1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/resource.h> 41 #include <sys/task.h> 42 #include <sys/project.h> 43 #include <sys/proc.h> 44 #include <sys/debug.h> 45 #include <sys/disp.h> 46 #include <sys/class.h> 47 #include <vm/seg_kmem.h> 48 #include <vm/seg_kp.h> 49 #include <sys/machlock.h> 50 #include <sys/kmem.h> 51 #include <sys/varargs.h> 52 #include <sys/turnstile.h> 53 #include <sys/poll.h> 54 #include <sys/vtrace.h> 55 #include <sys/callb.h> 56 #include <c2/audit.h> 57 #include <sys/tnf.h> 58 #include <sys/sobject.h> 59 #include <sys/cpupart.h> 60 #include <sys/pset.h> 61 #include <sys/door.h> 62 #include <sys/spl.h> 63 #include <sys/copyops.h> 64 #include <sys/rctl.h> 65 #include <sys/brand.h> 66 #include <sys/pool.h> 67 #include <sys/zone.h> 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tndb.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 78 struct kmem_cache *thread_cache; /* cache of free threads */ 79 struct kmem_cache *lwp_cache; /* cache of free lwps */ 80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 81 82 /* 83 * allthreads is only for use by kmem_readers. All kernel loops can use 84 * the current thread as a start/end point. 85 */ 86 static kthread_t *allthreads = &t0; /* circular list of all threads */ 87 88 static kcondvar_t reaper_cv; /* synchronization var */ 89 kthread_t *thread_deathrow; /* circular list of reapable threads */ 90 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 91 kmutex_t reaplock; /* protects lwp and thread deathrows */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 thread_free_lock_t *thread_free_lock; 97 /* protects tick thread from reaper */ 98 99 extern int nthread; 100 101 id_t syscid; /* system scheduling class ID */ 102 void *segkp_thread; /* cookie for segkp pool */ 103 104 int lwp_cache_sz = 32; 105 int t_cache_sz = 8; 106 static kt_did_t next_t_id = 1; 107 108 /* 109 * Min/Max stack sizes for stack size parameters 110 */ 111 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 112 #define MIN_STKSIZE DEFAULTSTKSZ 113 114 /* 115 * default_stksize overrides lwp_default_stksize if it is set. 116 */ 117 int default_stksize; 118 int lwp_default_stksize; 119 120 static zone_key_t zone_thread_key; 121 122 /* 123 * forward declarations for internal thread specific data (tsd) 124 */ 125 static void *tsd_realloc(void *, size_t, size_t); 126 127 void thread_reaper(void); 128 129 /*ARGSUSED*/ 130 static int 131 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 132 { 133 bzero(buf, sizeof (turnstile_t)); 134 return (0); 135 } 136 137 /*ARGSUSED*/ 138 static void 139 turnstile_destructor(void *buf, void *cdrarg) 140 { 141 turnstile_t *ts = buf; 142 143 ASSERT(ts->ts_free == NULL); 144 ASSERT(ts->ts_waiters == 0); 145 ASSERT(ts->ts_inheritor == NULL); 146 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 147 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 148 } 149 150 void 151 thread_init(void) 152 { 153 kthread_t *tp; 154 extern char sys_name[]; 155 extern void idle(); 156 struct cpu *cpu = CPU; 157 int i; 158 kmutex_t *lp; 159 160 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 161 thread_free_lock = 162 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 163 for (i = 0; i < THREAD_FREE_NUM; i++) { 164 lp = &thread_free_lock[i].tf_lock; 165 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 166 } 167 168 #if defined(__i386) || defined(__amd64) 169 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 170 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 171 172 /* 173 * "struct _klwp" includes a "struct pcb", which includes a 174 * "struct fpu", which needs to be 16-byte aligned on amd64 175 * (and even on i386 for fxsave/fxrstor). 176 */ 177 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 178 16, NULL, NULL, NULL, NULL, NULL, 0); 179 #else 180 /* 181 * Allocate thread structures from static_arena. This prevents 182 * issues where a thread tries to relocate its own thread 183 * structure and touches it after the mapping has been suspended. 184 */ 185 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 186 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 187 188 lwp_stk_cache_init(); 189 190 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 191 0, NULL, NULL, NULL, NULL, NULL, 0); 192 #endif 193 194 turnstile_cache = kmem_cache_create("turnstile_cache", 195 sizeof (turnstile_t), 0, 196 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 197 198 label_init(); 199 cred_init(); 200 201 /* 202 * Initialize various resource management facilities. 203 */ 204 rctl_init(); 205 cpucaps_init(); 206 /* 207 * Zone_init() should be called before project_init() so that project ID 208 * for the first project is initialized correctly. 209 */ 210 zone_init(); 211 project_init(); 212 brand_init(); 213 kiconv_init(); 214 task_init(); 215 tcache_init(); 216 pool_init(); 217 218 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 219 220 /* 221 * Originally, we had two parameters to set default stack 222 * size: one for lwp's (lwp_default_stksize), and one for 223 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 224 * Now we have a third parameter that overrides both if it is 225 * set to a legal stack size, called default_stksize. 226 */ 227 228 if (default_stksize == 0) { 229 default_stksize = DEFAULTSTKSZ; 230 } else if (default_stksize % PAGESIZE != 0 || 231 default_stksize > MAX_STKSIZE || 232 default_stksize < MIN_STKSIZE) { 233 cmn_err(CE_WARN, "Illegal stack size. Using %d", 234 (int)DEFAULTSTKSZ); 235 default_stksize = DEFAULTSTKSZ; 236 } else { 237 lwp_default_stksize = default_stksize; 238 } 239 240 if (lwp_default_stksize == 0) { 241 lwp_default_stksize = default_stksize; 242 } else if (lwp_default_stksize % PAGESIZE != 0 || 243 lwp_default_stksize > MAX_STKSIZE || 244 lwp_default_stksize < MIN_STKSIZE) { 245 cmn_err(CE_WARN, "Illegal stack size. Using %d", 246 default_stksize); 247 lwp_default_stksize = default_stksize; 248 } 249 250 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 251 lwp_default_stksize, 252 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 253 254 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 255 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 256 257 (void) getcid(sys_name, &syscid); 258 curthread->t_cid = syscid; /* current thread is t0 */ 259 260 /* 261 * Set up the first CPU's idle thread. 