1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/resource.h> 41 #include <sys/task.h> 42 #include <sys/project.h> 43 #include <sys/proc.h> 44 #include <sys/debug.h> 45 #include <sys/disp.h> 46 #include <sys/class.h> 47 #include <vm/seg_kmem.h> 48 #include <vm/seg_kp.h> 49 #include <sys/machlock.h> 50 #include <sys/kmem.h> 51 #include <sys/varargs.h> 52 #include <sys/turnstile.h> 53 #include <sys/poll.h> 54 #include <sys/vtrace.h> 55 #include <sys/callb.h> 56 #include <c2/audit.h> 57 #include <sys/tnf.h> 58 #include <sys/sobject.h> 59 #include <sys/cpupart.h> 60 #include <sys/pset.h> 61 #include <sys/door.h> 62 #include <sys/spl.h> 63 #include <sys/copyops.h> 64 #include <sys/rctl.h> 65 #include <sys/brand.h> 66 #include <sys/pool.h> 67 #include <sys/zone.h> 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tndb.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 78 struct kmem_cache *thread_cache; /* cache of free threads */ 79 struct kmem_cache *lwp_cache; /* cache of free lwps */ 80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 81 82 /* 83 * allthreads is only for use by kmem_readers. All kernel loops can use 84 * the current thread as a start/end point. 85 */ 86 static kthread_t *allthreads = &t0; /* circular list of all threads */ 87 88 static kcondvar_t reaper_cv; /* synchronization var */ 89 kthread_t *thread_deathrow; /* circular list of reapable threads */ 90 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 91 kmutex_t reaplock; /* protects lwp and thread deathrows */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 thread_free_lock_t *thread_free_lock; 97 /* protects tick thread from reaper */ 98 99 extern int nthread; 100 101 id_t syscid; /* system scheduling class ID */ 102 void *segkp_thread; /* cookie for segkp pool */ 103 104 int lwp_cache_sz = 32; 105 int t_cache_sz = 8; 106 static kt_did_t next_t_id = 1; 107 108 /* 109 * Min/Max stack sizes for stack size parameters 110 */ 111 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 112 #define MIN_STKSIZE DEFAULTSTKSZ 113 114 /* 115 * default_stksize overrides lwp_default_stksize if it is set. 116 */ 117 int default_stksize; 118 int lwp_default_stksize; 119 120 static zone_key_t zone_thread_key; 121 122 /* 123 * forward declarations for internal thread specific data (tsd) 124 */ 125 static void *tsd_realloc(void *, size_t, size_t); 126 127 void thread_reaper(void); 128 129 /*ARGSUSED*/ 130 static int 131 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 132 { 133 bzero(buf, sizeof (turnstile_t)); 134 return (0); 135 } 136 137 /*ARGSUSED*/ 138 static void 139 turnstile_destructor(void *buf, void *cdrarg) 140 { 141 turnstile_t *ts = buf; 142 143 ASSERT(ts->ts_free == NULL); 144 ASSERT(ts->ts_waiters == 0); 145 ASSERT(ts->ts_inheritor == NULL); 146 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 147 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 148 } 149 150 void 151 thread_init(void) 152 { 153 kthread_t *tp; 154 extern char sys_name[]; 155 extern void idle(); 156 struct cpu *cpu = CPU; 157 int i; 158 kmutex_t *lp; 159 160 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 161 thread_free_lock = 162 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 163 for (i = 0; i < THREAD_FREE_NUM; i++) { 164 lp = &thread_free_lock[i].tf_lock; 165 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 166 } 167 168 #if defined(__i386) || defined(__amd64) 169 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 170 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 171 172 /* 173 * "struct _klwp" includes a "struct pcb", which includes a 174 * "struct fpu", which needs to be 16-byte aligned on amd64 175 * (and even on i386 for fxsave/fxrstor). 176 */ 177 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 178 16, NULL, NULL, NULL, NULL, NULL, 0); 179 #else 180 /* 181 * Allocate thread structures from static_arena. This prevents 182 * issues where a thread tries to relocate its own thread 183 * structure and touches it after the mapping has been suspended. 184 */ 185 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 186 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 187 188 lwp_stk_cache_init(); 189 190 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 191 0, NULL, NULL, NULL, NULL, NULL, 0); 192 #endif 193 194 turnstile_cache = kmem_cache_create("turnstile_cache", 195 sizeof (turnstile_t), 0, 196 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 197 198 label_init(); 199 cred_init(); 200 201 /* 202 * Initialize various resource management facilities. 203 */ 204 rctl_init(); 205 cpucaps_init(); 206 /* 207 * Zone_init() should be called before project_init() so that project ID 208 * for the first project is initialized correctly. 209 */ 210 zone_init(); 211 project_init(); 212 brand_init(); 213 kiconv_init(); 214 task_init(); 215 tcache_init(); 216 pool_init(); 217 218 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 219 220 /* 221 * Originally, we had two parameters to set default stack 222 * size: one for lwp's (lwp_default_stksize), and one for 223 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 224 * Now we have a third parameter that overrides both if it is 225 * set to a legal stack size, called default_stksize. 226 */ 227 228 if (default_stksize == 0) { 229 default_stksize = DEFAULTSTKSZ; 230 } else if (default_stksize % PAGESIZE != 0 || 231 default_stksize > MAX_STKSIZE || 232 default_stksize < MIN_STKSIZE) { 233 cmn_err(CE_WARN, "Illegal stack size. Using %d", 234 (int)DEFAULTSTKSZ); 235 default_stksize = DEFAULTSTKSZ; 236 } else { 237 lwp_default_stksize = default_stksize; 238 } 239 240 if (lwp_default_stksize == 0) { 241 lwp_default_stksize = default_stksize; 242 } else if (lwp_default_stksize % PAGESIZE != 0 || 243 lwp_default_stksize > MAX_STKSIZE || 244 lwp_default_stksize < MIN_STKSIZE) { 245 cmn_err(CE_WARN, "Illegal stack size. Using %d", 246 default_stksize); 247 lwp_default_stksize = default_stksize; 248 } 249 250 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 251 lwp_default_stksize, 252 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 253 254 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 255 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 256 257 (void) getcid(sys_name, &syscid); 258 curthread->t_cid = syscid; /* current thread is t0 */ 259 260 /* 261 * Set up the first CPU's idle thread. 