xref: /illumos-gate/usr/src/uts/common/disp/thread.c (revision c6d054cbc999e5c8b9ad1aa01dbb4800b84f06bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 
78 struct kmem_cache *thread_cache;	/* cache of free threads */
79 struct kmem_cache *lwp_cache;		/* cache of free lwps */
80 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81 
82 /*
83  * allthreads is only for use by kmem_readers.  All kernel loops can use
84  * the current thread as a start/end point.
85  */
86 static kthread_t *allthreads = &t0;	/* circular list of all threads */
87 
88 static kcondvar_t reaper_cv;		/* synchronization var */
89 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92 int	thread_reapcnt = 0;		/* number of threads on deathrow */
93 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
94 int	reaplimit = 16;			/* delay reaping until reaplimit */
95 
96 thread_free_lock_t	*thread_free_lock;
97 					/* protects tick thread from reaper */
98 
99 extern int nthread;
100 
101 /* System Scheduling classes. */
102 id_t	syscid;				/* system scheduling class ID */
103 id_t	sysdccid = CLASS_UNUSED;	/* reset when SDC loads */
104 
105 void	*segkp_thread;			/* cookie for segkp pool */
106 
107 int lwp_cache_sz = 32;
108 int t_cache_sz = 8;
109 static kt_did_t next_t_id = 1;
110 
111 /* Default mode for thread binding to CPUs and processor sets */
112 int default_binding_mode = TB_ALLHARD;
113 
114 /*
115  * Min/Max stack sizes for stack size parameters
116  */
117 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
118 #define	MIN_STKSIZE	DEFAULTSTKSZ
119 
120 /*
121  * default_stksize overrides lwp_default_stksize if it is set.
122  */
123 int	default_stksize;
124 int	lwp_default_stksize;
125 
126 static zone_key_t zone_thread_key;
127 
128 unsigned int kmem_stackinfo;		/* stackinfo feature on-off */
129 kmem_stkinfo_t *kmem_stkinfo_log;	/* stackinfo circular log */
130 static kmutex_t kmem_stkinfo_lock;	/* protects kmem_stkinfo_log */
131 
132 /*
133  * forward declarations for internal thread specific data (tsd)
134  */
135 static void *tsd_realloc(void *, size_t, size_t);
136 
137 void thread_reaper(void);
138 
139 /* forward declarations for stackinfo feature */
140 static void stkinfo_begin(kthread_t *);
141 static void stkinfo_end(kthread_t *);
142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
143 
144 /*ARGSUSED*/
145 static int
146 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
147 {
148 	bzero(buf, sizeof (turnstile_t));
149 	return (0);
150 }
151 
152 /*ARGSUSED*/
153 static void
154 turnstile_destructor(void *buf, void *cdrarg)
155 {
156 	turnstile_t *ts = buf;
157 
158 	ASSERT(ts->ts_free == NULL);
159 	ASSERT(ts->ts_waiters == 0);
160 	ASSERT(ts->ts_inheritor == NULL);
161 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
162 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
163 }
164 
165 void
166 thread_init(void)
167 {
168 	kthread_t *tp;
169 	extern char sys_name[];
170 	extern void idle();
171 	struct cpu *cpu = CPU;
172 	int i;
173 	kmutex_t *lp;
174 
175 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
176 	thread_free_lock =
177 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
178 	for (i = 0; i < THREAD_FREE_NUM; i++) {
179 		lp = &thread_free_lock[i].tf_lock;
180 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
181 	}
182 
183 #if defined(__i386) || defined(__amd64)
184 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
185 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
186 
187 	/*
188 	 * "struct _klwp" includes a "struct pcb", which includes a
189 	 * "struct fpu", which needs to be 64-byte aligned on amd64
190 	 * (and even on i386) for xsave/xrstor.
191 	 */
192 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
193 	    64, NULL, NULL, NULL, NULL, NULL, 0);
194 #else
195 	/*
196 	 * Allocate thread structures from static_arena.  This prevents
197 	 * issues where a thread tries to relocate its own thread
198 	 * structure and touches it after the mapping has been suspended.
199 	 */
200 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
201 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
202 
203 	lwp_stk_cache_init();
204 
205 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
206 	    0, NULL, NULL, NULL, NULL, NULL, 0);
207 #endif
208 
209 	turnstile_cache = kmem_cache_create("turnstile_cache",
210 	    sizeof (turnstile_t), 0,
211 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
212 
213 	label_init();
214 	cred_init();
215 
216 	/*
217 	 * Initialize various resource management facilities.
218 	 */
219 	rctl_init();
220 	cpucaps_init();
221 	/*
222 	 * Zone_init() should be called before project_init() so that project ID
223 	 * for the first project is initialized correctly.
224 	 */
225 	zone_init();
226 	project_init();
227 	brand_init();
228 	kiconv_init();
229 	task_init();
230 	tcache_init();
231 	pool_init();
232 
233 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
234 
235 	/*
236 	 * Originally, we had two parameters to set default stack
237 	 * size: one for lwp's (lwp_default_stksize), and one for
238 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
239 	 * Now we have a third parameter that overrides both if it is
240 	 * set to a legal stack size, called default_stksize.
241 	 */
242 
243 	if (default_stksize == 0) {
244 		default_stksize = DEFAULTSTKSZ;
245 	} else if (default_stksize % PAGESIZE != 0 ||
246 	    default_stksize > MAX_STKSIZE ||
247 	    default_stksize < MIN_STKSIZE) {
248 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
249 		    (int)DEFAULTSTKSZ);
250 		default_stksize = DEFAULTSTKSZ;
251 	} else {
252 		lwp_default_stksize = default_stksize;
253 	}
254 
255 	if (lwp_default_stksize == 0) {
256 		lwp_default_stksize = default_stksize;
257 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
258 	    lwp_default_stksize > MAX_STKSIZE ||
259 	    lwp_default_stksize < MIN_STKSIZE) {
260 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
261 		    default_stksize);
262 		lwp_default_stksize = default_stksize;
263 	}
264 
265 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
266 	    lwp_default_stksize,
267 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
268 
269 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
270 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
271 
272 	(void) getcid(sys_name, &syscid);
273 	curthread->t_cid = syscid;	/* current thread is t0 */
274 
275 	/*
276 	 * Set up the first CPU's idle thread.
277 	 * It runs whenever the CPU has nothing worthwhile to do.
278 	 */
279 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
280 	cpu->cpu_idle_thread = tp;
281 	tp->t_preempt = 1;
282 	tp->t_disp_queue = cpu->cpu_disp;
283 	ASSERT(tp->t_disp_queue != NULL);
284 	tp->t_bound_cpu = cpu;
285 	tp->t_affinitycnt = 1;
286 
287 	/*
288 	 * Registering a thread in the callback table is usually
289 	 * done in the initialization code of the thread. In this
290 	 * case, we do it right after thread creation to avoid
291 	 * blocking idle thread while registering itself. It also
292 	 * avoids the possibility of reregistration in case a CPU
293 	 * restarts its idle thread.
294 	 */
295 	CALLB_CPR_INIT_SAFE(tp, "idle");
296 
297 	/*
298 	 * Create the thread_reaper daemon. From this point on, exited
299 	 * threads will get reaped.
300 	 */
301 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
302 	    NULL, 0, &p0, TS_RUN, minclsyspri);
303 
304 	/*
305 	 * Finish initializing the kernel memory allocator now that
306 	 * thread_create() is available.
307 	 */
308 	kmem_thread_init();
309 
310 	if (boothowto & RB_DEBUG)
311 		kdi_dvec_thravail();
312 }
313 
314 /*
315  * Create a thread.
316  *
317  * thread_create() blocks for memory if necessary.  It never fails.
318  *
319  * If stk is NULL, the thread is created at the base of the stack
320  * and cannot be swapped.
321  */
322 kthread_t *
323 thread_create(
324 	caddr_t	stk,
325 	size_t	stksize,
326 	void	(*proc)(),
327 	void	*arg,
328 	size_t	len,
329 	proc_t	 *pp,
330 	int	state,
331 	pri_t	pri)
332 {
333 	kthread_t *t;
334 	extern struct classfuncs sys_classfuncs;
335 	turnstile_t *ts;
336 
337 	/*
338 	 * Every thread keeps a turnstile around in case it needs to block.
