1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018 Joyent, Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 #include <sys/ctype.h> 78 79 struct kmem_cache *thread_cache; /* cache of free threads */ 80 struct kmem_cache *lwp_cache; /* cache of free lwps */ 81 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 82 83 /* 84 * allthreads is only for use by kmem_readers. All kernel loops can use 85 * the current thread as a start/end point. 86 */ 87 kthread_t *allthreads = &t0; /* circular list of all threads */ 88 89 static kcondvar_t reaper_cv; /* synchronization var */ 90 kthread_t *thread_deathrow; /* circular list of reapable threads */ 91 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 92 kmutex_t reaplock; /* protects lwp and thread deathrows */ 93 int thread_reapcnt = 0; /* number of threads on deathrow */ 94 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 95 int reaplimit = 16; /* delay reaping until reaplimit */ 96 97 thread_free_lock_t *thread_free_lock; 98 /* protects tick thread from reaper */ 99 100 extern int nthread; 101 102 /* System Scheduling classes. */ 103 id_t syscid; /* system scheduling class ID */ 104 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 105 106 void *segkp_thread; /* cookie for segkp pool */ 107 108 int lwp_cache_sz = 32; 109 int t_cache_sz = 8; 110 static kt_did_t next_t_id = 1; 111 112 /* Default mode for thread binding to CPUs and processor sets */ 113 int default_binding_mode = TB_ALLHARD; 114 115 /* 116 * Min/Max stack sizes for stack size parameters 117 */ 118 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 119 #define MIN_STKSIZE DEFAULTSTKSZ 120 121 /* 122 * default_stksize overrides lwp_default_stksize if it is set. 123 */ 124 int default_stksize; 125 int lwp_default_stksize; 126 127 static zone_key_t zone_thread_key; 128 129 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 130 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 131 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 132 133 /* 134 * forward declarations for internal thread specific data (tsd) 135 */ 136 static void *tsd_realloc(void *, size_t, size_t); 137 138 void thread_reaper(void); 139 140 /* forward declarations for stackinfo feature */ 141 static void stkinfo_begin(kthread_t *); 142 static void stkinfo_end(kthread_t *); 143 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 144 145 /*ARGSUSED*/ 146 static int 147 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 148 { 149 bzero(buf, sizeof (turnstile_t)); 150 return (0); 151 } 152 153 /*ARGSUSED*/ 154 static void 155 turnstile_destructor(void *buf, void *cdrarg) 156 { 157 turnstile_t *ts = buf; 158 159 ASSERT(ts->ts_free == NULL); 160 ASSERT(ts->ts_waiters == 0); 161 ASSERT(ts->ts_inheritor == NULL); 162 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 163 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 164 } 165 166 void 167 thread_init(void) 168 { 169 kthread_t *tp; 170 extern char sys_name[]; 171 extern void idle(); 172 struct cpu *cpu = CPU; 173 int i; 174 kmutex_t *lp; 175 176 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 177 thread_free_lock = 178 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 179 for (i = 0; i < THREAD_FREE_NUM; i++) { 180 lp = &thread_free_lock[i].tf_lock; 181 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 182 } 183 184 #if defined(__i386) || defined(__amd64) 185 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 186 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 187 188 /* 189 * "struct _klwp" includes a "struct pcb", which includes a 190 * "struct fpu", which needs to be 64-byte aligned on amd64 191 * (and even on i386) for xsave/xrstor. 192 */ 193 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 194 64, NULL, NULL, NULL, NULL, NULL, 0); 195 #else 196 /* 197 * Allocate thread structures from static_arena. This prevents 198 * issues where a thread tries to relocate its own thread 199 * structure and touches it after the mapping has been suspended. 200 */ 201 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 202 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 203 204 lwp_stk_cache_init(); 205 206 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 207 0, NULL, NULL, NULL, NULL, NULL, 0); 208 #endif 209 210 turnstile_cache = kmem_cache_create("turnstile_cache", 211 sizeof (turnstile_t), 0, 212 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 213 214 label_init(); 215 cred_init(); 216 217 /* 218 * Initialize various resource management facilities. 219 */ 220 rctl_init(); 221 cpucaps_init(); 222 /* 223 * Zone_init() should be called before project_init() so that project ID 224 * for the first project is initialized correctly. 225 */ 226 zone_init(); 227 project_init(); 228 brand_init(); 229 kiconv_init(); 230 task_init(); 231 tcache_init(); 232 pool_init(); 233 234 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 235 236 /* 237 * Originally, we had two parameters to set default stack 238 * size: one for lwp's (lwp_default_stksize), and one for 239 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 240 * Now we have a third parameter that overrides both if it is 241 * set to a legal stack size, called default_stksize. 242 */ 243 244 if (default_stksize == 0) { 245 default_stksize = DEFAULTSTKSZ; 246 } else if (default_stksize % PAGESIZE != 0 || 247 default_stksize > MAX_STKSIZE || 248 default_stksize < MIN_STKSIZE) { 249 cmn_err(CE_WARN, "Illegal stack size. Using %d", 250 (int)DEFAULTSTKSZ); 251 default_stksize = DEFAULTSTKSZ; 252 } else { 253 lwp_default_stksize = default_stksize; 254 } 255 256 if (lwp_default_stksize == 0) { 257 lwp_default_stksize = default_stksize; 258 } else if (lwp_default_stksize % PAGESIZE != 0 || 259 lwp_default_stksize > MAX_STKSIZE || 260 lwp_default_stksize < MIN_STKSIZE) { 261 cmn_err(CE_WARN, "Illegal stack size. Using %d", 262 default_stksize); 263 lwp_default_stksize = default_stksize; 264 } 265 266 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 267 lwp_default_stksize, 268 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 269 270 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 271 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 272 273 (void) getcid(sys_name, &syscid); 274 curthread->t_cid = syscid; /* current thread is t0 */ 275 276 /* 277 * Set up the first CPU's idle thread. 278 * It runs whenever the CPU has nothing worthwhile to do. 279 */ 280 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 281 cpu->cpu_idle_thread = tp; 282 tp->t_preempt = 1; 283 tp->t_disp_queue = cpu->cpu_disp; 284 ASSERT(tp->t_disp_queue != NULL); 285 tp->t_bound_cpu = cpu; 286 tp->t_affinitycnt = 1; 287 288 /* 289 * Registering a thread in the callback table is usually 290 * done in the initialization code of the thread. In this 291 * case, we do it right after thread creation to avoid 292 * blocking idle thread while registering itself. It also 293 * avoids the possibility of reregistration in case a CPU 294 * restarts its idle thread. 295 */ 296 CALLB_CPR_INIT_SAFE(tp, "idle"); 297 298 /* 299 * Create the thread_reaper daemon. From this point on, exited 300 * threads will get reaped. 301 */ 302 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 303 NULL, 0, &p0, TS_RUN, minclsyspri); 304 305 /* 306 * Finish initializing the kernel memory allocator now that 307 * thread_create() is available. 308 */ 309 kmem_thread_init(); 310 311 if (boothowto & RB_DEBUG) 312 kdi_dvec_thravail(); 313 } 314 315 /* 316 * Create a thread. 