262 * It runs whenever the CPU has nothing worthwhile to do. 263 */ 264 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 265 cpu->cpu_idle_thread = tp; 266 tp->t_preempt = 1; 267 tp->t_disp_queue = cpu->cpu_disp; 268 ASSERT(tp->t_disp_queue != NULL); 269 tp->t_bound_cpu = cpu; 270 tp->t_affinitycnt = 1; 271 272 /* 273 * Registering a thread in the callback table is usually 274 * done in the initialization code of the thread. In this 275 * case, we do it right after thread creation to avoid 276 * blocking idle thread while registering itself. It also 277 * avoids the possibility of reregistration in case a CPU 278 * restarts its idle thread. 279 */ 280 CALLB_CPR_INIT_SAFE(tp, "idle"); 281 282 /* 283 * Create the thread_reaper daemon. From this point on, exited 284 * threads will get reaped. 285 */ 286 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 287 NULL, 0, &p0, TS_RUN, minclsyspri); 288 289 /* 290 * Finish initializing the kernel memory allocator now that 291 * thread_create() is available. 292 */ 293 kmem_thread_init(); 294 295 if (boothowto & RB_DEBUG) 296 kdi_dvec_thravail(); 297 } 298 299 /* 300 * Create a thread. 301 * 302 * thread_create() blocks for memory if necessary. It never fails. 303 * 304 * If stk is NULL, the thread is created at the base of the stack 305 * and cannot be swapped. 306 */ 307 kthread_t * 308 thread_create( 309 caddr_t stk, 310 size_t stksize, 311 void (*proc)(), 312 void *arg, 313 size_t len, 314 proc_t *pp, 315 int state, 316 pri_t pri) 317 { 318 kthread_t *t; 319 extern struct classfuncs sys_classfuncs; 320 turnstile_t *ts; 321 322 /* 323 * Every thread keeps a turnstile around in case it needs to block. 324 * The only reason the turnstile is not simply part of the thread 325 * structure is that we may have to break the association whenever 326 * more than one thread blocks on a given synchronization object. 327 * From a memory-management standpoint, turnstiles are like the 328 * "attached mblks" that hang off dblks in the streams allocator. 329 */ 330 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 331 332 if (stk == NULL) { 333 /* 334 * alloc both thread and stack in segkp chunk 335 */ 336 337 if (stksize < default_stksize) 338 stksize = default_stksize; 339 340 if (stksize == default_stksize) { 341 stk = (caddr_t)segkp_cache_get(segkp_thread); 342 } else { 343 stksize = roundup(stksize, PAGESIZE); 344 stk = (caddr_t)segkp_get(segkp, stksize, 345 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 346 } 347 348 ASSERT(stk != NULL); 349 350 /* 351 * The machine-dependent mutex code may require that 352 * thread pointers (since they may be used for mutex owner 353 * fields) have certain alignment requirements. 354 * PTR24_ALIGN is the size of the alignment quanta. 355 * XXX - assumes stack grows toward low addresses. 356 */ 357 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 358 cmn_err(CE_PANIC, "thread_create: proposed stack size" 359 " too small to hold thread."); 360 #ifdef STACK_GROWTH_DOWN 361 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 362 stksize &= -PTR24_ALIGN; /* make thread aligned */ 363 t = (kthread_t *)(stk + stksize); 364 bzero(t, sizeof (kthread_t)); 365 if (audit_active) 366 audit_thread_create(t); 367 t->t_stk = stk + stksize; 368 t->t_stkbase = stk; 369 #else /* stack grows to larger addresses */ 370 stksize -= SA(sizeof (kthread_t)); 371 t = (kthread_t *)(stk); 372 bzero(t, sizeof (kthread_t)); 373 t->t_stk = stk + sizeof (kthread_t); 374 t->t_stkbase = stk + stksize + sizeof (kthread_t); 375 #endif /* STACK_GROWTH_DOWN */ 376 t->t_flag |= T_TALLOCSTK; 377 t->t_swap = stk; 378 } else { 379 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 380 bzero(t, sizeof (kthread_t)); 381 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 382 if (audit_active) 383 audit_thread_create(t); 384 /* 385 * Initialize t_stk to the kernel stack pointer to use 386 * upon entry to the kernel 387 */ 388 #ifdef STACK_GROWTH_DOWN 389 t->t_stk = stk + stksize; 390 t->t_stkbase = stk; 391 #else 392 t->t_stk = stk; /* 3b2-like */ 393 t->t_stkbase = stk + stksize; 394 #endif /* STACK_GROWTH_DOWN */ 395 } 396 397 /* set default stack flag */ 398 if (stksize == lwp_default_stksize) 399 t->t_flag |= T_DFLTSTK; 400 401 t->t_ts = ts; 402 403 /* 404 * p_cred could be NULL if it thread_create is called before cred_init 405 * is called in main. 406 */ 407 mutex_enter(&pp->p_crlock); 408 if (pp->p_cred) 409 crhold(t->t_cred = pp->p_cred); 410 mutex_exit(&pp->p_crlock); 411 t->t_start = gethrestime_sec(); 412 t->t_startpc = proc; 413 t->t_procp = pp; 414 t->t_clfuncs = &sys_classfuncs.thread; 415 t->t_cid = syscid; 416 t->t_pri = pri; 417 t->t_stime = lbolt; 418 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 419 t->t_bind_cpu = PBIND_NONE; 420 t->t_bind_pset = PS_NONE; 421 t->t_plockp = &pp->p_lock; 422 t->t_copyops = NULL; 423 t->t_taskq = NULL; 424 t->t_anttime = 0; 425 t->t_hatdepth = 0; 426 427 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 428 429 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 430 #ifndef NPROBE 431 /* Kernel probe */ 432 tnf_thread_create(t); 433 #endif /* NPROBE */ 434 LOCK_INIT_CLEAR(&t->t_lock); 435 436 /* 437 * Callers who give us a NULL proc must do their own 438 * stack initialization. e.g. lwp_create() 439 */ 440 if (proc != NULL) { 441 t->t_stk = thread_stk_init(t->t_stk); 442 thread_load(t, proc, arg, len); 443 } 444 445 /* 446 * Put a hold on project0. If this thread is actually in a 447 * different project, then t_proj will be changed later in 448 * lwp_create(). All kernel-only threads must be in project 0. 