339 	 * The only reason the turnstile is not simply part of the thread
340 	 * structure is that we may have to break the association whenever
341 	 * more than one thread blocks on a given synchronization object.
342 	 * From a memory-management standpoint, turnstiles are like the
343 	 * "attached mblks" that hang off dblks in the streams allocator.
344 	 */
345 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
346 
347 	if (stk == NULL) {
348 		/*
349 		 * alloc both thread and stack in segkp chunk
350 		 */
351 
352 		if (stksize < default_stksize)
353 			stksize = default_stksize;
354 
355 		if (stksize == default_stksize) {
356 			stk = (caddr_t)segkp_cache_get(segkp_thread);
357 		} else {
358 			stksize = roundup(stksize, PAGESIZE);
359 			stk = (caddr_t)segkp_get(segkp, stksize,
360 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
361 		}
362 
363 		ASSERT(stk != NULL);
364 
365 		/*
366 		 * The machine-dependent mutex code may require that
367 		 * thread pointers (since they may be used for mutex owner
368 		 * fields) have certain alignment requirements.
369 		 * PTR24_ALIGN is the size of the alignment quanta.
370 		 * XXX - assumes stack grows toward low addresses.
371 		 */
372 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
373 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
374 			    " too small to hold thread.");
375 #ifdef STACK_GROWTH_DOWN
376 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
377 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
378 		t = (kthread_t *)(stk + stksize);
379 		bzero(t, sizeof (kthread_t));
380 		if (audit_active)
381 			audit_thread_create(t);
382 		t->t_stk = stk + stksize;
383 		t->t_stkbase = stk;
384 #else	/* stack grows to larger addresses */
385 		stksize -= SA(sizeof (kthread_t));
386 		t = (kthread_t *)(stk);
387 		bzero(t, sizeof (kthread_t));
388 		t->t_stk = stk + sizeof (kthread_t);
389 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
390 #endif	/* STACK_GROWTH_DOWN */
391 		t->t_flag |= T_TALLOCSTK;
392 		t->t_swap = stk;
393 	} else {
394 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
395 		bzero(t, sizeof (kthread_t));
396 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
397 		if (audit_active)
398 			audit_thread_create(t);
399 		/*
400 		 * Initialize t_stk to the kernel stack pointer to use
401 		 * upon entry to the kernel
402 		 */
403 #ifdef STACK_GROWTH_DOWN
404 		t->t_stk = stk + stksize;
405 		t->t_stkbase = stk;
406 #else
407 		t->t_stk = stk;			/* 3b2-like */
408 		t->t_stkbase = stk + stksize;
409 #endif /* STACK_GROWTH_DOWN */
410 	}
411 
412 	if (kmem_stackinfo != 0) {
413 		stkinfo_begin(t);
414 	}
415 
416 	t->t_ts = ts;
417 
418 	/*
419 	 * p_cred could be NULL if it thread_create is called before cred_init
420 	 * is called in main.
421 	 */
422 	mutex_enter(&pp->p_crlock);
423 	if (pp->p_cred)
424 		crhold(t->t_cred = pp->p_cred);
425 	mutex_exit(&pp->p_crlock);
426 	t->t_start = gethrestime_sec();
427 	t->t_startpc = proc;
428 	t->t_procp = pp;
429 	t->t_clfuncs = &sys_classfuncs.thread;
430 	t->t_cid = syscid;
431 	t->t_pri = pri;
432 	t->t_stime = ddi_get_lbolt();
433 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
434 	t->t_bind_cpu = PBIND_NONE;
435 	t->t_bindflag = (uchar_t)default_binding_mode;
436 	t->t_bind_pset = PS_NONE;
437 	t->t_plockp = &pp->p_lock;
438 	t->t_copyops = NULL;
439 	t->t_taskq = NULL;
440 	t->t_anttime = 0;
441 	t->t_hatdepth = 0;
442 
443 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
444 
445 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
446 #ifndef NPROBE
447 	/* Kernel probe */
448 	tnf_thread_create(t);
449 #endif /* NPROBE */
450 	LOCK_INIT_CLEAR(&t->t_lock);
451 
452 	/*
453 	 * Callers who give us a NULL proc must do their own
454 	 * stack initialization.  e.g. lwp_create()
455 	 */
456 	if (proc != NULL) {
457 		t->t_stk = thread_stk_init(t->t_stk);
458 		thread_load(t, proc, arg, len);
459 	}
460 
461 	/*
462 	 * Put a hold on project0. If this thread is actually in a
463 	 * different project, then t_proj will be changed later in
464 	 * lwp_create().  All kernel-only threads must be in project 0.
465 	 */
466 	t->t_proj = project_hold(proj0p);
467 
468 	lgrp_affinity_init(&t->t_lgrp_affinity);
469 
470 	mutex_enter(&pidlock);
471 	nthread++;
472 	t->t_did = next_t_id++;
473 	t->t_prev = curthread->t_prev;
474 	t->t_next = curthread;
475 
476 	/*
477 	 * Add the thread to the list of all threads, and initialize
478 	 * its t_cpu pointer.  We need to block preemption since
479 	 * cpu_offline walks the thread list looking for threads
480 	 * with t_cpu pointing to the CPU being offlined.  We want
481 	 * to make sure that the list is consistent and that if t_cpu
482 	 * is set, the thread is on the list.
483 	 */
484 	kpreempt_disable();
485 	curthread->t_prev->t_next = t;
486 	curthread->t_prev = t;
487 
488 	/*
489 	 * Threads should never have a NULL t_cpu pointer so assign it
490 	 * here.  If the thread is being created with state TS_RUN a
491 	 * better CPU may be chosen when it is placed on the run queue.
492 	 *
493 	 * We need to keep kernel preemption disabled when setting all
494 	 * three fields to keep them in sync.  Also, always create in
495 	 * the default partition since that's where kernel threads go
496 	 * (if this isn't a kernel thread, t_cpupart will be changed
497 	 * in lwp_create before setting the thread runnable).
498 	 */
499 	t->t_cpupart = &cp_default;
500 
501 	/*
502 	 * For now, affiliate this thread with the root lgroup.
503 	 * Since the kernel does not (presently) allocate its memory
504 	 * in a locality aware fashion, the root is an appropriate home.
505 	 * If this thread is later associated with an lwp, it will have
506 	 * it's lgroup re-assigned at that time.
507 	 */
508 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
509 
510 	/*
511 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
512 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
513 	 * is ready to run.
514 	 */
515 	if (CPU->cpu_part == &cp_default)
516 		t->t_cpu = CPU;
517 	else
518 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
519 		    t->t_pri, NULL);
520 
521 	t->t_disp_queue = t->t_cpu->cpu_disp;
522 	kpreempt_enable();
523 
524 	/*
525 	 * Initialize thread state and the dispatcher lock pointer.
526 	 * Need to hold onto pidlock to block allthreads walkers until
527 	 * the state is set.
528 	 */
529 	switch (state) {
530 	case TS_RUN:
531 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
532 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
533 		CL_SETRUN(t);
534 		thread_unlock(t);
535 		break;
536 
537 	case TS_ONPROC:
538 		THREAD_ONPROC(t, t->t_cpu);
539 		break;
540 
541 	case TS_FREE:
542 		/*
543 		 * Free state will be used for intr threads.
544 		 * The interrupt routine must set the thread dispatcher
545 		 * lock pointer (t_lockp) if starting on a CPU
546 		 * other than the current one.
547 		 */
548 		THREAD_FREEINTR(t, CPU);
549 		break;
550 
551 	case TS_STOPPED:
552 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
553 		break;
554 
555 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
556 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
557 	}
558 	mutex_exit(&pidlock);
559 	return (t);
560 }
561 
562 /*
563  * Move thread to project0 and take care of project reference counters.
564  */
565 void
566 thread_rele(kthread_t *t)
567 {
568 	kproject_t *kpj;
569 
570 	thread_lock(t);
571 
572 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
573 	kpj = ttoproj(t);
574 	t->t_proj = proj0p;
575 
576 	thread_unlock(t);
577 
578 	if (kpj != proj0p) {
579 		project_rele(kpj);
580 		(void) project_hold(proj0p);
581 	}
582 }
583 
584 void
585 thread_exit(void)
586 {
587 	kthread_t *t = curthread;
588 
589 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
590 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
591 
592 	tsd_exit();		/* Clean up this thread's TSD */
593 
594 	kcpc_passivate();	/* clean up performance counter state */
595 
596 	/*
597 	 * No kernel thread should have called poll() without arranging
598 	 * calling pollcleanup() here.