262 * It runs whenever the CPU has nothing worthwhile to do. 263 */ 264 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 265 cpu->cpu_idle_thread = tp; 266 tp->t_preempt = 1; 267 tp->t_disp_queue = cpu->cpu_disp; 268 ASSERT(tp->t_disp_queue != NULL); 269 tp->t_bound_cpu = cpu; 270 tp->t_affinitycnt = 1; 271 272 /* 273 * Registering a thread in the callback table is usually 274 * done in the initialization code of the thread. In this 275 * case, we do it right after thread creation to avoid 276 * blocking idle thread while registering itself. It also 277 * avoids the possibility of reregistration in case a CPU 278 * restarts its idle thread. 279 */ 280 CALLB_CPR_INIT_SAFE(tp, "idle"); 281 282 /* 283 * Create the thread_reaper daemon. From this point on, exited 284 * threads will get reaped. 285 */ 286 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 287 NULL, 0, &p0, TS_RUN, minclsyspri); 288 289 /* 290 * Finish initializing the kernel memory allocator now that 291 * thread_create() is available. 292 */ 293 kmem_thread_init(); 294 295 if (boothowto & RB_DEBUG) 296 kdi_dvec_thravail(); 297 } 298 299 /* 300 * Create a thread. 301 * 302 * thread_create() blocks for memory if necessary. It never fails. 303 * 304 * If stk is NULL, the thread is created at the base of the stack 305 * and cannot be swapped. 306 */ 307 kthread_t * 308 thread_create( 309 caddr_t stk, 310 size_t stksize, 311 void (*proc)(), 312 void *arg, 313 size_t len, 314 proc_t *pp, 315 int state, 316 pri_t pri) 317 { 318 kthread_t *t; 319 extern struct classfuncs sys_classfuncs; 320 turnstile_t *ts; 321 322 /* 323 * Every thread keeps a turnstile around in case it needs to block. 324 * The only reason the turnstile is not simply part of the thread 325 * structure is that we may have to break the association whenever 326 * more than one thread blocks on a given synchronization object. 327 * From a memory-management standpoint, turnstiles are like the 328 * "attached mblks" that hang off dblks in the streams allocator. 329 */ 330 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 331 332 if (stk == NULL) { 333 /* 334 * alloc both thread and stack in segkp chunk 335 */ 336 337 if (stksize < default_stksize) 338 stksize = default_stksize; 339 340 if (stksize == default_stksize) { 341 stk = (caddr_t)segkp_cache_get(segkp_thread); 342 } else { 343 stksize = roundup(stksize, PAGESIZE); 344 stk = (caddr_t)segkp_get(segkp, stksize, 345 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 346 } 347 348 ASSERT(stk != NULL); 349 350 /* 351 * The machine-dependent mutex code may require that 352 * thread pointers (since they may be used for mutex owner 353 * fields) have certain alignment requirements. 354 * PTR24_ALIGN is the size of the alignment quanta. 355 * XXX - assumes stack grows toward low addresses. 356 */ 357 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 358 cmn_err(CE_PANIC, "thread_create: proposed stack size" 359 " too small to hold thread."); 360 #ifdef STACK_GROWTH_DOWN 361 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 362 stksize &= -PTR24_ALIGN; /* make thread aligned */ 363 t = (kthread_t *)(stk + stksize); 364 bzero(t, sizeof (kthread_t)); 365 if (audit_active) 366 audit_thread_create(t); 367 t->t_stk = stk + stksize; 368 t->t_stkbase = stk; 369 #else /* stack grows to larger addresses */ 370 stksize -= SA(sizeof (kthread_t)); 371 t = (kthread_t *)(stk); 372 bzero(t, sizeof (kthread_t)); 373 t->t_stk = stk + sizeof (kthread_t); 374 t->t_stkbase = stk + stksize + sizeof (kthread_t); 375 #endif /* STACK_GROWTH_DOWN */ 376 t->t_flag |= T_TALLOCSTK; 377 t->t_swap = stk; 378 } else { 379 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 380 bzero(t, sizeof (kthread_t)); 381 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 382 if (audit_active) 383 audit_thread_create(t); 384 /* 385 * Initialize t_stk to the kernel stack pointer to use 386 * upon entry to the kernel 387 */ 388 #ifdef STACK_GROWTH_DOWN 389 t->t_stk = stk + stksize; 390 t->t_stkbase = stk; 391 #else 392 t->t_stk = stk; /* 3b2-like */ 393 t->t_stkbase = stk + stksize; 394 #endif /* STACK_GROWTH_DOWN */ 395 } 396 397 /* set default stack flag */ 398 if (stksize == lwp_default_stksize) 399 t->t_flag |= T_DFLTSTK; 400 401 t->t_ts = ts; 402 403 /* 404 * p_cred could be NULL if it thread_create is called before cred_init 405 * is called in main. 406 */ 407 mutex_enter(&pp->p_crlock); 408 if (pp->p_cred) 409 crhold(t->t_cred = pp->p_cred); 410 mutex_exit(&pp->p_crlock); 411 t->t_start = gethrestime_sec(); 412 t->t_startpc = proc; 413 t->t_procp = pp; 414 t->t_clfuncs = &sys_classfuncs.thread; 415 t->t_cid = syscid; 416 t->t_pri = pri; 417 t->t_stime = lbolt; 418 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 419 t->t_bind_cpu = PBIND_NONE; 420 t->t_bind_pset = PS_NONE; 421 t->t_plockp = &pp->p_lock; 422 t->t_copyops = NULL; 423 t->t_taskq = NULL; 424 t->t_anttime = 0; 425 t->t_hatdepth = 0; 426 427 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 428 429 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 430 #ifndef NPROBE 431 /* Kernel probe */ 432 tnf_thread_create(t); 433 #endif /* NPROBE */ 434 LOCK_INIT_CLEAR(&t->t_lock); 435 436 /* 437 * Callers who give us a NULL proc must do their own 438 * stack initialization. e.g. lwp_create() 439 */ 440 if (proc != NULL) { 441 t->t_stk = thread_stk_init(t->t_stk); 442 thread_load(t, proc, arg, len); 443 } 444 445 /* 446 * Put a hold on project0. If this thread is actually in a 447 * different project, then t_proj will be changed later in 448 * lwp_create(). All kernel-only threads must be in project 0. 449 */ 450 t->t_proj = project_hold(proj0p); 451 452 lgrp_affinity_init(&t->t_lgrp_affinity); 453 454 mutex_enter(&pidlock); 455 nthread++; 456 t->t_did = next_t_id++; 457 t->t_prev = curthread->t_prev; 458 t->t_next = curthread; 459 460 /* 461 * Add the thread to the list of all threads, and initialize 462 * its t_cpu pointer. We need to block preemption since 463 * cpu_offline walks the thread list looking for threads 464 * with t_cpu pointing to the CPU being offlined. We want 465 * to make sure that the list is consistent and that if t_cpu 466 * is set, the thread is on the list. 467 */ 468 kpreempt_disable(); 469 curthread->t_prev->t_next = t; 470 curthread->t_prev = t; 471 472 /* 473 * Threads should never have a NULL t_cpu pointer so assign it 474 * here. If the thread is being created with state TS_RUN a 475 * better CPU may be chosen when it is placed on the run queue. 