449 */ 450 t->t_proj = project_hold(proj0p); 451 452 lgrp_affinity_init(&t->t_lgrp_affinity); 453 454 mutex_enter(&pidlock); 455 nthread++; 456 t->t_did = next_t_id++; 457 t->t_prev = curthread->t_prev; 458 t->t_next = curthread; 459 460 /* 461 * Add the thread to the list of all threads, and initialize 462 * its t_cpu pointer. We need to block preemption since 463 * cpu_offline walks the thread list looking for threads 464 * with t_cpu pointing to the CPU being offlined. We want 465 * to make sure that the list is consistent and that if t_cpu 466 * is set, the thread is on the list. 467 */ 468 kpreempt_disable(); 469 curthread->t_prev->t_next = t; 470 curthread->t_prev = t; 471 472 /* 473 * Threads should never have a NULL t_cpu pointer so assign it 474 * here. If the thread is being created with state TS_RUN a 475 * better CPU may be chosen when it is placed on the run queue. 476 * 477 * We need to keep kernel preemption disabled when setting all 478 * three fields to keep them in sync. Also, always create in 479 * the default partition since that's where kernel threads go 480 * (if this isn't a kernel thread, t_cpupart will be changed 481 * in lwp_create before setting the thread runnable). 482 */ 483 t->t_cpupart = &cp_default; 484 485 /* 486 * For now, affiliate this thread with the root lgroup. 487 * Since the kernel does not (presently) allocate its memory 488 * in a locality aware fashion, the root is an appropriate home. 489 * If this thread is later associated with an lwp, it will have 490 * it's lgroup re-assigned at that time. 491 */ 492 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 493 494 /* 495 * Inherit the current cpu. If this cpu isn't part of the chosen 496 * lgroup, a new cpu will be chosen by cpu_choose when the thread 497 * is ready to run. 498 */ 499 if (CPU->cpu_part == &cp_default) 500 t->t_cpu = CPU; 501 else 502 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 503 t->t_pri, NULL); 504 505 t->t_disp_queue = t->t_cpu->cpu_disp; 506 kpreempt_enable(); 507 508 /* 509 * Initialize thread state and the dispatcher lock pointer. 510 * Need to hold onto pidlock to block allthreads walkers until 511 * the state is set. 512 */ 513 switch (state) { 514 case TS_RUN: 515 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 516 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 517 CL_SETRUN(t); 518 thread_unlock(t); 519 break; 520 521 case TS_ONPROC: 522 THREAD_ONPROC(t, t->t_cpu); 523 break; 524 525 case TS_FREE: 526 /* 527 * Free state will be used for intr threads. 528 * The interrupt routine must set the thread dispatcher 529 * lock pointer (t_lockp) if starting on a CPU 530 * other than the current one. 531 */ 532 THREAD_FREEINTR(t, CPU); 533 break; 534 535 case TS_STOPPED: 536 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 537 break; 538 539 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 540 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 541 } 542 mutex_exit(&pidlock); 543 return (t); 544 } 545 546 /* 547 * Move thread to project0 and take care of project reference counters. 548 */ 549 void 550 thread_rele(kthread_t *t) 551 { 552 kproject_t *kpj; 553 554 thread_lock(t); 555 556 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 557 kpj = ttoproj(t); 558 t->t_proj = proj0p; 559 560 thread_unlock(t); 561 562 if (kpj != proj0p) { 563 project_rele(kpj); 564 (void) project_hold(proj0p); 565 } 566 } 567 568 void 569 thread_exit(void) 570 { 571 kthread_t *t = curthread; 572 573 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 574 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 575 576 tsd_exit(); /* Clean up this thread's TSD */ 577 578 kcpc_passivate(); /* clean up performance counter state */ 579 580 /* 581 * No kernel thread should have called poll() without arranging 582 * calling pollcleanup() here. 583 */ 584 ASSERT(t->t_pollstate == NULL); 585 ASSERT(t->t_schedctl == NULL); 586 if (t->t_door) 587 door_slam(); /* in case thread did an upcall */ 588 589 #ifndef NPROBE 590 /* Kernel probe */ 591 if (t->t_tnf_tpdp) 592 tnf_thread_exit(); 593 #endif /* NPROBE */ 594 595 thread_rele(t); 596 t->t_preempt++; 597 598 /* 599 * remove thread from the all threads list so that 600 * death-row can use the same pointers. 601 */ 602 mutex_enter(&pidlock); 603 t->t_next->t_prev = t->t_prev; 604 t->t_prev->t_next = t->t_next; 605 ASSERT(allthreads != t); /* t0 never exits */ 606 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 607 mutex_exit(&pidlock); 608 609 if (t->t_ctx != NULL) 610 exitctx(t); 611 if (t->t_procp->p_pctx != NULL) 612 exitpctx(t->t_procp); 613 614 t->t_state = TS_ZOMB; /* set zombie thread */ 615 616 swtch_from_zombie(); /* give up the CPU */ 617 /* NOTREACHED */ 618 } 619 620 /* 621 * Check to see if the specified thread is active (defined as being on 622 * the thread list). This is certainly a slow way to do this; if there's 623 * ever a reason to speed it up, we could maintain a hash table of active 624 * threads indexed by their t_did. 625 */ 626 static kthread_t * 627 did_to_thread(kt_did_t tid) 628 { 629 kthread_t *t; 630 631 ASSERT(MUTEX_HELD(&pidlock)); 632 for (t = curthread->t_next; t != curthread; t = t->t_next) { 633 if (t->t_did == tid) 634 break; 635 } 636 if (t->t_did == tid) 637 return (t); 638 else 639 return (NULL); 640 } 641 642 /* 643 * Wait for specified thread to exit. Returns immediately if the thread 644 * could not be found, meaning that it has either already exited or never 645 * existed. 646 */ 647 void 648 thread_join(kt_did_t tid) 649 { 650 kthread_t *t; 651 652 ASSERT(tid != curthread->t_did); 653 ASSERT(tid != t0.t_did); 654 655 mutex_enter(&pidlock); 656 /* 657 * Make sure we check that the thread is on the thread list 658 * before blocking on it; otherwise we could end up blocking on 659 * a cv that's already been freed. In other words, don't cache 660 * the thread pointer across calls to cv_wait. 661 * 662 * The choice of loop invariant means that whenever a thread 663 * is taken off the allthreads list, a cv_broadcast must be 664 * performed on that thread's t_joincv to wake up any waiters. 