599 	 */
600 	ASSERT(t->t_pollstate == NULL);
601 	ASSERT(t->t_schedctl == NULL);
602 	if (t->t_door)
603 		door_slam();	/* in case thread did an upcall */
604 
605 #ifndef NPROBE
606 	/* Kernel probe */
607 	if (t->t_tnf_tpdp)
608 		tnf_thread_exit();
609 #endif /* NPROBE */
610 
611 	thread_rele(t);
612 	t->t_preempt++;
613 
614 	/*
615 	 * remove thread from the all threads list so that
616 	 * death-row can use the same pointers.
617 	 */
618 	mutex_enter(&pidlock);
619 	t->t_next->t_prev = t->t_prev;
620 	t->t_prev->t_next = t->t_next;
621 	ASSERT(allthreads != t);	/* t0 never exits */
622 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
623 	mutex_exit(&pidlock);
624 
625 	if (t->t_ctx != NULL)
626 		exitctx(t);
627 	if (t->t_procp->p_pctx != NULL)
628 		exitpctx(t->t_procp);
629 
630 	if (kmem_stackinfo != 0) {
631 		stkinfo_end(t);
632 	}
633 
634 	t->t_state = TS_ZOMB;	/* set zombie thread */
635 
636 	swtch_from_zombie();	/* give up the CPU */
637 	/* NOTREACHED */
638 }
639 
640 /*
641  * Check to see if the specified thread is active (defined as being on
642  * the thread list).  This is certainly a slow way to do this; if there's
643  * ever a reason to speed it up, we could maintain a hash table of active
644  * threads indexed by their t_did.
645  */
646 static kthread_t *
647 did_to_thread(kt_did_t tid)
648 {
649 	kthread_t *t;
650 
651 	ASSERT(MUTEX_HELD(&pidlock));
652 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
653 		if (t->t_did == tid)
654 			break;
655 	}
656 	if (t->t_did == tid)
657 		return (t);
658 	else
659 		return (NULL);
660 }
661 
662 /*
663  * Wait for specified thread to exit.  Returns immediately if the thread
664  * could not be found, meaning that it has either already exited or never
665  * existed.
666  */
667 void
668 thread_join(kt_did_t tid)
669 {
670 	kthread_t *t;
671 
672 	ASSERT(tid != curthread->t_did);
673 	ASSERT(tid != t0.t_did);
674 
675 	mutex_enter(&pidlock);
676 	/*
677 	 * Make sure we check that the thread is on the thread list
678 	 * before blocking on it; otherwise we could end up blocking on
679 	 * a cv that's already been freed.  In other words, don't cache
680 	 * the thread pointer across calls to cv_wait.
681 	 *
682 	 * The choice of loop invariant means that whenever a thread
683 	 * is taken off the allthreads list, a cv_broadcast must be
684 	 * performed on that thread's t_joincv to wake up any waiters.
685 	 * The broadcast doesn't have to happen right away, but it
686 	 * shouldn't be postponed indefinitely (e.g., by doing it in
687 	 * thread_free which may only be executed when the deathrow
688 	 * queue is processed.
689 	 */
690 	while (t = did_to_thread(tid))
691 		cv_wait(&t->t_joincv, &pidlock);
692 	mutex_exit(&pidlock);
693 }
694 
695 void
696 thread_free_prevent(kthread_t *t)
697 {
698 	kmutex_t *lp;
699 
700 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
701 	mutex_enter(lp);
702 }
703 
704 void
705 thread_free_allow(kthread_t *t)
706 {
707 	kmutex_t *lp;
708 
709 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
710 	mutex_exit(lp);
711 }
712 
713 static void
714 thread_free_barrier(kthread_t *t)
715 {
716 	kmutex_t *lp;
717 
718 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
719 	mutex_enter(lp);
720 	mutex_exit(lp);
721 }
722 
723 void
724 thread_free(kthread_t *t)
725 {
726 	boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
727 	klwp_t *lwp = t->t_lwp;
728 	caddr_t swap = t->t_swap;
729 
730 	ASSERT(t != &t0 && t->t_state == TS_FREE);
731 	ASSERT(t->t_door == NULL);
732 	ASSERT(t->t_schedctl == NULL);
733 	ASSERT(t->t_pollstate == NULL);
734 
735 	t->t_pri = 0;
736 	t->t_pc = 0;
737 	t->t_sp = 0;
738 	t->t_wchan0 = NULL;
739 	t->t_wchan = NULL;
740 	if (t->t_cred != NULL) {
741 		crfree(t->t_cred);
742 		t->t_cred = 0;
743 	}
744 	if (t->t_pdmsg) {
745 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
746 		t->t_pdmsg = NULL;
747 	}
748 	if (audit_active)
749 		audit_thread_free(t);
750 #ifndef NPROBE
751 	if (t->t_tnf_tpdp)
752 		tnf_thread_free(t);
753 #endif /* NPROBE */
754 	if (t->t_cldata) {
755 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
756 	}
757 	if (t->t_rprof != NULL) {
758 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
759 		t->t_rprof = NULL;
760 	}
761 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
762 	if (lwp)
763 		lwp_freeregs(lwp, 0);
764 	if (t->t_ctx)
765 		freectx(t, 0);
766 	t->t_stk = NULL;
767 	if (lwp)
768 		lwp_stk_fini(lwp);
769 	lock_clear(&t->t_lock);
770 
771 	if (t->t_ts->ts_waiters > 0)
772 		panic("thread_free: turnstile still active");
773 
774 	kmem_cache_free(turnstile_cache, t->t_ts);
775 
776 	free_afd(&t->t_activefd);
777 
778 	/*
779 	 * Barrier for the tick accounting code.  The tick accounting code
780 	 * holds this lock to keep the thread from going away while it's
781 	 * looking at it.
782 	 */
783 	thread_free_barrier(t);
784 
785 	ASSERT(ttoproj(t) == proj0p);
786 	project_rele(ttoproj(t));
787 
788 	lgrp_affinity_free(&t->t_lgrp_affinity);
789 
790 	mutex_enter(&pidlock);
791 	nthread--;
792 	mutex_exit(&pidlock);
793 
794 	/*
795 	 * Free thread, lwp and stack.  This needs to be done carefully, since
796 	 * if T_TALLOCSTK is set, the thread is part of the stack.
797 	 */
798 	t->t_lwp = NULL;
799 	t->t_swap = NULL;
800 
801 	if (swap) {
802 		segkp_release(segkp, swap);
803 	}
804 	if (lwp) {
805 		kmem_cache_free(lwp_cache, lwp);
806 	}
807 	if (!allocstk) {
808 		kmem_cache_free(thread_cache, t);
809 	}
810 }
811 
812 /*
813  * Removes threads associated with the given zone from a deathrow queue.
814  * tp is a pointer to the head of the deathrow queue, and countp is a
815  * pointer to the current deathrow count.  Returns a linked list of
816  * threads removed from the list.
817  */
818 static kthread_t *
819 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
820 {
821 	kthread_t *tmp, *list = NULL;
822 	cred_t *cr;
823 
824 	ASSERT(MUTEX_HELD(&reaplock));
825 	while (*tp != NULL) {
826 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
827 			tmp = *tp;
828 			*tp = tmp->t_forw;
829 			tmp->t_forw = list;
830 			list = tmp;
831 			(*countp)--;
832 		} else {
833 			tp = &(*tp)->t_forw;
834 		}
835 	}
836 	return (list);
837 }
838 
839 static void
840 thread_reap_list(kthread_t *t)
841 {
842 	kthread_t *next;
843 
844 	while (t != NULL) {
845 		next = t->t_forw;
846 		thread_free(t);
847 		t = next;
848 	}
849 }
850 
851 /* ARGSUSED */
852 static void
853 thread_zone_destroy(zoneid_t zoneid, void *unused)
854 {
855 	kthread_t *t, *l;
856 
857 	mutex_enter(&reaplock);
858 	/*
859 	 * Pull threads and lwps associated with zone off deathrow lists.
