread_deathrow = NULL;
922 		lwp_deathrow = NULL;
923 		thread_reapcnt = 0;
924 		lwp_reapcnt = 0;
925 		mutex_exit(&reaplock);
926 
927 		/*
928 		 * Guard against race condition in mutex_owner_running:
929 		 * 	thread=owner(mutex)
930 		 * 	<interrupt>
931 		 * 				thread exits mutex
932 		 * 				thread exits
933 		 * 				thread reaped
934 		 * 				thread struct freed
935 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
936 		 * A cross call to all cpus will cause the interrupt handler
937 		 * to reset the PC if it is in mutex_owner_running, refreshing
938 		 * stale thread pointers.
939 		 */
940 		mutex_sync();   /* sync with mutex code */
941 		/*
942 		 * Reap threads
943 		 */
944 		thread_reap_list(t);
945 
946 		/*
947 		 * Reap lwps
948 		 */
949 		thread_reap_list(l);
950 		delay(hz);
951 	}
952 }
953 
954 /*
955  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
956  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
957  * that is reapable. The thread already holds the reaplock, and was already
958  * freed.
959  */
960 void
961 reapq_move_lq_to_tq(kthread_t *t)
962 {
963 	ASSERT(t->t_state == TS_FREE);
964 	ASSERT(MUTEX_HELD(&reaplock));
965 	t->t_forw = thread_deathrow;
966 	thread_deathrow = t;
967 	thread_reapcnt++;
968 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
969 		cv_signal(&reaper_cv);  /* wake the reaper */
970 }
971 
972 /*
973  * This is called by resume() to put a zombie thread onto deathrow.
974  * The thread's state is changed to TS_FREE to indicate that is reapable.
975  * This is called from the idle thread so it must not block - just spin.
976  */
977 void
978 reapq_add(kthread_t *t)
979 {
980 	mutex_enter(&reaplock);
981 
982 	/*
983 	 * lwp_deathrow contains threads with lwp linkage and
984 	 * swappable thread stacks which have the default stacksize.
985 	 * These threads' lwps and stacks may be reused by lwp_create().
986 	 *
987 	 * Anything else goes on thread_deathrow(), where it will eventually
988 	 * be thread_free()d.
989 	 */
990 	if (t->t_flag & T_LWPREUSE) {
991 		ASSERT(ttolwp(t) != NULL);
992 		t->t_forw = lwp_deathrow;
993 		lwp_deathrow = t;
994 		lwp_reapcnt++;
995 	} else {
996 		t->t_forw = thread_deathrow;
997 		thread_deathrow = t;
998 		thread_reapcnt++;
999 	}
1000 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
1001 		cv_signal(&reaper_cv);	/* wake the reaper */
1002 	t->t_state = TS_FREE;
1003 	lock_clear(&t->t_lock);
1004 
1005 	/*
1006 	 * Before we return, we need to grab and drop the thread lock for
1007 	 * the dead thread.  At this point, the current thread is the idle
1008 	 * thread, and the dead thread's CPU lock points to the current
1009 	 * CPU -- and we must grab and drop the lock to synchronize with
1010 	 * a racing thread walking a blocking chain that the zombie thread
1011 	 * was recently in.  By this point, that blocking chain is (by
1012 	 * definition) stale:  the dead thread is not holding any locks, and
1013 	 * is therefore not in any blocking chains -- but if we do not regrab
1014 	 * our lock before freeing the dead thread's data structures, the
1015 	 * thread walking the (stale) blocking chain will die on memory
1016 	 * corruption when it attempts to drop the dead thread's lock.  We
1017 	 * only need do this once because there is no way for the dead thread
1018 	 * to ever again be on a blocking chain:  once we have grabbed and
1019 	 * dropped the thread lock, we are guaranteed that anyone that could
1020 	 * have seen this thread in a blocking chain can no longer see it.
1021 	 */
1022 	thread_lock(t);
1023 	thread_unlock(t);
1024 
1025 	mutex_exit(&reaplock);
1026 }
1027 
1028 /*
1029  * Install thread context ops for the current thread.
1030  */
1031 void
1032 installctx(
1033 	kthread_t *t,
1034 	void	*arg,
1035 	void	(*save)(void *),
1036 	void	(*restore)(void *),
1037 	void	(*fork)(void *, void *),
1038 	void	(*lwp_create)(void *, void *),
1039 	void	(*exit)(void *),
1040 	void	(*free)(void *, int))
1041 {
1042 	struct ctxop *ctx;
1043 
1044 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1045 	ctx->save_op = save;
1046 	ctx->restore_op = restore;
1047 	ctx->fork_op = fork;
1048 	ctx->lwp_create_op = lwp_create;
1049 	ctx->exit_op = exit;
1050 	ctx->free_op = free;
1051 	ctx->arg = arg;
1052 	ctx->next = t->t_ctx;
1053 	t->t_ctx = ctx;
1054 }
1055 
1056 /*
1057  * Remove the thread context ops from a thread.