317 * 318 * thread_create() blocks for memory if necessary. It never fails. 319 * 320 * If stk is NULL, the thread is created at the base of the stack 321 * and cannot be swapped. 322 */ 323 kthread_t * 324 thread_create( 325 caddr_t stk, 326 size_t stksize, 327 void (*proc)(), 328 void *arg, 329 size_t len, 330 proc_t *pp, 331 int state, 332 pri_t pri) 333 { 334 kthread_t *t; 335 extern struct classfuncs sys_classfuncs; 336 turnstile_t *ts; 337 338 /* 339 * Every thread keeps a turnstile around in case it needs to block. 340 * The only reason the turnstile is not simply part of the thread 341 * structure is that we may have to break the association whenever 342 * more than one thread blocks on a given synchronization object. 343 * From a memory-management standpoint, turnstiles are like the 344 * "attached mblks" that hang off dblks in the streams allocator. 345 */ 346 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 347 348 if (stk == NULL) { 349 /* 350 * alloc both thread and stack in segkp chunk 351 */ 352 353 if (stksize < default_stksize) 354 stksize = default_stksize; 355 356 if (stksize == default_stksize) { 357 stk = (caddr_t)segkp_cache_get(segkp_thread); 358 } else { 359 stksize = roundup(stksize, PAGESIZE); 360 stk = (caddr_t)segkp_get(segkp, stksize, 361 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 362 } 363 364 ASSERT(stk != NULL); 365 366 /* 367 * The machine-dependent mutex code may require that 368 * thread pointers (since they may be used for mutex owner 369 * fields) have certain alignment requirements. 370 * PTR24_ALIGN is the size of the alignment quanta. 371 * XXX - assumes stack grows toward low addresses. 372 */ 373 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 374 cmn_err(CE_PANIC, "thread_create: proposed stack size" 375 " too small to hold thread."); 376 #ifdef STACK_GROWTH_DOWN 377 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 378 stksize &= -PTR24_ALIGN; /* make thread aligned */ 379 t = (kthread_t *)(stk + stksize); 380 bzero(t, sizeof (kthread_t)); 381 if (audit_active) 382 audit_thread_create(t); 383 t->t_stk = stk + stksize; 384 t->t_stkbase = stk; 385 #else /* stack grows to larger addresses */ 386 stksize -= SA(sizeof (kthread_t)); 387 t = (kthread_t *)(stk); 388 bzero(t, sizeof (kthread_t)); 389 t->t_stk = stk + sizeof (kthread_t); 390 t->t_stkbase = stk + stksize + sizeof (kthread_t); 391 #endif /* STACK_GROWTH_DOWN */ 392 t->t_flag |= T_TALLOCSTK; 393 t->t_swap = stk; 394 } else { 395 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 396 bzero(t, sizeof (kthread_t)); 397 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 398 if (audit_active) 399 audit_thread_create(t); 400 /* 401 * Initialize t_stk to the kernel stack pointer to use 402 * upon entry to the kernel 403 */ 404 #ifdef STACK_GROWTH_DOWN 405 t->t_stk = stk + stksize; 406 t->t_stkbase = stk; 407 #else 408 t->t_stk = stk; /* 3b2-like */ 409 t->t_stkbase = stk + stksize; 410 #endif /* STACK_GROWTH_DOWN */ 411 } 412 413 if (kmem_stackinfo != 0) { 414 stkinfo_begin(t); 415 } 416 417 t->t_ts = ts; 418 419 /* 420 * p_cred could be NULL if it thread_create is called before cred_init 421 * is called in main. 422 */ 423 mutex_enter(&pp->p_crlock); 424 if (pp->p_cred) 425 crhold(t->t_cred = pp->p_cred); 426 mutex_exit(&pp->p_crlock); 427 t->t_start = gethrestime_sec(); 428 t->t_startpc = proc; 429 t->t_procp = pp; 430 t->t_clfuncs = &sys_classfuncs.thread; 431 t->t_cid = syscid; 432 t->t_pri = pri; 433 t->t_stime = ddi_get_lbolt(); 434 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 435 t->t_bind_cpu = PBIND_NONE; 436 t->t_bindflag = (uchar_t)default_binding_mode; 437 t->t_bind_pset = PS_NONE; 438 t->t_plockp = &pp->p_lock; 439 t->t_copyops = NULL; 440 t->t_taskq = NULL; 441 t->t_anttime = 0; 442 t->t_hatdepth = 0; 443 444 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 445 446 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 447 #ifndef NPROBE 448 /* Kernel probe */ 449 tnf_thread_create(t); 450 #endif /* NPROBE */ 451 LOCK_INIT_CLEAR(&t->t_lock); 452 453 /* 454 * Callers who give us a NULL proc must do their own 455 * stack initialization. e.g. lwp_create() 456 */ 457 if (proc != NULL) { 458 t->t_stk = thread_stk_init(t->t_stk); 459 thread_load(t, proc, arg, len); 460 } 461 462 /* 463 * Put a hold on project0. If this thread is actually in a 464 * different project, then t_proj will be changed later in 465 * lwp_create(). All kernel-only threads must be in project 0. 466 */ 467 t->t_proj = project_hold(proj0p); 468 469 lgrp_affinity_init(&t->t_lgrp_affinity); 470 471 mutex_enter(&pidlock); 472 nthread++; 473 t->t_did = next_t_id++; 474 t->t_prev = curthread->t_prev; 475 t->t_next = curthread; 476 477 /* 478 * Add the thread to the list of all threads, and initialize 479 * its t_cpu pointer. We need to block preemption since 480 * cpu_offline walks the thread list looking for threads 481 * with t_cpu pointing to the CPU being offlined. We want 482 * to make sure that the list is consistent and that if t_cpu 483 * is set, the thread is on the list. 484 */ 485 kpreempt_disable(); 486 curthread->t_prev->t_next = t; 487 curthread->t_prev = t; 488 489 /* 490 * Threads should never have a NULL t_cpu pointer so assign it 491 * here. If the thread is being created with state TS_RUN a 492 * better CPU may be chosen when it is placed on the run queue. 493 * 494 * We need to keep kernel preemption disabled when setting all 495 * three fields to keep them in sync. Also, always create in 496 * the default partition since that's where kernel threads go 497 * (if this isn't a kernel thread, t_cpupart will be changed 498 * in lwp_create before setting the thread runnable). 499 */ 500 t->t_cpupart = &cp_default; 501 502 /* 503 * For now, affiliate this thread with the root lgroup. 504 * Since the kernel does not (presently) allocate its memory 505 * in a locality aware fashion, the root is an appropriate home. 506 * If this thread is later associated with an lwp, it will have 507 * it's lgroup re-assigned at that time. 508 */ 509 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 510 511 /* 512 * Inherit the current cpu. If this cpu isn't part of the chosen 513 * lgroup, a new cpu will be chosen by cpu_choose when the thread 514 * is ready to run. 515 */ 516 if (CPU->cpu_part == &cp_default) 517 t->t_cpu = CPU; 518 else 519 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 520 t->t_pri, NULL); 521 522 t->t_disp_queue = t->t_cpu->cpu_disp; 523 kpreempt_enable(); 524 525 /* 526 * Initialize thread state and the dispatcher lock pointer. 527 * Need to hold onto pidlock to block allthreads walkers until 528 * the state is set. 529 */ 530 switch (state) { 531 case TS_RUN: 532 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 533 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 534 CL_SETRUN(t); 535 thread_unlock(t); 536 break; 537 538 case TS_ONPROC: 539 THREAD_ONPROC(t, t->t_cpu); 540 break; 541 542 case TS_FREE: 543 /* 544 * Free state will be used for intr threads. 545 * The interrupt routine must set the thread dispatcher 546 * lock pointer (t_lockp) if starting on a CPU 547 * other than the current one. 548 */ 549 THREAD_FREEINTR(t, CPU); 550 break; 551 552 case TS_STOPPED: 553 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 554 break; 555 556 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 557 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 558 } 559 mutex_exit(&pidlock); 560 return (t); 561 } 562 563 /* 564 * Move thread to project0 and take care of project reference counters. 