476 * 477 * We need to keep kernel preemption disabled when setting all 478 * three fields to keep them in sync. Also, always create in 479 * the default partition since that's where kernel threads go 480 * (if this isn't a kernel thread, t_cpupart will be changed 481 * in lwp_create before setting the thread runnable). 482 */ 483 t->t_cpupart = &cp_default; 484 485 /* 486 * For now, affiliate this thread with the root lgroup. 487 * Since the kernel does not (presently) allocate its memory 488 * in a locality aware fashion, the root is an appropriate home. 489 * If this thread is later associated with an lwp, it will have 490 * it's lgroup re-assigned at that time. 491 */ 492 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 493 494 /* 495 * Inherit the current cpu. If this cpu isn't part of the chosen 496 * lgroup, a new cpu will be chosen by cpu_choose when the thread 497 * is ready to run. 498 */ 499 if (CPU->cpu_part == &cp_default) 500 t->t_cpu = CPU; 501 else 502 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 503 t->t_pri, NULL); 504 505 t->t_disp_queue = t->t_cpu->cpu_disp; 506 kpreempt_enable(); 507 508 /* 509 * Initialize thread state and the dispatcher lock pointer. 510 * Need to hold onto pidlock to block allthreads walkers until 511 * the state is set. 512 */ 513 switch (state) { 514 case TS_RUN: 515 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 516 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 517 CL_SETRUN(t); 518 thread_unlock(t); 519 break; 520 521 case TS_ONPROC: 522 THREAD_ONPROC(t, t->t_cpu); 523 break; 524 525 case TS_FREE: 526 /* 527 * Free state will be used for intr threads. 528 * The interrupt routine must set the thread dispatcher 529 * lock pointer (t_lockp) if starting on a CPU 530 * other than the current one. 531 */ 532 THREAD_FREEINTR(t, CPU); 533 break; 534 535 case TS_STOPPED: 536 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 537 break; 538 539 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 540 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 541 } 542 mutex_exit(&pidlock); 543 return (t); 544 } 545 546 /* 547 * Move thread to project0 and take care of project reference counters. 548 */ 549 void 550 thread_rele(kthread_t *t) 551 { 552 kproject_t *kpj; 553 554 thread_lock(t); 555 556 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 557 kpj = ttoproj(t); 558 t->t_proj = proj0p; 559 560 thread_unlock(t); 561 562 if (kpj != proj0p) { 563 project_rele(kpj); 564 (void) project_hold(proj0p); 565 } 566 } 567 568 void 569 thread_exit(void) 570 { 571 kthread_t *t = curthread; 572 573 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 574 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 575 576 tsd_exit(); /* Clean up this thread's TSD */ 577 578 kcpc_passivate(); /* clean up performance counter state */ 579 580 /* 581 * No kernel thread should have called poll() without arranging 582 * calling pollcleanup() here. 583 */ 584 ASSERT(t->t_pollstate == NULL); 585 ASSERT(t->t_schedctl == NULL); 586 if (t->t_door) 587 door_slam(); /* in case thread did an upcall */ 588 589 #ifndef NPROBE 590 /* Kernel probe */ 591 if (t->t_tnf_tpdp) 592 tnf_thread_exit(); 593 #endif /* NPROBE */ 594 595 thread_rele(t); 596 t->t_preempt++; 597 598 /* 599 * remove thread from the all threads list so that 600 * death-row can use the same pointers. 601 */ 602 mutex_enter(&pidlock); 603 t->t_next->t_prev = t->t_prev; 604 t->t_prev->t_next = t->t_next; 605 ASSERT(allthreads != t); /* t0 never exits */ 606 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 607 mutex_exit(&pidlock); 608 609 if (t->t_ctx != NULL) 610 exitctx(t); 611 if (t->t_procp->p_pctx != NULL) 612 exitpctx(t->t_procp); 613 614 t->t_state = TS_ZOMB; /* set zombie thread */ 615 616 swtch_from_zombie(); /* give up the CPU */ 617 /* NOTREACHED */ 618 } 619 620 /* 621 * Check to see if the specified thread is active (defined as being on 622 * the thread list). This is certainly a slow way to do this; if there's 623 * ever a reason to speed it up, we could maintain a hash table of active 624 * threads indexed by their t_did. 625 */ 626 static kthread_t * 627 did_to_thread(kt_did_t tid) 628 { 629 kthread_t *t; 630 631 ASSERT(MUTEX_HELD(&pidlock)); 632 for (t = curthread->t_next; t != curthread; t = t->t_next) { 633 if (t->t_did == tid) 634 break; 635 } 636 if (t->t_did == tid) 637 return (t); 638 else 639 return (NULL); 640 } 641 642 /* 643 * Wait for specified thread to exit. Returns immediately if the thread 644 * could not be found, meaning that it has either already exited or never 645 * existed. 646 */ 647 void 648 thread_join(kt_did_t tid) 649 { 650 kthread_t *t; 651 652 ASSERT(tid != curthread->t_did); 653 ASSERT(tid != t0.t_did); 654 655 mutex_enter(&pidlock); 656 /* 657 * Make sure we check that the thread is on the thread list 658 * before blocking on it; otherwise we could end up blocking on 659 * a cv that's already been freed. In other words, don't cache 660 * the thread pointer across calls to cv_wait. 661 * 662 * The choice of loop invariant means that whenever a thread 663 * is taken off the allthreads list, a cv_broadcast must be 664 * performed on that thread's t_joincv to wake up any waiters. 665 * The broadcast doesn't have to happen right away, but it 666 * shouldn't be postponed indefinitely (e.g., by doing it in 667 * thread_free which may only be executed when the deathrow 668 * queue is processed. 