1058  */
1059 int
1060 removectx(
1061 	kthread_t *t,
1062 	void	*arg,
1063 	void	(*save)(void *),
1064 	void	(*restore)(void *),
1065 	void	(*fork)(void *, void *),
1066 	void	(*lwp_create)(void *, void *),
1067 	void	(*exit)(void *),
1068 	void	(*free)(void *, int))
1069 {
1070 	struct ctxop *ctx, *prev_ctx;
1071 
1072 	/*
1073 	 * The incoming kthread_t (which is the thread for which the
1074 	 * context ops will be removed) should be one of the following:
1075 	 *
1076 	 * a) the current thread,
1077 	 *
1078 	 * b) a thread of a process that's being forked (SIDL),
1079 	 *
1080 	 * c) a thread that belongs to the same process as the current
1081 	 *    thread and for which the current thread is the agent thread,
1082 	 *
1083 	 * d) a thread that is TS_STOPPED which is indicative of it
1084 	 *    being (if curthread is not an agent) a thread being created
1085 	 *    as part of an lwp creation.
1086 	 */
1087 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1088 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1089 
1090 	/*
1091 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1092 	 * and the target thread from racing with each other during lwp exit.
1093 	 */
1094 	mutex_enter(&t->t_ctx_lock);
1095 	prev_ctx = NULL;
1096 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1097 		if (ctx->save_op == save && ctx->restore_op == restore &&
1098 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1099 		    ctx->exit_op == exit && ctx->free_op == free &&
1100 		    ctx->arg == arg) {
1101 			if (prev_ctx)
1102 				prev_ctx->next = ctx->next;
1103 			else
1104 				t->t_ctx = ctx->next;
1105 			mutex_exit(&t->t_ctx_lock);
1106 			if (ctx->free_op != NULL)
1107 				(ctx->free_op)(ctx->arg, 0);
1108 			kmem_free(ctx, sizeof (struct ctxop));
1109 			return (1);
1110 		}
1111 		prev_ctx = ctx;
1112 	}
1113 	mutex_exit(&t->t_ctx_lock);
1114 
1115 	return (0);
1116 }
1117 
1118 void
1119 savectx(kthread_t *t)
1120 {
1121 	struct ctxop *ctx;
1122 
1123 	ASSERT(t == curthread);
1124 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1125 		if (ctx->save_op != NULL)
1126 			(ctx->save_op)(ctx->arg);
1127 }
1128 
1129 void
1130 restorectx(kthread_t *t)
1131 {
1132 	struct ctxop *ctx;
1133 
1134 	ASSERT(t == curthread);
1135 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1136 		if (ctx->restore_op != NULL)
1137 			(ctx->restore_op)(ctx->arg);
1138 }
1139 
1140 void
1141 forkctx(kthread_t *t, kthread_t *ct)
1142 {
1143 	struct ctxop *ctx;
1144 
1145 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1146 		if (ctx->fork_op != NULL)
1147 			(ctx->fork_op)(t, ct);
1148 }
1149 
1150 /*
1151  * Note that this operator is only invoked via the _lwp_create
1152  * system call.  The system may have other reasons to create lwps
1153  * e.g. the agent lwp or the doors unreferenced lwp.
1154  */
1155 void
1156 lwp_createctx(kthread_t *t, kthread_t *ct)
1157 {
1158 	struct ctxop *ctx;
1159 
1160 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1161 		if (ctx->lwp_create_op != NULL)
1162 			(ctx->lwp_create_op)(t, ct);
1163 }
1164 
1165 /*
1166  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1167  * needed when the thread/LWP leaves the processor for the last time. This
1168  * routine is not intended to deal with freeing memory; freectx() is used for
1169  * that purpose during thread_free(). This routine is provided to allow for
1170  * clean-up that can't wait until thread_free().
1171  */
1172 void
1173 exitctx(kthread_t *t)
1174 {
1175 	struct ctxop *ctx;
1176 
1177 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1178 		if (ctx->exit_op != NULL)
1179 			(ctx->exit_op)(t);
1180 }
1181 
1182 /*
1183  * freectx is called from thread_free() and exec() to get
1184  * rid of old thread context ops.
1185  */
1186 void
1187 freectx(kthread_t *t, int isexec)
1188 {
1189 	struct ctxop *ctx;
1190 
1191 	while ((ctx = t->t_ctx) != NULL) {
1192 		t->t_ctx = ctx->next;
1193 		if (ctx->free_op != NULL)
1194 			(ctx->free_op)(ctx->arg, isexec);
1195 		kmem_free(ctx, sizeof (struct ctxop));
1196 	}
1197 }
1198 
1199 /*
1200  * freectx_ctx is called from lwp_create() when lwp is reused from
1201  * lwp_deathrow and its thread structure is added to thread_deathrow.
1202  * The thread structure to which this ctx was attached may be already
1203  * freed by the thread reaper so free_op implementations shouldn't rely
1204  * on thread structure to which this ctx was attached still being around.