860 	 */
861 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
862 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
863 	mutex_exit(&reaplock);
864 
865 	/*
866 	 * Guard against race condition in mutex_owner_running:
867 	 * 	thread=owner(mutex)
868 	 * 	<interrupt>
869 	 * 				thread exits mutex
870 	 * 				thread exits
871 	 * 				thread reaped
872 	 * 				thread struct freed
873 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
874 	 * A cross call to all cpus will cause the interrupt handler
875 	 * to reset the PC if it is in mutex_owner_running, refreshing
876 	 * stale thread pointers.
877 	 */
878 	mutex_sync();   /* sync with mutex code */
879 
880 	/*
881 	 * Reap threads
882 	 */
883 	thread_reap_list(t);
884 
885 	/*
886 	 * Reap lwps
887 	 */
888 	thread_reap_list(l);
889 }
890 
891 /*
892  * cleanup zombie threads that are on deathrow.
893  */
894 void
895 thread_reaper()
896 {
897 	kthread_t *t, *l;
898 	callb_cpr_t cprinfo;
899 
900 	/*
901 	 * Register callback to clean up threads when zone is destroyed.
902 	 */
903 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
904 
905 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
906 	for (;;) {
907 		mutex_enter(&reaplock);
908 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
909 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
910 			cv_wait(&reaper_cv, &reaplock);
911 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
912 		}
913 		/*
914 		 * mutex_sync() needs to be called when reaping, but
915 		 * not too often.  We limit reaping rate to once
916 		 * per second.  Reaplimit is max rate at which threads can
917 		 * be freed. Does not impact thread destruction/creation.
918 		 */
919 		t = thread_deathrow;
920 		l = lwp_deathrow;
921 		thread_deathrow = NULL;
922 		lwp_deathrow = NULL;
923 		thread_reapcnt = 0;
924 		lwp_reapcnt = 0;
925 		mutex_exit(&reaplock);
926 
927 		/*
928 		 * Guard against race condition in mutex_owner_running:
929 		 * 	thread=owner(mutex)
930 		 * 	<interrupt>
931 		 * 				thread exits mutex
932 		 * 				thread exits
933 		 * 				thread reaped
934 		 * 				thread struct freed
935 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
936 		 * A cross call to all cpus will cause the interrupt handler
937 		 * to reset the PC if it is in mutex_owner_running, refreshing
938 		 * stale thread pointers.
939 		 */
940 		mutex_sync();   /* sync with mutex code */
941 		/*
942 		 * Reap threads
943 		 */
944 		thread_reap_list(t);
945 
946 		/*
947 		 * Reap lwps
948 		 */
949 		thread_reap_list(l);
950 		delay(hz);
951 	}
952 }
953 
954 /*
955  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
956  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
957  * that is reapable. The thread already holds the reaplock, and was already
958  * freed.
959  */
960 void
961 reapq_move_lq_to_tq(kthread_t *t)
962 {
963 	ASSERT(t->t_state == TS_FREE);
964 	ASSERT(MUTEX_HELD(&reaplock));
965 	t->t_forw = thread_deathrow;
966 	thread_deathrow = t;
967 	thread_reapcnt++;
968 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
969 		cv_signal(&reaper_cv);  /* wake the reaper */
970 }
971 
972 /*
973  * This is called by resume() to put a zombie thread onto deathrow.
974  * The thread's state is changed to TS_FREE to indicate that is reapable.
975  * This is called from the idle thread so it must not block - just spin.
976  */
977 void
978 reapq_add(kthread_t *t)
979 {
980 	mutex_enter(&reaplock);
981 
982 	/*
983 	 * lwp_deathrow contains threads with lwp linkage and
984 	 * swappable thread stacks which have the default stacksize.
985 	 * These threads' lwps and stacks may be reused by lwp_create().
986 	 *
987 	 * Anything else goes on thread_deathrow(), where it will eventually
988 	 * be thread_free()d.
989 	 */
990 	if (t->t_flag & T_LWPREUSE) {
991 		ASSERT(ttolwp(t) != NULL);
992 		t->t_forw = lwp_deathrow;
993 		lwp_deathrow = t;
994 		lwp_reapcnt++;
995 	} else {
996 		t->t_forw = thread_deathrow;
997 		thread_deathrow = t;
998 		thread_reapcnt++;
999 	}
1000 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
1001 		cv_signal(&reaper_cv);	/* wake the reaper */
1002 	t->t_state = TS_FREE;
1003 	lock_clear(&t->t_lock);
1004 
1005 	/*
1006 	 * Before we return, we need to grab and drop the thread lock for
1007 	 * the dead thread.  At this point, the current thread is the idle
1008 	 * thread, and the dead thread's CPU lock points to the current
1009 	 * CPU -- and we must grab and drop the lock to synchronize with
1010 	 * a racing thread walking a blocking chain that the zombie thread
1011 	 * was recently in.  By this point, that blocking chain is (by
1012 	 * definition) stale:  the dead thread is not holding any locks, and
1013 	 * is therefore not in any blocking chains -- but if we do not regrab
1014 	 * our lock before freeing the dead thread's data structures, the
1015 	 * thread walking the (stale) blocking chain will die on memory
1016 	 * corruption when it attempts to drop the dead thread's lock.  We
1017 	 * only need do this once because there is no way for the dead thread
1018 	 * to ever again be on a blocking chain:  once we have grabbed and
1019 	 * dropped the thread lock, we are guaranteed that anyone that could
1020 	 * have seen this thread in a blocking chain can no longer see it.
1021 	 */
1022 	thread_lock(t);
1023 	thread_unlock(t);
1024 
1025 	mutex_exit(&reaplock);
1026 }
1027 
1028 /*
1029  * Install thread context ops for the current thread.
1030  */
1031 void
1032 installctx(
1033 	kthread_t *t,
1034 	void	*arg,
1035 	void	(*save)(void *),
1036 	void	(*restore)(void *),
1037 	void	(*fork)(void *, void *),
1038 	void	(*lwp_create)(void *, void *),
1039 	void	(*exit)(void *),
1040 	void	(*free)(void *, int))
1041 {
1042 	struct ctxop *ctx;
1043 
1044 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1045 	ctx->save_op = save;
1046 	ctx->restore_op = restore;
1047 	ctx->fork_op = fork;
1048 	ctx->lwp_create_op = lwp_create;
1049 	ctx->exit_op = exit;
1050 	ctx->free_op = free;
1051 	ctx->arg = arg;
1052 	ctx->next = t->t_ctx;
1053 	t->t_ctx = ctx;
1054 }
1055 
1056 /*
1057  * Remove the thread context ops from a thread.
1058  */
1059 int
1060 removectx(
1061 	kthread_t *t,
1062 	void	*arg,
1063 	void	(*save)(void *),
1064 	void	(*restore)(void *),
1065 	void	(*fork)(void *, void *),
1066 	void	(*lwp_create)(void *, void *),
1067 	void	(*exit)(void *),
1068 	void	(*free)(void *, int))
1069 {
1070 	struct ctxop *ctx, *prev_ctx;
1071 
1072 	/*
1073 	 * The incoming kthread_t (which is the thread for which the
1074 	 * context ops will be removed) should be one of the following:
1075 	 *
1076 	 * a) the current thread,
1077 	 *
1078 	 * b) a thread of a process that's being forked (SIDL),
1079 	 *
1080 	 * c) a thread that belongs to the same process as the current
1081 	 *    thread and for which the current thread is the agent thread,
1082 	 *
1083 	 * d) a thread that is TS_STOPPED which is indicative of it
1084 	 *    being (if curthread is not an agent) a thread being created
1085 	 *    as part of an lwp creation.
1086 	 */
1087 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1088 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1089 
1090 	/*
1091 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1092 	 * and the target thread from racing with each other during lwp exit.
