xref: /illumos-gate/usr/src/uts/common/disp/thread.c (revision c386eb9c22c7c00fc48a982f238576e16b113bda)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/signal.h>
32 #include <sys/stack.h>
33 #include <sys/pcb.h>
34 #include <sys/user.h>
35 #include <sys/systm.h>
36 #include <sys/sysinfo.h>
37 #include <sys/errno.h>
38 #include <sys/cmn_err.h>
39 #include <sys/cred.h>
40 #include <sys/resource.h>
41 #include <sys/task.h>
42 #include <sys/project.h>
43 #include <sys/proc.h>
44 #include <sys/debug.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <vm/seg_kmem.h>
48 #include <vm/seg_kp.h>
49 #include <sys/machlock.h>
50 #include <sys/kmem.h>
51 #include <sys/varargs.h>
52 #include <sys/turnstile.h>
53 #include <sys/poll.h>
54 #include <sys/vtrace.h>
55 #include <sys/callb.h>
56 #include <c2/audit.h>
57 #include <sys/tnf.h>
58 #include <sys/sobject.h>
59 #include <sys/cpupart.h>
60 #include <sys/pset.h>
61 #include <sys/door.h>
62 #include <sys/spl.h>
63 #include <sys/copyops.h>
64 #include <sys/rctl.h>
65 #include <sys/brand.h>
66 #include <sys/pool.h>
67 #include <sys/zone.h>
68 #include <sys/tsol/label.h>
69 #include <sys/tsol/tndb.h>
70 #include <sys/cpc_impl.h>
71 #include <sys/sdt.h>
72 #include <sys/reboot.h>
73 #include <sys/kdi.h>
74 #include <sys/schedctl.h>
75 #include <sys/waitq.h>
76 #include <sys/cpucaps.h>
77 #include <sys/kiconv.h>
78 
79 struct kmem_cache *thread_cache;	/* cache of free threads */
80 struct kmem_cache *lwp_cache;		/* cache of free lwps */
81 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
82 
83 /*
84  * allthreads is only for use by kmem_readers.  All kernel loops can use
85  * the current thread as a start/end point.
86  */
87 static kthread_t *allthreads = &t0;	/* circular list of all threads */
88 
89 static kcondvar_t reaper_cv;		/* synchronization var */
90 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
91 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
92 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
93 int	thread_reapcnt = 0;		/* number of threads on deathrow */
94 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
95 int	reaplimit = 16;			/* delay reaping until reaplimit */
96 
97 thread_free_lock_t	*thread_free_lock;
98 					/* protects tick thread from reaper */
99 
100 extern int nthread;
101 
102 id_t	syscid;				/* system scheduling class ID */
103 void	*segkp_thread;			/* cookie for segkp pool */
104 
105 int lwp_cache_sz = 32;
106 int t_cache_sz = 8;
107 static kt_did_t next_t_id = 1;
108 
109 /* Default mode for thread binding to CPUs and processor sets */
110 int default_binding_mode = TB_ALLHARD;
111 
112 /*
113  * Min/Max stack sizes for stack size parameters
114  */
115 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
116 #define	MIN_STKSIZE	DEFAULTSTKSZ
117 
118 /*
119  * default_stksize overrides lwp_default_stksize if it is set.
120  */
121 int	default_stksize;
122 int	lwp_default_stksize;
123 
124 static zone_key_t zone_thread_key;
125 
126 unsigned int kmem_stackinfo;		/* stackinfo feature on-off */
127 kmem_stkinfo_t *kmem_stkinfo_log;	/* stackinfo circular log */
128 static kmutex_t kmem_stkinfo_lock;	/* protects kmem_stkinfo_log */
129 
130 /*
131  * forward declarations for internal thread specific data (tsd)
132  */
133 static void *tsd_realloc(void *, size_t, size_t);
134 
135 void thread_reaper(void);
136 
137 /* forward declarations for stackinfo feature */
138 static void stkinfo_begin(kthread_t *);
139 static void stkinfo_end(kthread_t *);
140 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
141 
142 /*ARGSUSED*/
143 static int
144 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
145 {
146 	bzero(buf, sizeof (turnstile_t));
147 	return (0);
148 }
149 
150 /*ARGSUSED*/
151 static void
152 turnstile_destructor(void *buf, void *cdrarg)
153 {
154 	turnstile_t *ts = buf;
155 
156 	ASSERT(ts->ts_free == NULL);
157 	ASSERT(ts->ts_waiters == 0);
158 	ASSERT(ts->ts_inheritor == NULL);
159 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
160 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
161 }
162 
163 void
164 thread_init(void)
165 {
166 	kthread_t *tp;
167 	extern char sys_name[];
168 	extern void idle();
169 	struct cpu *cpu = CPU;
170 	int i;
171 	kmutex_t *lp;
172 
173 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
174 	thread_free_lock =
175 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
176 	for (i = 0; i < THREAD_FREE_NUM; i++) {
177 		lp = &thread_free_lock[i].tf_lock;
178 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
179 	}
180 
181 #if defined(__i386) || defined(__amd64)
182 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
183 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
184 
185 	/*
186 	 * "struct _klwp" includes a "struct pcb", which includes a
187 	 * "struct fpu", which needs to be 16-byte aligned on amd64
188 	 * (and even on i386 for fxsave/fxrstor).
189 	 */
190 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
191 	    16, NULL, NULL, NULL, NULL, NULL, 0);
192 #else
193 	/*
194 	 * Allocate thread structures from static_arena.  This prevents
195 	 * issues where a thread tries to relocate its own thread
196 	 * structure and touches it after the mapping has been suspended.
197 	 */
198 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
199 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
200 
201 	lwp_stk_cache_init();
202 
203 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
204 	    0, NULL, NULL, NULL, NULL, NULL, 0);
205 #endif
206 
207 	turnstile_cache = kmem_cache_create("turnstile_cache",
208 	    sizeof (turnstile_t), 0,
209 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
210 
211 	label_init();
212 	cred_init();
213 
214 	/*
215 	 * Initialize various resource management facilities.
216 	 */
217 	rctl_init();
218 	cpucaps_init();
219 	/*
220 	 * Zone_init() should be called before project_init() so that project ID
221 	 * for the first project is initialized correctly.
222 	 */
223 	zone_init();
224 	project_init();
225 	brand_init();
226 	kiconv_init();
227 	task_init();
228 	tcache_init();
229 	pool_init();
230 
231 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
232 
233 	/*
234 	 * Originally, we had two parameters to set default stack
235 	 * size: one for lwp's (lwp_default_stksize), and one for
236 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
237 	 * Now we have a third parameter that overrides both if it is
238 	 * set to a legal stack size, called default_stksize.
239 	 */
240 
241 	if (default_stksize == 0) {
242 		default_stksize = DEFAULTSTKSZ;
243 	} else if (default_stksize % PAGESIZE != 0 ||
244 	    default_stksize > MAX_STKSIZE ||
245 	    default_stksize < MIN_STKSIZE) {
246 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
247 		    (int)DEFAULTSTKSZ);
248 		default_stksize = DEFAULTSTKSZ;
249 	} else {
250 		lwp_default_stksize = default_stksize;
251 	}
252 
253 	if (lwp_default_stksize == 0) {
254 		lwp_default_stksize = default_stksize;
255 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
256 	    lwp_default_stksize > MAX_STKSIZE ||
257 	    lwp_default_stksize < MIN_STKSIZE) {
258 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
259 		    default_stksize);
260 		lwp_default_stksize = default_stksize;
261 	}
262 
263 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
264 	    lwp_default_stksize,
265 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
266 
267 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
268 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
269 
270 	(void) getcid(sys_name, &syscid);
271 	curthread->t_cid = syscid;	/* current thread is t0 */
272 
273 	/*
274 	 * Set up the first CPU's idle thread.
275 	 * It runs whenever the CPU has nothing worthwhile to do.
276 	 */
277 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
278 	cpu->cpu_idle_thread = tp;
279 	tp->t_preempt = 1;
280 	tp->t_disp_queue = cpu->cpu_disp;
281 	ASSERT(tp->t_disp_queue != NULL);
282 	tp->t_bound_cpu = cpu;
283 	tp->t_affinitycnt = 1;
284 
285 	/*
286 	 * Registering a thread in the callback table is usually
287 	 * done in the initialization code of the thread. In this
288 	 * case, we do it right after thread creation to avoid
289 	 * blocking idle thread while registering itself. It also
290 	 * avoids the possibility of reregistration in case a CPU
291 	 * restarts its idle thread.