665 * The broadcast doesn't have to happen right away, but it 666 * shouldn't be postponed indefinitely (e.g., by doing it in 667 * thread_free which may only be executed when the deathrow 668 * queue is processed. 669 */ 670 while (t = did_to_thread(tid)) 671 cv_wait(&t->t_joincv, &pidlock); 672 mutex_exit(&pidlock); 673 } 674 675 void 676 thread_free_prevent(kthread_t *t) 677 { 678 kmutex_t *lp; 679 680 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 681 mutex_enter(lp); 682 } 683 684 void 685 thread_free_allow(kthread_t *t) 686 { 687 kmutex_t *lp; 688 689 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 690 mutex_exit(lp); 691 } 692 693 static void 694 thread_free_barrier(kthread_t *t) 695 { 696 kmutex_t *lp; 697 698 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 699 mutex_enter(lp); 700 mutex_exit(lp); 701 } 702 703 void 704 thread_free(kthread_t *t) 705 { 706 ASSERT(t != &t0 && t->t_state == TS_FREE); 707 ASSERT(t->t_door == NULL); 708 ASSERT(t->t_schedctl == NULL); 709 ASSERT(t->t_pollstate == NULL); 710 711 t->t_pri = 0; 712 t->t_pc = 0; 713 t->t_sp = 0; 714 t->t_wchan0 = NULL; 715 t->t_wchan = NULL; 716 if (t->t_cred != NULL) { 717 crfree(t->t_cred); 718 t->t_cred = 0; 719 } 720 if (t->t_pdmsg) { 721 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 722 t->t_pdmsg = NULL; 723 } 724 if (audit_active) 725 audit_thread_free(t); 726 #ifndef NPROBE 727 if (t->t_tnf_tpdp) 728 tnf_thread_free(t); 729 #endif /* NPROBE */ 730 if (t->t_cldata) { 731 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 732 } 733 if (t->t_rprof != NULL) { 734 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 735 t->t_rprof = NULL; 736 } 737 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 738 if (t->t_lwp) 739 lwp_freeregs(t->t_lwp, 0); 740 if (t->t_ctx) 741 freectx(t, 0); 742 t->t_stk = NULL; 743 if (t->t_lwp) 744 lwp_stk_fini(t->t_lwp); 745 lock_clear(&t->t_lock); 746 747 if (t->t_ts->ts_waiters > 0) 748 panic("thread_free: turnstile still active"); 749 750 kmem_cache_free(turnstile_cache, t->t_ts); 751 752 free_afd(&t->t_activefd); 753 754 /* 755 * Barrier for the tick accounting code. The tick accounting code 756 * holds this lock to keep the thread from going away while it's 757 * looking at it. 758 */ 759 thread_free_barrier(t); 760 761 ASSERT(ttoproj(t) == proj0p); 762 project_rele(ttoproj(t)); 763 764 lgrp_affinity_free(&t->t_lgrp_affinity); 765 766 /* 767 * Free thread struct and its stack. 768 */ 769 if (t->t_flag & T_TALLOCSTK) { 770 /* thread struct is embedded in stack */ 771 segkp_release(segkp, t->t_swap); 772 mutex_enter(&pidlock); 773 nthread--; 774 mutex_exit(&pidlock); 775 } else { 776 if (t->t_swap) { 777 segkp_release(segkp, t->t_swap); 778 t->t_swap = NULL; 779 } 780 if (t->t_lwp) { 781 kmem_cache_free(lwp_cache, t->t_lwp); 782 t->t_lwp = NULL; 783 } 784 mutex_enter(&pidlock); 785 nthread--; 786 mutex_exit(&pidlock); 787 kmem_cache_free(thread_cache, t); 788 } 789 } 790 791 /* 792 * Removes threads associated with the given zone from a deathrow queue. 793 * tp is a pointer to the head of the deathrow queue, and countp is a 794 * pointer to the current deathrow count. Returns a linked list of 795 * threads removed from the list. 796 */ 797 static kthread_t * 798 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 799 { 800 kthread_t *tmp, *list = NULL; 801 cred_t *cr; 802 803 ASSERT(MUTEX_HELD(&reaplock)); 804 while (*tp != NULL) { 805 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 806 tmp = *tp; 807 *tp = tmp->t_forw; 808 tmp->t_forw = list; 809 list = tmp; 810 (*countp)--; 811 } else { 812 tp = &(*tp)->t_forw; 813 } 814 } 815 return (list); 816 } 817 818 static void 819 thread_reap_list(kthread_t *t) 820 { 821 kthread_t *next; 822 823 while (t != NULL) { 824 next = t->t_forw; 825 thread_free(t); 826 t = next; 827 } 828 } 829 830 /* ARGSUSED */ 831 static void 832 thread_zone_destroy(zoneid_t zoneid, void *unused) 833 { 834 kthread_t *t, *l; 835 836 mutex_enter(&reaplock); 837 /* 838 * Pull threads and lwps associated with zone off deathrow lists. 839 */ 840 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 841 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 842 mutex_exit(&reaplock); 843 844 /* 845 * Reap threads 846 */ 847 thread_reap_list(t); 848 849 /* 850 * Reap lwps 851 */ 852 thread_reap_list(l); 853 } 854 855 /* 856 * cleanup zombie threads that are on deathrow. 857 */ 858 void 859 thread_reaper() 860 { 861 kthread_t *t, *l; 862 callb_cpr_t cprinfo; 863 864 /* 865 * Register callback to clean up threads when zone is destroyed. 866 */ 867 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 868 869 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 870 for (;;) { 871 mutex_enter(&reaplock); 872 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 873 CALLB_CPR_SAFE_BEGIN(&cprinfo); 874 cv_wait(&reaper_cv, &reaplock); 875 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 876 } 877 t = thread_deathrow; 878 l = lwp_deathrow; 879 thread_deathrow = NULL; 880 lwp_deathrow = NULL; 881 thread_reapcnt = 0; 882 lwp_reapcnt = 0; 883 mutex_exit(&reaplock); 884 885 /* 886 * Reap threads 887 */ 888 thread_reap_list(t); 889 890 /* 891 * Reap lwps 892 */ 893 thread_reap_list(l); 894 } 895 } 896 897 /* 898 * This is called by resume() to put a zombie thread onto deathrow. 899 * The thread's state is changed to TS_FREE to indicate that is reapable. 900 * This is called from the idle thread so it must not block (just spin). 901 */ 902 void 903 reapq_add(kthread_t *t) 904 { 905 mutex_enter(&reaplock); 906 907 /* 908 * lwp_deathrow contains only threads with lwp linkage 909 * that are of the default stacksize. Anything else goes 910 * on thread_deathrow. 