1093 	 */
1094 	mutex_enter(&t->t_ctx_lock);
1095 	prev_ctx = NULL;
1096 	kpreempt_disable();
1097 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1098 		if (ctx->save_op == save && ctx->restore_op == restore &&
1099 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1100 		    ctx->exit_op == exit && ctx->free_op == free &&
1101 		    ctx->arg == arg) {
1102 			if (prev_ctx)
1103 				prev_ctx->next = ctx->next;
1104 			else
1105 				t->t_ctx = ctx->next;
1106 			mutex_exit(&t->t_ctx_lock);
1107 			if (ctx->free_op != NULL)
1108 				(ctx->free_op)(ctx->arg, 0);
1109 			kmem_free(ctx, sizeof (struct ctxop));
1110 			kpreempt_enable();
1111 			return (1);
1112 		}
1113 		prev_ctx = ctx;
1114 	}
1115 	mutex_exit(&t->t_ctx_lock);
1116 	kpreempt_enable();
1117 
1118 	return (0);
1119 }
1120 
1121 void
1122 savectx(kthread_t *t)
1123 {
1124 	struct ctxop *ctx;
1125 
1126 	ASSERT(t == curthread);
1127 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1128 		if (ctx->save_op != NULL)
1129 			(ctx->save_op)(ctx->arg);
1130 }
1131 
1132 void
1133 restorectx(kthread_t *t)
1134 {
1135 	struct ctxop *ctx;
1136 
1137 	ASSERT(t == curthread);
1138 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1139 		if (ctx->restore_op != NULL)
1140 			(ctx->restore_op)(ctx->arg);
1141 }
1142 
1143 void
1144 forkctx(kthread_t *t, kthread_t *ct)
1145 {
1146 	struct ctxop *ctx;
1147 
1148 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1149 		if (ctx->fork_op != NULL)
1150 			(ctx->fork_op)(t, ct);
1151 }
1152 
1153 /*
1154  * Note that this operator is only invoked via the _lwp_create
1155  * system call.  The system may have other reasons to create lwps
1156  * e.g. the agent lwp or the doors unreferenced lwp.
1157  */
1158 void
1159 lwp_createctx(kthread_t *t, kthread_t *ct)
1160 {
1161 	struct ctxop *ctx;
1162 
1163 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1164 		if (ctx->lwp_create_op != NULL)
1165 			(ctx->lwp_create_op)(t, ct);
1166 }
1167 
1168 /*
1169  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1170  * needed when the thread/LWP leaves the processor for the last time. This
1171  * routine is not intended to deal with freeing memory; freectx() is used for
1172  * that purpose during thread_free(). This routine is provided to allow for
1173  * clean-up that can't wait until thread_free().
1174  */
1175 void
1176 exitctx(kthread_t *t)
1177 {
1178 	struct ctxop *ctx;
1179 
1180 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1181 		if (ctx->exit_op != NULL)
1182 			(ctx->exit_op)(t);
1183 }
1184 
1185 /*
1186  * freectx is called from thread_free() and exec() to get
1187  * rid of old thread context ops.
1188  */
1189 void
1190 freectx(kthread_t *t, int isexec)
1191 {
1192 	struct ctxop *ctx;
1193 
1194 	kpreempt_disable();
1195 	while ((ctx = t->t_ctx) != NULL) {
1196 		t->t_ctx = ctx->next;
1197 		if (ctx->free_op != NULL)
1198 			(ctx->free_op)(ctx->arg, isexec);
1199 		kmem_free(ctx, sizeof (struct ctxop));
1200 	}
1201 	kpreempt_enable();
1202 }
1203 
1204 /*
1205  * freectx_ctx is called from lwp_create() when lwp is reused from
1206  * lwp_deathrow and its thread structure is added to thread_deathrow.
1207  * The thread structure to which this ctx was attached may be already
1208  * freed by the thread reaper so free_op implementations shouldn't rely
1209  * on thread structure to which this ctx was attached still being around.
1210  */
1211 void
1212 freectx_ctx(struct ctxop *ctx)
1213 {
1214 	struct ctxop *nctx;
1215 
1216 	ASSERT(ctx != NULL);
1217 
1218 	kpreempt_disable();
1219 	do {
1220 		nctx = ctx->next;
1221 		if (ctx->free_op != NULL)
1222 			(ctx->free_op)(ctx->arg, 0);
1223 		kmem_free(ctx, sizeof (struct ctxop));
1224 	} while ((ctx = nctx) != NULL);
1225 	kpreempt_enable();
1226 }
1227 
1228 /*
1229  * Set the thread running; arrange for it to be swapped in if necessary.
1230  */
1231 void
1232 setrun_locked(kthread_t *t)
1233 {
1234 	ASSERT(THREAD_LOCK_HELD(t));
1235 	if (t->t_state == TS_SLEEP) {
1236 		/*
1237 		 * Take off sleep queue.
1238 		 */
1239 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1240 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1241 		/*
1242 		 * Already on dispatcher queue.
1243 		 */
1244 		return;
1245 	} else if (t->t_state == TS_WAIT) {
1246 		waitq_setrun(t);
1247 	} else if (t->t_state == TS_STOPPED) {
1248 		/*
1249 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1250 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1251 		 * requested that the thread be run.
1252 		 * Just calling setrun() is not sufficient to set a stopped
1253 		 * thread running.  TP_TXSTART is always set if the thread
1254 		 * is not stopped by a jobcontrol stop signal.
1255 		 * TP_TPSTART is always set if /proc is not controlling it.
1256 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1257 		 * The thread won't be stopped unless one of these
1258 		 * three mechanisms did it.
1259 		 *
1260 		 * These flags must be set before calling setrun_locked(t).
1261 		 * They can't be passed as arguments because the streams
1262 		 * code calls setrun() indirectly and the mechanism for
1263 		 * doing so admits only one argument.  Note that the
1264 		 * thread must be locked in order to change t_schedflags.
1265 		 */
1266 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1267 			return;
1268 		/*
1269 		 * Process is no longer stopped (a thread is running).
1270 		 */
1271 		t->t_whystop = 0;
1272 		t->t_whatstop = 0;
1273 		/*
1274 		 * Strictly speaking, we do not have to clear these
1275 		 * flags here; they are cleared on entry to stop().
1276 		 * However, they are confusing when doing kernel
1277 		 * debugging or when they are revealed by ps(1).
1278 		 */
1279 		t->t_schedflag &= ~TS_ALLSTART;
1280 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1281 		ASSERT(t->t_lockp == &transition_lock);
1282 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1283 		/*
1284 		 * Let the class put the process on the dispatcher queue.
1285 		 */
1286 		CL_SETRUN(t);
1287 	}
1288 }
1289 
1290 void
1291 setrun(kthread_t *t)
1292 {
1293 	thread_lock(t);
1294 	setrun_locked(t);
1295 	thread_unlock(t);
1296 }
1297 
1298 /*
1299  * Unpin an interrupted thread.
1300  *	When an interrupt occurs, the interrupt is handled on the stack
1301  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1302  *
1303  *	When swtch() is switching away from an interrupt thread because it
1304  *	blocked or was preempted, this routine is called to complete the
1305  *	saving of the interrupted thread state, and returns the interrupted
1306  *	thread pointer so it may be resumed.
1307  *
1308  *	Called by swtch() only at high spl.
1309  */
1310 kthread_t *
1311 thread_unpin()
1312 {
1313 	kthread_t	*t = curthread;	/* current thread */
1314 	kthread_t	*itp;		/* interrupted thread */
1315 	int		i;		/* interrupt level */
1316 	extern int	intr_passivate();
1317 
1318 	ASSERT(t->t_intr != NULL);
1319 
1320 	itp = t->t_intr;		/* interrupted thread */
1321 	t->t_intr = NULL;		/* clear interrupt ptr */
1322 
1323 	/*
1324 	 * Get state from interrupt thread for the one
1325 	 * it interrupted.
1326 	 */
1327 
1328 	i = intr_passivate(t, itp);
1329 
1330 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1331 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1332 	    i, t, t, itp, itp);
1333 
1334 	/*
1335 	 * Dissociate the current thread from the interrupted thread's LWP.
1336 	 */
1337 	t->t_lwp = NULL;
1338 
1339 	/*
1340 	 * Interrupt handlers above the level that spinlocks block must
1341 	 * not block.
1342 	 */
1343 #if DEBUG
1344 	if (i < 0 || i > LOCK_LEVEL)
1345 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1346 #endif
1347 
1348 	/*
1349 	 * Compute the CPU's base interrupt level based on the active
1350 	 * interrupts.