1205  */
1206 void
1207 freectx_ctx(struct ctxop *ctx)
1208 {
1209 	struct ctxop *nctx;
1210 
1211 	ASSERT(ctx != NULL);
1212 
1213 	do {
1214 		nctx = ctx->next;
1215 		if (ctx->free_op != NULL)
1216 			(ctx->free_op)(ctx->arg, 0);
1217 		kmem_free(ctx, sizeof (struct ctxop));
1218 	} while ((ctx = nctx) != NULL);
1219 }
1220 
1221 /*
1222  * Set the thread running; arrange for it to be swapped in if necessary.
1223  */
1224 void
1225 setrun_locked(kthread_t *t)
1226 {
1227 	ASSERT(THREAD_LOCK_HELD(t));
1228 	if (t->t_state == TS_SLEEP) {
1229 		/*
1230 		 * Take off sleep queue.
1231 		 */
1232 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1233 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1234 		/*
1235 		 * Already on dispatcher queue.
1236 		 */
1237 		return;
1238 	} else if (t->t_state == TS_WAIT) {
1239 		waitq_setrun(t);
1240 	} else if (t->t_state == TS_STOPPED) {
1241 		/*
1242 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1243 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1244 		 * requested that the thread be run.
1245 		 * Just calling setrun() is not sufficient to set a stopped
1246 		 * thread running.  TP_TXSTART is always set if the thread
1247 		 * is not stopped by a jobcontrol stop signal.
1248 		 * TP_TPSTART is always set if /proc is not controlling it.
1249 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1250 		 * The thread won't be stopped unless one of these
1251 		 * three mechanisms did it.
1252 		 *
1253 		 * These flags must be set before calling setrun_locked(t).
1254 		 * They can't be passed as arguments because the streams
1255 		 * code calls setrun() indirectly and the mechanism for
1256 		 * doing so admits only one argument.  Note that the
1257 		 * thread must be locked in order to change t_schedflags.
1258 		 */
1259 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1260 			return;
1261 		/*
1262 		 * Process is no longer stopped (a thread is running).
1263 		 */
1264 		t->t_whystop = 0;
1265 		t->t_whatstop = 0;
1266 		/*
1267 		 * Strictly speaking, we do not have to clear these
1268 		 * flags here; they are cleared on entry to stop().
1269 		 * However, they are confusing when doing kernel
1270 		 * debugging or when they are revealed by ps(1).
1271 		 */
1272 		t->t_schedflag &= ~TS_ALLSTART;
1273 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1274 		ASSERT(t->t_lockp == &transition_lock);
1275 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1276 		/*
1277 		 * Let the class put the process on the dispatcher queue.
1278 		 */
1279 		CL_SETRUN(t);
1280 	}
1281 }
1282 
1283 void
1284 setrun(kthread_t *t)
1285 {
1286 	thread_lock(t);
1287 	setrun_locked(t);
1288 	thread_unlock(t);
1289 }
1290 
1291 /*
1292  * Unpin an interrupted thread.
1293  *	When an interrupt occurs, the interrupt is handled on the stack
1294  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1295  *
1296  *	When swtch() is switching away from an interrupt thread because it
1297  *	blocked or was preempted, this routine is called to complete the
1298  *	saving of the interrupted thread state, and returns the interrupted
1299  *	thread pointer so it may be resumed.
1300  *
1301  *	Called by swtch() only at high spl.
1302  */
1303 kthread_t *
1304 thread_unpin()
1305 {
1306 	kthread_t	*t = curthread;	/* current thread */
1307 	kthread_t	*itp;		/* interrupted thread */
1308 	int		i;		/* interrupt level */
1309 	extern int	intr_passivate();
1310 
1311 	ASSERT(t->t_intr != NULL);
1312 
1313 	itp = t->t_intr;		/* interrupted thread */
1314 	t->t_intr = NULL;		/* clear interrupt ptr */
1315 
1316 	/*
1317 	 * Get state from interrupt thread for the one
1318 	 * it interrupted.
1319 	 */
1320 
1321 	i = intr_passivate(t, itp);
1322 
1323 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1324 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1325 	    i, t, t, itp, itp);
1326 
1327 	/*
1328 	 * Dissociate the current thread from the interrupted thread's LWP.
1329 	 */
1330 	t->t_lwp = NULL;
1331 
1332 	/*
1333 	 * Interrupt handlers above the level that spinlocks block must
1334 	 * not block.
1335 	 */
1336 #if DEBUG
1337 	if (i < 0 || i > LOCK_LEVEL)
1338 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1339 #endif
1340 
1341 	/*
1342 	 * Compute the CPU's base interrupt level based on the active
1343 	 * interrupts.
1344 	 */
1345 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1346 	set_base_spl();
1347 
1348 	return (itp);
1349 }
1350 
1351 /*
1352  * Create and initialize an interrupt thread.
1353  *	Returns non-zero on error.
1354  *	Called at spl7() or better.