911 */ 912 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 913 t->t_forw = lwp_deathrow; 914 lwp_deathrow = t; 915 lwp_reapcnt++; 916 } else { 917 t->t_forw = thread_deathrow; 918 thread_deathrow = t; 919 thread_reapcnt++; 920 } 921 if (lwp_reapcnt + thread_reapcnt > reaplimit) 922 cv_signal(&reaper_cv); /* wake the reaper */ 923 t->t_state = TS_FREE; 924 lock_clear(&t->t_lock); 925 926 /* 927 * Before we return, we need to grab and drop the thread lock for 928 * the dead thread. At this point, the current thread is the idle 929 * thread, and the dead thread's CPU lock points to the current 930 * CPU -- and we must grab and drop the lock to synchronize with 931 * a racing thread walking a blocking chain that the zombie thread 932 * was recently in. By this point, that blocking chain is (by 933 * definition) stale: the dead thread is not holding any locks, and 934 * is therefore not in any blocking chains -- but if we do not regrab 935 * our lock before freeing the dead thread's data structures, the 936 * thread walking the (stale) blocking chain will die on memory 937 * corruption when it attempts to drop the dead thread's lock. We 938 * only need do this once because there is no way for the dead thread 939 * to ever again be on a blocking chain: once we have grabbed and 940 * dropped the thread lock, we are guaranteed that anyone that could 941 * have seen this thread in a blocking chain can no longer see it. 942 */ 943 thread_lock(t); 944 thread_unlock(t); 945 946 mutex_exit(&reaplock); 947 } 948 949 /* 950 * Install thread context ops for the current thread. 951 */ 952 void 953 installctx( 954 kthread_t *t, 955 void *arg, 956 void (*save)(void *), 957 void (*restore)(void *), 958 void (*fork)(void *, void *), 959 void (*lwp_create)(void *, void *), 960 void (*exit)(void *), 961 void (*free)(void *, int)) 962 { 963 struct ctxop *ctx; 964 965 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 966 ctx->save_op = save; 967 ctx->restore_op = restore; 968 ctx->fork_op = fork; 969 ctx->lwp_create_op = lwp_create; 970 ctx->exit_op = exit; 971 ctx->free_op = free; 972 ctx->arg = arg; 973 ctx->next = t->t_ctx; 974 t->t_ctx = ctx; 975 } 976 977 /* 978 * Remove the thread context ops from a thread. 979 */ 980 int 981 removectx( 982 kthread_t *t, 983 void *arg, 984 void (*save)(void *), 985 void (*restore)(void *), 986 void (*fork)(void *, void *), 987 void (*lwp_create)(void *, void *), 988 void (*exit)(void *), 989 void (*free)(void *, int)) 990 { 991 struct ctxop *ctx, *prev_ctx; 992 993 /* 994 * The incoming kthread_t (which is the thread for which the 995 * context ops will be removed) should be one of the following: 996 * 997 * a) the current thread, 998 * 999 * b) a thread of a process that's being forked (SIDL), 1000 * 1001 * c) a thread that belongs to the same process as the current 1002 * thread and for which the current thread is the agent thread, 1003 * 1004 * d) a thread that is TS_STOPPED which is indicative of it 1005 * being (if curthread is not an agent) a thread being created 1006 * as part of an lwp creation. 1007 */ 1008 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1009 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1010 1011 /* 1012 * Serialize modifications to t->t_ctx to prevent the agent thread 1013 * and the target thread from racing with each other during lwp exit. 1014 */ 1015 mutex_enter(&t->t_ctx_lock); 1016 prev_ctx = NULL; 1017 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1018 if (ctx->save_op == save && ctx->restore_op == restore && 1019 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1020 ctx->exit_op == exit && ctx->free_op == free && 1021 ctx->arg == arg) { 1022 if (prev_ctx) 1023 prev_ctx->next = ctx->next; 1024 else 1025 t->t_ctx = ctx->next; 1026 mutex_exit(&t->t_ctx_lock); 1027 if (ctx->free_op != NULL) 1028 (ctx->free_op)(ctx->arg, 0); 1029 kmem_free(ctx, sizeof (struct ctxop)); 1030 return (1); 1031 } 1032 prev_ctx = ctx; 1033 } 1034 mutex_exit(&t->t_ctx_lock); 1035 1036 return (0); 1037 } 1038 1039 void 1040 savectx(kthread_t *t) 1041 { 1042 struct ctxop *ctx; 1043 1044 ASSERT(t == curthread); 1045 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1046 if (ctx->save_op != NULL) 1047 (ctx->save_op)(ctx->arg); 1048 } 1049 1050 void 1051 restorectx(kthread_t *t) 1052 { 1053 struct ctxop *ctx; 1054 1055 ASSERT(t == curthread); 1056 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1057 if (ctx->restore_op != NULL) 1058 (ctx->restore_op)(ctx->arg); 1059 } 1060 1061 void 1062 forkctx(kthread_t *t, kthread_t *ct) 1063 { 1064 struct ctxop *ctx; 1065 1066 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1067 if (ctx->fork_op != NULL) 1068 (ctx->fork_op)(t, ct); 1069 } 1070 1071 /* 1072 * Note that this operator is only invoked via the _lwp_create 1073 * system call. The system may have other reasons to create lwps 1074 * e.g. the agent lwp or the doors unreferenced lwp. 1075 */ 1076 void 1077 lwp_createctx(kthread_t *t, kthread_t *ct) 1078 { 1079 struct ctxop *ctx; 1080 1081 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1082 if (ctx->lwp_create_op != NULL) 1083 (ctx->lwp_create_op)(t, ct); 1084 } 1085 1086 /* 1087 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1088 * needed when the thread/LWP leaves the processor for the last time. This 1089 * routine is not intended to deal with freeing memory; freectx() is used for 1090 * that purpose during thread_free(). This routine is provided to allow for 1091 * clean-up that can't wait until thread_free(). 1092 */ 1093 void 1094 exitctx(kthread_t *t) 1095 { 1096 struct ctxop *ctx; 1097 1098 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1099 if (ctx->exit_op != NULL) 1100 (ctx->exit_op)(t); 1101 } 1102 1103 /* 1104 * freectx is called from thread_free() and exec() to get 1105 * rid of old thread context ops. 1106 */ 1107 void 1108 freectx(kthread_t *t, int isexec) 1109 { 1110 struct ctxop *ctx; 1111 1112 while ((ctx = t->t_ctx) != NULL) { 1113 t->t_ctx = ctx->next; 1114 if (ctx->free_op != NULL) 1115 (ctx->free_op)(ctx->arg, isexec); 1116 kmem_free(ctx, sizeof (struct ctxop)); 1117 } 1118 } 1119 1120 /* 1121 * Set the thread running; arrange for it to be swapped in if necessary. 1122 */ 1123 void 1124 setrun_locked(kthread_t *t) 1125 { 1126 ASSERT(THREAD_LOCK_HELD(t)); 1127 if (t->t_state == TS_SLEEP) { 1128 /* 1129 * Take off sleep queue. 1130 */ 1131 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1132 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1133 /* 1134 * Already on dispatcher queue. 