669 */ 670 while (t = did_to_thread(tid)) 671 cv_wait(&t->t_joincv, &pidlock); 672 mutex_exit(&pidlock); 673 } 674 675 void 676 thread_free_prevent(kthread_t *t) 677 { 678 kmutex_t *lp; 679 680 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 681 mutex_enter(lp); 682 } 683 684 void 685 thread_free_allow(kthread_t *t) 686 { 687 kmutex_t *lp; 688 689 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 690 mutex_exit(lp); 691 } 692 693 static void 694 thread_free_barrier(kthread_t *t) 695 { 696 kmutex_t *lp; 697 698 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 699 mutex_enter(lp); 700 mutex_exit(lp); 701 } 702 703 void 704 thread_free(kthread_t *t) 705 { 706 ASSERT(t != &t0 && t->t_state == TS_FREE); 707 ASSERT(t->t_door == NULL); 708 ASSERT(t->t_schedctl == NULL); 709 ASSERT(t->t_pollstate == NULL); 710 711 t->t_pri = 0; 712 t->t_pc = 0; 713 t->t_sp = 0; 714 t->t_wchan0 = NULL; 715 t->t_wchan = NULL; 716 if (t->t_cred != NULL) { 717 crfree(t->t_cred); 718 t->t_cred = 0; 719 } 720 if (t->t_pdmsg) { 721 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 722 t->t_pdmsg = NULL; 723 } 724 if (audit_active) 725 audit_thread_free(t); 726 #ifndef NPROBE 727 if (t->t_tnf_tpdp) 728 tnf_thread_free(t); 729 #endif /* NPROBE */ 730 if (t->t_cldata) { 731 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 732 } 733 if (t->t_rprof != NULL) { 734 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 735 t->t_rprof = NULL; 736 } 737 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 738 if (t->t_lwp) 739 lwp_freeregs(t->t_lwp, 0); 740 if (t->t_ctx) 741 freectx(t, 0); 742 t->t_stk = NULL; 743 if (t->t_lwp) 744 lwp_stk_fini(t->t_lwp); 745 lock_clear(&t->t_lock); 746 747 if (t->t_ts->ts_waiters > 0) 748 panic("thread_free: turnstile still active"); 749 750 kmem_cache_free(turnstile_cache, t->t_ts); 751 752 free_afd(&t->t_activefd); 753 754 /* 755 * Barrier for the tick accounting code. The tick accounting code 756 * holds this lock to keep the thread from going away while it's 757 * looking at it. 758 */ 759 thread_free_barrier(t); 760 761 ASSERT(ttoproj(t) == proj0p); 762 project_rele(ttoproj(t)); 763 764 lgrp_affinity_free(&t->t_lgrp_affinity); 765 766 /* 767 * Free thread struct and its stack. 768 */ 769 if (t->t_flag & T_TALLOCSTK) { 770 /* thread struct is embedded in stack */ 771 segkp_release(segkp, t->t_swap); 772 mutex_enter(&pidlock); 773 nthread--; 774 mutex_exit(&pidlock); 775 } else { 776 if (t->t_swap) { 777 segkp_release(segkp, t->t_swap); 778 t->t_swap = NULL; 779 } 780 if (t->t_lwp) { 781 kmem_cache_free(lwp_cache, t->t_lwp); 782 t->t_lwp = NULL; 783 } 784 mutex_enter(&pidlock); 785 nthread--; 786 mutex_exit(&pidlock); 787 kmem_cache_free(thread_cache, t); 788 } 789 } 790 791 /* 792 * Removes threads associated with the given zone from a deathrow queue. 793 * tp is a pointer to the head of the deathrow queue, and countp is a 794 * pointer to the current deathrow count. Returns a linked list of 795 * threads removed from the list. 796 */ 797 static kthread_t * 798 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 799 { 800 kthread_t *tmp, *list = NULL; 801 cred_t *cr; 802 803 ASSERT(MUTEX_HELD(&reaplock)); 804 while (*tp != NULL) { 805 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 806 tmp = *tp; 807 *tp = tmp->t_forw; 808 tmp->t_forw = list; 809 list = tmp; 810 (*countp)--; 811 } else { 812 tp = &(*tp)->t_forw; 813 } 814 } 815 return (list); 816 } 817 818 static void 819 thread_reap_list(kthread_t *t) 820 { 821 kthread_t *next; 822 823 while (t != NULL) { 824 next = t->t_forw; 825 thread_free(t); 826 t = next; 827 } 828 } 829 830 /* ARGSUSED */ 831 static void 832 thread_zone_destroy(zoneid_t zoneid, void *unused) 833 { 834 kthread_t *t, *l; 835 836 mutex_enter(&reaplock); 837 /* 838 * Pull threads and lwps associated with zone off deathrow lists. 839 */ 840 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 841 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 842 mutex_exit(&reaplock); 843 844 /* 845 * Guard against race condition in mutex_owner_running: 846 * thread=owner(mutex) 847 * <interrupt> 848 * thread exits mutex 849 * thread exits 850 * thread reaped 851 * thread struct freed 852 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 853 * A cross call to all cpus will cause the interrupt handler 854 * to reset the PC if it is in mutex_owner_running, refreshing 855 * stale thread pointers. 856 */ 857 mutex_sync(); /* sync with mutex code */ 858 859 /* 860 * Reap threads 861 */ 862 thread_reap_list(t); 863 864 /* 865 * Reap lwps 866 */ 867 thread_reap_list(l); 868 } 869 870 /* 871 * cleanup zombie threads that are on deathrow. 872 */ 873 void 874 thread_reaper() 875 { 876 kthread_t *t, *l; 877 callb_cpr_t cprinfo; 878 879 /* 880 * Register callback to clean up threads when zone is destroyed. 881 */ 882 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 883 884 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 885 for (;;) { 886 mutex_enter(&reaplock); 887 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 888 CALLB_CPR_SAFE_BEGIN(&cprinfo); 889 cv_wait(&reaper_cv, &reaplock); 890 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 891 } 892 /* 893 * mutex_sync() needs to be called when reaping, but 894 * not too often. We limit reaping rate to once 895 * per second. Reaplimit is max rate at which threads can 896 * be freed. Does not impact thread destruction/creation. 897 */ 898 t = thread_deathrow; 899 l = lwp_deathrow; 900 thread_deathrow = NULL; 901 lwp_deathrow = NULL; 902 thread_reapcnt = 0; 903 lwp_reapcnt = 0; 904 mutex_exit(&reaplock); 905 906 /* 907 * Guard against race condition in mutex_owner_running: 908 * thread=owner(mutex) 909 * <interrupt> 910 * thread exits mutex 911 * thread exits 912 * thread reaped 913 * thread struct freed 914 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 915 * A cross call to all cpus will cause the interrupt handler 916 * to reset the PC if it is in mutex_owner_running, refreshing 917 * stale thread pointers. 918 */ 919 mutex_sync(); /* sync with mutex code */ 920 /* 921 * Reap threads 922 */ 923 thread_reap_list(t); 924 925 /* 926 * Reap lwps 927 */ 928 thread_reap_list(l); 929 delay(hz); 930 } 931 } 932 933 /* 934 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 935 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 936 * that is reapable. The thread already holds the reaplock, and was already 937 * freed. 938 */ 939 void 940 reapq_move_lq_to_tq(kthread_t *t) 941 { 942 ASSERT(t->t_state == TS_FREE); 943 ASSERT(MUTEX_HELD(&reaplock)); 944 t->t_forw = thread_deathrow; 945 thread_deathrow = t; 946 thread_reapcnt++; 947 if (lwp_reapcnt + thread_reapcnt > reaplimit) 948 cv_signal(&reaper_cv); /* wake the reaper */ 949 } 950 951 /* 952 * This is called by resume() to put a zombie thread onto deathrow. 953 * The thread's state is changed to TS_FREE to indicate that is reapable. 954 * This is called from the idle thread so it must not block - just spin. 955 */ 956 void 957 reapq_add(kthread_t *t) 958 { 959 mutex_enter(&reaplock); 960 961 /* 962 * lwp_deathrow contains only threads with lwp linkage 963 * that are of the default stacksize. Anything else goes 964 * on thread_deathrow. 