565 */ 566 void 567 thread_rele(kthread_t *t) 568 { 569 kproject_t *kpj; 570 571 thread_lock(t); 572 573 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 574 kpj = ttoproj(t); 575 t->t_proj = proj0p; 576 577 thread_unlock(t); 578 579 if (kpj != proj0p) { 580 project_rele(kpj); 581 (void) project_hold(proj0p); 582 } 583 } 584 585 void 586 thread_exit(void) 587 { 588 kthread_t *t = curthread; 589 590 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 591 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 592 593 tsd_exit(); /* Clean up this thread's TSD */ 594 595 kcpc_passivate(); /* clean up performance counter state */ 596 597 /* 598 * No kernel thread should have called poll() without arranging 599 * calling pollcleanup() here. 600 */ 601 ASSERT(t->t_pollstate == NULL); 602 ASSERT(t->t_schedctl == NULL); 603 if (t->t_door) 604 door_slam(); /* in case thread did an upcall */ 605 606 #ifndef NPROBE 607 /* Kernel probe */ 608 if (t->t_tnf_tpdp) 609 tnf_thread_exit(); 610 #endif /* NPROBE */ 611 612 thread_rele(t); 613 t->t_preempt++; 614 615 /* 616 * remove thread from the all threads list so that 617 * death-row can use the same pointers. 618 */ 619 mutex_enter(&pidlock); 620 t->t_next->t_prev = t->t_prev; 621 t->t_prev->t_next = t->t_next; 622 ASSERT(allthreads != t); /* t0 never exits */ 623 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 624 mutex_exit(&pidlock); 625 626 if (t->t_ctx != NULL) 627 exitctx(t); 628 if (t->t_procp->p_pctx != NULL) 629 exitpctx(t->t_procp); 630 631 if (kmem_stackinfo != 0) { 632 stkinfo_end(t); 633 } 634 635 t->t_state = TS_ZOMB; /* set zombie thread */ 636 637 swtch_from_zombie(); /* give up the CPU */ 638 /* NOTREACHED */ 639 } 640 641 /* 642 * Check to see if the specified thread is active (defined as being on 643 * the thread list). This is certainly a slow way to do this; if there's 644 * ever a reason to speed it up, we could maintain a hash table of active 645 * threads indexed by their t_did. 646 */ 647 static kthread_t * 648 did_to_thread(kt_did_t tid) 649 { 650 kthread_t *t; 651 652 ASSERT(MUTEX_HELD(&pidlock)); 653 for (t = curthread->t_next; t != curthread; t = t->t_next) { 654 if (t->t_did == tid) 655 break; 656 } 657 if (t->t_did == tid) 658 return (t); 659 else 660 return (NULL); 661 } 662 663 /* 664 * Wait for specified thread to exit. Returns immediately if the thread 665 * could not be found, meaning that it has either already exited or never 666 * existed. 667 */ 668 void 669 thread_join(kt_did_t tid) 670 { 671 kthread_t *t; 672 673 ASSERT(tid != curthread->t_did); 674 ASSERT(tid != t0.t_did); 675 676 mutex_enter(&pidlock); 677 /* 678 * Make sure we check that the thread is on the thread list 679 * before blocking on it; otherwise we could end up blocking on 680 * a cv that's already been freed. In other words, don't cache 681 * the thread pointer across calls to cv_wait. 682 * 683 * The choice of loop invariant means that whenever a thread 684 * is taken off the allthreads list, a cv_broadcast must be 685 * performed on that thread's t_joincv to wake up any waiters. 686 * The broadcast doesn't have to happen right away, but it 687 * shouldn't be postponed indefinitely (e.g., by doing it in 688 * thread_free which may only be executed when the deathrow 689 * queue is processed. 690 */ 691 while (t = did_to_thread(tid)) 692 cv_wait(&t->t_joincv, &pidlock); 693 mutex_exit(&pidlock); 694 } 695 696 void 697 thread_free_prevent(kthread_t *t) 698 { 699 kmutex_t *lp; 700 701 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 702 mutex_enter(lp); 703 } 704 705 void 706 thread_free_allow(kthread_t *t) 707 { 708 kmutex_t *lp; 709 710 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 711 mutex_exit(lp); 712 } 713 714 static void 715 thread_free_barrier(kthread_t *t) 716 { 717 kmutex_t *lp; 718 719 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 720 mutex_enter(lp); 721 mutex_exit(lp); 722 } 723 724 void 725 thread_free(kthread_t *t) 726 { 727 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 728 klwp_t *lwp = t->t_lwp; 729 caddr_t swap = t->t_swap; 730 731 ASSERT(t != &t0 && t->t_state == TS_FREE); 732 ASSERT(t->t_door == NULL); 733 ASSERT(t->t_schedctl == NULL); 734 ASSERT(t->t_pollstate == NULL); 735 736 t->t_pri = 0; 737 t->t_pc = 0; 738 t->t_sp = 0; 739 t->t_wchan0 = NULL; 740 t->t_wchan = NULL; 741 if (t->t_cred != NULL) { 742 crfree(t->t_cred); 743 t->t_cred = 0; 744 } 745 if (t->t_pdmsg) { 746 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 747 t->t_pdmsg = NULL; 748 } 749 if (audit_active) 750 audit_thread_free(t); 751 #ifndef NPROBE 752 if (t->t_tnf_tpdp) 753 tnf_thread_free(t); 754 #endif /* NPROBE */ 755 if (t->t_cldata) { 756 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 757 } 758 if (t->t_rprof != NULL) { 759 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 760 t->t_rprof = NULL; 761 } 762 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 763 if (lwp) 764 lwp_freeregs(lwp, 0); 765 if (t->t_ctx) 766 freectx(t, 0); 767 t->t_stk = NULL; 768 if (lwp) 769 lwp_stk_fini(lwp); 770 lock_clear(&t->t_lock); 771 772 if (t->t_ts->ts_waiters > 0) 773 panic("thread_free: turnstile still active"); 774 775 kmem_cache_free(turnstile_cache, t->t_ts); 776 777 free_afd(&t->t_activefd); 778 779 /* 780 * Barrier for the tick accounting code. The tick accounting code 781 * holds this lock to keep the thread from going away while it's 782 * looking at it. 783 */ 784 thread_free_barrier(t); 785 786 ASSERT(ttoproj(t) == proj0p); 787 project_rele(ttoproj(t)); 788 789 lgrp_affinity_free(&t->t_lgrp_affinity); 790 791 mutex_enter(&pidlock); 792 nthread--; 793 mutex_exit(&pidlock); 794 795 if (t->t_name != NULL) { 796 kmem_free(t->t_name, THREAD_NAME_MAX); 797 t->t_name = NULL; 798 } 799 800 /* 801 * Free thread, lwp and stack. This needs to be done carefully, since 802 * if T_TALLOCSTK is set, the thread is part of the stack. 803 */ 804 t->t_lwp = NULL; 805 t->t_swap = NULL; 806 807 if (swap) { 808 segkp_release(segkp, swap); 809 } 810 if (lwp) { 811 kmem_cache_free(lwp_cache, lwp); 812 } 813 if (!allocstk) { 814 kmem_cache_free(thread_cache, t); 815 } 816 } 817 818 /* 819 * Removes threads associated with the given zone from a deathrow queue. 820 * tp is a pointer to the head of the deathrow queue, and countp is a 821 * pointer to the current deathrow count. Returns a linked list of 822 * threads removed from the list. 823 */ 824 static kthread_t * 825 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 826 { 827 kthread_t *tmp, *list = NULL; 828 cred_t *cr; 829 830 ASSERT(MUTEX_HELD(&reaplock)); 831 while (*tp != NULL) { 832 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 833 tmp = *tp; 834 *tp = tmp->t_forw; 835 tmp->t_forw = list; 836 list = tmp; 837 (*countp)--; 838 } else { 839 tp = &(*tp)->t_forw; 840 } 841 } 842 return (list); 843 } 844 845 static void 846 thread_reap_list(kthread_t *t) 847 { 848 kthread_t *next; 849 850 while (t != NULL) { 851 next = t->t_forw; 852 thread_free(t); 853 t = next; 854 } 855 } 856 857 /* ARGSUSED */ 858 static void 859 thread_zone_destroy(zoneid_t zoneid, void *unused) 860 { 861 kthread_t *t, *l; 862 863 mutex_enter(&reaplock); 864 /* 865 * Pull threads and lwps associated with zone off deathrow lists. 