1135 */ 1136 return; 1137 } else if (t->t_state == TS_WAIT) { 1138 waitq_setrun(t); 1139 } else if (t->t_state == TS_STOPPED) { 1140 /* 1141 * All of the sending of SIGCONT (TC_XSTART) and /proc 1142 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1143 * requested that the thread be run. 1144 * Just calling setrun() is not sufficient to set a stopped 1145 * thread running. TP_TXSTART is always set if the thread 1146 * is not stopped by a jobcontrol stop signal. 1147 * TP_TPSTART is always set if /proc is not controlling it. 1148 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1149 * The thread won't be stopped unless one of these 1150 * three mechanisms did it. 1151 * 1152 * These flags must be set before calling setrun_locked(t). 1153 * They can't be passed as arguments because the streams 1154 * code calls setrun() indirectly and the mechanism for 1155 * doing so admits only one argument. Note that the 1156 * thread must be locked in order to change t_schedflags. 1157 */ 1158 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1159 return; 1160 /* 1161 * Process is no longer stopped (a thread is running). 1162 */ 1163 t->t_whystop = 0; 1164 t->t_whatstop = 0; 1165 /* 1166 * Strictly speaking, we do not have to clear these 1167 * flags here; they are cleared on entry to stop(). 1168 * However, they are confusing when doing kernel 1169 * debugging or when they are revealed by ps(1). 1170 */ 1171 t->t_schedflag &= ~TS_ALLSTART; 1172 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1173 ASSERT(t->t_lockp == &transition_lock); 1174 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1175 /* 1176 * Let the class put the process on the dispatcher queue. 1177 */ 1178 CL_SETRUN(t); 1179 } 1180 } 1181 1182 void 1183 setrun(kthread_t *t) 1184 { 1185 thread_lock(t); 1186 setrun_locked(t); 1187 thread_unlock(t); 1188 } 1189 1190 /* 1191 * Unpin an interrupted thread. 1192 * When an interrupt occurs, the interrupt is handled on the stack 1193 * of an interrupt thread, taken from a pool linked to the CPU structure. 1194 * 1195 * When swtch() is switching away from an interrupt thread because it 1196 * blocked or was preempted, this routine is called to complete the 1197 * saving of the interrupted thread state, and returns the interrupted 1198 * thread pointer so it may be resumed. 1199 * 1200 * Called by swtch() only at high spl. 1201 */ 1202 kthread_t * 1203 thread_unpin() 1204 { 1205 kthread_t *t = curthread; /* current thread */ 1206 kthread_t *itp; /* interrupted thread */ 1207 int i; /* interrupt level */ 1208 extern int intr_passivate(); 1209 1210 ASSERT(t->t_intr != NULL); 1211 1212 itp = t->t_intr; /* interrupted thread */ 1213 t->t_intr = NULL; /* clear interrupt ptr */ 1214 1215 /* 1216 * Get state from interrupt thread for the one 1217 * it interrupted. 1218 */ 1219 1220 i = intr_passivate(t, itp); 1221 1222 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1223 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1224 i, t, t, itp, itp); 1225 1226 /* 1227 * Dissociate the current thread from the interrupted thread's LWP. 1228 */ 1229 t->t_lwp = NULL; 1230 1231 /* 1232 * Interrupt handlers above the level that spinlocks block must 1233 * not block. 1234 */ 1235 #if DEBUG 1236 if (i < 0 || i > LOCK_LEVEL) 1237 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1238 #endif 1239 1240 /* 1241 * Compute the CPU's base interrupt level based on the active 1242 * interrupts. 1243 */ 1244 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1245 set_base_spl(); 1246 1247 return (itp); 1248 } 1249 1250 /* 1251 * Create and initialize an interrupt thread. 1252 * Returns non-zero on error. 1253 * Called at spl7() or better. 1254 */ 1255 void 1256 thread_create_intr(struct cpu *cp) 1257 { 1258 kthread_t *tp; 1259 1260 tp = thread_create(NULL, 0, 1261 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1262 1263 /* 1264 * Set the thread in the TS_FREE state. The state will change 1265 * to TS_ONPROC only while the interrupt is active. Think of these 1266 * as being on a private free list for the CPU. Being TS_FREE keeps 1267 * inactive interrupt threads out of debugger thread lists. 1268 * 1269 * We cannot call thread_create with TS_FREE because of the current 1270 * checks there for ONPROC. Fix this when thread_create takes flags. 1271 */ 1272 THREAD_FREEINTR(tp, cp); 1273 1274 /* 1275 * Nobody should ever reference the credentials of an interrupt 1276 * thread so make it NULL to catch any such references. 1277 */ 1278 tp->t_cred = NULL; 1279 tp->t_flag |= T_INTR_THREAD; 1280 tp->t_cpu = cp; 1281 tp->t_bound_cpu = cp; 1282 tp->t_disp_queue = cp->cpu_disp; 1283 tp->t_affinitycnt = 1; 1284 tp->t_preempt = 1; 1285 1286 /* 1287 * Don't make a user-requested binding on this thread so that 1288 * the processor can be offlined. 1289 */ 1290 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1291 tp->t_bind_pset = PS_NONE; 1292 1293 #if defined(__i386) || defined(__amd64) 1294 tp->t_stk -= STACK_ALIGN; 1295 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1296 #endif 1297 1298 /* 1299 * Link onto CPU's interrupt pool. 1300 */ 1301 tp->t_link = cp->cpu_intr_thread; 1302 cp->cpu_intr_thread = tp; 1303 } 1304 1305 /* 1306 * TSD -- THREAD SPECIFIC DATA 1307 */ 1308 static kmutex_t tsd_mutex; /* linked list spin lock */ 1309 static uint_t tsd_nkeys; /* size of destructor array */ 1310 /* per-key destructor funcs */ 1311 static void (**tsd_destructor)(void *); 1312 /* list of tsd_thread's */ 1313 static struct tsd_thread *tsd_list; 1314 1315 /* 1316 * Default destructor 1317 * Needed because NULL destructor means that the key is unused 1318 */ 1319 /* ARGSUSED */ 1320 void 1321 tsd_defaultdestructor(void *value) 1322 {} 1323 1324 /* 1325 * Create a key (index into per thread array) 1326 * Locks out tsd_create, tsd_destroy, and tsd_exit 1327 * May allocate memory with lock held 1328 */ 1329 void 1330 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1331 { 1332 int i; 1333 uint_t nkeys; 1334 1335 /* 1336 * if key is allocated, do nothing 