292 	 */
293 	CALLB_CPR_INIT_SAFE(tp, "idle");
294 
295 	/*
296 	 * Create the thread_reaper daemon. From this point on, exited
297 	 * threads will get reaped.
298 	 */
299 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
300 	    NULL, 0, &p0, TS_RUN, minclsyspri);
301 
302 	/*
303 	 * Finish initializing the kernel memory allocator now that
304 	 * thread_create() is available.
305 	 */
306 	kmem_thread_init();
307 
308 	if (boothowto & RB_DEBUG)
309 		kdi_dvec_thravail();
310 }
311 
312 /*
313  * Create a thread.
314  *
315  * thread_create() blocks for memory if necessary.  It never fails.
316  *
317  * If stk is NULL, the thread is created at the base of the stack
318  * and cannot be swapped.
319  */
320 kthread_t *
321 thread_create(
322 	caddr_t	stk,
323 	size_t	stksize,
324 	void	(*proc)(),
325 	void	*arg,
326 	size_t	len,
327 	proc_t	 *pp,
328 	int	state,
329 	pri_t	pri)
330 {
331 	kthread_t *t;
332 	extern struct classfuncs sys_classfuncs;
333 	turnstile_t *ts;
334 
335 	/*
336 	 * Every thread keeps a turnstile around in case it needs to block.
337 	 * The only reason the turnstile is not simply part of the thread
338 	 * structure is that we may have to break the association whenever
339 	 * more than one thread blocks on a given synchronization object.
340 	 * From a memory-management standpoint, turnstiles are like the
341 	 * "attached mblks" that hang off dblks in the streams allocator.
342 	 */
343 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
344 
345 	if (stk == NULL) {
346 		/*
347 		 * alloc both thread and stack in segkp chunk
348 		 */
349 
350 		if (stksize < default_stksize)
351 			stksize = default_stksize;
352 
353 		if (stksize == default_stksize) {
354 			stk = (caddr_t)segkp_cache_get(segkp_thread);
355 		} else {
356 			stksize = roundup(stksize, PAGESIZE);
357 			stk = (caddr_t)segkp_get(segkp, stksize,
358 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
359 		}
360 
361 		ASSERT(stk != NULL);
362 
363 		/*
364 		 * The machine-dependent mutex code may require that
365 		 * thread pointers (since they may be used for mutex owner
366 		 * fields) have certain alignment requirements.
367 		 * PTR24_ALIGN is the size of the alignment quanta.
368 		 * XXX - assumes stack grows toward low addresses.
369 		 */
370 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
371 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
372 			    " too small to hold thread.");
373 #ifdef STACK_GROWTH_DOWN
374 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
375 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
376 		t = (kthread_t *)(stk + stksize);
377 		bzero(t, sizeof (kthread_t));
378 		if (audit_active)
379 			audit_thread_create(t);
380 		t->t_stk = stk + stksize;
381 		t->t_stkbase = stk;
382 #else	/* stack grows to larger addresses */
383 		stksize -= SA(sizeof (kthread_t));
384 		t = (kthread_t *)(stk);
385 		bzero(t, sizeof (kthread_t));
386 		t->t_stk = stk + sizeof (kthread_t);
387 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
388 #endif	/* STACK_GROWTH_DOWN */
389 		t->t_flag |= T_TALLOCSTK;
390 		t->t_swap = stk;
391 	} else {
392 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
393 		bzero(t, sizeof (kthread_t));
394 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
395 		if (audit_active)
396 			audit_thread_create(t);
397 		/*
398 		 * Initialize t_stk to the kernel stack pointer to use
399 		 * upon entry to the kernel
400 		 */
401 #ifdef STACK_GROWTH_DOWN
402 		t->t_stk = stk + stksize;
403 		t->t_stkbase = stk;
404 #else
405 		t->t_stk = stk;			/* 3b2-like */
406 		t->t_stkbase = stk + stksize;
407 #endif /* STACK_GROWTH_DOWN */
408 	}
409 
410 	if (kmem_stackinfo != 0) {
411 		stkinfo_begin(t);
412 	}
413 
414 	/* set default stack flag */
415 	if (stksize == lwp_default_stksize)
416 		t->t_flag |= T_DFLTSTK;
417 
418 	t->t_ts = ts;
419 
420 	/*
421 	 * p_cred could be NULL if it thread_create is called before cred_init
422 	 * is called in main.
423 	 */
424 	mutex_enter(&pp->p_crlock);
425 	if (pp->p_cred)
426 		crhold(t->t_cred = pp->p_cred);
427 	mutex_exit(&pp->p_crlock);
428 	t->t_start = gethrestime_sec();
429 	t->t_startpc = proc;
430 	t->t_procp = pp;
431 	t->t_clfuncs = &sys_classfuncs.thread;
432 	t->t_cid = syscid;
433 	t->t_pri = pri;
434 	t->t_stime = lbolt;
435 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
436 	t->t_bind_cpu = PBIND_NONE;
437 	t->t_bindflag = (uchar_t)default_binding_mode;
438 	t->t_bind_pset = PS_NONE;
439 	t->t_plockp = &pp->p_lock;
440 	t->t_copyops = NULL;
441 	t->t_taskq = NULL;
442 	t->t_anttime = 0;
443 	t->t_hatdepth = 0;
444 
445 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
446 
447 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
448 #ifndef NPROBE
449 	/* Kernel probe */
450 	tnf_thread_create(t);
451 #endif /* NPROBE */
452 	LOCK_INIT_CLEAR(&t->t_lock);
453 
454 	/*
455 	 * Callers who give us a NULL proc must do their own
456 	 * stack initialization.  e.g. lwp_create()
457 	 */
458 	if (proc != NULL) {
459 		t->t_stk = thread_stk_init(t->t_stk);
460 		thread_load(t, proc, arg, len);
461 	}
462 
463 	/*
464 	 * Put a hold on project0. If this thread is actually in a
465 	 * different project, then t_proj will be changed later in
466 	 * lwp_create().  All kernel-only threads must be in project 0.
467 	 */
468 	t->t_proj = project_hold(proj0p);
469 
470 	lgrp_affinity_init(&t->t_lgrp_affinity);
471 
472 	mutex_enter(&pidlock);
473 	nthread++;
474 	t->t_did = next_t_id++;
475 	t->t_prev = curthread->t_prev;
476 	t->t_next = curthread;
477 
478 	/*
479 	 * Add the thread to the list of all threads, and initialize
480 	 * its t_cpu pointer.  We need to block preemption since
481 	 * cpu_offline walks the thread list looking for threads
482 	 * with t_cpu pointing to the CPU being offlined.  We want
483 	 * to make sure that the list is consistent and that if t_cpu
484 	 * is set, the thread is on the list.
485 	 */
486 	kpreempt_disable();
487 	curthread->t_prev->t_next = t;
488 	curthread->t_prev = t;
489 
490 	/*
491 	 * Threads should never have a NULL t_cpu pointer so assign it
492 	 * here.  If the thread is being created with state TS_RUN a
493 	 * better CPU may be chosen when it is placed on the run queue.
494 	 *
495 	 * We need to keep kernel preemption disabled when setting all
496 	 * three fields to keep them in sync.  Also, always create in
497 	 * the default partition since that's where kernel threads go
498 	 * (if this isn't a kernel thread, t_cpupart will be changed
499 	 * in lwp_create before setting the thread runnable).
500 	 */
501 	t->t_cpupart = &cp_default;
502 
503 	/*
504 	 * For now, affiliate this thread with the root lgroup.
505 	 * Since the kernel does not (presently) allocate its memory
506 	 * in a locality aware fashion, the root is an appropriate home.
507 	 * If this thread is later associated with an lwp, it will have
508 	 * it's lgroup re-assigned at that time.
509 	 */
510 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
511 
512 	/*
513 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
514 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
515 	 * is ready to run.
516 	 */
517 	if (CPU->cpu_part == &cp_default)
518 		t->t_cpu = CPU;
519 	else
520 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
521 		    t->t_pri, NULL);
522 
523 	t->t_disp_queue = t->t_cpu->cpu_disp;
524 	kpreempt_enable();
525 
526 	/*
527 	 * Initialize thread state and the dispatcher lock pointer.
528 	 * Need to hold onto pidlock to block allthreads walkers until
529 	 * the state is set.