1351 	 */
1352 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1353 	set_base_spl();
1354 
1355 	return (itp);
1356 }
1357 
1358 /*
1359  * Create and initialize an interrupt thread.
1360  *	Returns non-zero on error.
1361  *	Called at spl7() or better.
1362  */
1363 void
1364 thread_create_intr(struct cpu *cp)
1365 {
1366 	kthread_t *tp;
1367 
1368 	tp = thread_create(NULL, 0,
1369 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1370 
1371 	/*
1372 	 * Set the thread in the TS_FREE state.  The state will change
1373 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1374 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1375 	 * inactive interrupt threads out of debugger thread lists.
1376 	 *
1377 	 * We cannot call thread_create with TS_FREE because of the current
1378 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1379 	 */
1380 	THREAD_FREEINTR(tp, cp);
1381 
1382 	/*
1383 	 * Nobody should ever reference the credentials of an interrupt
1384 	 * thread so make it NULL to catch any such references.
1385 	 */
1386 	tp->t_cred = NULL;
1387 	tp->t_flag |= T_INTR_THREAD;
1388 	tp->t_cpu = cp;
1389 	tp->t_bound_cpu = cp;
1390 	tp->t_disp_queue = cp->cpu_disp;
1391 	tp->t_affinitycnt = 1;
1392 	tp->t_preempt = 1;
1393 
1394 	/*
1395 	 * Don't make a user-requested binding on this thread so that
1396 	 * the processor can be offlined.
1397 	 */
1398 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1399 	tp->t_bind_pset = PS_NONE;
1400 
1401 #if defined(__i386) || defined(__amd64)
1402 	tp->t_stk -= STACK_ALIGN;
1403 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1404 #endif
1405 
1406 	/*
1407 	 * Link onto CPU's interrupt pool.
1408 	 */
1409 	tp->t_link = cp->cpu_intr_thread;
1410 	cp->cpu_intr_thread = tp;
1411 }
1412 
1413 /*
1414  * TSD -- THREAD SPECIFIC DATA
1415  */
1416 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1417 static uint_t		tsd_nkeys;	 /* size of destructor array */
1418 /* per-key destructor funcs */
1419 static void 		(**tsd_destructor)(void *);
1420 /* list of tsd_thread's */
1421 static struct tsd_thread	*tsd_list;
1422 
1423 /*
1424  * Default destructor
1425  *	Needed because NULL destructor means that the key is unused
1426  */
1427 /* ARGSUSED */
1428 void
1429 tsd_defaultdestructor(void *value)
1430 {}
1431 
1432 /*
1433  * Create a key (index into per thread array)
1434  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1435  *	May allocate memory with lock held
1436  */
1437 void
1438 tsd_create(uint_t *keyp, void (*destructor)(void *))
1439 {
1440 	int	i;
1441 	uint_t	nkeys;
1442 
1443 	/*
1444 	 * if key is allocated, do nothing
1445 	 */
1446 	mutex_enter(&tsd_mutex);
1447 	if (*keyp) {
1448 		mutex_exit(&tsd_mutex);
1449 		return;
1450 	}
1451 	/*
1452 	 * find an unused key
1453 	 */
1454 	if (destructor == NULL)
1455 		destructor = tsd_defaultdestructor;
1456 
1457 	for (i = 0; i < tsd_nkeys; ++i)
1458 		if (tsd_destructor[i] == NULL)
1459 			break;
1460 
1461 	/*
1462 	 * if no unused keys, increase the size of the destructor array
1463 	 */
1464 	if (i == tsd_nkeys) {
1465 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1466 			nkeys = 1;
1467 		tsd_destructor =
1468 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1469 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1470 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1471 		tsd_nkeys = nkeys;
1472 	}
1473 
1474 	/*
1475 	 * allocate the next available unused key
1476 	 */
1477 	tsd_destructor[i] = destructor;
1478 	*keyp = i + 1;
1479 	mutex_exit(&tsd_mutex);
1480 }
1481 
1482 /*
1483  * Destroy a key -- this is for unloadable modules
1484  *
1485  * Assumes that the caller is preventing tsd_set and tsd_get
1486  * Locks out tsd_create, tsd_destroy, and tsd_exit
1487  * May free memory with lock held
1488  */
1489 void
1490 tsd_destroy(uint_t *keyp)
1491 {
1492 	uint_t key;
1493 	struct tsd_thread *tsd;
1494 
1495 	/*
1496 	 * protect the key namespace and our destructor lists
1497 	 */
1498 	mutex_enter(&tsd_mutex);
1499 	key = *keyp;
1500 	*keyp = 0;
1501 
1502 	ASSERT(key <= tsd_nkeys);
1503 
1504 	/*
1505 	 * if the key is valid
1506 	 */
1507 	if (key != 0) {
1508 		uint_t k = key - 1;
1509 		/*
1510 		 * for every thread with TSD, call key's destructor
1511 		 */
1512 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1513 			/*
1514 			 * no TSD for key in this thread
1515 			 */
1516 			if (key > tsd->ts_nkeys)
1517 				continue;
1518 			/*
1519 			 * call destructor for key
1520 			 */
1521 			if (tsd->ts_value[k] && tsd_destructor[k])
1522 				(*tsd_destructor[k])(tsd->ts_value[k]);
1523 			/*
1524 			 * reset value for key
1525 			 */
1526 			tsd->ts_value[k] = NULL;
1527 		}
1528 		/*
1529 		 * actually free the key (NULL destructor == unused)
1530 		 */
1531 		tsd_destructor[k] = NULL;
1532 	}
1533 
1534 	mutex_exit(&tsd_mutex);
1535 }
1536 
1537 /*
1538  * Quickly return the per thread value that was stored with the specified key
1539  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1540  */
1541 void *
1542 tsd_get(uint_t key)
1543 {
1544 	return (tsd_agent_get(curthread, key));
1545 }
1546 
1547 /*
1548  * Set a per thread value indexed with the specified key
1549  */
1550 int
1551 tsd_set(uint_t key, void *value)
1552 {
1553 	return (tsd_agent_set(curthread, key, value));
1554 }
1555 
1556 /*
1557  * Like tsd_get(), except that the agent lwp can get the tsd of
1558  * another thread in the same process (the agent thread only runs when the
1559  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1560  */
1561 void *
1562 tsd_agent_get(kthread_t *t, uint_t key)
1563 {
1564 	struct tsd_thread *tsd = t->t_tsd;
1565 
1566 	ASSERT(t == curthread ||
1567 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1568 
1569 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1570 		return (tsd->ts_value[key - 1]);
1571 	return (NULL);
1572 }
1573 
1574 /*
1575  * Like tsd_set(), except that the agent lwp can set the tsd of
1576  * another thread in the same process, or syslwp can set the tsd
1577  * of a thread it's in the middle of creating.
1578  *
1579  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1580  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1581  * lock held
1582  */
1583 int
1584 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1585 {
1586 	struct tsd_thread *tsd = t->t_tsd;
1587 
1588 	ASSERT(t == curthread ||
1589 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1590 
1591 	if (key == 0)
1592 		return (EINVAL);
1593 	if (tsd == NULL)
1594 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1595 	if (key <= tsd->ts_nkeys) {
1596 		tsd->ts_value[key - 1] = value;
1597 		return (0);
1598 	}
1599 
1600 	ASSERT(key <= tsd_nkeys);
1601 
1602 	/*
1603 	 * lock out tsd_destroy()
1604 	 */
1605 	mutex_enter(&tsd_mutex);
1606 	if (tsd->ts_nkeys == 0) {
1607 		/*
1608 		 * Link onto list of threads with TSD
1609 		 */
1610 		if ((tsd->ts_next = tsd_list) != NULL)
1611 			tsd_list->ts_prev = tsd;
1612 		tsd_list = tsd;
1613 	}
1614 
1615 	/*
1616 	 * Allocate thread local storage and set the value for key
1617 	 */
1618 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1619 	    tsd->ts_nkeys * sizeof (void *),
1620 	    key * sizeof (void *));
1621 	tsd->ts_nkeys = key;
1622 	tsd->ts_value[key - 1] = value;
1623 	mutex_exit(&tsd_mutex);
1624 
1625 	return (0);
1626 }
1627 
1628 
1629 /*
1630  * Return the per thread value that was stored with the specified key
1631  *	If necessary, create the key and the value
1632  *	Assumes the caller is protecting *keyp from tsd_destroy
1633  */
1634 void *
1635 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1636 {
1637 	void *value;
1638 	uint_t key = *keyp;
1639 	struct tsd_thread *tsd = curthread->t_tsd;
1640 
1641 	if (tsd == NULL)
1642 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1643 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1644 		return (value);
1645 	if (key == 0)
1646 		tsd_create(keyp, destroy);
1647 	(void) tsd_set(*keyp, value = (*allocate)());
1648 
1649 	return (value);
1650 }
1651 
1652 /*
1653  * Called from thread_exit() to run the destructor function for each tsd
1654  *	Locks out tsd_create and tsd_destroy
1655  *	Assumes that the destructor *DOES NOT* use tsd
1656  */
1657 void
1658 tsd_exit(void)
1659 {
1660 	int i;
1661 	struct tsd_thread *tsd = curthread->t_tsd;
1662 
1663 	if (tsd == NULL)
1664 		return;
1665 
1666 	if (tsd->ts_nkeys == 0) {
1667 		kmem_free(tsd, sizeof (*tsd));
1668 		curthread->t_tsd = NULL;
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * lock out tsd_create and tsd_destroy, call
1674 	 * the destructor, and mark the value as destroyed.