866 */ 867 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 868 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 869 mutex_exit(&reaplock); 870 871 /* 872 * Guard against race condition in mutex_owner_running: 873 * thread=owner(mutex) 874 * <interrupt> 875 * thread exits mutex 876 * thread exits 877 * thread reaped 878 * thread struct freed 879 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 880 * A cross call to all cpus will cause the interrupt handler 881 * to reset the PC if it is in mutex_owner_running, refreshing 882 * stale thread pointers. 883 */ 884 mutex_sync(); /* sync with mutex code */ 885 886 /* 887 * Reap threads 888 */ 889 thread_reap_list(t); 890 891 /* 892 * Reap lwps 893 */ 894 thread_reap_list(l); 895 } 896 897 /* 898 * cleanup zombie threads that are on deathrow. 899 */ 900 void 901 thread_reaper() 902 { 903 kthread_t *t, *l; 904 callb_cpr_t cprinfo; 905 906 /* 907 * Register callback to clean up threads when zone is destroyed. 908 */ 909 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 910 911 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 912 for (;;) { 913 mutex_enter(&reaplock); 914 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 915 CALLB_CPR_SAFE_BEGIN(&cprinfo); 916 cv_wait(&reaper_cv, &reaplock); 917 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 918 } 919 /* 920 * mutex_sync() needs to be called when reaping, but 921 * not too often. We limit reaping rate to once 922 * per second. Reaplimit is max rate at which threads can 923 * be freed. Does not impact thread destruction/creation. 924 */ 925 t = thread_deathrow; 926 l = lwp_deathrow; 927 thread_deathrow = NULL; 928 lwp_deathrow = NULL; 929 thread_reapcnt = 0; 930 lwp_reapcnt = 0; 931 mutex_exit(&reaplock); 932 933 /* 934 * Guard against race condition in mutex_owner_running: 935 * thread=owner(mutex) 936 * <interrupt> 937 * thread exits mutex 938 * thread exits 939 * thread reaped 940 * thread struct freed 941 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 942 * A cross call to all cpus will cause the interrupt handler 943 * to reset the PC if it is in mutex_owner_running, refreshing 944 * stale thread pointers. 945 */ 946 mutex_sync(); /* sync with mutex code */ 947 /* 948 * Reap threads 949 */ 950 thread_reap_list(t); 951 952 /* 953 * Reap lwps 954 */ 955 thread_reap_list(l); 956 delay(hz); 957 } 958 } 959 960 /* 961 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 962 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 963 * that is reapable. The thread already holds the reaplock, and was already 964 * freed. 965 */ 966 void 967 reapq_move_lq_to_tq(kthread_t *t) 968 { 969 ASSERT(t->t_state == TS_FREE); 970 ASSERT(MUTEX_HELD(&reaplock)); 971 t->t_forw = thread_deathrow; 972 thread_deathrow = t; 973 thread_reapcnt++; 974 if (lwp_reapcnt + thread_reapcnt > reaplimit) 975 cv_signal(&reaper_cv); /* wake the reaper */ 976 } 977 978 /* 979 * This is called by resume() to put a zombie thread onto deathrow. 980 * The thread's state is changed to TS_FREE to indicate that is reapable. 981 * This is called from the idle thread so it must not block - just spin. 982 */ 983 void 984 reapq_add(kthread_t *t) 985 { 986 mutex_enter(&reaplock); 987 988 /* 989 * lwp_deathrow contains threads with lwp linkage and 990 * swappable thread stacks which have the default stacksize. 991 * These threads' lwps and stacks may be reused by lwp_create(). 992 * 993 * Anything else goes on thread_deathrow(), where it will eventually 994 * be thread_free()d. 995 */ 996 if (t->t_flag & T_LWPREUSE) { 997 ASSERT(ttolwp(t) != NULL); 998 t->t_forw = lwp_deathrow; 999 lwp_deathrow = t; 1000 lwp_reapcnt++; 1001 } else { 1002 t->t_forw = thread_deathrow; 1003 thread_deathrow = t; 1004 thread_reapcnt++; 1005 } 1006 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1007 cv_signal(&reaper_cv); /* wake the reaper */ 1008 t->t_state = TS_FREE; 1009 lock_clear(&t->t_lock); 1010 1011 /* 1012 * Before we return, we need to grab and drop the thread lock for 1013 * the dead thread. At this point, the current thread is the idle 1014 * thread, and the dead thread's CPU lock points to the current 1015 * CPU -- and we must grab and drop the lock to synchronize with 1016 * a racing thread walking a blocking chain that the zombie thread 1017 * was recently in. By this point, that blocking chain is (by 1018 * definition) stale: the dead thread is not holding any locks, and 1019 * is therefore not in any blocking chains -- but if we do not regrab 1020 * our lock before freeing the dead thread's data structures, the 1021 * thread walking the (stale) blocking chain will die on memory 1022 * corruption when it attempts to drop the dead thread's lock. We 1023 * only need do this once because there is no way for the dead thread 1024 * to ever again be on a blocking chain: once we have grabbed and 1025 * dropped the thread lock, we are guaranteed that anyone that could 1026 * have seen this thread in a blocking chain can no longer see it. 1027 */ 1028 thread_lock(t); 1029 thread_unlock(t); 1030 1031 mutex_exit(&reaplock); 1032 } 1033 1034 /* 1035 * Install thread context ops for the current thread. 1036 */ 1037 void 1038 installctx( 1039 kthread_t *t, 1040 void *arg, 1041 void (*save)(void *), 1042 void (*restore)(void *), 1043 void (*fork)(void *, void *), 1044 void (*lwp_create)(void *, void *), 1045 void (*exit)(void *), 1046 void (*free)(void *, int)) 1047 { 1048 struct ctxop *ctx; 1049 1050 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1051 ctx->save_op = save; 1052 ctx->restore_op = restore; 1053 ctx->fork_op = fork; 1054 ctx->lwp_create_op = lwp_create; 1055 ctx->exit_op = exit; 1056 ctx->free_op = free; 1057 ctx->arg = arg; 1058 ctx->next = t->t_ctx; 1059 t->t_ctx = ctx; 1060 } 1061 1062 /* 1063 * Remove the thread context ops from a thread. 1064 */ 1065 int 1066 removectx( 1067 kthread_t *t, 1068 void *arg, 1069 void (*save)(void *), 1070 void (*restore)(void *), 1071 void (*fork)(void *, void *), 1072 void (*lwp_create)(void *, void *), 1073 void (*exit)(void *), 1074 void (*free)(void *, int)) 1075 { 1076 struct ctxop *ctx, *prev_ctx; 1077 1078 /* 1079 * The incoming kthread_t (which is the thread for which the 1080 * context ops will be removed) should be one of the following: 1081 * 1082 * a) the current thread, 1083 * 1084 * b) a thread of a process that's being forked (SIDL), 1085 * 1086 * c) a thread that belongs to the same process as the current 1087 * thread and for which the current thread is the agent thread, 1088 * 1089 * d) a thread that is TS_STOPPED which is indicative of it 1090 * being (if curthread is not an agent) a thread being created 1091 * as part of an lwp creation. 