1355  */
1356 void
1357 thread_create_intr(struct cpu *cp)
1358 {
1359 	kthread_t *tp;
1360 
1361 	tp = thread_create(NULL, 0,
1362 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1363 
1364 	/*
1365 	 * Set the thread in the TS_FREE state.  The state will change
1366 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1367 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1368 	 * inactive interrupt threads out of debugger thread lists.
1369 	 *
1370 	 * We cannot call thread_create with TS_FREE because of the current
1371 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1372 	 */
1373 	THREAD_FREEINTR(tp, cp);
1374 
1375 	/*
1376 	 * Nobody should ever reference the credentials of an interrupt
1377 	 * thread so make it NULL to catch any such references.
1378 	 */
1379 	tp->t_cred = NULL;
1380 	tp->t_flag |= T_INTR_THREAD;
1381 	tp->t_cpu = cp;
1382 	tp->t_bound_cpu = cp;
1383 	tp->t_disp_queue = cp->cpu_disp;
1384 	tp->t_affinitycnt = 1;
1385 	tp->t_preempt = 1;
1386 
1387 	/*
1388 	 * Don't make a user-requested binding on this thread so that
1389 	 * the processor can be offlined.
1390 	 */
1391 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1392 	tp->t_bind_pset = PS_NONE;
1393 
1394 #if defined(__i386) || defined(__amd64)
1395 	tp->t_stk -= STACK_ALIGN;
1396 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1397 #endif
1398 
1399 	/*
1400 	 * Link onto CPU's interrupt pool.
1401 	 */
1402 	tp->t_link = cp->cpu_intr_thread;
1403 	cp->cpu_intr_thread = tp;
1404 }
1405 
1406 /*
1407  * TSD -- THREAD SPECIFIC DATA
1408  */
1409 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1410 static uint_t		tsd_nkeys;	 /* size of destructor array */
1411 /* per-key destructor funcs */
1412 static void 		(**tsd_destructor)(void *);
1413 /* list of tsd_thread's */
1414 static struct tsd_thread	*tsd_list;
1415 
1416 /*
1417  * Default destructor
1418  *	Needed because NULL destructor means that the key is unused
1419  */
1420 /* ARGSUSED */
1421 void
1422 tsd_defaultdestructor(void *value)
1423 {}
1424 
1425 /*
1426  * Create a key (index into per thread array)
1427  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1428  *	May allocate memory with lock held
1429  */
1430 void
1431 tsd_create(uint_t *keyp, void (*destructor)(void *))
1432 {
1433 	int	i;
1434 	uint_t	nkeys;
1435 
1436 	/*
1437 	 * if key is allocated, do nothing
1438 	 */
1439 	mutex_enter(&tsd_mutex);
1440 	if (*keyp) {
1441 		mutex_exit(&tsd_mutex);
1442 		return;
1443 	}
1444 	/*
1445 	 * find an unused key
1446 	 */
1447 	if (destructor == NULL)
1448 		destructor = tsd_defaultdestructor;
1449 
1450 	for (i = 0; i < tsd_nkeys; ++i)
1451 		if (tsd_destructor[i] == NULL)
1452 			break;
1453 
1454 	/*
1455 	 * if no unused keys, increase the size of the destructor array
1456 	 */
1457 	if (i == tsd_nkeys) {
1458 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1459 			nkeys = 1;
1460 		tsd_destructor =
1461 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1462 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1463 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1464 		tsd_nkeys = nkeys;
1465 	}
1466 
1467 	/*
1468 	 * allocate the next available unused key
1469 	 */
1470 	tsd_destructor[i] = destructor;
1471 	*keyp = i + 1;
1472 	mutex_exit(&tsd_mutex);
1473 }
1474 
1475 /*
1476  * Destroy a key -- this is for unloadable modules
1477  *
1478  * Assumes that the caller is preventing tsd_set and tsd_get
1479  * Locks out tsd_create, tsd_destroy, and tsd_exit
1480  * May free memory with lock held
1481  */
1482 void
1483 tsd_destroy(uint_t *keyp)
1484 {
1485 	uint_t key;
1486 	struct tsd_thread *tsd;
1487 
1488 	/*
1489 	 * protect the key namespace and our destructor lists
1490 	 */
1491 	mutex_enter(&tsd_mutex);
1492 	key = *keyp;
1493 	*keyp = 0;
1494 
1495 	ASSERT(key <= tsd_nkeys);
1496 
1497 	/*
1498 	 * if the key is valid
1499 	 */
1500 	if (key != 0) {
1501 		uint_t k = key - 1;
1502 		/*
1503 		 * for every thread with TSD, call key's destructor
1504 		 */
1505 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1506 			/*
1507 			 * no TSD for key in this thread
1508 			 */
1509 			if (key > tsd->ts_nkeys)
1510 				continue;
1511 			/*