1675 	 */
1676 	mutex_enter(&tsd_mutex);
1677 
1678 	for (i = 0; i < tsd->ts_nkeys; i++) {
1679 		if (tsd->ts_value[i] && tsd_destructor[i])
1680 			(*tsd_destructor[i])(tsd->ts_value[i]);
1681 		tsd->ts_value[i] = NULL;
1682 	}
1683 
1684 	/*
1685 	 * remove from linked list of threads with TSD
1686 	 */
1687 	if (tsd->ts_next)
1688 		tsd->ts_next->ts_prev = tsd->ts_prev;
1689 	if (tsd->ts_prev)
1690 		tsd->ts_prev->ts_next = tsd->ts_next;
1691 	if (tsd_list == tsd)
1692 		tsd_list = tsd->ts_next;
1693 
1694 	mutex_exit(&tsd_mutex);
1695 
1696 	/*
1697 	 * free up the TSD
1698 	 */
1699 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1700 	kmem_free(tsd, sizeof (struct tsd_thread));
1701 	curthread->t_tsd = NULL;
1702 }
1703 
1704 /*
1705  * realloc
1706  */
1707 static void *
1708 tsd_realloc(void *old, size_t osize, size_t nsize)
1709 {
1710 	void *new;
1711 
1712 	new = kmem_zalloc(nsize, KM_SLEEP);
1713 	if (old) {
1714 		bcopy(old, new, osize);
1715 		kmem_free(old, osize);
1716 	}
1717 	return (new);
1718 }
1719 
1720 /*
1721  * Return non-zero if an interrupt is being serviced.
1722  */
1723 int
1724 servicing_interrupt()
1725 {
1726 	int onintr = 0;
1727 
1728 	/* Are we an interrupt thread */
1729 	if (curthread->t_flag & T_INTR_THREAD)
1730 		return (1);
1731 	/* Are we servicing a high level interrupt? */
1732 	if (CPU_ON_INTR(CPU)) {
1733 		kpreempt_disable();
1734 		onintr = CPU_ON_INTR(CPU);
1735 		kpreempt_enable();
1736 	}
1737 	return (onintr);
1738 }
1739 
1740 
1741 /*
1742  * Change the dispatch priority of a thread in the system.
1743  * Used when raising or lowering a thread's priority.
1744  * (E.g., priority inheritance)
1745  *
1746  * Since threads are queued according to their priority, we
1747  * we must check the thread's state to determine whether it
1748  * is on a queue somewhere. If it is, we've got to:
1749  *
1750  *	o Dequeue the thread.
1751  *	o Change its effective priority.
1752  *	o Enqueue the thread.
1753  *
1754  * Assumptions: The thread whose priority we wish to change
1755  * must be locked before we call thread_change_(e)pri().
1756  * The thread_change(e)pri() function doesn't drop the thread
1757  * lock--that must be done by its caller.
1758  */
1759 void
1760 thread_change_epri(kthread_t *t, pri_t disp_pri)
1761 {
1762 	uint_t	state;
1763 
1764 	ASSERT(THREAD_LOCK_HELD(t));
1765 
1766 	/*
1767 	 * If the inherited priority hasn't actually changed,
1768 	 * just return.
1769 	 */
1770 	if (t->t_epri == disp_pri)
1771 		return;
1772 
1773 	state = t->t_state;
1774 
1775 	/*
1776 	 * If it's not on a queue, change the priority with impunity.
1777 	 */
1778 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1779 		t->t_epri = disp_pri;
1780 		if (state == TS_ONPROC) {
1781 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1782 
1783 			if (t == cp->cpu_dispthread)
1784 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1785 		}
1786 	} else if (state == TS_SLEEP) {
1787 		/*
1788 		 * Take the thread out of its sleep queue.
1789 		 * Change the inherited priority.
1790 		 * Re-enqueue the thread.
1791 		 * Each synchronization object exports a function
1792 		 * to do this in an appropriate manner.
1793 		 */
1794 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1795 	} else if (state == TS_WAIT) {
1796 		/*
1797 		 * Re-enqueue a thread on the wait queue if its
1798 		 * effective priority needs to change.
1799 		 */
1800 		if (disp_pri != t->t_epri)
1801 			waitq_change_pri(t, disp_pri);
1802 	} else {
1803 		/*
1804 		 * The thread is on a run queue.
1805 		 * Note: setbackdq() may not put the thread
1806 		 * back on the same run queue where it originally
1807 		 * resided.
1808 		 */
1809 		(void) dispdeq(t);
1810 		t->t_epri = disp_pri;
1811 		setbackdq(t);
1812 	}
1813 	schedctl_set_cidpri(t);
1814 }
1815 
1816 /*
1817  * Function: Change the t_pri field of a thread.
1818  * Side Effects: Adjust the thread ordering on a run queue
1819  *		 or sleep queue, if necessary.
1820  * Returns: 1 if the thread was on a run queue, else 0.
1821  */
1822 int
1823 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1824 {
1825 	uint_t	state;
1826 	int	on_rq = 0;
1827 
1828 	ASSERT(THREAD_LOCK_HELD(t));
1829 
1830 	state = t->t_state;
1831 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1832 
1833 	/*
1834 	 * If it's not on a queue, change the priority with impunity.
1835 	 */
1836 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1837 		t->t_pri = disp_pri;
1838 
1839 		if (state == TS_ONPROC) {
1840 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1841 
1842 			if (t == cp->cpu_dispthread)
1843 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1844 		}
1845 	} else if (state == TS_SLEEP) {
1846 		/*
1847 		 * If the priority has changed, take the thread out of
1848 		 * its sleep queue and change the priority.
1849 		 * Re-enqueue the thread.
1850 		 * Each synchronization object exports a function
1851 		 * to do this in an appropriate manner.
1852 		 */
1853 		if (disp_pri != t->t_pri)
1854 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1855 	} else if (state == TS_WAIT) {
1856 		/*
1857 		 * Re-enqueue a thread on the wait queue if its
1858 		 * priority needs to change.
1859 		 */
1860 		if (disp_pri != t->t_pri)
1861 			waitq_change_pri(t, disp_pri);
1862 	} else {
1863 		/*
1864 		 * The thread is on a run queue.
1865 		 * Note: setbackdq() may not put the thread
1866 		 * back on the same run queue where it originally
1867 		 * resided.
1868 		 *
1869 		 * We still requeue the thread even if the priority
1870 		 * is unchanged to preserve round-robin (and other)
1871 		 * effects between threads of the same priority.
1872 		 */
1873 		on_rq = dispdeq(t);
1874 		ASSERT(on_rq);
1875 		t->t_pri = disp_pri;
1876 		if (front) {
1877 			setfrontdq(t);
1878 		} else {
1879 			setbackdq(t);
1880 		}
1881 	}
1882 	schedctl_set_cidpri(t);
1883 	return (on_rq);
1884 }
1885 
1886 /*
1887  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1888  * specific pattern.