965 */ 966 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 967 t->t_forw = lwp_deathrow; 968 lwp_deathrow = t; 969 lwp_reapcnt++; 970 } else { 971 t->t_forw = thread_deathrow; 972 thread_deathrow = t; 973 thread_reapcnt++; 974 } 975 if (lwp_reapcnt + thread_reapcnt > reaplimit) 976 cv_signal(&reaper_cv); /* wake the reaper */ 977 t->t_state = TS_FREE; 978 lock_clear(&t->t_lock); 979 980 /* 981 * Before we return, we need to grab and drop the thread lock for 982 * the dead thread. At this point, the current thread is the idle 983 * thread, and the dead thread's CPU lock points to the current 984 * CPU -- and we must grab and drop the lock to synchronize with 985 * a racing thread walking a blocking chain that the zombie thread 986 * was recently in. By this point, that blocking chain is (by 987 * definition) stale: the dead thread is not holding any locks, and 988 * is therefore not in any blocking chains -- but if we do not regrab 989 * our lock before freeing the dead thread's data structures, the 990 * thread walking the (stale) blocking chain will die on memory 991 * corruption when it attempts to drop the dead thread's lock. We 992 * only need do this once because there is no way for the dead thread 993 * to ever again be on a blocking chain: once we have grabbed and 994 * dropped the thread lock, we are guaranteed that anyone that could 995 * have seen this thread in a blocking chain can no longer see it. 996 */ 997 thread_lock(t); 998 thread_unlock(t); 999 1000 mutex_exit(&reaplock); 1001 } 1002 1003 /* 1004 * Install thread context ops for the current thread. 1005 */ 1006 void 1007 installctx( 1008 kthread_t *t, 1009 void *arg, 1010 void (*save)(void *), 1011 void (*restore)(void *), 1012 void (*fork)(void *, void *), 1013 void (*lwp_create)(void *, void *), 1014 void (*exit)(void *), 1015 void (*free)(void *, int)) 1016 { 1017 struct ctxop *ctx; 1018 1019 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1020 ctx->save_op = save; 1021 ctx->restore_op = restore; 1022 ctx->fork_op = fork; 1023 ctx->lwp_create_op = lwp_create; 1024 ctx->exit_op = exit; 1025 ctx->free_op = free; 1026 ctx->arg = arg; 1027 ctx->next = t->t_ctx; 1028 t->t_ctx = ctx; 1029 } 1030 1031 /* 1032 * Remove the thread context ops from a thread. 1033 */ 1034 int 1035 removectx( 1036 kthread_t *t, 1037 void *arg, 1038 void (*save)(void *), 1039 void (*restore)(void *), 1040 void (*fork)(void *, void *), 1041 void (*lwp_create)(void *, void *), 1042 void (*exit)(void *), 1043 void (*free)(void *, int)) 1044 { 1045 struct ctxop *ctx, *prev_ctx; 1046 1047 /* 1048 * The incoming kthread_t (which is the thread for which the 1049 * context ops will be removed) should be one of the following: 1050 * 1051 * a) the current thread, 1052 * 1053 * b) a thread of a process that's being forked (SIDL), 1054 * 1055 * c) a thread that belongs to the same process as the current 1056 * thread and for which the current thread is the agent thread, 1057 * 1058 * d) a thread that is TS_STOPPED which is indicative of it 1059 * being (if curthread is not an agent) a thread being created 1060 * as part of an lwp creation. 1061 */ 1062 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1063 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1064 1065 /* 1066 * Serialize modifications to t->t_ctx to prevent the agent thread 1067 * and the target thread from racing with each other during lwp exit. 1068 */ 1069 mutex_enter(&t->t_ctx_lock); 1070 prev_ctx = NULL; 1071 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 1072 if (ctx->save_op == save && ctx->restore_op == restore && 1073 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1074 ctx->exit_op == exit && ctx->free_op == free && 1075 ctx->arg == arg) { 1076 if (prev_ctx) 1077 prev_ctx->next = ctx->next; 1078 else 1079 t->t_ctx = ctx->next; 1080 mutex_exit(&t->t_ctx_lock); 1081 if (ctx->free_op != NULL) 1082 (ctx->free_op)(ctx->arg, 0); 1083 kmem_free(ctx, sizeof (struct ctxop)); 1084 return (1); 1085 } 1086 prev_ctx = ctx; 1087 } 1088 mutex_exit(&t->t_ctx_lock); 1089 1090 return (0); 1091 } 1092 1093 void 1094 savectx(kthread_t *t) 1095 { 1096 struct ctxop *ctx; 1097 1098 ASSERT(t == curthread); 1099 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1100 if (ctx->save_op != NULL) 1101 (ctx->save_op)(ctx->arg); 1102 } 1103 1104 void 1105 restorectx(kthread_t *t) 1106 { 1107 struct ctxop *ctx; 1108 1109 ASSERT(t == curthread); 1110 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1111 if (ctx->restore_op != NULL) 1112 (ctx->restore_op)(ctx->arg); 1113 } 1114 1115 void 1116 forkctx(kthread_t *t, kthread_t *ct) 1117 { 1118 struct ctxop *ctx; 1119 1120 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1121 if (ctx->fork_op != NULL) 1122 (ctx->fork_op)(t, ct); 1123 } 1124 1125 /* 1126 * Note that this operator is only invoked via the _lwp_create 1127 * system call. The system may have other reasons to create lwps 1128 * e.g. the agent lwp or the doors unreferenced lwp. 1129 */ 1130 void 1131 lwp_createctx(kthread_t *t, kthread_t *ct) 1132 { 1133 struct ctxop *ctx; 1134 1135 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1136 if (ctx->lwp_create_op != NULL) 1137 (ctx->lwp_create_op)(t, ct); 1138 } 1139 1140 /* 1141 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1142 * needed when the thread/LWP leaves the processor for the last time. This 1143 * routine is not intended to deal with freeing memory; freectx() is used for 1144 * that purpose during thread_free(). This routine is provided to allow for 1145 * clean-up that can't wait until thread_free(). 1146 */ 1147 void 1148 exitctx(kthread_t *t) 1149 { 1150 struct ctxop *ctx; 1151 1152 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1153 if (ctx->exit_op != NULL) 1154 (ctx->exit_op)(t); 1155 } 1156 1157 /* 1158 * freectx is called from thread_free() and exec() to get 1159 * rid of old thread context ops. 1160 */ 1161 void 1162 freectx(kthread_t *t, int isexec) 1163 { 1164 struct ctxop *ctx; 1165 1166 while ((ctx = t->t_ctx) != NULL) { 1167 t->t_ctx = ctx->next; 1168 if (ctx->free_op != NULL) 1169 (ctx->free_op)(ctx->arg, isexec); 1170 kmem_free(ctx, sizeof (struct ctxop)); 1171 } 1172 } 1173 1174 /* 1175 * freectx_ctx is called from lwp_create() when lwp is reused from 1176 * lwp_deathrow and its thread structure is added to thread_deathrow. 