530 	 */
531 	switch (state) {
532 	case TS_RUN:
533 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
534 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
535 		CL_SETRUN(t);
536 		thread_unlock(t);
537 		break;
538 
539 	case TS_ONPROC:
540 		THREAD_ONPROC(t, t->t_cpu);
541 		break;
542 
543 	case TS_FREE:
544 		/*
545 		 * Free state will be used for intr threads.
546 		 * The interrupt routine must set the thread dispatcher
547 		 * lock pointer (t_lockp) if starting on a CPU
548 		 * other than the current one.
549 		 */
550 		THREAD_FREEINTR(t, CPU);
551 		break;
552 
553 	case TS_STOPPED:
554 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
555 		break;
556 
557 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
558 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
559 	}
560 	mutex_exit(&pidlock);
561 	return (t);
562 }
563 
564 /*
565  * Move thread to project0 and take care of project reference counters.
566  */
567 void
568 thread_rele(kthread_t *t)
569 {
570 	kproject_t *kpj;
571 
572 	thread_lock(t);
573 
574 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
575 	kpj = ttoproj(t);
576 	t->t_proj = proj0p;
577 
578 	thread_unlock(t);
579 
580 	if (kpj != proj0p) {
581 		project_rele(kpj);
582 		(void) project_hold(proj0p);
583 	}
584 }
585 
586 void
587 thread_exit(void)
588 {
589 	kthread_t *t = curthread;
590 
591 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
592 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
593 
594 	tsd_exit();		/* Clean up this thread's TSD */
595 
596 	kcpc_passivate();	/* clean up performance counter state */
597 
598 	/*
599 	 * No kernel thread should have called poll() without arranging
600 	 * calling pollcleanup() here.
601 	 */
602 	ASSERT(t->t_pollstate == NULL);
603 	ASSERT(t->t_schedctl == NULL);
604 	if (t->t_door)
605 		door_slam();	/* in case thread did an upcall */
606 
607 #ifndef NPROBE
608 	/* Kernel probe */
609 	if (t->t_tnf_tpdp)
610 		tnf_thread_exit();
611 #endif /* NPROBE */
612 
613 	thread_rele(t);
614 	t->t_preempt++;
615 
616 	/*
617 	 * remove thread from the all threads list so that
618 	 * death-row can use the same pointers.
619 	 */
620 	mutex_enter(&pidlock);
621 	t->t_next->t_prev = t->t_prev;
622 	t->t_prev->t_next = t->t_next;
623 	ASSERT(allthreads != t);	/* t0 never exits */
624 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
625 	mutex_exit(&pidlock);
626 
627 	if (t->t_ctx != NULL)
628 		exitctx(t);
629 	if (t->t_procp->p_pctx != NULL)
630 		exitpctx(t->t_procp);
631 
632 	if (kmem_stackinfo != 0) {
633 		stkinfo_end(t);
634 	}
635 
636 	t->t_state = TS_ZOMB;	/* set zombie thread */
637 
638 	swtch_from_zombie();	/* give up the CPU */
639 	/* NOTREACHED */
640 }
641 
642 /*
643  * Check to see if the specified thread is active (defined as being on
644  * the thread list).  This is certainly a slow way to do this; if there's
645  * ever a reason to speed it up, we could maintain a hash table of active
646  * threads indexed by their t_did.
647  */
648 static kthread_t *
649 did_to_thread(kt_did_t tid)
650 {
651 	kthread_t *t;
652 
653 	ASSERT(MUTEX_HELD(&pidlock));
654 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
655 		if (t->t_did == tid)
656 			break;
657 	}
658 	if (t->t_did == tid)
659 		return (t);
660 	else
661 		return (NULL);
662 }
663 
664 /*
665  * Wait for specified thread to exit.  Returns immediately if the thread
666  * could not be found, meaning that it has either already exited or never
667  * existed.
668  */
669 void
670 thread_join(kt_did_t tid)
671 {
672 	kthread_t *t;
673 
674 	ASSERT(tid != curthread->t_did);
675 	ASSERT(tid != t0.t_did);
676 
677 	mutex_enter(&pidlock);
678 	/*
679 	 * Make sure we check that the thread is on the thread list
680 	 * before blocking on it; otherwise we could end up blocking on
681 	 * a cv that's already been freed.  In other words, don't cache
682 	 * the thread pointer across calls to cv_wait.
683 	 *
684 	 * The choice of loop invariant means that whenever a thread
685 	 * is taken off the allthreads list, a cv_broadcast must be
686 	 * performed on that thread's t_joincv to wake up any waiters.
687 	 * The broadcast doesn't have to happen right away, but it
688 	 * shouldn't be postponed indefinitely (e.g., by doing it in
689 	 * thread_free which may only be executed when the deathrow
690 	 * queue is processed.
691 	 */
692 	while (t = did_to_thread(tid))
693 		cv_wait(&t->t_joincv, &pidlock);
694 	mutex_exit(&pidlock);
695 }
696 
697 void
698 thread_free_prevent(kthread_t *t)
699 {
700 	kmutex_t *lp;
701 
702 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
703 	mutex_enter(lp);
704 }
705 
706 void
707 thread_free_allow(kthread_t *t)
708 {
709 	kmutex_t *lp;
710 
711 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
712 	mutex_exit(lp);
713 }
714 
715 static void
716 thread_free_barrier(kthread_t *t)
717 {
718 	kmutex_t *lp;
719 
720 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
721 	mutex_enter(lp);
722 	mutex_exit(lp);
723 }
724 
725 void
726 thread_free(kthread_t *t)
727 {
728 	ASSERT(t != &t0 && t->t_state == TS_FREE);
729 	ASSERT(t->t_door == NULL);
730 	ASSERT(t->t_schedctl == NULL);
731 	ASSERT(t->t_pollstate == NULL);
732 
733 	t->t_pri = 0;
734 	t->t_pc = 0;
735 	t->t_sp = 0;
736 	t->t_wchan0 = NULL;
737 	t->t_wchan = NULL;
738 	if (t->t_cred != NULL) {
739 		crfree(t->t_cred);
740 		t->t_cred = 0;
741 	}
742 	if (t->t_pdmsg) {
743 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
744 		t->t_pdmsg = NULL;
745 	}
746 	if (audit_active)
747 		audit_thread_free(t);
748 #ifndef NPROBE
749 	if (t->t_tnf_tpdp)
750 		tnf_thread_free(t);
751 #endif /* NPROBE */
752 	if (t->t_cldata) {
753 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
754 	}
755 	if (t->t_rprof != NULL) {
756 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
757 		t->t_rprof = NULL;
758 	}
759 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
760 	if (t->t_lwp)
761 		lwp_freeregs(t->t_lwp, 0);
762 	if (t->t_ctx)
763 		freectx(t, 0);
764 	t->t_stk = NULL;
765 	if (t->t_lwp)
766 		lwp_stk_fini(t->t_lwp);
767 	lock_clear(&t->t_lock);
768 
769 	if (t->t_ts->ts_waiters > 0)
770 		panic("thread_free: turnstile still active");
771 
772 	kmem_cache_free(turnstile_cache, t->t_ts);
773 
774 	free_afd(&t->t_activefd);
775 
776 	/*
777 	 * Barrier for the tick accounting code.  The tick accounting code
778 	 * holds this lock to keep the thread from going away while it's
779 	 * looking at it.
780 	 */
781 	thread_free_barrier(t);
782 
783 	ASSERT(ttoproj(t) == proj0p);
784 	project_rele(ttoproj(t));
785 
786 	lgrp_affinity_free(&t->t_lgrp_affinity);
787 
788 	/*
789 	 * Free thread struct and its stack.
790 	 */
791 	if (t->t_flag & T_TALLOCSTK) {
792 		/* thread struct is embedded in stack */
793 		segkp_release(segkp, t->t_swap);
794 		mutex_enter(&pidlock);
795 		nthread--;
796 		mutex_exit(&pidlock);
797 	} else {
798 		if (t->t_swap) {
799 			segkp_release(segkp, t->t_swap);
800 			t->t_swap = NULL;
801 		}
802 		if (t->t_lwp) {
803 			kmem_cache_free(lwp_cache, t->t_lwp);
804 			t->t_lwp = NULL;
805 		}
806 		mutex_enter(&pidlock);
807 		nthread--;
808 		mutex_exit(&pidlock);
809 		kmem_cache_free(thread_cache, t);
810 	}
811 }
812 
813 /*
814  * Removes threads associated with the given zone from a deathrow queue.