1512 			 * call destructor for key
1513 			 */
1514 			if (tsd->ts_value[k] && tsd_destructor[k])
1515 				(*tsd_destructor[k])(tsd->ts_value[k]);
1516 			/*
1517 			 * reset value for key
1518 			 */
1519 			tsd->ts_value[k] = NULL;
1520 		}
1521 		/*
1522 		 * actually free the key (NULL destructor == unused)
1523 		 */
1524 		tsd_destructor[k] = NULL;
1525 	}
1526 
1527 	mutex_exit(&tsd_mutex);
1528 }
1529 
1530 /*
1531  * Quickly return the per thread value that was stored with the specified key
1532  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1533  */
1534 void *
1535 tsd_get(uint_t key)
1536 {
1537 	return (tsd_agent_get(curthread, key));
1538 }
1539 
1540 /*
1541  * Set a per thread value indexed with the specified key
1542  */
1543 int
1544 tsd_set(uint_t key, void *value)
1545 {
1546 	return (tsd_agent_set(curthread, key, value));
1547 }
1548 
1549 /*
1550  * Like tsd_get(), except that the agent lwp can get the tsd of
1551  * another thread in the same process (the agent thread only runs when the
1552  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1553  */
1554 void *
1555 tsd_agent_get(kthread_t *t, uint_t key)
1556 {
1557 	struct tsd_thread *tsd = t->t_tsd;
1558 
1559 	ASSERT(t == curthread ||
1560 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1561 
1562 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1563 		return (tsd->ts_value[key - 1]);
1564 	return (NULL);
1565 }
1566 
1567 /*
1568  * Like tsd_set(), except that the agent lwp can set the tsd of
1569  * another thread in the same process, or syslwp can set the tsd
1570  * of a thread it's in the middle of creating.
1571  *
1572  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1573  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1574  * lock held
1575  */
1576 int
1577 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1578 {
1579 	struct tsd_thread *tsd = t->t_tsd;
1580 
1581 	ASSERT(t == curthread ||
1582 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1583 
1584 	if (key == 0)
1585 		return (EINVAL);
1586 	if (tsd == NULL)
1587 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1588 	if (key <= tsd->ts_nkeys) {
1589 		tsd->ts_value[key - 1] = value;
1590 		return (0);
1591 	}
1592 
1593 	ASSERT(key <= tsd_nkeys);
1594 
1595 	/*
1596 	 * lock out tsd_destroy()
1597 	 */
1598 	mutex_enter(&tsd_mutex);
1599 	if (tsd->ts_nkeys == 0) {
1600 		/*
1601 		 * Link onto list of threads with TSD
1602 		 */
1603 		if ((tsd->ts_next = tsd_list) != NULL)
1604 			tsd_list->ts_prev = tsd;
1605 		tsd_list = tsd;
1606 	}
1607 
1608 	/*
1609 	 * Allocate thread local storage and set the value for key
1610 	 */
1611 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1612 	    tsd->ts_nkeys * sizeof (void *),
1613 	    key * sizeof (void *));
1614 	tsd->ts_nkeys = key;
1615 	tsd->ts_value[key - 1] = value;
1616 	mutex_exit(&tsd_mutex);
1617 
1618 	return (0);
1619 }
1620 
1621 
1622 /*
1623  * Return the per thread value that was stored with the specified key
1624  *	If necessary, create the key and the value
1625  *	Assumes the caller is protecting *keyp from tsd_destroy
1626  */
1627 void *
1628 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1629 {
1630 	void *value;
1631 	uint_t key = *keyp;
1632 	struct tsd_thread *tsd = curthread->t_tsd;
1633 
1634 	if (tsd == NULL)
1635 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1636 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1637 		return (value);
1638 	if (key == 0)
1639 		tsd_create(keyp, destroy);
1640 	(void) tsd_set(*keyp, value = (*allocate)());
1641 
1642 	return (value);
1643 }
1644 
1645 /*
1646  * Called from thread_exit() to run the destructor function for each tsd
1647  *	Locks out tsd_create and tsd_destroy
1648  *	Assumes that the destructor *DOES NOT* use tsd
1649  */
1650 void
1651 tsd_exit(void)
1652 {
1653 	int i;
1654 	struct tsd_thread *tsd = curthread->t_tsd;
1655 
1656 	if (tsd == NULL)
1657 		return;
1658 
1659 	if (tsd->ts_nkeys == 0) {
1660 		kmem_free(tsd, sizeof (*tsd));
1661 		curthread->t_tsd = NULL;
1662 		return;
1663 	}
1664 
1665 	/*
1666 	 * lock out tsd_create and tsd_destroy, call
1667 	 * the destructor, and mark the value as destroyed.