1177 * The thread structure to which this ctx was attached may be already 1178 * freed by the thread reaper so free_op implementations shouldn't rely 1179 * on thread structure to which this ctx was attached still being around. 1180 */ 1181 void 1182 freectx_ctx(struct ctxop *ctx) 1183 { 1184 struct ctxop *nctx; 1185 1186 ASSERT(ctx != NULL); 1187 1188 do { 1189 nctx = ctx->next; 1190 if (ctx->free_op != NULL) 1191 (ctx->free_op)(ctx->arg, 0); 1192 kmem_free(ctx, sizeof (struct ctxop)); 1193 } while ((ctx = nctx) != NULL); 1194 } 1195 1196 /* 1197 * Set the thread running; arrange for it to be swapped in if necessary. 1198 */ 1199 void 1200 setrun_locked(kthread_t *t) 1201 { 1202 ASSERT(THREAD_LOCK_HELD(t)); 1203 if (t->t_state == TS_SLEEP) { 1204 /* 1205 * Take off sleep queue. 1206 */ 1207 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1208 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1209 /* 1210 * Already on dispatcher queue. 1211 */ 1212 return; 1213 } else if (t->t_state == TS_WAIT) { 1214 waitq_setrun(t); 1215 } else if (t->t_state == TS_STOPPED) { 1216 /* 1217 * All of the sending of SIGCONT (TC_XSTART) and /proc 1218 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1219 * requested that the thread be run. 1220 * Just calling setrun() is not sufficient to set a stopped 1221 * thread running. TP_TXSTART is always set if the thread 1222 * is not stopped by a jobcontrol stop signal. 1223 * TP_TPSTART is always set if /proc is not controlling it. 1224 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1225 * The thread won't be stopped unless one of these 1226 * three mechanisms did it. 1227 * 1228 * These flags must be set before calling setrun_locked(t). 1229 * They can't be passed as arguments because the streams 1230 * code calls setrun() indirectly and the mechanism for 1231 * doing so admits only one argument. Note that the 1232 * thread must be locked in order to change t_schedflags. 1233 */ 1234 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1235 return; 1236 /* 1237 * Process is no longer stopped (a thread is running). 1238 */ 1239 t->t_whystop = 0; 1240 t->t_whatstop = 0; 1241 /* 1242 * Strictly speaking, we do not have to clear these 1243 * flags here; they are cleared on entry to stop(). 1244 * However, they are confusing when doing kernel 1245 * debugging or when they are revealed by ps(1). 1246 */ 1247 t->t_schedflag &= ~TS_ALLSTART; 1248 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1249 ASSERT(t->t_lockp == &transition_lock); 1250 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1251 /* 1252 * Let the class put the process on the dispatcher queue. 1253 */ 1254 CL_SETRUN(t); 1255 } 1256 } 1257 1258 void 1259 setrun(kthread_t *t) 1260 { 1261 thread_lock(t); 1262 setrun_locked(t); 1263 thread_unlock(t); 1264 } 1265 1266 /* 1267 * Unpin an interrupted thread. 1268 * When an interrupt occurs, the interrupt is handled on the stack 1269 * of an interrupt thread, taken from a pool linked to the CPU structure. 1270 * 1271 * When swtch() is switching away from an interrupt thread because it 1272 * blocked or was preempted, this routine is called to complete the 1273 * saving of the interrupted thread state, and returns the interrupted 1274 * thread pointer so it may be resumed. 1275 * 1276 * Called by swtch() only at high spl. 1277 */ 1278 kthread_t * 1279 thread_unpin() 1280 { 1281 kthread_t *t = curthread; /* current thread */ 1282 kthread_t *itp; /* interrupted thread */ 1283 int i; /* interrupt level */ 1284 extern int intr_passivate(); 1285 1286 ASSERT(t->t_intr != NULL); 1287 1288 itp = t->t_intr; /* interrupted thread */ 1289 t->t_intr = NULL; /* clear interrupt ptr */ 1290 1291 /* 1292 * Get state from interrupt thread for the one 1293 * it interrupted. 1294 */ 1295 1296 i = intr_passivate(t, itp); 1297 1298 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1299 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1300 i, t, t, itp, itp); 1301 1302 /* 1303 * Dissociate the current thread from the interrupted thread's LWP. 1304 */ 1305 t->t_lwp = NULL; 1306 1307 /* 1308 * Interrupt handlers above the level that spinlocks block must 1309 * not block. 1310 */ 1311 #if DEBUG 1312 if (i < 0 || i > LOCK_LEVEL) 1313 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1314 #endif 1315 1316 /* 1317 * Compute the CPU's base interrupt level based on the active 1318 * interrupts. 1319 */ 1320 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1321 set_base_spl(); 1322 1323 return (itp); 1324 } 1325 1326 /* 1327 * Create and initialize an interrupt thread. 1328 * Returns non-zero on error. 1329 * Called at spl7() or better. 1330 */ 1331 void 1332 thread_create_intr(struct cpu *cp) 1333 { 1334 kthread_t *tp; 1335 1336 tp = thread_create(NULL, 0, 1337 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1338 1339 /* 1340 * Set the thread in the TS_FREE state. The state will change 1341 * to TS_ONPROC only while the interrupt is active. Think of these 1342 * as being on a private free list for the CPU. Being TS_FREE keeps 1343 * inactive interrupt threads out of debugger thread lists. 1344 * 1345 * We cannot call thread_create with TS_FREE because of the current 1346 * checks there for ONPROC. Fix this when thread_create takes flags. 1347 */ 1348 THREAD_FREEINTR(tp, cp); 1349 1350 /* 1351 * Nobody should ever reference the credentials of an interrupt 1352 * thread so make it NULL to catch any such references. 1353 */ 1354 tp->t_cred = NULL; 1355 tp->t_flag |= T_INTR_THREAD; 1356 tp->t_cpu = cp; 1357 tp->t_bound_cpu = cp; 1358 tp->t_disp_queue = cp->cpu_disp; 1359 tp->t_affinitycnt = 1; 1360 tp->t_preempt = 1; 1361 1362 /* 1363 * Don't make a user-requested binding on this thread so that 1364 * the processor can be offlined. 