815  * tp is a pointer to the head of the deathrow queue, and countp is a
816  * pointer to the current deathrow count.  Returns a linked list of
817  * threads removed from the list.
818  */
819 static kthread_t *
820 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
821 {
822 	kthread_t *tmp, *list = NULL;
823 	cred_t *cr;
824 
825 	ASSERT(MUTEX_HELD(&reaplock));
826 	while (*tp != NULL) {
827 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
828 			tmp = *tp;
829 			*tp = tmp->t_forw;
830 			tmp->t_forw = list;
831 			list = tmp;
832 			(*countp)--;
833 		} else {
834 			tp = &(*tp)->t_forw;
835 		}
836 	}
837 	return (list);
838 }
839 
840 static void
841 thread_reap_list(kthread_t *t)
842 {
843 	kthread_t *next;
844 
845 	while (t != NULL) {
846 		next = t->t_forw;
847 		thread_free(t);
848 		t = next;
849 	}
850 }
851 
852 /* ARGSUSED */
853 static void
854 thread_zone_destroy(zoneid_t zoneid, void *unused)
855 {
856 	kthread_t *t, *l;
857 
858 	mutex_enter(&reaplock);
859 	/*
860 	 * Pull threads and lwps associated with zone off deathrow lists.
861 	 */
862 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
863 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
864 	mutex_exit(&reaplock);
865 
866 	/*
867 	 * Guard against race condition in mutex_owner_running:
868 	 * 	thread=owner(mutex)
869 	 * 	<interrupt>
870 	 * 				thread exits mutex
871 	 * 				thread exits
872 	 * 				thread reaped
873 	 * 				thread struct freed
874 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
875 	 * A cross call to all cpus will cause the interrupt handler
876 	 * to reset the PC if it is in mutex_owner_running, refreshing
877 	 * stale thread pointers.
878 	 */
879 	mutex_sync();   /* sync with mutex code */
880 
881 	/*
882 	 * Reap threads
883 	 */
884 	thread_reap_list(t);
885 
886 	/*
887 	 * Reap lwps
888 	 */
889 	thread_reap_list(l);
890 }
891 
892 /*
893  * cleanup zombie threads that are on deathrow.
894  */
895 void
896 thread_reaper()
897 {
898 	kthread_t *t, *l;
899 	callb_cpr_t cprinfo;
900 
901 	/*
902 	 * Register callback to clean up threads when zone is destroyed.
903 	 */
904 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
905 
906 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
907 	for (;;) {
908 		mutex_enter(&reaplock);
909 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
910 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
911 			cv_wait(&reaper_cv, &reaplock);
912 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
913 		}
914 		/*
915 		 * mutex_sync() needs to be called when reaping, but
916 		 * not too often.  We limit reaping rate to once
917 		 * per second.  Reaplimit is max rate at which threads can
918 		 * be freed. Does not impact thread destruction/creation.
919 		 */
920 		t = thread_deathrow;
921 		l = lwp_deathrow;
922 		thread_deathrow = NULL;
923 		lwp_deathrow = NULL;
924 		thread_reapcnt = 0;
925 		lwp_reapcnt = 0;
926 		mutex_exit(&reaplock);
927 
928 		/*
929 		 * Guard against race condition in mutex_owner_running:
930 		 * 	thread=owner(mutex)
931 		 * 	<interrupt>
932 		 * 				thread exits mutex
933 		 * 				thread exits
934 		 * 				thread reaped
935 		 * 				thread struct freed
936 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
937 		 * A cross call to all cpus will cause the interrupt handler
938 		 * to reset the PC if it is in mutex_owner_running, refreshing
939 		 * stale thread pointers.
940 		 */
941 		mutex_sync();   /* sync with mutex code */
942 		/*
943 		 * Reap threads
944 		 */
945 		thread_reap_list(t);
946 
947 		/*
948 		 * Reap lwps
949 		 */
950 		thread_reap_list(l);
951 		delay(hz);
952 	}
953 }
954 
955 /*
956  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
957  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
958  * that is reapable. The thread already holds the reaplock, and was already
959  * freed.
960  */
961 void
962 reapq_move_lq_to_tq(kthread_t *t)
963 {
964 	ASSERT(t->t_state == TS_FREE);
965 	ASSERT(MUTEX_HELD(&reaplock));
966 	t->t_forw = thread_deathrow;
967 	thread_deathrow = t;
968 	thread_reapcnt++;
969 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
970 		cv_signal(&reaper_cv);  /* wake the reaper */
971 }
972 
973 /*
974  * This is called by resume() to put a zombie thread onto deathrow.
975  * The thread's state is changed to TS_FREE to indicate that is reapable.
976  * This is called from the idle thread so it must not block - just spin.
977  */
978 void
979 reapq_add(kthread_t *t)
980 {
981 	mutex_enter(&reaplock);
982 
983 	/*
984 	 * lwp_deathrow contains only threads with lwp linkage
985 	 * that are of the default stacksize. Anything else goes
986 	 * on thread_deathrow.
987 	 */
988 	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
989 		t->t_forw = lwp_deathrow;
990 		lwp_deathrow = t;
991 		lwp_reapcnt++;
992 	} else {
993 		t->t_forw = thread_deathrow;
994 		thread_deathrow = t;
995 		thread_reapcnt++;
996 	}
997 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
998 		cv_signal(&reaper_cv);	/* wake the reaper */
999 	t->t_state = TS_FREE;
1000 	lock_clear(&t->t_lock);
1001 
1002 	/*
1003 	 * Before we return, we need to grab and drop the thread lock for
1004 	 * the dead thread.  At this point, the current thread is the idle
1005 	 * thread, and the dead thread's CPU lock points to the current
1006 	 * CPU -- and we must grab and drop the lock to synchronize with
1007 	 * a racing thread walking a blocking chain that the zombie thread
1008 	 * was recently in.  By this point, that blocking chain is (by
1009 	 * definition) stale:  the dead thread is not holding any locks, and
1010 	 * is therefore not in any blocking chains -- but if we do not regrab
1011 	 * our lock before freeing the dead thread's data structures, the
1012 	 * thread walking the (stale) blocking chain will die on memory
1013 	 * corruption when it attempts to drop the dead thread's lock.  We
1014 	 * only need do this once because there is no way for the dead thread
1015 	 * to ever again be on a blocking chain:  once we have grabbed and
1016 	 * dropped the thread lock, we are guaranteed that anyone that could
1017 	 * have seen this thread in a blocking chain can no longer see it.
1018 	 */
1019 	thread_lock(t);
1020 	thread_unlock(t);
1021 
1022 	mutex_exit(&reaplock);
1023 }
1024 
1025 /*
1026  * Install thread context ops for the current thread.
1027  */
1028 void
1029 installctx(
1030 	kthread_t *t,
1031 	void	*arg,
1032 	void	(*save)(void *),
1033 	void	(*restore)(void *),
1034 	void	(*fork)(void *, void *),
1035 	void	(*lwp_create)(void *, void *),
1036 	void	(*exit)(void *),
1037 	void	(*free)(void *, int))
1038 {
1039 	struct ctxop *ctx;
1040 
1041 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1042 	ctx->save_op = save;
1043 	ctx->restore_op = restore;
1044 	ctx->fork_op = fork;
1045 	ctx->lwp_create_op = lwp_create;
1046 	ctx->exit_op = exit;
1047 	ctx->free_op = free;
1048 	ctx->arg = arg;
1049 	ctx->next = t->t_ctx;
1050 	t->t_ctx = ctx;
1051 }
1052 
1053 /*
1054  * Remove the thread context ops from a thread.
1055  */
1056 int
1057 removectx(
1058 	kthread_t *t,
1059 	void	*arg,
1060 	void	(*save)(void *),
1061 	void	(*restore)(void *),
1062 	void	(*fork)(void *, void *),
1063 	void	(*lwp_create)(void *, void *),
1064 	void	(*exit)(void *),
1065 	void	(*free)(void *, int))
1066 {
1067 	struct ctxop *ctx, *prev_ctx;
1068 
1069 	/*
1070 	 * The incoming kthread_t (which is the thread for which the
1071 	 * context ops will be removed) should be one of the following:
1072 	 *
1073 	 * a) the current thread,
1074 	 *
1075 	 * b) a thread of a process that's being forked (SIDL),
1076 	 *
1077 	 * c) a thread that belongs to the same process as the current
1078 	 *    thread and for which the current thread is the agent thread,
1079 	 *
1080 	 * d) a thread that is TS_STOPPED which is indicative of it
1081 	 *    being (if curthread is not an agent) a thread being created
1082 	 *    as part of an lwp creation.