1092 */ 1093 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1094 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1095 1096 /* 1097 * Serialize modifications to t->t_ctx to prevent the agent thread 1098 * and the target thread from racing with each other during lwp exit. 1099 */ 1100 mutex_enter(&t->t_ctx_lock); 1101 prev_ctx = NULL; 1102 kpreempt_disable(); 1103 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1104 if (ctx->save_op == save && ctx->restore_op == restore && 1105 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1106 ctx->exit_op == exit && ctx->free_op == free && 1107 ctx->arg == arg) { 1108 if (prev_ctx) 1109 prev_ctx->next = ctx->next; 1110 else 1111 t->t_ctx = ctx->next; 1112 mutex_exit(&t->t_ctx_lock); 1113 if (ctx->free_op != NULL) 1114 (ctx->free_op)(ctx->arg, 0); 1115 kmem_free(ctx, sizeof (struct ctxop)); 1116 kpreempt_enable(); 1117 return (1); 1118 } 1119 prev_ctx = ctx; 1120 } 1121 mutex_exit(&t->t_ctx_lock); 1122 kpreempt_enable(); 1123 1124 return (0); 1125 } 1126 1127 void 1128 savectx(kthread_t *t) 1129 { 1130 struct ctxop *ctx; 1131 1132 ASSERT(t == curthread); 1133 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1134 if (ctx->save_op != NULL) 1135 (ctx->save_op)(ctx->arg); 1136 } 1137 1138 void 1139 restorectx(kthread_t *t) 1140 { 1141 struct ctxop *ctx; 1142 1143 ASSERT(t == curthread); 1144 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1145 if (ctx->restore_op != NULL) 1146 (ctx->restore_op)(ctx->arg); 1147 } 1148 1149 void 1150 forkctx(kthread_t *t, kthread_t *ct) 1151 { 1152 struct ctxop *ctx; 1153 1154 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1155 if (ctx->fork_op != NULL) 1156 (ctx->fork_op)(t, ct); 1157 } 1158 1159 /* 1160 * Note that this operator is only invoked via the _lwp_create 1161 * system call. The system may have other reasons to create lwps 1162 * e.g. the agent lwp or the doors unreferenced lwp. 1163 */ 1164 void 1165 lwp_createctx(kthread_t *t, kthread_t *ct) 1166 { 1167 struct ctxop *ctx; 1168 1169 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1170 if (ctx->lwp_create_op != NULL) 1171 (ctx->lwp_create_op)(t, ct); 1172 } 1173 1174 /* 1175 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1176 * needed when the thread/LWP leaves the processor for the last time. This 1177 * routine is not intended to deal with freeing memory; freectx() is used for 1178 * that purpose during thread_free(). This routine is provided to allow for 1179 * clean-up that can't wait until thread_free(). 1180 */ 1181 void 1182 exitctx(kthread_t *t) 1183 { 1184 struct ctxop *ctx; 1185 1186 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1187 if (ctx->exit_op != NULL) 1188 (ctx->exit_op)(t); 1189 } 1190 1191 /* 1192 * freectx is called from thread_free() and exec() to get 1193 * rid of old thread context ops. 1194 */ 1195 void 1196 freectx(kthread_t *t, int isexec) 1197 { 1198 struct ctxop *ctx; 1199 1200 kpreempt_disable(); 1201 while ((ctx = t->t_ctx) != NULL) { 1202 t->t_ctx = ctx->next; 1203 if (ctx->free_op != NULL) 1204 (ctx->free_op)(ctx->arg, isexec); 1205 kmem_free(ctx, sizeof (struct ctxop)); 1206 } 1207 kpreempt_enable(); 1208 } 1209 1210 /* 1211 * freectx_ctx is called from lwp_create() when lwp is reused from 1212 * lwp_deathrow and its thread structure is added to thread_deathrow. 1213 * The thread structure to which this ctx was attached may be already 1214 * freed by the thread reaper so free_op implementations shouldn't rely 1215 * on thread structure to which this ctx was attached still being around. 1216 */ 1217 void 1218 freectx_ctx(struct ctxop *ctx) 1219 { 1220 struct ctxop *nctx; 1221 1222 ASSERT(ctx != NULL); 1223 1224 kpreempt_disable(); 1225 do { 1226 nctx = ctx->next; 1227 if (ctx->free_op != NULL) 1228 (ctx->free_op)(ctx->arg, 0); 1229 kmem_free(ctx, sizeof (struct ctxop)); 1230 } while ((ctx = nctx) != NULL); 1231 kpreempt_enable(); 1232 } 1233 1234 /* 1235 * Set the thread running; arrange for it to be swapped in if necessary. 1236 */ 1237 void 1238 setrun_locked(kthread_t *t) 1239 { 1240 ASSERT(THREAD_LOCK_HELD(t)); 1241 if (t->t_state == TS_SLEEP) { 1242 /* 1243 * Take off sleep queue. 1244 */ 1245 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1246 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1247 /* 1248 * Already on dispatcher queue. 1249 */ 1250 return; 1251 } else if (t->t_state == TS_WAIT) { 1252 waitq_setrun(t); 1253 } else if (t->t_state == TS_STOPPED) { 1254 /* 1255 * All of the sending of SIGCONT (TC_XSTART) and /proc 1256 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1257 * requested that the thread be run. 1258 * Just calling setrun() is not sufficient to set a stopped 1259 * thread running. TP_TXSTART is always set if the thread 1260 * is not stopped by a jobcontrol stop signal. 1261 * TP_TPSTART is always set if /proc is not controlling it. 1262 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1263 * The thread won't be stopped unless one of these 1264 * three mechanisms did it. 1265 * 1266 * These flags must be set before calling setrun_locked(t). 1267 * They can't be passed as arguments because the streams 1268 * code calls setrun() indirectly and the mechanism for 1269 * doing so admits only one argument. Note that the 1270 * thread must be locked in order to change t_schedflags. 1271 */ 1272 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1273 return; 1274 /* 1275 * Process is no longer stopped (a thread is running). 1276 */ 1277 t->t_whystop = 0; 1278 t->t_whatstop = 0; 1279 /* 1280 * Strictly speaking, we do not have to clear these 1281 * flags here; they are cleared on entry to stop(). 1282 * However, they are confusing when doing kernel 1283 * debugging or when they are revealed by ps(1). 1284 */ 1285 t->t_schedflag &= ~TS_ALLSTART; 1286 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1287 ASSERT(t->t_lockp == &transition_lock); 1288 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1289 /* 1290 * Let the class put the process on the dispatcher queue. 1291 */ 1292 CL_SETRUN(t); 1293 } 1294 } 1295 1296 void 1297 setrun(kthread_t *t) 1298 { 1299 thread_lock(t); 1300 setrun_locked(t); 1301 thread_unlock(t); 1302 } 1303 1304 /* 1305 * Unpin an interrupted thread. 1306 * When an interrupt occurs, the interrupt is handled on the stack 1307 * of an interrupt thread, taken from a pool linked to the CPU structure. 1308 * 1309 * When swtch() is switching away from an interrupt thread because it 1310 * blocked or was preempted, this routine is called to complete the 1311 * saving of the interrupted thread state, and returns the interrupted 1312 * thread pointer so it may be resumed. 1313 * 1314 * Called by swtch() only at high spl. 1315 */ 1316 kthread_t * 1317 thread_unpin() 1318 { 1319 kthread_t *t = curthread; /* current thread */ 1320 kthread_t *itp; /* interrupted thread */ 1321 int i; /* interrupt level */ 1322 extern int intr_passivate(); 1323 1324 ASSERT(t->t_intr != NULL); 1325 1326 itp = t->t_intr; /* interrupted thread */ 1327 t->t_intr = NULL; /* clear interrupt ptr */ 1328 1329 /* 1330 * Get state from interrupt thread for the one 1331 * it interrupted. 1332 */ 1333 1334 i = intr_passivate(t, itp); 1335 1336 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1337 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1338 i, t, t, itp, itp); 1339 1340 /* 1341 * Dissociate the current thread from the interrupted thread's LWP. 1342 */ 1343 t->t_lwp = NULL; 1344 1345 /* 1346 * Interrupt handlers above the level that spinlocks block must 1347 * not block. 1348 */ 1349 #if DEBUG 1350 if (i < 0 || i > LOCK_LEVEL) 1351 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1352 #endif 1353 1354 /* 1355 * Compute the CPU's base interrupt level based on the active 1356 * interrupts. 1357 */ 1358 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1359 set_base_spl(); 1360 1361 return (itp); 1362 } 1363 1364 /* 1365 * Create and initialize an interrupt thread. 1366 * Returns non-zero on error. 1367 * Called at spl7() or better. 1368 */ 1369 void 1370 thread_create_intr(struct cpu *cp) 1371 { 1372 kthread_t *tp; 1373 1374 tp = thread_create(NULL, 0, 1375 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1376 1377 /* 1378 * Set the thread in the TS_FREE state. The state will change 1379 * to TS_ONPROC only while the interrupt is active. Think of these 1380 * as being on a private free list for the CPU. Being TS_FREE keeps 1381 * inactive interrupt threads out of debugger thread lists. 