1337 */ 1338 mutex_enter(&tsd_mutex); 1339 if (*keyp) { 1340 mutex_exit(&tsd_mutex); 1341 return; 1342 } 1343 /* 1344 * find an unused key 1345 */ 1346 if (destructor == NULL) 1347 destructor = tsd_defaultdestructor; 1348 1349 for (i = 0; i < tsd_nkeys; ++i) 1350 if (tsd_destructor[i] == NULL) 1351 break; 1352 1353 /* 1354 * if no unused keys, increase the size of the destructor array 1355 */ 1356 if (i == tsd_nkeys) { 1357 if ((nkeys = (tsd_nkeys << 1)) == 0) 1358 nkeys = 1; 1359 tsd_destructor = 1360 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1361 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1362 (size_t)(nkeys * sizeof (void (*)(void *)))); 1363 tsd_nkeys = nkeys; 1364 } 1365 1366 /* 1367 * allocate the next available unused key 1368 */ 1369 tsd_destructor[i] = destructor; 1370 *keyp = i + 1; 1371 mutex_exit(&tsd_mutex); 1372 } 1373 1374 /* 1375 * Destroy a key -- this is for unloadable modules 1376 * 1377 * Assumes that the caller is preventing tsd_set and tsd_get 1378 * Locks out tsd_create, tsd_destroy, and tsd_exit 1379 * May free memory with lock held 1380 */ 1381 void 1382 tsd_destroy(uint_t *keyp) 1383 { 1384 uint_t key; 1385 struct tsd_thread *tsd; 1386 1387 /* 1388 * protect the key namespace and our destructor lists 1389 */ 1390 mutex_enter(&tsd_mutex); 1391 key = *keyp; 1392 *keyp = 0; 1393 1394 ASSERT(key <= tsd_nkeys); 1395 1396 /* 1397 * if the key is valid 1398 */ 1399 if (key != 0) { 1400 uint_t k = key - 1; 1401 /* 1402 * for every thread with TSD, call key's destructor 1403 */ 1404 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1405 /* 1406 * no TSD for key in this thread 1407 */ 1408 if (key > tsd->ts_nkeys) 1409 continue; 1410 /* 1411 * call destructor for key 1412 */ 1413 if (tsd->ts_value[k] && tsd_destructor[k]) 1414 (*tsd_destructor[k])(tsd->ts_value[k]); 1415 /* 1416 * reset value for key 1417 */ 1418 tsd->ts_value[k] = NULL; 1419 } 1420 /* 1421 * actually free the key (NULL destructor == unused) 1422 */ 1423 tsd_destructor[k] = NULL; 1424 } 1425 1426 mutex_exit(&tsd_mutex); 1427 } 1428 1429 /* 1430 * Quickly return the per thread value that was stored with the specified key 1431 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1432 */ 1433 void * 1434 tsd_get(uint_t key) 1435 { 1436 return (tsd_agent_get(curthread, key)); 1437 } 1438 1439 /* 1440 * Set a per thread value indexed with the specified key 1441 */ 1442 int 1443 tsd_set(uint_t key, void *value) 1444 { 1445 return (tsd_agent_set(curthread, key, value)); 1446 } 1447 1448 /* 1449 * Like tsd_get(), except that the agent lwp can get the tsd of 1450 * another thread in the same process (the agent thread only runs when the 1451 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1452 */ 1453 void * 1454 tsd_agent_get(kthread_t *t, uint_t key) 1455 { 1456 struct tsd_thread *tsd = t->t_tsd; 1457 1458 ASSERT(t == curthread || 1459 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1460 1461 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1462 return (tsd->ts_value[key - 1]); 1463 return (NULL); 1464 } 1465 1466 /* 1467 * Like tsd_set(), except that the agent lwp can set the tsd of 1468 * another thread in the same process, or syslwp can set the tsd 1469 * of a thread it's in the middle of creating. 1470 * 1471 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1472 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1473 * lock held 1474 */ 1475 int 1476 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1477 { 1478 struct tsd_thread *tsd = t->t_tsd; 1479 1480 ASSERT(t == curthread || 1481 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1482 1483 if (key == 0) 1484 return (EINVAL); 1485 if (tsd == NULL) 1486 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1487 if (key <= tsd->ts_nkeys) { 1488 tsd->ts_value[key - 1] = value; 1489 return (0); 1490 } 1491 1492 ASSERT(key <= tsd_nkeys); 1493 1494 /* 1495 * lock out tsd_destroy() 1496 */ 1497 mutex_enter(&tsd_mutex); 1498 if (tsd->ts_nkeys == 0) { 1499 /* 1500 * Link onto list of threads with TSD 1501 */ 1502 if ((tsd->ts_next = tsd_list) != NULL) 1503 tsd_list->ts_prev = tsd; 1504 tsd_list = tsd; 1505 } 1506 1507 /* 1508 * Allocate thread local storage and set the value for key 1509 */ 1510 tsd->ts_value = tsd_realloc(tsd->ts_value, 1511 tsd->ts_nkeys * sizeof (void *), 1512 key * sizeof (void *)); 1513 tsd->ts_nkeys = key; 1514 tsd->ts_value[key - 1] = value; 1515 mutex_exit(&tsd_mutex); 1516 1517 return (0); 1518 } 1519 1520 1521 /* 1522 * Return the per thread value that was stored with the specified key 1523 * If necessary, create the key and the value 1524 * Assumes the caller is protecting *keyp from tsd_destroy 1525 */ 1526 void * 1527 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1528 { 1529 void *value; 1530 uint_t key = *keyp; 1531 struct tsd_thread *tsd = curthread->t_tsd; 1532 1533 if (tsd == NULL) 1534 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1535 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1536 return (value); 1537 if (key == 0) 1538 tsd_create(keyp, destroy); 1539 (void) tsd_set(*keyp, value = (*allocate)()); 1540 1541 return (value); 1542 } 1543 1544 /* 1545 * Called from thread_exit() to run the destructor function for each tsd 1546 * Locks out tsd_create and tsd_destroy 1547 * Assumes that the destructor *DOES NOT* use tsd 1548 */ 1549 void 1550 tsd_exit(void) 1551 { 1552 int i; 1553 struct tsd_thread *tsd = curthread->t_tsd; 1554 1555 if (tsd == NULL) 1556 return; 1557 1558 if (tsd->ts_nkeys == 0) { 1559 kmem_free(tsd, sizeof (*tsd)); 1560 curthread->t_tsd = NULL; 1561 return; 1562 } 1563 1564 /* 1565 * lock out tsd_create and tsd_destroy, call 1566 * the destructor, and mark the value as destroyed. 