1083 	 */
1084 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1085 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1086 
1087 	/*
1088 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1089 	 * and the target thread from racing with each other during lwp exit.
1090 	 */
1091 	mutex_enter(&t->t_ctx_lock);
1092 	prev_ctx = NULL;
1093 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1094 		if (ctx->save_op == save && ctx->restore_op == restore &&
1095 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1096 		    ctx->exit_op == exit && ctx->free_op == free &&
1097 		    ctx->arg == arg) {
1098 			if (prev_ctx)
1099 				prev_ctx->next = ctx->next;
1100 			else
1101 				t->t_ctx = ctx->next;
1102 			mutex_exit(&t->t_ctx_lock);
1103 			if (ctx->free_op != NULL)
1104 				(ctx->free_op)(ctx->arg, 0);
1105 			kmem_free(ctx, sizeof (struct ctxop));
1106 			return (1);
1107 		}
1108 		prev_ctx = ctx;
1109 	}
1110 	mutex_exit(&t->t_ctx_lock);
1111 
1112 	return (0);
1113 }
1114 
1115 void
1116 savectx(kthread_t *t)
1117 {
1118 	struct ctxop *ctx;
1119 
1120 	ASSERT(t == curthread);
1121 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1122 		if (ctx->save_op != NULL)
1123 			(ctx->save_op)(ctx->arg);
1124 }
1125 
1126 void
1127 restorectx(kthread_t *t)
1128 {
1129 	struct ctxop *ctx;
1130 
1131 	ASSERT(t == curthread);
1132 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1133 		if (ctx->restore_op != NULL)
1134 			(ctx->restore_op)(ctx->arg);
1135 }
1136 
1137 void
1138 forkctx(kthread_t *t, kthread_t *ct)
1139 {
1140 	struct ctxop *ctx;
1141 
1142 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1143 		if (ctx->fork_op != NULL)
1144 			(ctx->fork_op)(t, ct);
1145 }
1146 
1147 /*
1148  * Note that this operator is only invoked via the _lwp_create
1149  * system call.  The system may have other reasons to create lwps
1150  * e.g. the agent lwp or the doors unreferenced lwp.
1151  */
1152 void
1153 lwp_createctx(kthread_t *t, kthread_t *ct)
1154 {
1155 	struct ctxop *ctx;
1156 
1157 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1158 		if (ctx->lwp_create_op != NULL)
1159 			(ctx->lwp_create_op)(t, ct);
1160 }
1161 
1162 /*
1163  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1164  * needed when the thread/LWP leaves the processor for the last time. This
1165  * routine is not intended to deal with freeing memory; freectx() is used for
1166  * that purpose during thread_free(). This routine is provided to allow for
1167  * clean-up that can't wait until thread_free().
1168  */
1169 void
1170 exitctx(kthread_t *t)
1171 {
1172 	struct ctxop *ctx;
1173 
1174 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1175 		if (ctx->exit_op != NULL)
1176 			(ctx->exit_op)(t);
1177 }
1178 
1179 /*
1180  * freectx is called from thread_free() and exec() to get
1181  * rid of old thread context ops.
1182  */
1183 void
1184 freectx(kthread_t *t, int isexec)
1185 {
1186 	struct ctxop *ctx;
1187 
1188 	while ((ctx = t->t_ctx) != NULL) {
1189 		t->t_ctx = ctx->next;
1190 		if (ctx->free_op != NULL)
1191 			(ctx->free_op)(ctx->arg, isexec);
1192 		kmem_free(ctx, sizeof (struct ctxop));
1193 	}
1194 }
1195 
1196 /*
1197  * freectx_ctx is called from lwp_create() when lwp is reused from
1198  * lwp_deathrow and its thread structure is added to thread_deathrow.
1199  * The thread structure to which this ctx was attached may be already
1200  * freed by the thread reaper so free_op implementations shouldn't rely
1201  * on thread structure to which this ctx was attached still being around.
1202  */
1203 void
1204 freectx_ctx(struct ctxop *ctx)
1205 {
1206 	struct ctxop *nctx;
1207 
1208 	ASSERT(ctx != NULL);
1209 
1210 	do {
1211 		nctx = ctx->next;
1212 		if (ctx->free_op != NULL)
1213 			(ctx->free_op)(ctx->arg, 0);
1214 		kmem_free(ctx, sizeof (struct ctxop));
1215 	} while ((ctx = nctx) != NULL);
1216 }
1217 
1218 /*
1219  * Set the thread running; arrange for it to be swapped in if necessary.
1220  */
1221 void
1222 setrun_locked(kthread_t *t)
1223 {
1224 	ASSERT(THREAD_LOCK_HELD(t));
1225 	if (t->t_state == TS_SLEEP) {
1226 		/*
1227 		 * Take off sleep queue.
1228 		 */
1229 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1230 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1231 		/*
1232 		 * Already on dispatcher queue.
1233 		 */
1234 		return;
1235 	} else if (t->t_state == TS_WAIT) {
1236 		waitq_setrun(t);
1237 	} else if (t->t_state == TS_STOPPED) {
1238 		/*
1239 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1240 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1241 		 * requested that the thread be run.
1242 		 * Just calling setrun() is not sufficient to set a stopped
1243 		 * thread running.  TP_TXSTART is always set if the thread
1244 		 * is not stopped by a jobcontrol stop signal.
1245 		 * TP_TPSTART is always set if /proc is not controlling it.
1246 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1247 		 * The thread won't be stopped unless one of these
1248 		 * three mechanisms did it.
1249 		 *
1250 		 * These flags must be set before calling setrun_locked(t).
1251 		 * They can't be passed as arguments because the streams
1252 		 * code calls setrun() indirectly and the mechanism for
1253 		 * doing so admits only one argument.  Note that the
1254 		 * thread must be locked in order to change t_schedflags.
1255 		 */
1256 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1257 			return;
1258 		/*
1259 		 * Process is no longer stopped (a thread is running).
1260 		 */
1261 		t->t_whystop = 0;
1262 		t->t_whatstop = 0;
1263 		/*
1264 		 * Strictly speaking, we do not have to clear these
1265 		 * flags here; they are cleared on entry to stop().
1266 		 * However, they are confusing when doing kernel
1267 		 * debugging or when they are revealed by ps(1).
1268 		 */
1269 		t->t_schedflag &= ~TS_ALLSTART;
1270 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1271 		ASSERT(t->t_lockp == &transition_lock);
1272 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1273 		/*
1274 		 * Let the class put the process on the dispatcher queue.
1275 		 */
1276 		CL_SETRUN(t);
1277 	}
1278 }
1279 
1280 void
1281 setrun(kthread_t *t)
1282 {
1283 	thread_lock(t);
1284 	setrun_locked(t);
1285 	thread_unlock(t);
1286 }
1287 
1288 /*
1289  * Unpin an interrupted thread.
1290  *	When an interrupt occurs, the interrupt is handled on the stack
1291  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1292  *
1293  *	When swtch() is switching away from an interrupt thread because it
1294  *	blocked or was preempted, this routine is called to complete the
1295  *	saving of the interrupted thread state, and returns the interrupted
1296  *	thread pointer so it may be resumed.
1297  *
1298  *	Called by swtch() only at high spl.
1299  */
1300 kthread_t *
1301 thread_unpin()
1302 {
1303 	kthread_t	*t = curthread;	/* current thread */
1304 	kthread_t	*itp;		/* interrupted thread */
1305 	int		i;		/* interrupt level */
1306 	extern int	intr_passivate();
1307 
1308 	ASSERT(t->t_intr != NULL);
1309 
1310 	itp = t->t_intr;		/* interrupted thread */
1311 	t->t_intr = NULL;		/* clear interrupt ptr */
1312 
1313 	/*
1314 	 * Get state from interrupt thread for the one
1315 	 * it interrupted.
1316 	 */
1317 
1318 	i = intr_passivate(t, itp);
1319 
1320 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1321 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1322 	    i, t, t, itp, itp);
1323 
1324 	/*
1325 	 * Dissociate the current thread from the interrupted thread's LWP.
1326 	 */
1327 	t->t_lwp = NULL;
1328 
1329 	/*
1330 	 * Interrupt handlers above the level that spinlocks block must
1331 	 * not block.