1365 */ 1366 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1367 tp->t_bind_pset = PS_NONE; 1368 1369 #if defined(__i386) || defined(__amd64) 1370 tp->t_stk -= STACK_ALIGN; 1371 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1372 #endif 1373 1374 /* 1375 * Link onto CPU's interrupt pool. 1376 */ 1377 tp->t_link = cp->cpu_intr_thread; 1378 cp->cpu_intr_thread = tp; 1379 } 1380 1381 /* 1382 * TSD -- THREAD SPECIFIC DATA 1383 */ 1384 static kmutex_t tsd_mutex; /* linked list spin lock */ 1385 static uint_t tsd_nkeys; /* size of destructor array */ 1386 /* per-key destructor funcs */ 1387 static void (**tsd_destructor)(void *); 1388 /* list of tsd_thread's */ 1389 static struct tsd_thread *tsd_list; 1390 1391 /* 1392 * Default destructor 1393 * Needed because NULL destructor means that the key is unused 1394 */ 1395 /* ARGSUSED */ 1396 void 1397 tsd_defaultdestructor(void *value) 1398 {} 1399 1400 /* 1401 * Create a key (index into per thread array) 1402 * Locks out tsd_create, tsd_destroy, and tsd_exit 1403 * May allocate memory with lock held 1404 */ 1405 void 1406 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1407 { 1408 int i; 1409 uint_t nkeys; 1410 1411 /* 1412 * if key is allocated, do nothing 1413 */ 1414 mutex_enter(&tsd_mutex); 1415 if (*keyp) { 1416 mutex_exit(&tsd_mutex); 1417 return; 1418 } 1419 /* 1420 * find an unused key 1421 */ 1422 if (destructor == NULL) 1423 destructor = tsd_defaultdestructor; 1424 1425 for (i = 0; i < tsd_nkeys; ++i) 1426 if (tsd_destructor[i] == NULL) 1427 break; 1428 1429 /* 1430 * if no unused keys, increase the size of the destructor array 1431 */ 1432 if (i == tsd_nkeys) { 1433 if ((nkeys = (tsd_nkeys << 1)) == 0) 1434 nkeys = 1; 1435 tsd_destructor = 1436 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1437 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1438 (size_t)(nkeys * sizeof (void (*)(void *)))); 1439 tsd_nkeys = nkeys; 1440 } 1441 1442 /* 1443 * allocate the next available unused key 1444 */ 1445 tsd_destructor[i] = destructor; 1446 *keyp = i + 1; 1447 mutex_exit(&tsd_mutex); 1448 } 1449 1450 /* 1451 * Destroy a key -- this is for unloadable modules 1452 * 1453 * Assumes that the caller is preventing tsd_set and tsd_get 1454 * Locks out tsd_create, tsd_destroy, and tsd_exit 1455 * May free memory with lock held 1456 */ 1457 void 1458 tsd_destroy(uint_t *keyp) 1459 { 1460 uint_t key; 1461 struct tsd_thread *tsd; 1462 1463 /* 1464 * protect the key namespace and our destructor lists 1465 */ 1466 mutex_enter(&tsd_mutex); 1467 key = *keyp; 1468 *keyp = 0; 1469 1470 ASSERT(key <= tsd_nkeys); 1471 1472 /* 1473 * if the key is valid 1474 */ 1475 if (key != 0) { 1476 uint_t k = key - 1; 1477 /* 1478 * for every thread with TSD, call key's destructor 1479 */ 1480 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1481 /* 1482 * no TSD for key in this thread 1483 */ 1484 if (key > tsd->ts_nkeys) 1485 continue; 1486 /* 1487 * call destructor for key 1488 */ 1489 if (tsd->ts_value[k] && tsd_destructor[k]) 1490 (*tsd_destructor[k])(tsd->ts_value[k]); 1491 /* 1492 * reset value for key 1493 */ 1494 tsd->ts_value[k] = NULL; 1495 } 1496 /* 1497 * actually free the key (NULL destructor == unused) 1498 */ 1499 tsd_destructor[k] = NULL; 1500 } 1501 1502 mutex_exit(&tsd_mutex); 1503 } 1504 1505 /* 1506 * Quickly return the per thread value that was stored with the specified key 1507 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1508 */ 1509 void * 1510 tsd_get(uint_t key) 1511 { 1512 return (tsd_agent_get(curthread, key)); 1513 } 1514 1515 /* 1516 * Set a per thread value indexed with the specified key 1517 */ 1518 int 1519 tsd_set(uint_t key, void *value) 1520 { 1521 return (tsd_agent_set(curthread, key, value)); 1522 } 1523 1524 /* 1525 * Like tsd_get(), except that the agent lwp can get the tsd of 1526 * another thread in the same process (the agent thread only runs when the 1527 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1528 */ 1529 void * 1530 tsd_agent_get(kthread_t *t, uint_t key) 1531 { 1532 struct tsd_thread *tsd = t->t_tsd; 1533 1534 ASSERT(t == curthread || 1535 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1536 1537 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1538 return (tsd->ts_value[key - 1]); 1539 return (NULL); 1540 } 1541 1542 /* 1543 * Like tsd_set(), except that the agent lwp can set the tsd of 1544 * another thread in the same process, or syslwp can set the tsd 1545 * of a thread it's in the middle of creating. 1546 * 1547 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1548 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1549 * lock held 1550 */ 1551 int 1552 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1553 { 1554 struct tsd_thread *tsd = t->t_tsd; 1555 1556 ASSERT(t == curthread || 1557 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1558 1559 if (key == 0) 1560 return (EINVAL); 1561 if (tsd == NULL) 1562 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1563 if (key <= tsd->ts_nkeys) { 1564 tsd->ts_value[key - 1] = value; 1565 return (0); 1566 } 1567 1568 ASSERT(key <= tsd_nkeys); 1569 1570 /* 1571 * lock out tsd_destroy() 1572 */ 1573 mutex_enter(&tsd_mutex); 1574 if (tsd->ts_nkeys == 0) { 1575 /* 1576 * Link onto list of threads with TSD 1577 */ 1578 if ((tsd->ts_next = tsd_list) != NULL) 1579 tsd_list->ts_prev = tsd; 1580 tsd_list = tsd; 1581 } 1582 1583 /* 1584 * Allocate thread local storage and set the value for key 1585 */ 1586 tsd->ts_value = tsd_realloc(tsd->ts_value, 1587 tsd->ts_nkeys * sizeof (void *), 1588 key * sizeof (void *)); 1589 tsd->ts_nkeys = key; 1590 tsd->ts_value[key - 1] = value; 1591 mutex_exit(&tsd_mutex); 1592 1593 return (0); 1594 } 1595 1596 1597 /* 1598 * Return the per thread value that was stored with the specified key 1599 * If necessary, create the key and the value 1600 * Assumes the caller is protecting *keyp from tsd_destroy 1601 */ 1602 void * 1603 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1604 { 1605 void *value; 1606 uint_t key = *keyp; 1607 struct tsd_thread *tsd = curthread->t_tsd; 1608 1609 if (tsd == NULL) 1610 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1611 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1612 return (value); 1613 if (key == 0) 1614 tsd_create(keyp, destroy); 1615 (void) tsd_set(*keyp, value = (*allocate)()); 1616 1617 return (value); 1618 } 1619 1620 /* 1621 * Called from thread_exit() to run the destructor function for each tsd 1622 * Locks out tsd_create and tsd_destroy 1623 * Assumes that the destructor *DOES NOT* use tsd 1624 */ 1625 void 1626 tsd_exit(void) 1627 { 1628 int i; 1629 struct tsd_thread *tsd = curthread->t_tsd; 1630 1631 if (tsd == NULL) 1632 return; 1633 1634 if (tsd->ts_nkeys == 0) { 1635 kmem_free(tsd, sizeof (*tsd)); 1636 curthread->t_tsd = NULL; 1637 return; 1638 } 1639 1640 /* 1641 * lock out tsd_create and tsd_destroy, call 1642 * the destructor, and mark the value as destroyed. 