1567 */ 1568 mutex_enter(&tsd_mutex); 1569 1570 for (i = 0; i < tsd->ts_nkeys; i++) { 1571 if (tsd->ts_value[i] && tsd_destructor[i]) 1572 (*tsd_destructor[i])(tsd->ts_value[i]); 1573 tsd->ts_value[i] = NULL; 1574 } 1575 1576 /* 1577 * remove from linked list of threads with TSD 1578 */ 1579 if (tsd->ts_next) 1580 tsd->ts_next->ts_prev = tsd->ts_prev; 1581 if (tsd->ts_prev) 1582 tsd->ts_prev->ts_next = tsd->ts_next; 1583 if (tsd_list == tsd) 1584 tsd_list = tsd->ts_next; 1585 1586 mutex_exit(&tsd_mutex); 1587 1588 /* 1589 * free up the TSD 1590 */ 1591 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1592 kmem_free(tsd, sizeof (struct tsd_thread)); 1593 curthread->t_tsd = NULL; 1594 } 1595 1596 /* 1597 * realloc 1598 */ 1599 static void * 1600 tsd_realloc(void *old, size_t osize, size_t nsize) 1601 { 1602 void *new; 1603 1604 new = kmem_zalloc(nsize, KM_SLEEP); 1605 if (old) { 1606 bcopy(old, new, osize); 1607 kmem_free(old, osize); 1608 } 1609 return (new); 1610 } 1611 1612 /* 1613 * Check to see if an interrupt thread might be active at a given ipl. 1614 * If so return true. 1615 * We must be conservative--it is ok to give a false yes, but a false no 1616 * will cause disaster. (But if the situation changes after we check it is 1617 * ok--the caller is trying to ensure that an interrupt routine has been 1618 * exited). 1619 * This is used when trying to remove an interrupt handler from an autovector 1620 * list in avintr.c. 1621 */ 1622 int 1623 intr_active(struct cpu *cp, int level) 1624 { 1625 if (level <= LOCK_LEVEL) 1626 return (cp->cpu_thread != cp->cpu_dispthread); 1627 else 1628 return (CPU_ON_INTR(cp)); 1629 } 1630 1631 /* 1632 * Return non-zero if an interrupt is being serviced. 1633 */ 1634 int 1635 servicing_interrupt() 1636 { 1637 int onintr = 0; 1638 1639 /* Are we an interrupt thread */ 1640 if (curthread->t_flag & T_INTR_THREAD) 1641 return (1); 1642 /* Are we servicing a high level interrupt? */ 1643 if (CPU_ON_INTR(CPU)) { 1644 kpreempt_disable(); 1645 onintr = CPU_ON_INTR(CPU); 1646 kpreempt_enable(); 1647 } 1648 return (onintr); 1649 } 1650 1651 1652 /* 1653 * Change the dispatch priority of a thread in the system. 1654 * Used when raising or lowering a thread's priority. 1655 * (E.g., priority inheritance) 1656 * 1657 * Since threads are queued according to their priority, we 1658 * we must check the thread's state to determine whether it 1659 * is on a queue somewhere. If it is, we've got to: 1660 * 1661 * o Dequeue the thread. 1662 * o Change its effective priority. 1663 * o Enqueue the thread. 1664 * 1665 * Assumptions: The thread whose priority we wish to change 1666 * must be locked before we call thread_change_(e)pri(). 1667 * The thread_change(e)pri() function doesn't drop the thread 1668 * lock--that must be done by its caller. 1669 */ 1670 void 1671 thread_change_epri(kthread_t *t, pri_t disp_pri) 1672 { 1673 uint_t state; 1674 1675 ASSERT(THREAD_LOCK_HELD(t)); 1676 1677 /* 1678 * If the inherited priority hasn't actually changed, 1679 * just return. 1680 */ 1681 if (t->t_epri == disp_pri) 1682 return; 1683 1684 state = t->t_state; 1685 1686 /* 1687 * If it's not on a queue, change the priority with 1688 * impunity. 1689 */ 1690 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1691 t->t_epri = disp_pri; 1692 1693 if (state == TS_ONPROC) { 1694 cpu_t *cp = t->t_disp_queue->disp_cpu; 1695 1696 if (t == cp->cpu_dispthread) 1697 cp->cpu_dispatch_pri = DISP_PRIO(t); 1698 } 1699 return; 1700 } 1701 1702 /* 1703 * It's either on a sleep queue or a run queue. 1704 */ 1705 if (state == TS_SLEEP) { 1706 /* 1707 * Take the thread out of its sleep queue. 1708 * Change the inherited priority. 1709 * Re-enqueue the thread. 1710 * Each synchronization object exports a function 1711 * to do this in an appropriate manner. 1712 */ 1713 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1714 } else if (state == TS_WAIT) { 1715 /* 1716 * Re-enqueue a thread on the wait queue if its 1717 * effective priority needs to change. 1718 */ 1719 if (disp_pri != t->t_epri) 1720 waitq_change_pri(t, disp_pri); 1721 } else { 1722 /* 1723 * The thread is on a run queue. 1724 * Note: setbackdq() may not put the thread 1725 * back on the same run queue where it originally 1726 * resided. 1727 */ 1728 (void) dispdeq(t); 1729 t->t_epri = disp_pri; 1730 setbackdq(t); 1731 } 1732 } /* end of thread_change_epri */ 1733 1734 /* 1735 * Function: Change the t_pri field of a thread. 1736 * Side Effects: Adjust the thread ordering on a run queue 1737 * or sleep queue, if necessary. 1738 * Returns: 1 if the thread was on a run queue, else 0. 1739 */ 1740 int 1741 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1742 { 1743 uint_t state; 1744 int on_rq = 0; 1745 1746 ASSERT(THREAD_LOCK_HELD(t)); 1747 1748 state = t->t_state; 1749 THREAD_WILLCHANGE_PRI(t, disp_pri); 1750 1751 /* 1752 * If it's not on a queue, change the priority with 1753 * impunity. 1754 */ 1755 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1756 t->t_pri = disp_pri; 1757 1758 if (state == TS_ONPROC) { 1759 cpu_t *cp = t->t_disp_queue->disp_cpu; 1760 1761 if (t == cp->cpu_dispthread) 1762 cp->cpu_dispatch_pri = DISP_PRIO(t); 1763 } 1764 return (0); 1765 } 1766 1767 /* 1768 * It's either on a sleep queue or a run queue. 1769 */ 1770 if (state == TS_SLEEP) { 1771 /* 1772 * If the priority has changed, take the thread out of 1773 * its sleep queue and change the priority. 1774 * Re-enqueue the thread. 1775 * Each synchronization object exports a function 1776 * to do this in an appropriate manner. 1777 */ 1778 if (disp_pri != t->t_pri) 1779 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1780 } else if (state == TS_WAIT) { 1781 /* 1782 * Re-enqueue a thread on the wait queue if its 1783 * priority needs to change. 1784 */ 1785 if (disp_pri != t->t_pri) 1786 waitq_change_pri(t, disp_pri); 1787 } else { 1788 /* 1789 * The thread is on a run queue. 1790 * Note: setbackdq() may not put the thread 1791 * back on the same run queue where it originally 1792 * resided. 1793 * 1794 * We still requeue the thread even if the priority 1795 * is unchanged to preserve round-robin (and other) 1796 * effects between threads of the same priority. 1797 */ 1798 on_rq = dispdeq(t); 1799 ASSERT(on_rq); 1800 t->t_pri = disp_pri; 1801 if (front) { 1802 setfrontdq(t); 1803 } else { 1804 setbackdq(t); 1805 } 1806 } 1807 return (on_rq); 1808 } 1809