1668 	 */
1669 	mutex_enter(&tsd_mutex);
1670 
1671 	for (i = 0; i < tsd->ts_nkeys; i++) {
1672 		if (tsd->ts_value[i] && tsd_destructor[i])
1673 			(*tsd_destructor[i])(tsd->ts_value[i]);
1674 		tsd->ts_value[i] = NULL;
1675 	}
1676 
1677 	/*
1678 	 * remove from linked list of threads with TSD
1679 	 */
1680 	if (tsd->ts_next)
1681 		tsd->ts_next->ts_prev = tsd->ts_prev;
1682 	if (tsd->ts_prev)
1683 		tsd->ts_prev->ts_next = tsd->ts_next;
1684 	if (tsd_list == tsd)
1685 		tsd_list = tsd->ts_next;
1686 
1687 	mutex_exit(&tsd_mutex);
1688 
1689 	/*
1690 	 * free up the TSD
1691 	 */
1692 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1693 	kmem_free(tsd, sizeof (struct tsd_thread));
1694 	curthread->t_tsd = NULL;
1695 }
1696 
1697 /*
1698  * realloc
1699  */
1700 static void *
1701 tsd_realloc(void *old, size_t osize, size_t nsize)
1702 {
1703 	void *new;
1704 
1705 	new = kmem_zalloc(nsize, KM_SLEEP);
1706 	if (old) {
1707 		bcopy(old, new, osize);
1708 		kmem_free(old, osize);
1709 	}
1710 	return (new);
1711 }
1712 
1713 /*
1714  * Return non-zero if an interrupt is being serviced.
1715  */
1716 int
1717 servicing_interrupt()
1718 {
1719 	int onintr = 0;
1720 
1721 	/* Are we an interrupt thread */
1722 	if (curthread->t_flag & T_INTR_THREAD)
1723 		return (1);
1724 	/* Are we servicing a high level interrupt? */
1725 	if (CPU_ON_INTR(CPU)) {
1726 		kpreempt_disable();
1727 		onintr = CPU_ON_INTR(CPU);
1728 		kpreempt_enable();
1729 	}
1730 	return (onintr);
1731 }
1732 
1733 
1734 /*
1735  * Change the dispatch priority of a thread in the system.
1736  * Used when raising or lowering a thread's priority.
1737  * (E.g., priority inheritance)
1738  *
1739  * Since threads are queued according to their priority, we
1740  * we must check the thread's state to determine whether it
1741  * is on a queue somewhere. If it is, we've got to:
1742  *
1743  *	o Dequeue the thread.
1744  *	o Change its effective priority.
1745  *	o Enqueue the thread.
1746  *
1747  * Assumptions: The thread whose priority we wish to change
1748  * must be locked before we call thread_change_(e)pri().
1749  * The thread_change(e)pri() function doesn't drop the thread
1750  * lock--that must be done by its caller.
1751  */
1752 void
1753 thread_change_epri(kthread_t *t, pri_t disp_pri)
1754 {
1755 	uint_t	state;
1756 
1757 	ASSERT(THREAD_LOCK_HELD(t));
1758 
1759 	/*
1760 	 * If the inherited priority hasn't actually changed,
1761 	 * just return.
1762 	 */
1763 	if (t->t_epri == disp_pri)
1764 		return;
1765 
1766 	state = t->t_state;
1767 
1768 	/*
1769 	 * If it's not on a queue, change the priority with impunity.
1770 	 */
1771 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1772 		t->t_epri = disp_pri;
1773 		if (state == TS_ONPROC) {
1774 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1775 
1776 			if (t == cp->cpu_dispthread)
1777 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1778 		}
1779 	} else if (state == TS_SLEEP) {
1780 		/*
1781 		 * Take the thread out of its sleep queue.
1782 		 * Change the inherited priority.
1783 		 * Re-enqueue the thread.
1784 		 * Each synchronization object exports a function
1785 		 * to do this in an appropriate manner.
1786 		 */
1787 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1788 	} else if (state == TS_WAIT) {
1789 		/*
1790 		 * Re-enqueue a thread on the wait queue if its
1791 		 * effective priority needs to change.
1792 		 */
1793 		if (disp_pri != t->t_epri)
1794 			waitq_change_pri(t, disp_pri);
1795 	} else {
1796 		/*
1797 		 * The thread is on a run queue.
1798 		 * Note: setbackdq() may not put the thread
1799 		 * back on the same run queue where it originally
1800 		 * resided.
1801 		 */
1802 		(void) dispdeq(t);
1803 		t->t_epri = disp_pri;
1804 		setbackdq(t);
1805 	}
1806 	schedctl_set_cidpri(t);
1807 }
1808 
1809 /*
1810  * Function: Change the t_pri field of a thread.
1811  * Side Effects: Adjust the thread ordering on a run queue
1812  *		 or sleep queue, if necessary.
1813  * Returns: 1 if the thread was on a run queue, else 0.
1814  */
1815 int
1816 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1817 {
1818 	uint_t	state;
1819 	int	on_rq = 0;
1820 
1821 	ASSERT(THREAD_LOCK_HELD(t));
1822 
1823 	state = t->t_state;
1824 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1825 
1826 	/*
1827 	 * If it's not on a queue, change the priority with impunity.
1828 	 */
1829 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1830 		t->t_pri = disp_pri;
1831 
1832 		if (state == TS_ONPROC) {
1833 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1834 
1835 			if (t == cp->cpu_dispthread)
1836 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1837 		}
1838 	} else if (state == TS_SLEEP) {
1839 		/*
1840 		 * If the priority has changed, take the thread out of
1841 		 * its sleep queue and change the priority.