1332 	 */
1333 #if DEBUG
1334 	if (i < 0 || i > LOCK_LEVEL)
1335 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1336 #endif
1337 
1338 	/*
1339 	 * Compute the CPU's base interrupt level based on the active
1340 	 * interrupts.
1341 	 */
1342 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1343 	set_base_spl();
1344 
1345 	return (itp);
1346 }
1347 
1348 /*
1349  * Create and initialize an interrupt thread.
1350  *	Returns non-zero on error.
1351  *	Called at spl7() or better.
1352  */
1353 void
1354 thread_create_intr(struct cpu *cp)
1355 {
1356 	kthread_t *tp;
1357 
1358 	tp = thread_create(NULL, 0,
1359 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1360 
1361 	/*
1362 	 * Set the thread in the TS_FREE state.  The state will change
1363 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1364 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1365 	 * inactive interrupt threads out of debugger thread lists.
1366 	 *
1367 	 * We cannot call thread_create with TS_FREE because of the current
1368 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1369 	 */
1370 	THREAD_FREEINTR(tp, cp);
1371 
1372 	/*
1373 	 * Nobody should ever reference the credentials of an interrupt
1374 	 * thread so make it NULL to catch any such references.
1375 	 */
1376 	tp->t_cred = NULL;
1377 	tp->t_flag |= T_INTR_THREAD;
1378 	tp->t_cpu = cp;
1379 	tp->t_bound_cpu = cp;
1380 	tp->t_disp_queue = cp->cpu_disp;
1381 	tp->t_affinitycnt = 1;
1382 	tp->t_preempt = 1;
1383 
1384 	/*
1385 	 * Don't make a user-requested binding on this thread so that
1386 	 * the processor can be offlined.
1387 	 */
1388 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1389 	tp->t_bind_pset = PS_NONE;
1390 
1391 #if defined(__i386) || defined(__amd64)
1392 	tp->t_stk -= STACK_ALIGN;
1393 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1394 #endif
1395 
1396 	/*
1397 	 * Link onto CPU's interrupt pool.
1398 	 */
1399 	tp->t_link = cp->cpu_intr_thread;
1400 	cp->cpu_intr_thread = tp;
1401 }
1402 
1403 /*
1404  * TSD -- THREAD SPECIFIC DATA
1405  */
1406 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1407 static uint_t		tsd_nkeys;	 /* size of destructor array */
1408 /* per-key destructor funcs */
1409 static void 		(**tsd_destructor)(void *);
1410 /* list of tsd_thread's */
1411 static struct tsd_thread	*tsd_list;
1412 
1413 /*
1414  * Default destructor
1415  *	Needed because NULL destructor means that the key is unused
1416  */
1417 /* ARGSUSED */
1418 void
1419 tsd_defaultdestructor(void *value)
1420 {}
1421 
1422 /*
1423  * Create a key (index into per thread array)
1424  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1425  *	May allocate memory with lock held
1426  */
1427 void
1428 tsd_create(uint_t *keyp, void (*destructor)(void *))
1429 {
1430 	int	i;
1431 	uint_t	nkeys;
1432 
1433 	/*
1434 	 * if key is allocated, do nothing
1435 	 */
1436 	mutex_enter(&tsd_mutex);
1437 	if (*keyp) {
1438 		mutex_exit(&tsd_mutex);
1439 		return;
1440 	}
1441 	/*
1442 	 * find an unused key
1443 	 */
1444 	if (destructor == NULL)
1445 		destructor = tsd_defaultdestructor;
1446 
1447 	for (i = 0; i < tsd_nkeys; ++i)
1448 		if (tsd_destructor[i] == NULL)
1449 			break;
1450 
1451 	/*
1452 	 * if no unused keys, increase the size of the destructor array
1453 	 */
1454 	if (i == tsd_nkeys) {
1455 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1456 			nkeys = 1;
1457 		tsd_destructor =
1458 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1459 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1460 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1461 		tsd_nkeys = nkeys;
1462 	}
1463 
1464 	/*
1465 	 * allocate the next available unused key
1466 	 */
1467 	tsd_destructor[i] = destructor;
1468 	*keyp = i + 1;
1469 	mutex_exit(&tsd_mutex);
1470 }
1471 
1472 /*
1473  * Destroy a key -- this is for unloadable modules
1474  *
1475  * Assumes that the caller is preventing tsd_set and tsd_get
1476  * Locks out tsd_create, tsd_destroy, and tsd_exit
1477  * May free memory with lock held
1478  */
1479 void
1480 tsd_destroy(uint_t *keyp)
1481 {
1482 	uint_t key;
1483 	struct tsd_thread *tsd;
1484 
1485 	/*
1486 	 * protect the key namespace and our destructor lists
1487 	 */
1488 	mutex_enter(&tsd_mutex);
1489 	key = *keyp;
1490 	*keyp = 0;
1491 
1492 	ASSERT(key <= tsd_nkeys);
1493 
1494 	/*
1495 	 * if the key is valid
1496 	 */
1497 	if (key != 0) {
1498 		uint_t k = key - 1;
1499 		/*
1500 		 * for every thread with TSD, call key's destructor
1501 		 */
1502 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1503 			/*
1504 			 * no TSD for key in this thread
1505 			 */
1506 			if (key > tsd->ts_nkeys)
1507 				continue;
1508 			/*
1509 			 * call destructor for key
1510 			 */
1511 			if (tsd->ts_value[k] && tsd_destructor[k])
1512 				(*tsd_destructor[k])(tsd->ts_value[k]);
1513 			/*
1514 			 * reset value for key
1515 			 */
1516 			tsd->ts_value[k] = NULL;
1517 		}
1518 		/*
1519 		 * actually free the key (NULL destructor == unused)
1520 		 */
1521 		tsd_destructor[k] = NULL;
1522 	}
1523 
1524 	mutex_exit(&tsd_mutex);
1525 }
1526 
1527 /*
1528  * Quickly return the per thread value that was stored with the specified key
1529  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1530  */
1531 void *
1532 tsd_get(uint_t key)
1533 {
1534 	return (tsd_agent_get(curthread, key));
1535 }
1536 
1537 /*
1538  * Set a per thread value indexed with the specified key
1539  */
1540 int
1541 tsd_set(uint_t key, void *value)
1542 {
1543 	return (tsd_agent_set(curthread, key, value));
1544 }
1545 
1546 /*
1547  * Like tsd_get(), except that the agent lwp can get the tsd of
1548  * another thread in the same process (the agent thread only runs when the
1549  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1550  */
1551 void *
1552 tsd_agent_get(kthread_t *t, uint_t key)
1553 {
1554 	struct tsd_thread *tsd = t->t_tsd;
1555 
1556 	ASSERT(t == curthread ||
1557 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1558 
1559 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1560 		return (tsd->ts_value[key - 1]);
1561 	return (NULL);
1562 }
1563 
1564 /*
1565  * Like tsd_set(), except that the agent lwp can set the tsd of
1566  * another thread in the same process, or syslwp can set the tsd
1567  * of a thread it's in the middle of creating.