1643 */ 1644 mutex_enter(&tsd_mutex); 1645 1646 for (i = 0; i < tsd->ts_nkeys; i++) { 1647 if (tsd->ts_value[i] && tsd_destructor[i]) 1648 (*tsd_destructor[i])(tsd->ts_value[i]); 1649 tsd->ts_value[i] = NULL; 1650 } 1651 1652 /* 1653 * remove from linked list of threads with TSD 1654 */ 1655 if (tsd->ts_next) 1656 tsd->ts_next->ts_prev = tsd->ts_prev; 1657 if (tsd->ts_prev) 1658 tsd->ts_prev->ts_next = tsd->ts_next; 1659 if (tsd_list == tsd) 1660 tsd_list = tsd->ts_next; 1661 1662 mutex_exit(&tsd_mutex); 1663 1664 /* 1665 * free up the TSD 1666 */ 1667 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1668 kmem_free(tsd, sizeof (struct tsd_thread)); 1669 curthread->t_tsd = NULL; 1670 } 1671 1672 /* 1673 * realloc 1674 */ 1675 static void * 1676 tsd_realloc(void *old, size_t osize, size_t nsize) 1677 { 1678 void *new; 1679 1680 new = kmem_zalloc(nsize, KM_SLEEP); 1681 if (old) { 1682 bcopy(old, new, osize); 1683 kmem_free(old, osize); 1684 } 1685 return (new); 1686 } 1687 1688 /* 1689 * Check to see if an interrupt thread might be active at a given ipl. 1690 * If so return true. 1691 * We must be conservative--it is ok to give a false yes, but a false no 1692 * will cause disaster. (But if the situation changes after we check it is 1693 * ok--the caller is trying to ensure that an interrupt routine has been 1694 * exited). 1695 * This is used when trying to remove an interrupt handler from an autovector 1696 * list in avintr.c. 1697 */ 1698 int 1699 intr_active(struct cpu *cp, int level) 1700 { 1701 if (level <= LOCK_LEVEL) 1702 return (cp->cpu_thread != cp->cpu_dispthread); 1703 else 1704 return (CPU_ON_INTR(cp)); 1705 } 1706 1707 /* 1708 * Return non-zero if an interrupt is being serviced. 1709 */ 1710 int 1711 servicing_interrupt() 1712 { 1713 int onintr = 0; 1714 1715 /* Are we an interrupt thread */ 1716 if (curthread->t_flag & T_INTR_THREAD) 1717 return (1); 1718 /* Are we servicing a high level interrupt? */ 1719 if (CPU_ON_INTR(CPU)) { 1720 kpreempt_disable(); 1721 onintr = CPU_ON_INTR(CPU); 1722 kpreempt_enable(); 1723 } 1724 return (onintr); 1725 } 1726 1727 1728 /* 1729 * Change the dispatch priority of a thread in the system. 1730 * Used when raising or lowering a thread's priority. 1731 * (E.g., priority inheritance) 1732 * 1733 * Since threads are queued according to their priority, we 1734 * we must check the thread's state to determine whether it 1735 * is on a queue somewhere. If it is, we've got to: 1736 * 1737 * o Dequeue the thread. 1738 * o Change its effective priority. 1739 * o Enqueue the thread. 1740 * 1741 * Assumptions: The thread whose priority we wish to change 1742 * must be locked before we call thread_change_(e)pri(). 1743 * The thread_change(e)pri() function doesn't drop the thread 1744 * lock--that must be done by its caller. 1745 */ 1746 void 1747 thread_change_epri(kthread_t *t, pri_t disp_pri) 1748 { 1749 uint_t state; 1750 1751 ASSERT(THREAD_LOCK_HELD(t)); 1752 1753 /* 1754 * If the inherited priority hasn't actually changed, 1755 * just return. 1756 */ 1757 if (t->t_epri == disp_pri) 1758 return; 1759 1760 state = t->t_state; 1761 1762 /* 1763 * If it's not on a queue, change the priority with 1764 * impunity. 1765 */ 1766 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1767 t->t_epri = disp_pri; 1768 1769 if (state == TS_ONPROC) { 1770 cpu_t *cp = t->t_disp_queue->disp_cpu; 1771 1772 if (t == cp->cpu_dispthread) 1773 cp->cpu_dispatch_pri = DISP_PRIO(t); 1774 } 1775 return; 1776 } 1777 1778 /* 1779 * It's either on a sleep queue or a run queue. 1780 */ 1781 if (state == TS_SLEEP) { 1782 /* 1783 * Take the thread out of its sleep queue. 1784 * Change the inherited priority. 1785 * Re-enqueue the thread. 1786 * Each synchronization object exports a function 1787 * to do this in an appropriate manner. 1788 */ 1789 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1790 } else if (state == TS_WAIT) { 1791 /* 1792 * Re-enqueue a thread on the wait queue if its 1793 * effective priority needs to change. 1794 */ 1795 if (disp_pri != t->t_epri) 1796 waitq_change_pri(t, disp_pri); 1797 } else { 1798 /* 1799 * The thread is on a run queue. 1800 * Note: setbackdq() may not put the thread 1801 * back on the same run queue where it originally 1802 * resided. 1803 */ 1804 (void) dispdeq(t); 1805 t->t_epri = disp_pri; 1806 setbackdq(t); 1807 } 1808 } /* end of thread_change_epri */ 1809 1810 /* 1811 * Function: Change the t_pri field of a thread. 1812 * Side Effects: Adjust the thread ordering on a run queue 1813 * or sleep queue, if necessary. 1814 * Returns: 1 if the thread was on a run queue, else 0. 1815 */ 1816 int 1817 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1818 { 1819 uint_t state; 1820 int on_rq = 0; 1821 1822 ASSERT(THREAD_LOCK_HELD(t)); 1823 1824 state = t->t_state; 1825 THREAD_WILLCHANGE_PRI(t, disp_pri); 1826 1827 /* 1828 * If it's not on a queue, change the priority with 1829 * impunity. 1830 */ 1831 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1832 t->t_pri = disp_pri; 1833 1834 if (state == TS_ONPROC) { 1835 cpu_t *cp = t->t_disp_queue->disp_cpu; 1836 1837 if (t == cp->cpu_dispthread) 1838 cp->cpu_dispatch_pri = DISP_PRIO(t); 1839 } 1840 return (0); 1841 } 1842 1843 /* 1844 * It's either on a sleep queue or a run queue. 1845 */ 1846 if (state == TS_SLEEP) { 1847 /* 1848 * If the priority has changed, take the thread out of 1849 * its sleep queue and change the priority. 1850 * Re-enqueue the thread. 1851 * Each synchronization object exports a function 1852 * to do this in an appropriate manner. 1853 */ 1854 if (disp_pri != t->t_pri) 1855 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1856 } else if (state == TS_WAIT) { 1857 /* 1858 * Re-enqueue a thread on the wait queue if its 1859 * priority needs to change. 1860 */ 1861 if (disp_pri != t->t_pri) 1862 waitq_change_pri(t, disp_pri); 1863 } else { 1864 /* 1865 * The thread is on a run queue. 1866 * Note: setbackdq() may not put the thread 1867 * back on the same run queue where it originally 1868 * resided. 1869 * 1870 * We still requeue the thread even if the priority 1871 * is unchanged to preserve round-robin (and other) 1872 * effects between threads of the same priority. 1873 */ 1874 on_rq = dispdeq(t); 1875 ASSERT(on_rq); 1876 t->t_pri = disp_pri; 1877 if (front) { 1878 setfrontdq(t); 1879 } else { 1880 setbackdq(t); 1881 } 1882 } 1883 return (on_rq); 1884 } 1885