1382 * 1383 * We cannot call thread_create with TS_FREE because of the current 1384 * checks there for ONPROC. Fix this when thread_create takes flags. 1385 */ 1386 THREAD_FREEINTR(tp, cp); 1387 1388 /* 1389 * Nobody should ever reference the credentials of an interrupt 1390 * thread so make it NULL to catch any such references. 1391 */ 1392 tp->t_cred = NULL; 1393 tp->t_flag |= T_INTR_THREAD; 1394 tp->t_cpu = cp; 1395 tp->t_bound_cpu = cp; 1396 tp->t_disp_queue = cp->cpu_disp; 1397 tp->t_affinitycnt = 1; 1398 tp->t_preempt = 1; 1399 1400 /* 1401 * Don't make a user-requested binding on this thread so that 1402 * the processor can be offlined. 1403 */ 1404 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1405 tp->t_bind_pset = PS_NONE; 1406 1407 #if defined(__i386) || defined(__amd64) 1408 tp->t_stk -= STACK_ALIGN; 1409 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1410 #endif 1411 1412 /* 1413 * Link onto CPU's interrupt pool. 1414 */ 1415 tp->t_link = cp->cpu_intr_thread; 1416 cp->cpu_intr_thread = tp; 1417 } 1418 1419 /* 1420 * TSD -- THREAD SPECIFIC DATA 1421 */ 1422 static kmutex_t tsd_mutex; /* linked list spin lock */ 1423 static uint_t tsd_nkeys; /* size of destructor array */ 1424 /* per-key destructor funcs */ 1425 static void (**tsd_destructor)(void *); 1426 /* list of tsd_thread's */ 1427 static struct tsd_thread *tsd_list; 1428 1429 /* 1430 * Default destructor 1431 * Needed because NULL destructor means that the key is unused 1432 */ 1433 /* ARGSUSED */ 1434 void 1435 tsd_defaultdestructor(void *value) 1436 {} 1437 1438 /* 1439 * Create a key (index into per thread array) 1440 * Locks out tsd_create, tsd_destroy, and tsd_exit 1441 * May allocate memory with lock held 1442 */ 1443 void 1444 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1445 { 1446 int i; 1447 uint_t nkeys; 1448 1449 /* 1450 * if key is allocated, do nothing 1451 */ 1452 mutex_enter(&tsd_mutex); 1453 if (*keyp) { 1454 mutex_exit(&tsd_mutex); 1455 return; 1456 } 1457 /* 1458 * find an unused key 1459 */ 1460 if (destructor == NULL) 1461 destructor = tsd_defaultdestructor; 1462 1463 for (i = 0; i < tsd_nkeys; ++i) 1464 if (tsd_destructor[i] == NULL) 1465 break; 1466 1467 /* 1468 * if no unused keys, increase the size of the destructor array 1469 */ 1470 if (i == tsd_nkeys) { 1471 if ((nkeys = (tsd_nkeys << 1)) == 0) 1472 nkeys = 1; 1473 tsd_destructor = 1474 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1475 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1476 (size_t)(nkeys * sizeof (void (*)(void *)))); 1477 tsd_nkeys = nkeys; 1478 } 1479 1480 /* 1481 * allocate the next available unused key 1482 */ 1483 tsd_destructor[i] = destructor; 1484 *keyp = i + 1; 1485 mutex_exit(&tsd_mutex); 1486 } 1487 1488 /* 1489 * Destroy a key -- this is for unloadable modules 1490 * 1491 * Assumes that the caller is preventing tsd_set and tsd_get 1492 * Locks out tsd_create, tsd_destroy, and tsd_exit 1493 * May free memory with lock held 1494 */ 1495 void 1496 tsd_destroy(uint_t *keyp) 1497 { 1498 uint_t key; 1499 struct tsd_thread *tsd; 1500 1501 /* 1502 * protect the key namespace and our destructor lists 1503 */ 1504 mutex_enter(&tsd_mutex); 1505 key = *keyp; 1506 *keyp = 0; 1507 1508 ASSERT(key <= tsd_nkeys); 1509 1510 /* 1511 * if the key is valid 1512 */ 1513 if (key != 0) { 1514 uint_t k = key - 1; 1515 /* 1516 * for every thread with TSD, call key's destructor 1517 */ 1518 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1519 /* 1520 * no TSD for key in this thread 1521 */ 1522 if (key > tsd->ts_nkeys) 1523 continue; 1524 /* 1525 * call destructor for key 1526 */ 1527 if (tsd->ts_value[k] && tsd_destructor[k]) 1528 (*tsd_destructor[k])(tsd->ts_value[k]); 1529 /* 1530 * reset value for key 1531 */ 1532 tsd->ts_value[k] = NULL; 1533 } 1534 /* 1535 * actually free the key (NULL destructor == unused) 1536 */ 1537 tsd_destructor[k] = NULL; 1538 } 1539 1540 mutex_exit(&tsd_mutex); 1541 } 1542 1543 /* 1544 * Quickly return the per thread value that was stored with the specified key 1545 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1546 */ 1547 void * 1548 tsd_get(uint_t key) 1549 { 1550 return (tsd_agent_get(curthread, key)); 1551 } 1552 1553 /* 1554 * Set a per thread value indexed with the specified key 1555 */ 1556 int 1557 tsd_set(uint_t key, void *value) 1558 { 1559 return (tsd_agent_set(curthread, key, value)); 1560 } 1561 1562 /* 1563 * Like tsd_get(), except that the agent lwp can get the tsd of 1564 * another thread in the same process (the agent thread only runs when the 1565 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1566 */ 1567 void * 1568 tsd_agent_get(kthread_t *t, uint_t key) 1569 { 1570 struct tsd_thread *tsd = t->t_tsd; 1571 1572 ASSERT(t == curthread || 1573 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1574 1575 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1576 return (tsd->ts_value[key - 1]); 1577 return (NULL); 1578 } 1579 1580 /* 1581 * Like tsd_set(), except that the agent lwp can set the tsd of 1582 * another thread in the same process, or syslwp can set the tsd 1583 * of a thread it's in the middle of creating. 1584 * 1585 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1586 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1587 * lock held 1588 */ 1589 int 1590 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1591 { 1592 struct tsd_thread *tsd = t->t_tsd; 1593 1594 ASSERT(t == curthread || 1595 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1596 1597 if (key == 0) 1598 return (EINVAL); 1599 if (tsd == NULL) 1600 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1601 if (key <= tsd->ts_nkeys) { 1602 tsd->ts_value[key - 1] = value; 1603 return (0); 1604 } 1605 1606 ASSERT(key <= tsd_nkeys); 1607 1608 /* 1609 * lock out tsd_destroy() 1610 */ 1611 mutex_enter(&tsd_mutex); 1612 if (tsd->ts_nkeys == 0) { 1613 /* 1614 * Link onto list of threads with TSD 1615 */ 1616 if ((tsd->ts_next = tsd_list) != NULL) 1617 tsd_list->ts_prev = tsd; 1618 tsd_list = tsd; 1619 } 1620 1621 /* 1622 * Allocate thread local storage and set the value for key 1623 */ 1624 tsd->ts_value = tsd_realloc(tsd->ts_value, 1625 tsd->ts_nkeys * sizeof (void *), 1626 key * sizeof (void *)); 1627 tsd->ts_nkeys = key; 1628 tsd->ts_value[key - 1] = value; 1629 mutex_exit(&tsd_mutex); 1630 1631 return (0); 1632 } 1633 1634 1635 /* 1636 * Return the per thread value that was stored with the specified key 1637 * If necessary, create the key and the value 1638 * Assumes the caller is protecting *keyp from tsd_destroy 1639 */ 1640 void * 1641 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1642 { 1643 void *value; 1644 uint_t key = *keyp; 1645 struct tsd_thread *tsd = curthread->t_tsd; 1646 1647 if (tsd == NULL) 1648 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1649 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1650 return (value); 1651 if (key == 0) 1652 tsd_create(keyp, destroy); 1653 (void) tsd_set(*keyp, value = (*allocate)()); 1654 1655 return (value); 1656 } 1657 1658 /* 1659 * Called from thread_exit() to run the destructor function for each tsd 1660 * Locks out tsd_create and tsd_destroy 1661 * Assumes that the destructor *DOES NOT* use tsd 1662 */ 1663 void 1664 tsd_exit(void) 1665 { 1666 int i; 1667 struct tsd_thread *tsd = curthread->t_tsd; 1668 1669 if (tsd == NULL) 1670 return; 1671 1672 if (tsd->ts_nkeys == 0) { 1673 kmem_free(tsd, sizeof (*tsd)); 1674 curthread->t_tsd = NULL; 1675 return; 1676 } 1677 1678 /* 1679 * lock out tsd_create and tsd_destroy, call 1680 * the destructor, and mark the value as destroyed. 