1568  *
1569  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1570  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1571  * lock held
1572  */
1573 int
1574 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1575 {
1576 	struct tsd_thread *tsd = t->t_tsd;
1577 
1578 	ASSERT(t == curthread ||
1579 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1580 
1581 	if (key == 0)
1582 		return (EINVAL);
1583 	if (tsd == NULL)
1584 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1585 	if (key <= tsd->ts_nkeys) {
1586 		tsd->ts_value[key - 1] = value;
1587 		return (0);
1588 	}
1589 
1590 	ASSERT(key <= tsd_nkeys);
1591 
1592 	/*
1593 	 * lock out tsd_destroy()
1594 	 */
1595 	mutex_enter(&tsd_mutex);
1596 	if (tsd->ts_nkeys == 0) {
1597 		/*
1598 		 * Link onto list of threads with TSD
1599 		 */
1600 		if ((tsd->ts_next = tsd_list) != NULL)
1601 			tsd_list->ts_prev = tsd;
1602 		tsd_list = tsd;
1603 	}
1604 
1605 	/*
1606 	 * Allocate thread local storage and set the value for key
1607 	 */
1608 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1609 	    tsd->ts_nkeys * sizeof (void *),
1610 	    key * sizeof (void *));
1611 	tsd->ts_nkeys = key;
1612 	tsd->ts_value[key - 1] = value;
1613 	mutex_exit(&tsd_mutex);
1614 
1615 	return (0);
1616 }
1617 
1618 
1619 /*
1620  * Return the per thread value that was stored with the specified key
1621  *	If necessary, create the key and the value
1622  *	Assumes the caller is protecting *keyp from tsd_destroy
1623  */
1624 void *
1625 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1626 {
1627 	void *value;
1628 	uint_t key = *keyp;
1629 	struct tsd_thread *tsd = curthread->t_tsd;
1630 
1631 	if (tsd == NULL)
1632 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1633 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1634 		return (value);
1635 	if (key == 0)
1636 		tsd_create(keyp, destroy);
1637 	(void) tsd_set(*keyp, value = (*allocate)());
1638 
1639 	return (value);
1640 }
1641 
1642 /*
1643  * Called from thread_exit() to run the destructor function for each tsd
1644  *	Locks out tsd_create and tsd_destroy
1645  *	Assumes that the destructor *DOES NOT* use tsd
1646  */
1647 void
1648 tsd_exit(void)
1649 {
1650 	int i;
1651 	struct tsd_thread *tsd = curthread->t_tsd;
1652 
1653 	if (tsd == NULL)
1654 		return;
1655 
1656 	if (tsd->ts_nkeys == 0) {
1657 		kmem_free(tsd, sizeof (*tsd));
1658 		curthread->t_tsd = NULL;
1659 		return;
1660 	}
1661 
1662 	/*
1663 	 * lock out tsd_create and tsd_destroy, call
1664 	 * the destructor, and mark the value as destroyed.
1665 	 */
1666 	mutex_enter(&tsd_mutex);
1667 
1668 	for (i = 0; i < tsd->ts_nkeys; i++) {
1669 		if (tsd->ts_value[i] && tsd_destructor[i])
1670 			(*tsd_destructor[i])(tsd->ts_value[i]);
1671 		tsd->ts_value[i] = NULL;
1672 	}
1673 
1674 	/*
1675 	 * remove from linked list of threads with TSD
1676 	 */
1677 	if (tsd->ts_next)
1678 		tsd->ts_next->ts_prev = tsd->ts_prev;
1679 	if (tsd->ts_prev)
1680 		tsd->ts_prev->ts_next = tsd->ts_next;
1681 	if (tsd_list == tsd)
1682 		tsd_list = tsd->ts_next;
1683 
1684 	mutex_exit(&tsd_mutex);
1685 
1686 	/*
1687 	 * free up the TSD
1688 	 */
1689 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1690 	kmem_free(tsd, sizeof (struct tsd_thread));
1691 	curthread->t_tsd = NULL;
1692 }
1693 
1694 /*
1695  * realloc
1696  */
1697 static void *
1698 tsd_realloc(void *old, size_t osize, size_t nsize)
1699 {
1700 	void *new;
1701 
1702 	new = kmem_zalloc(nsize, KM_SLEEP);
1703 	if (old) {
1704 		bcopy(old, new, osize);
1705 		kmem_free(old, osize);
1706 	}
1707 	return (new);
1708 }
1709 
1710 /*
1711  * Return non-zero if an interrupt is being serviced.
1712  */
1713 int
1714 servicing_interrupt()
1715 {
1716 	int onintr = 0;
1717 
1718 	/* Are we an interrupt thread */
1719 	if (curthread->t_flag & T_INTR_THREAD)
1720 		return (1);
1721 	/* Are we servicing a high level interrupt? */
1722 	if (CPU_ON_INTR(CPU)) {
1723 		kpreempt_disable();
1724 		onintr = CPU_ON_INTR(CPU);
1725 		kpreempt_enable();
1726 	}
1727 	return (onintr);
1728 }
1729 
1730 
1731 /*
1732  * Change the dispatch priority of a thread in the system.
1733  * Used when raising or lowering a thread's priority.
1734  * (E.g., priority inheritance)
1735  *
1736  * Since threads are queued according to their priority, we
1737  * we must check the thread's state to determine whether it
1738  * is on a queue somewhere. If it is, we've got to:
1739  *
1740  *	o Dequeue the thread.
1741  *	o Change its effective priority.
1742  *	o Enqueue the thread.
1743  *
1744  * Assumptions: The thread whose priority we wish to change
1745  * must be locked before we call thread_change_(e)pri().
1746  * The thread_change(e)pri() function doesn't drop the thread
1747  * lock--that must be done by its caller.
1748  */
1749 void
1750 thread_change_epri(kthread_t *t, pri_t disp_pri)
1751 {
1752 	uint_t	state;
1753 
1754 	ASSERT(THREAD_LOCK_HELD(t));
1755 
1756 	/*
1757 	 * If the inherited priority hasn't actually changed,
1758 	 * just return.
1759 	 */
1760 	if (t->t_epri == disp_pri)
1761 		return;
1762 
1763 	state = t->t_state;
1764 
1765 	/*
1766 	 * If it's not on a queue, change the priority with impunity.
1767 	 */
1768 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1769 		t->t_epri = disp_pri;
1770 		if (state == TS_ONPROC) {
1771 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1772 
1773 			if (t == cp->cpu_dispthread)
1774 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1775 		}
1776 	} else if (state == TS_SLEEP) {
1777 		/*
1778 		 * Take the thread out of its sleep queue.
1779 		 * Change the inherited priority.
1780 		 * Re-enqueue the thread.
1781 		 * Each synchronization object exports a function
1782 		 * to do this in an appropriate manner.
1783 		 */
1784 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1785 	} else if (state == TS_WAIT) {
1786 		/*
1787 		 * Re-enqueue a thread on the wait queue if its
1788 		 * effective priority needs to change.
1789 		 */
1790 		if (disp_pri != t->t_epri)
1791 			waitq_change_pri(t, disp_pri);
1792 	} else {
1793 		/*
1794 		 * The thread is on a run queue.
1795 		 * Note: setbackdq() may not put the thread
1796 		 * back on the same run queue where it originally
1797 		 * resided.
1798 		 */
1799 		(void) dispdeq(t);
1800 		t->t_epri = disp_pri;
1801 		setbackdq(t);
1802 	}
1803 	schedctl_set_cidpri(t);
1804 }
1805 
1806 /*
1807  * Function: Change the t_pri field of a thread.
1808  * Side Effects: Adjust the thread ordering on a run queue
1809  *		 or sleep queue, if necessary.
1810  * Returns: 1 if the thread was on a run queue, else 0.
1811  */
1812 int
1813 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1814 {
1815 	uint_t	state;
1816 	int	on_rq = 0;
1817 
1818 	ASSERT(THREAD_LOCK_HELD(t));
1819 
1820 	state = t->t_state;
1821 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1822 
1823 	/*
1824 	 * If it's not on a queue, change the priority with impunity.
1825 	 */
1826 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1827 		t->t_pri = disp_pri;
1828 
1829 		if (state == TS_ONPROC) {
1830 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1831 
1832 			if (t == cp->cpu_dispthread)
1833 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1834 		}
1835 	} else if (state == TS_SLEEP) {
1836 		/*
1837 		 * If the priority has changed, take the thread out of
1838 		 * its sleep queue and change the priority.
1839 		 * Re-enqueue the thread.
1840 		 * Each synchronization object exports a function
1841 		 * to do this in an appropriate manner.
1842 		 */
1843 		if (disp_pri != t->t_pri)
1844 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1845 	} else if (state == TS_WAIT) {
1846 		/*
1847 		 * Re-enqueue a thread on the wait queue if its
1848 		 * priority needs to change.
1849 		 */
1850 		if (disp_pri != t->t_pri)
1851 			waitq_change_pri(t, disp_pri);
1852 	} else {
1853 		/*
1854 		 * The thread is on a run queue.
1855 		 * Note: setbackdq() may not put the thread
1856 		 * back on the same run queue where it originally
1857 		 * resided.
1858 		 *
1859 		 * We still requeue the thread even if the priority
1860 		 * is unchanged to preserve round-robin (and other)
1861 		 * effects between threads of the same priority.
1862 		 */
1863 		on_rq = dispdeq(t);
1864 		ASSERT(on_rq);
1865 		t->t_pri = disp_pri;
1866 		if (front) {
1867 			setfrontdq(t);
1868 		} else {
1869 			setbackdq(t);
1870 		}
1871 	}
1872 	schedctl_set_cidpri(t);
1873 	return (on_rq);
1874 }
1875 
1876 /*
1877  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1878  * specific pattern.