1842 		 * Re-enqueue the thread.
1843 		 * Each synchronization object exports a function
1844 		 * to do this in an appropriate manner.
1845 		 */
1846 		if (disp_pri != t->t_pri)
1847 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1848 	} else if (state == TS_WAIT) {
1849 		/*
1850 		 * Re-enqueue a thread on the wait queue if its
1851 		 * priority needs to change.
1852 		 */
1853 		if (disp_pri != t->t_pri)
1854 			waitq_change_pri(t, disp_pri);
1855 	} else {
1856 		/*
1857 		 * The thread is on a run queue.
1858 		 * Note: setbackdq() may not put the thread
1859 		 * back on the same run queue where it originally
1860 		 * resided.
1861 		 *
1862 		 * We still requeue the thread even if the priority
1863 		 * is unchanged to preserve round-robin (and other)
1864 		 * effects between threads of the same priority.
1865 		 */
1866 		on_rq = dispdeq(t);
1867 		ASSERT(on_rq);
1868 		t->t_pri = disp_pri;
1869 		if (front) {
1870 			setfrontdq(t);
1871 		} else {
1872 			setbackdq(t);
1873 		}
1874 	}
1875 	schedctl_set_cidpri(t);
1876 	return (on_rq);
1877 }
1878 
1879 /*
1880  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1881  * specific pattern.
1882  */
1883 static void
1884 stkinfo_begin(kthread_t *t)
1885 {
1886 	caddr_t	start;	/* stack start */
1887 	caddr_t	end;	/* stack end  */
1888 	uint64_t *ptr;	/* pattern pointer */
1889 
1890 	/*
1891 	 * Stack grows up or down, see thread_create(),
1892 	 * compute stack memory area start and end (start < end).
1893 	 */
1894 	if (t->t_stk > t->t_stkbase) {
1895 		/* stack grows down */
1896 		start = t->t_stkbase;
1897 		end = t->t_stk;
1898 	} else {
1899 		/* stack grows up */
1900 		start = t->t_stk;
1901 		end = t->t_stkbase;
1902 	}
1903 
1904 	/*
1905 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1906 	 * alignement for start and end in stack area boundaries
1907 	 * (protection against corrupt t_stkbase/t_stk data).
1908 	 */
1909 	if ((((uintptr_t)start) & 0x7) != 0) {
1910 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1911 	}
1912 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1913 
1914 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1915 		/* negative or stack size > 1 meg, assume bogus */
1916 		return;
1917 	}
1918 
1919 	/* fill stack area with a pattern (instead of zeros) */
1920 	ptr = (uint64_t *)((void *)start);
1921 	while (ptr < (uint64_t *)((void *)end)) {
1922 		*ptr++ = KMEM_STKINFO_PATTERN;
1923 	}
1924 }
1925 
1926 
1927 /*
1928  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1929  * compute the percentage of kernel stack really used, and set in the log
1930  * if it's the latest highest percentage.
1931  */
1932 static void
1933 stkinfo_end(kthread_t *t)
1934 {
1935 	caddr_t	start;	/* stack start */
1936 	caddr_t	end;	/* stack end  */
1937 	uint64_t *ptr;	/* pattern pointer */
1938 	size_t stksz;	/* stack size */
1939 	size_t smallest = 0;
1940 	size_t percent = 0;
1941 	uint_t index = 0;
1942 	uint_t i;
1943 	static size_t smallest_percent = (size_t)-1;
1944 	static uint_t full = 0;
1945 
1946 	/* create the stackinfo log, if doesn't already exist */
1947 	mutex_enter(&kmem_stkinfo_lock);
1948 	if (kmem_stkinfo_log == NULL) {
1949 		kmem_stkinfo_log = (kmem_stkinfo_t *)
1950 		    kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1951 		    (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1952 		if (kmem_stkinfo_log == NULL) {
1953 			mutex_exit(&kmem_stkinfo_lock);
1954 			return;
1955 		}
1956 	}
1957 	mutex_exit(&kmem_stkinfo_lock);
1958 
1959 	/*
1960 	 * Stack grows up or down, see thread_create(),
1961 	 * compute stack memory area start and end (start < end).
1962 	 */
1963 	if (t->t_stk > t->t_stkbase) {
1964 		/* stack grows down */
1965 		start = t->t_stkbase;
1966 		end = t->t_stk;
1967 	} else {
1968 		/* stack grows up */
1969 		start = t->t_stk;
1970 		end = t->t_stkbase;
1971 	}
1972 
1973 	/* stack size as found in kthread_t */
1974 	stksz = end - start;
1975 
1976 	/*
1977 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1978 	 * alignement for start and end in stack area boundaries
1979 	 * (protection against corrupt t_stkbase/t_stk data).