1889  */
1890 static void
1891 stkinfo_begin(kthread_t *t)
1892 {
1893 	caddr_t	start;	/* stack start */
1894 	caddr_t	end;	/* stack end  */
1895 	uint64_t *ptr;	/* pattern pointer */
1896 
1897 	/*
1898 	 * Stack grows up or down, see thread_create(),
1899 	 * compute stack memory area start and end (start < end).
1900 	 */
1901 	if (t->t_stk > t->t_stkbase) {
1902 		/* stack grows down */
1903 		start = t->t_stkbase;
1904 		end = t->t_stk;
1905 	} else {
1906 		/* stack grows up */
1907 		start = t->t_stk;
1908 		end = t->t_stkbase;
1909 	}
1910 
1911 	/*
1912 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1913 	 * alignement for start and end in stack area boundaries
1914 	 * (protection against corrupt t_stkbase/t_stk data).
1915 	 */
1916 	if ((((uintptr_t)start) & 0x7) != 0) {
1917 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1918 	}
1919 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1920 
1921 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1922 		/* negative or stack size > 1 meg, assume bogus */
1923 		return;
1924 	}
1925 
1926 	/* fill stack area with a pattern (instead of zeros) */
1927 	ptr = (uint64_t *)((void *)start);
1928 	while (ptr < (uint64_t *)((void *)end)) {
1929 		*ptr++ = KMEM_STKINFO_PATTERN;
1930 	}
1931 }
1932 
1933 
1934 /*
1935  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1936  * compute the percentage of kernel stack really used, and set in the log
1937  * if it's the latest highest percentage.
1938  */
1939 static void
1940 stkinfo_end(kthread_t *t)
1941 {
1942 	caddr_t	start;	/* stack start */
1943 	caddr_t	end;	/* stack end  */
1944 	uint64_t *ptr;	/* pattern pointer */
1945 	size_t stksz;	/* stack size */
1946 	size_t smallest = 0;
1947 	size_t percent = 0;
1948 	uint_t index = 0;
1949 	uint_t i;
1950 	static size_t smallest_percent = (size_t)-1;
1951 	static uint_t full = 0;
1952 
1953 	/* create the stackinfo log, if doesn't already exist */
1954 	mutex_enter(&kmem_stkinfo_lock);
1955 	if (kmem_stkinfo_log == NULL) {
1956 		kmem_stkinfo_log = (kmem_stkinfo_t *)
1957 		    kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1958 		    (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1959 		if (kmem_stkinfo_log == NULL) {
1960 			mutex_exit(&kmem_stkinfo_lock);
1961 			return;
1962 		}
1963 	}
1964 	mutex_exit(&kmem_stkinfo_lock);
1965 
1966 	/*
1967 	 * Stack grows up or down, see thread_create(),
1968 	 * compute stack memory area start and end (start < end).
1969 	 */
1970 	if (t->t_stk > t->t_stkbase) {
1971 		/* stack grows down */
1972 		start = t->t_stkbase;
1973 		end = t->t_stk;
1974 	} else {
1975 		/* stack grows up */
1976 		start = t->t_stk;
1977 		end = t->t_stkbase;
1978 	}
1979 
1980 	/* stack size as found in kthread_t */
1981 	stksz = end - start;
1982 
1983 	/*
1984 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1985 	 * alignement for start and end in stack area boundaries
1986 	 * (protection against corrupt t_stkbase/t_stk data).
1987 	 */
1988 	if ((((uintptr_t)start) & 0x7) != 0) {
1989 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1990 	}
1991 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1992 
1993 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1994 		/* negative or stack size > 1 meg, assume bogus */
1995 		return;
1996 	}
1997 
1998 	/* search until no pattern in the stack */
1999 	if (t->t_stk > t->t_stkbase) {
2000 		/* stack grows down */
2001 #if defined(__i386) || defined(__amd64)
2002 		/*
2003 		 * 6 longs are pushed on stack, see thread_load(). Skip
2004 		 * them, so if kthread has never run, percent is zero.
2005 		 * 8 bytes alignement is preserved for a 32 bit kernel,
2006 		 * 6 x 4 = 24, 24 is a multiple of 8.
2007 		 *
2008 		 */
2009 		end -= (6 * sizeof (long));
2010 #endif
2011 		ptr = (uint64_t *)((void *)start);
2012 		while (ptr < (uint64_t *)((void *)end)) {
2013 			if (*ptr != KMEM_STKINFO_PATTERN) {
2014 				percent = stkinfo_percent(end,
2015 				    start, (caddr_t)ptr);
2016 				break;
2017 			}
2018 			ptr++;
2019 		}
2020 	} else {
2021 		/* stack grows up */
2022 		ptr = (uint64_t *)((void *)end);
2023 		ptr--;
2024 		while (ptr >= (uint64_t *)((void *)start)) {
2025 			if (*ptr != KMEM_STKINFO_PATTERN) {
2026 				percent = stkinfo_percent(start,
2027 				    end, (caddr_t)ptr);
2028 				break;
2029 			}
2030 			ptr--;
2031 		}
2032 	}
2033 
2034 	DTRACE_PROBE3(stack__usage, kthread_t *, t,
2035 	    size_t, stksz, size_t, percent);
2036 
2037 	if (percent == 0) {
2038 		return;
2039 	}
2040 
2041 	mutex_enter(&kmem_stkinfo_lock);
2042 	if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2043 		/*
2044 		 * The log is full and already contains the highest values
2045 		 */
2046 		mutex_exit(&kmem_stkinfo_lock);
2047 		return;
2048 	}
2049 
2050 	/* keep a log of the highest used stack */
2051 	for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2052 		if (kmem_stkinfo_log[i].percent == 0) {
2053 			index = i;
2054 			full++;
2055 			break;
2056 		}
2057 		if (smallest == 0) {
2058 			smallest = kmem_stkinfo_log[i].percent;
2059 			index = i;
2060 			continue;
2061 		}
2062 		if (kmem_stkinfo_log[i].percent < smallest) {
2063 			smallest = kmem_stkinfo_log[i].percent;
2064 			index = i;
2065 		}
2066 	}
2067 
2068 	if (percent >= kmem_stkinfo_log[index].percent) {
2069 		kmem_stkinfo_log[index].kthread = (caddr_t)t;
2070 		kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2071 		kmem_stkinfo_log[index].start = start;
2072 		kmem_stkinfo_log[index].stksz = stksz;
2073 		kmem_stkinfo_log[index].percent = percent;
2074 		kmem_stkinfo_log[index].t_tid = t->t_tid;
2075 		kmem_stkinfo_log[index].cmd[0] = '\0';
2076 		if (t->t_tid != 0) {
2077 			stksz = strlen((t->t_procp)->p_user.u_comm);
2078 			if (stksz >= KMEM_STKINFO_STR_SIZE) {
2079 				stksz = KMEM_STKINFO_STR_SIZE - 1;
2080 				kmem_stkinfo_log[index].cmd[stksz] = '\0';
2081 			} else {
2082 				stksz += 1;
2083 			}
2084 			(void) memcpy(kmem_stkinfo_log[index].cmd,
2085 			    (t->t_procp)->p_user.u_comm, stksz);
2086 		}
2087 		if (percent < smallest_percent) {
2088 			smallest_percent = percent;
2089 		}
2090 	}
2091 	mutex_exit(&kmem_stkinfo_lock);
2092 }
2093 
2094 /*
2095  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2096  */
2097 static size_t
2098 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2099 {
2100 	size_t percent;
2101 	size_t s;
2102 
2103 	if (t_stk > t_stkbase) {
2104 		/* stack grows down */
2105 		if (sp > t_stk) {
2106 			return (0);
2107 		}
2108 		if (sp < t_stkbase) {
2109 			return (100);
2110 		}
2111 		percent = t_stk - sp + 1;
2112 		s = t_stk - t_stkbase + 1;
2113 	} else {
2114 		/* stack grows up */
2115 		if (sp < t_stk) {
2116 			return (0);
2117 		}
2118 		if (sp > t_stkbase) {
2119 			return (100);
2120 		}
2121 		percent = sp - t_stk + 1;
2122 		s = t_stkbase - t_stk + 1;
2123 	}
2124 	percent = ((100 * percent) / s) + 1;
2125 	if (percent > 100) {
2126 		percent = 100;
2127 	}
2128 	return (percent);
2129 }
2130