1879  */
1880 static void
1881 stkinfo_begin(kthread_t *t)
1882 {
1883 	caddr_t	start;	/* stack start */
1884 	caddr_t	end;	/* stack end  */
1885 	uint64_t *ptr;	/* pattern pointer */
1886 
1887 	/*
1888 	 * Stack grows up or down, see thread_create(),
1889 	 * compute stack memory area start and end (start < end).
1890 	 */
1891 	if (t->t_stk > t->t_stkbase) {
1892 		/* stack grows down */
1893 		start = t->t_stkbase;
1894 		end = t->t_stk;
1895 	} else {
1896 		/* stack grows up */
1897 		start = t->t_stk;
1898 		end = t->t_stkbase;
1899 	}
1900 
1901 	/*
1902 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1903 	 * alignement for start and end in stack area boundaries
1904 	 * (protection against corrupt t_stkbase/t_stk data).
1905 	 */
1906 	if ((((uintptr_t)start) & 0x7) != 0) {
1907 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1908 	}
1909 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1910 
1911 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1912 		/* negative or stack size > 1 meg, assume bogus */
1913 		return;
1914 	}
1915 
1916 	/* fill stack area with a pattern (instead of zeros) */
1917 	ptr = (uint64_t *)((void *)start);
1918 	while (ptr < (uint64_t *)((void *)end)) {
1919 		*ptr++ = KMEM_STKINFO_PATTERN;
1920 	}
1921 }
1922 
1923 
1924 /*
1925  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1926  * compute the percentage of kernel stack really used, and set in the log
1927  * if it's the latest highest percentage.
1928  */
1929 static void
1930 stkinfo_end(kthread_t *t)
1931 {
1932 	caddr_t	start;	/* stack start */
1933 	caddr_t	end;	/* stack end  */
1934 	uint64_t *ptr;	/* pattern pointer */
1935 	size_t stksz;	/* stack size */
1936 	size_t smallest = 0;
1937 	size_t percent = 0;
1938 	uint_t index = 0;
1939 	uint_t i;
1940 	static size_t smallest_percent = (size_t)-1;
1941 	static uint_t full = 0;
1942 
1943 	/* create the stackinfo log, if doesn't already exist */
1944 	mutex_enter(&kmem_stkinfo_lock);
1945 	if (kmem_stkinfo_log == NULL) {
1946 		kmem_stkinfo_log = (kmem_stkinfo_t *)
1947 		    kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1948 		    (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1949 		if (kmem_stkinfo_log == NULL) {
1950 			mutex_exit(&kmem_stkinfo_lock);
1951 			return;
1952 		}
1953 	}
1954 	mutex_exit(&kmem_stkinfo_lock);
1955 
1956 	/*
1957 	 * Stack grows up or down, see thread_create(),
1958 	 * compute stack memory area start and end (start < end).
1959 	 */
1960 	if (t->t_stk > t->t_stkbase) {
1961 		/* stack grows down */
1962 		start = t->t_stkbase;
1963 		end = t->t_stk;
1964 	} else {
1965 		/* stack grows up */
1966 		start = t->t_stk;
1967 		end = t->t_stkbase;
1968 	}
1969 
1970 	/* stack size as found in kthread_t */
1971 	stksz = end - start;
1972 
1973 	/*
1974 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1975 	 * alignement for start and end in stack area boundaries
1976 	 * (protection against corrupt t_stkbase/t_stk data).
1977 	 */
1978 	if ((((uintptr_t)start) & 0x7) != 0) {
1979 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1980 	}
1981 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1982 
1983 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1984 		/* negative or stack size > 1 meg, assume bogus */
1985 		return;
1986 	}
1987 
1988 	/* search until no pattern in the stack */
1989 	if (t->t_stk > t->t_stkbase) {
1990 		/* stack grows down */
1991 #if defined(__i386) || defined(__amd64)
1992 		/*
1993 		 * 6 longs are pushed on stack, see thread_load(). Skip
1994 		 * them, so if kthread has never run, percent is zero.
1995 		 * 8 bytes alignement is preserved for a 32 bit kernel,
1996 		 * 6 x 4 = 24, 24 is a multiple of 8.
1997 		 *
1998 		 */
1999 		end -= (6 * sizeof (long));
2000 #endif
2001 		ptr = (uint64_t *)((void *)start);
2002 		while (ptr < (uint64_t *)((void *)end)) {
2003 			if (*ptr != KMEM_STKINFO_PATTERN) {
2004 				percent = stkinfo_percent(end,
2005 				    start, (caddr_t)ptr);
2006 				break;
2007 			}
2008 			ptr++;
2009 		}
2010 	} else {
2011 		/* stack grows up */
2012 		ptr = (uint64_t *)((void *)end);
2013 		ptr--;
2014 		while (ptr >= (uint64_t *)((void *)start)) {
2015 			if (*ptr != KMEM_STKINFO_PATTERN) {
2016 				percent = stkinfo_percent(start,
2017 				    end, (caddr_t)ptr);
2018 				break;
2019 			}
2020 			ptr--;
2021 		}
2022 	}
2023 
2024 	DTRACE_PROBE3(stack__usage, kthread_t *, t,
2025 	    size_t, stksz, size_t, percent);
2026 
2027 	if (percent == 0) {
2028 		return;
2029 	}
2030 
2031 	mutex_enter(&kmem_stkinfo_lock);
2032 	if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2033 		/*
2034 		 * The log is full and already contains the highest values
2035 		 */
2036 		mutex_exit(&kmem_stkinfo_lock);
2037 		return;
2038 	}
2039 
2040 	/* keep a log of the highest used stack */
2041 	for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2042 		if (kmem_stkinfo_log[i].percent == 0) {
2043 			index = i;
2044 			full++;
2045 			break;
2046 		}
2047 		if (smallest == 0) {
2048 			smallest = kmem_stkinfo_log[i].percent;
2049 			index = i;
2050 			continue;
2051 		}
2052 		if (kmem_stkinfo_log[i].percent < smallest) {
2053 			smallest = kmem_stkinfo_log[i].percent;
2054 			index = i;
2055 		}
2056 	}
2057 
2058 	if (percent >= kmem_stkinfo_log[index].percent) {
2059 		kmem_stkinfo_log[index].kthread = (caddr_t)t;
2060 		kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2061 		kmem_stkinfo_log[index].start = start;
2062 		kmem_stkinfo_log[index].stksz = stksz;
2063 		kmem_stkinfo_log[index].percent = percent;
2064 		kmem_stkinfo_log[index].t_tid = t->t_tid;
2065 		kmem_stkinfo_log[index].cmd[0] = '\0';
2066 		if (t->t_tid != 0) {
2067 			stksz = strlen((t->t_procp)->p_user.u_comm);
2068 			if (stksz >= KMEM_STKINFO_STR_SIZE) {
2069 				stksz = KMEM_STKINFO_STR_SIZE - 1;
2070 				kmem_stkinfo_log[index].cmd[stksz] = '\0';
2071 			} else {
2072 				stksz += 1;
2073 			}
2074 			(void) memcpy(kmem_stkinfo_log[index].cmd,
2075 			    (t->t_procp)->p_user.u_comm, stksz);
2076 		}
2077 		if (percent < smallest_percent) {
2078 			smallest_percent = percent;
2079 		}
2080 	}
2081 	mutex_exit(&kmem_stkinfo_lock);
2082 }
2083 
2084 /*
2085  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2086  */
2087 static size_t
2088 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2089 {
2090 	size_t percent;
2091 	size_t s;
2092 
2093 	if (t_stk > t_stkbase) {
2094 		/* stack grows down */
2095 		if (sp > t_stk) {
2096 			return (0);
2097 		}
2098 		if (sp < t_stkbase) {
2099 			return (100);
2100 		}
2101 		percent = t_stk - sp + 1;
2102 		s = t_stk - t_stkbase + 1;
2103 	} else {
2104 		/* stack grows up */
2105 		if (sp < t_stk) {
2106 			return (0);
2107 		}
2108 		if (sp > t_stkbase) {
2109 			return (100);
2110 		}
2111 		percent = sp - t_stk + 1;
2112 		s = t_stkbase - t_stk + 1;
2113 	}
2114 	percent = ((100 * percent) / s) + 1;
2115 	if (percent > 100) {
2116 		percent = 100;
2117 	}
2118 	return (percent);
2119 }
2120