1980 	 */
1981 	if ((((uintptr_t)start) & 0x7) != 0) {
1982 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1983 	}
1984 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1985 
1986 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1987 		/* negative or stack size > 1 meg, assume bogus */
1988 		return;
1989 	}
1990 
1991 	/* search until no pattern in the stack */
1992 	if (t->t_stk > t->t_stkbase) {
1993 		/* stack grows down */
1994 #if defined(__i386) || defined(__amd64)
1995 		/*
1996 		 * 6 longs are pushed on stack, see thread_load(). Skip
1997 		 * them, so if kthread has never run, percent is zero.
1998 		 * 8 bytes alignement is preserved for a 32 bit kernel,
1999 		 * 6 x 4 = 24, 24 is a multiple of 8.
2000 		 *
2001 		 */
2002 		end -= (6 * sizeof (long));
2003 #endif
2004 		ptr = (uint64_t *)((void *)start);
2005 		while (ptr < (uint64_t *)((void *)end)) {
2006 			if (*ptr != KMEM_STKINFO_PATTERN) {
2007 				percent = stkinfo_percent(end,
2008 				    start, (caddr_t)ptr);
2009 				break;
2010 			}
2011 			ptr++;
2012 		}
2013 	} else {
2014 		/* stack grows up */
2015 		ptr = (uint64_t *)((void *)end);
2016 		ptr--;
2017 		while (ptr >= (uint64_t *)((void *)start)) {
2018 			if (*ptr != KMEM_STKINFO_PATTERN) {
2019 				percent = stkinfo_percent(start,
2020 				    end, (caddr_t)ptr);
2021 				break;
2022 			}
2023 			ptr--;
2024 		}
2025 	}
2026 
2027 	DTRACE_PROBE3(stack__usage, kthread_t *, t,
2028 	    size_t, stksz, size_t, percent);
2029 
2030 	if (percent == 0) {
2031 		return;
2032 	}
2033 
2034 	mutex_enter(&kmem_stkinfo_lock);
2035 	if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2036 		/*
2037 		 * The log is full and already contains the highest values
2038 		 */
2039 		mutex_exit(&kmem_stkinfo_lock);
2040 		return;
2041 	}
2042 
2043 	/* keep a log of the highest used stack */
2044 	for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2045 		if (kmem_stkinfo_log[i].percent == 0) {
2046 			index = i;
2047 			full++;
2048 			break;
2049 		}
2050 		if (smallest == 0) {
2051 			smallest = kmem_stkinfo_log[i].percent;
2052 			index = i;
2053 			continue;
2054 		}
2055 		if (kmem_stkinfo_log[i].percent < smallest) {
2056 			smallest = kmem_stkinfo_log[i].percent;
2057 			index = i;
2058 		}
2059 	}
2060 
2061 	if (percent >= kmem_stkinfo_log[index].percent) {
2062 		kmem_stkinfo_log[index].kthread = (caddr_t)t;
2063 		kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2064 		kmem_stkinfo_log[index].start = start;
2065 		kmem_stkinfo_log[index].stksz = stksz;
2066 		kmem_stkinfo_log[index].percent = percent;
2067 		kmem_stkinfo_log[index].t_tid = t->t_tid;
2068 		kmem_stkinfo_log[index].cmd[0] = '\0';
2069 		if (t->t_tid != 0) {
2070 			stksz = strlen((t->t_procp)->p_user.u_comm);
2071 			if (stksz >= KMEM_STKINFO_STR_SIZE) {
2072 				stksz = KMEM_STKINFO_STR_SIZE - 1;
2073 				kmem_stkinfo_log[index].cmd[stksz] = '\0';
2074 			} else {
2075 				stksz += 1;
2076 			}
2077 			(void) memcpy(kmem_stkinfo_log[index].cmd,
2078 			    (t->t_procp)->p_user.u_comm, stksz);
2079 		}
2080 		if (percent < smallest_percent) {
2081 			smallest_percent = percent;
2082 		}
2083 	}
2084 	mutex_exit(&kmem_stkinfo_lock);
2085 }
2086 
2087 /*
2088  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2089  */
2090 static size_t
2091 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2092 {
2093 	size_t percent;
2094 	size_t s;
2095 
2096 	if (t_stk > t_stkbase) {
2097 		/* stack grows down */
2098 		if (sp > t_stk) {
2099 			return (0);
2100 		}
2101 		if (sp < t_stkbase) {
2102 			return (100);
2103 		}
2104 		percent = t_stk - sp + 1;
2105 		s = t_stk - t_stkbase + 1;
2106 	} else {
2107 		/* stack grows up */
2108 		if (sp < t_stk) {
2109 			return (0);
2110 		}
2111 		if (sp > t_stkbase) {
2112 			return (100);
2113 		}
2114 		percent = sp - t_stk + 1;
2115 		s = t_stkbase - t_stk + 1;
2116 	}
2117 	percent = ((100 * percent) / s) + 1;
2118 	if (percent > 100) {
2119 		percent = 100;
2120 	}
2121 	return (percent);
2122 }
2123