1681 */ 1682 mutex_enter(&tsd_mutex); 1683 1684 for (i = 0; i < tsd->ts_nkeys; i++) { 1685 if (tsd->ts_value[i] && tsd_destructor[i]) 1686 (*tsd_destructor[i])(tsd->ts_value[i]); 1687 tsd->ts_value[i] = NULL; 1688 } 1689 1690 /* 1691 * remove from linked list of threads with TSD 1692 */ 1693 if (tsd->ts_next) 1694 tsd->ts_next->ts_prev = tsd->ts_prev; 1695 if (tsd->ts_prev) 1696 tsd->ts_prev->ts_next = tsd->ts_next; 1697 if (tsd_list == tsd) 1698 tsd_list = tsd->ts_next; 1699 1700 mutex_exit(&tsd_mutex); 1701 1702 /* 1703 * free up the TSD 1704 */ 1705 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1706 kmem_free(tsd, sizeof (struct tsd_thread)); 1707 curthread->t_tsd = NULL; 1708 } 1709 1710 /* 1711 * realloc 1712 */ 1713 static void * 1714 tsd_realloc(void *old, size_t osize, size_t nsize) 1715 { 1716 void *new; 1717 1718 new = kmem_zalloc(nsize, KM_SLEEP); 1719 if (old) { 1720 bcopy(old, new, osize); 1721 kmem_free(old, osize); 1722 } 1723 return (new); 1724 } 1725 1726 /* 1727 * Return non-zero if an interrupt is being serviced. 1728 */ 1729 int 1730 servicing_interrupt() 1731 { 1732 int onintr = 0; 1733 1734 /* Are we an interrupt thread */ 1735 if (curthread->t_flag & T_INTR_THREAD) 1736 return (1); 1737 /* Are we servicing a high level interrupt? */ 1738 if (CPU_ON_INTR(CPU)) { 1739 kpreempt_disable(); 1740 onintr = CPU_ON_INTR(CPU); 1741 kpreempt_enable(); 1742 } 1743 return (onintr); 1744 } 1745 1746 1747 /* 1748 * Change the dispatch priority of a thread in the system. 1749 * Used when raising or lowering a thread's priority. 1750 * (E.g., priority inheritance) 1751 * 1752 * Since threads are queued according to their priority, we 1753 * we must check the thread's state to determine whether it 1754 * is on a queue somewhere. If it is, we've got to: 1755 * 1756 * o Dequeue the thread. 1757 * o Change its effective priority. 1758 * o Enqueue the thread. 1759 * 1760 * Assumptions: The thread whose priority we wish to change 1761 * must be locked before we call thread_change_(e)pri(). 1762 * The thread_change(e)pri() function doesn't drop the thread 1763 * lock--that must be done by its caller. 1764 */ 1765 void 1766 thread_change_epri(kthread_t *t, pri_t disp_pri) 1767 { 1768 uint_t state; 1769 1770 ASSERT(THREAD_LOCK_HELD(t)); 1771 1772 /* 1773 * If the inherited priority hasn't actually changed, 1774 * just return. 1775 */ 1776 if (t->t_epri == disp_pri) 1777 return; 1778 1779 state = t->t_state; 1780 1781 /* 1782 * If it's not on a queue, change the priority with impunity. 1783 */ 1784 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1785 t->t_epri = disp_pri; 1786 if (state == TS_ONPROC) { 1787 cpu_t *cp = t->t_disp_queue->disp_cpu; 1788 1789 if (t == cp->cpu_dispthread) 1790 cp->cpu_dispatch_pri = DISP_PRIO(t); 1791 } 1792 } else if (state == TS_SLEEP) { 1793 /* 1794 * Take the thread out of its sleep queue. 1795 * Change the inherited priority. 1796 * Re-enqueue the thread. 1797 * Each synchronization object exports a function 1798 * to do this in an appropriate manner. 1799 */ 1800 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1801 } else if (state == TS_WAIT) { 1802 /* 1803 * Re-enqueue a thread on the wait queue if its 1804 * effective priority needs to change. 1805 */ 1806 if (disp_pri != t->t_epri) 1807 waitq_change_pri(t, disp_pri); 1808 } else { 1809 /* 1810 * The thread is on a run queue. 1811 * Note: setbackdq() may not put the thread 1812 * back on the same run queue where it originally 1813 * resided. 1814 */ 1815 (void) dispdeq(t); 1816 t->t_epri = disp_pri; 1817 setbackdq(t); 1818 } 1819 schedctl_set_cidpri(t); 1820 } 1821 1822 /* 1823 * Function: Change the t_pri field of a thread. 1824 * Side Effects: Adjust the thread ordering on a run queue 1825 * or sleep queue, if necessary. 1826 * Returns: 1 if the thread was on a run queue, else 0. 1827 */ 1828 int 1829 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1830 { 1831 uint_t state; 1832 int on_rq = 0; 1833 1834 ASSERT(THREAD_LOCK_HELD(t)); 1835 1836 state = t->t_state; 1837 THREAD_WILLCHANGE_PRI(t, disp_pri); 1838 1839 /* 1840 * If it's not on a queue, change the priority with impunity. 1841 */ 1842 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1843 t->t_pri = disp_pri; 1844 1845 if (state == TS_ONPROC) { 1846 cpu_t *cp = t->t_disp_queue->disp_cpu; 1847 1848 if (t == cp->cpu_dispthread) 1849 cp->cpu_dispatch_pri = DISP_PRIO(t); 1850 } 1851 } else if (state == TS_SLEEP) { 1852 /* 1853 * If the priority has changed, take the thread out of 1854 * its sleep queue and change the priority. 1855 * Re-enqueue the thread. 1856 * Each synchronization object exports a function 1857 * to do this in an appropriate manner. 1858 */ 1859 if (disp_pri != t->t_pri) 1860 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1861 } else if (state == TS_WAIT) { 1862 /* 1863 * Re-enqueue a thread on the wait queue if its 1864 * priority needs to change. 1865 */ 1866 if (disp_pri != t->t_pri) 1867 waitq_change_pri(t, disp_pri); 1868 } else { 1869 /* 1870 * The thread is on a run queue. 1871 * Note: setbackdq() may not put the thread 1872 * back on the same run queue where it originally 1873 * resided. 1874 * 1875 * We still requeue the thread even if the priority 1876 * is unchanged to preserve round-robin (and other) 1877 * effects between threads of the same priority. 1878 */ 1879 on_rq = dispdeq(t); 1880 ASSERT(on_rq); 1881 t->t_pri = disp_pri; 1882 if (front) { 1883 setfrontdq(t); 1884 } else { 1885 setbackdq(t); 1886 } 1887 } 1888 schedctl_set_cidpri(t); 1889 return (on_rq); 1890 } 1891 1892 /* 1893 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1894 * specific pattern. 1895 */ 1896 static void 1897 stkinfo_begin(kthread_t *t) 1898 { 1899 caddr_t start; /* stack start */ 1900 caddr_t end; /* stack end */ 1901 uint64_t *ptr; /* pattern pointer */ 1902 1903 /* 1904 * Stack grows up or down, see thread_create(), 1905 * compute stack memory area start and end (start < end). 1906 */ 1907 if (t->t_stk > t->t_stkbase) { 1908 /* stack grows down */ 1909 start = t->t_stkbase; 1910 end = t->t_stk; 1911 } else { 1912 /* stack grows up */ 1913 start = t->t_stk; 1914 end = t->t_stkbase; 1915 } 1916 1917 /* 1918 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1919 * alignement for start and end in stack area boundaries 1920 * (protection against corrupt t_stkbase/t_stk data). 1921 */ 1922 if ((((uintptr_t)start) & 0x7) != 0) { 1923 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1924 } 1925 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1926 1927 if ((end <= start) || (end - start) > (1024 * 1024)) { 1928 /* negative or stack size > 1 meg, assume bogus */ 1929 return; 1930 } 1931 1932 /* fill stack area with a pattern (instead of zeros) */ 1933 ptr = (uint64_t *)((void *)start); 1934 while (ptr < (uint64_t *)((void *)end)) { 1935 *ptr++ = KMEM_STKINFO_PATTERN; 1936 } 1937 } 1938 1939 1940 /* 1941 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 1942 * compute the percentage of kernel stack really used, and set in the log 1943 * if it's the latest highest percentage. 1944 */ 1945 static void 1946 stkinfo_end(kthread_t *t) 1947 { 1948 caddr_t start; /* stack start */ 1949 caddr_t end; /* stack end */ 1950 uint64_t *ptr; /* pattern pointer */ 1951 size_t stksz; /* stack size */ 1952 size_t smallest = 0; 1953 size_t percent = 0; 1954 uint_t index = 0; 1955 uint_t i; 1956 static size_t smallest_percent = (size_t)-1; 1957 static uint_t full = 0; 1958 1959 /* create the stackinfo log, if doesn't already exist */ 1960 mutex_enter(&kmem_stkinfo_lock); 1961 if (kmem_stkinfo_log == NULL) { 1962 kmem_stkinfo_log = (kmem_stkinfo_t *) 1963 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 1964 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 1965 if (kmem_stkinfo_log == NULL) { 1966 mutex_exit(&kmem_stkinfo_lock); 1967 return; 1968 } 1969 } 1970 mutex_exit(&kmem_stkinfo_lock); 1971 1972 /* 1973 * Stack grows up or down, see thread_create(), 1974 * compute stack memory area start and end (start < end). 1975 */ 1976 if (t->t_stk > t->t_stkbase) { 1977 /* stack grows down */ 1978 start = t->t_stkbase; 1979 end = t->t_stk; 1980 } else { 1981 /* stack grows up */ 1982 start = t->t_stk; 1983 end = t->t_stkbase; 1984 } 1985 1986 /* stack size as found in kthread_t */ 1987 stksz = end - start; 1988 1989 /* 1990 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 1991 * alignement for start and end in stack area boundaries 1992 * (protection against corrupt t_stkbase/t_stk data). 1993 */ 1994 if ((((uintptr_t)start) & 0x7) != 0) { 1995 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 1996 } 1997 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 1998 1999 if ((end <= start) || (end - start) > (1024 * 1024)) { 2000 /* negative or stack size > 1 meg, assume bogus */ 2001 return; 2002 } 2003 2004 /* search until no pattern in the stack */ 2005 if (t->t_stk > t->t_stkbase) { 2006 /* stack grows down */ 2007 #if defined(__i386) || defined(__amd64) 2008 /* 2009 * 6 longs are pushed on stack, see thread_load(). Skip 2010 * them, so if kthread has never run, percent is zero. 2011 * 8 bytes alignement is preserved for a 32 bit kernel, 2012 * 6 x 4 = 24, 24 is a multiple of 8. 2013 * 2014 */ 2015 end -= (6 * sizeof (long)); 2016 #endif 2017 ptr = (uint64_t *)((void *)start); 2018 while (ptr < (uint64_t *)((void *)end)) { 2019 if (*ptr != KMEM_STKINFO_PATTERN) { 2020 percent = stkinfo_percent(end, 2021 start, (caddr_t)ptr); 2022 break; 2023 } 2024 ptr++; 2025 } 2026 } else { 2027 /* stack grows up */ 2028 ptr = (uint64_t *)((void *)end); 2029 ptr--; 2030 while (ptr >= (uint64_t *)((void *)start)) { 2031 if (*ptr != KMEM_STKINFO_PATTERN) { 2032 percent = stkinfo_percent(start, 2033 end, (caddr_t)ptr); 2034 break; 2035 } 2036 ptr--; 2037 } 2038 } 2039 2040 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2041 size_t, stksz, size_t, percent); 2042 2043 if (percent == 0) { 2044 return; 2045 } 2046 2047 mutex_enter(&kmem_stkinfo_lock); 2048 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2049 /* 2050 * The log is full and already contains the highest values 2051 */ 2052 mutex_exit(&kmem_stkinfo_lock); 2053 return; 2054 } 2055 2056 /* keep a log of the highest used stack */ 2057 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2058 if (kmem_stkinfo_log[i].percent == 0) { 2059 index = i; 2060 full++; 2061 break; 2062 } 2063 if (smallest == 0) { 2064 smallest = kmem_stkinfo_log[i].percent; 2065 index = i; 2066 continue; 2067 } 2068 if (kmem_stkinfo_log[i].percent < smallest) { 2069 smallest = kmem_stkinfo_log[i].percent; 2070 index = i; 2071 } 2072 } 2073 2074 if (percent >= kmem_stkinfo_log[index].percent) { 2075 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2076 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2077 kmem_stkinfo_log[index].start = start; 2078 kmem_stkinfo_log[index].stksz = stksz; 2079 kmem_stkinfo_log[index].percent = percent; 2080 kmem_stkinfo_log[index].t_tid = t->t_tid; 2081 kmem_stkinfo_log[index].cmd[0] = '\0'; 2082 if (t->t_tid != 0) { 2083 stksz = strlen((t->t_procp)->p_user.u_comm); 2084 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2085 stksz = KMEM_STKINFO_STR_SIZE - 1; 2086 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2087 } else { 2088 stksz += 1; 2089 } 2090 (void) memcpy(kmem_stkinfo_log[index].cmd, 2091 (t->t_procp)->p_user.u_comm, stksz); 2092 } 2093 if (percent < smallest_percent) { 2094 smallest_percent = percent; 2095 } 2096 } 2097 mutex_exit(&kmem_stkinfo_lock); 2098 } 2099 2100 /* 2101 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2102 */ 2103 static size_t 2104 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2105 { 2106 size_t percent; 2107 size_t s; 2108 2109 if (t_stk > t_stkbase) { 2110 /* stack grows down */ 2111 if (sp > t_stk) { 2112 return (0); 2113 } 2114 if (sp < t_stkbase) { 2115 return (100); 2116 } 2117 percent = t_stk - sp + 1; 2118 s = t_stk - t_stkbase + 1; 2119 } else { 2120 /* stack grows up */ 2121 if (sp < t_stk) { 2122 return (0); 2123 } 2124 if (sp > t_stkbase) { 2125 return (100); 2126 } 2127 percent = sp - t_stk + 1; 2128 s = t_stkbase - t_stk + 1; 2129 } 2130 percent = ((100 * percent) / s) + 1; 2131 if (percent > 100) { 2132 percent = 100; 2133 } 2134 return (percent); 2135 } 2136 2137 /* 2138 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters 2139 * long. It is expected that callers (acting on behalf of userland clients) 2140 * will perform any required checks to return the correct error semantics. 2141 * It is also expected callers on behalf of userland clients have done 2142 * any necessary permission checks. 2143 */ 2144 int 2145 thread_setname(kthread_t *t, const char *name) 2146 { 2147 char *buf = NULL; 2148 2149 /* 2150 * We optimistically assume that a thread's name will only be set 2151 * once and so allocate memory in preparation of setting t_name. 2152 * If it turns out a name has already been set, we just discard (free) 2153 * the buffer we just allocated and reuse the current buffer 2154 * (as all should be THREAD_NAME_MAX large). 2155 * 2156 * Such an arrangement means over the lifetime of a kthread_t, t_name 2157 * is either NULL or has one value (the address of the buffer holding 2158 * the current thread name). The assumption is that most kthread_t 2159 * instances will not have a name assigned, so dynamically allocating 2160 * the memory should minimize the footprint of this feature, but by 2161 * having the buffer persist for the life of the thread, it simplifies 2162 * usage in highly constrained situations (e.g. dtrace). 2163 */ 2164 if (name != NULL && name[0] != '\0') { 2165 for (size_t i = 0; name[i] != '\0'; i++) { 2166 if (!isprint(name[i])) 2167 return (EINVAL); 2168 } 2169 2170 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP); 2171 (void) strlcpy(buf, name, THREAD_NAME_MAX); 2172 } 2173 2174 mutex_enter(&ttoproc(t)->p_lock); 2175 if (t->t_name == NULL) { 2176 t->t_name = buf; 2177 } else { 2178 if (buf != NULL) { 2179 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX); 2180 kmem_free(buf, THREAD_NAME_MAX); 2181 } else { 2182 bzero(t->t_name, THREAD_NAME_MAX); 2183 } 2184 } 2185 mutex_exit(&ttoproc(t)->p_lock); 2186 return (0); 2187 } 2188 2189 int 2190 thread_vsetname(kthread_t *t, const char *fmt, ...) 2191 { 2192 char name[THREAD_NAME_MAX]; 2193 va_list va; 2194 int rc; 2195 2196 va_start(va, fmt); 2197 rc = vsnprintf(name, sizeof (name), fmt, va); 2198 va_end(va); 2199 2200 if (rc < 0) 2201 return (EINVAL); 2202 2203 if (rc >= sizeof (name)) 2204 return (ENAMETOOLONG); 2205 2206 return (thread_setname(t, name)); 2207 } 2208