1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2021 Joyent, Inc. 25 * Copyright 2021 Oxide Computer Company 26 */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/resource.h> 41 #include <sys/task.h> 42 #include <sys/project.h> 43 #include <sys/proc.h> 44 #include <sys/debug.h> 45 #include <sys/disp.h> 46 #include <sys/class.h> 47 #include <vm/seg_kmem.h> 48 #include <vm/seg_kp.h> 49 #include <sys/machlock.h> 50 #include <sys/kmem.h> 51 #include <sys/varargs.h> 52 #include <sys/turnstile.h> 53 #include <sys/poll.h> 54 #include <sys/vtrace.h> 55 #include <sys/callb.h> 56 #include <c2/audit.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 #include <sys/ctype.h> 78 #include <sys/smt.h> 79 80 struct kmem_cache *thread_cache; /* cache of free threads */ 81 struct kmem_cache *lwp_cache; /* cache of free lwps */ 82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 83 84 /* 85 * allthreads is only for use by kmem_readers. All kernel loops can use 86 * the current thread as a start/end point. 87 */ 88 kthread_t *allthreads = &t0; /* circular list of all threads */ 89 90 static kcondvar_t reaper_cv; /* synchronization var */ 91 kthread_t *thread_deathrow; /* circular list of reapable threads */ 92 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 93 kmutex_t reaplock; /* protects lwp and thread deathrows */ 94 int thread_reapcnt = 0; /* number of threads on deathrow */ 95 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 96 int reaplimit = 16; /* delay reaping until reaplimit */ 97 98 thread_free_lock_t *thread_free_lock; 99 /* protects tick thread from reaper */ 100 101 extern int nthread; 102 103 /* System Scheduling classes. */ 104 id_t syscid; /* system scheduling class ID */ 105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 106 107 void *segkp_thread; /* cookie for segkp pool */ 108 109 int lwp_cache_sz = 32; 110 int t_cache_sz = 8; 111 static kt_did_t next_t_id = 1; 112 113 /* Default mode for thread binding to CPUs and processor sets */ 114 int default_binding_mode = TB_ALLHARD; 115 116 /* 117 * Min/Max stack sizes for stack size parameters 118 */ 119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 120 #define MIN_STKSIZE DEFAULTSTKSZ 121 122 /* 123 * default_stksize overrides lwp_default_stksize if it is set. 124 */ 125 int default_stksize; 126 int lwp_default_stksize; 127 128 static zone_key_t zone_thread_key; 129 130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 133 134 /* 135 * forward declarations for internal thread specific data (tsd) 136 */ 137 static void *tsd_realloc(void *, size_t, size_t); 138 139 void thread_reaper(void); 140 141 /* forward declarations for stackinfo feature */ 142 static void stkinfo_begin(kthread_t *); 143 static void stkinfo_end(kthread_t *); 144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 145 146 /*ARGSUSED*/ 147 static int 148 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 149 { 150 bzero(buf, sizeof (turnstile_t)); 151 return (0); 152 } 153 154 /*ARGSUSED*/ 155 static void 156 turnstile_destructor(void *buf, void *cdrarg) 157 { 158 turnstile_t *ts = buf; 159 160 ASSERT(ts->ts_free == NULL); 161 ASSERT(ts->ts_waiters == 0); 162 ASSERT(ts->ts_inheritor == NULL); 163 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 164 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 165 } 166 167 void 168 thread_init(void) 169 { 170 kthread_t *tp; 171 extern char sys_name[]; 172 extern void idle(); 173 struct cpu *cpu = CPU; 174 int i; 175 kmutex_t *lp; 176 177 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 178 thread_free_lock = 179 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 180 for (i = 0; i < THREAD_FREE_NUM; i++) { 181 lp = &thread_free_lock[i].tf_lock; 182 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 183 } 184 185 #if defined(__x86) 186 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 187 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 188 189 /* 190 * "struct _klwp" includes a "struct pcb", which includes a 191 * "struct fpu", which needs to be 64-byte aligned on amd64 192 * (and even on i386) for xsave/xrstor. 193 */ 194 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 195 64, NULL, NULL, NULL, NULL, NULL, 0); 196 #else 197 /* 198 * Allocate thread structures from static_arena. This prevents 199 * issues where a thread tries to relocate its own thread 200 * structure and touches it after the mapping has been suspended. 201 */ 202 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 203 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 204 205 lwp_stk_cache_init(); 206 207 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 208 0, NULL, NULL, NULL, NULL, NULL, 0); 209 #endif 210 211 turnstile_cache = kmem_cache_create("turnstile_cache", 212 sizeof (turnstile_t), 0, 213 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 214 215 label_init(); 216 cred_init(); 217 218 /* 219 * Initialize various resource management facilities. 220 */ 221 rctl_init(); 222 cpucaps_init(); 223 /* 224 * Zone_init() should be called before project_init() so that project ID 225 * for the first project is initialized correctly. 226 */ 227 zone_init(); 228 project_init(); 229 brand_init(); 230 kiconv_init(); 231 task_init(); 232 tcache_init(); 233 pool_init(); 234 235 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 236 237 /* 238 * Originally, we had two parameters to set default stack 239 * size: one for lwp's (lwp_default_stksize), and one for 240 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 241 * Now we have a third parameter that overrides both if it is 242 * set to a legal stack size, called default_stksize. 243 */ 244 245 if (default_stksize == 0) { 246 default_stksize = DEFAULTSTKSZ; 247 } else if (default_stksize % PAGESIZE != 0 || 248 default_stksize > MAX_STKSIZE || 249 default_stksize < MIN_STKSIZE) { 250 cmn_err(CE_WARN, "Illegal stack size. Using %d", 251 (int)DEFAULTSTKSZ); 252 default_stksize = DEFAULTSTKSZ; 253 } else { 254 lwp_default_stksize = default_stksize; 255 } 256 257 if (lwp_default_stksize == 0) { 258 lwp_default_stksize = default_stksize; 259 } else if (lwp_default_stksize % PAGESIZE != 0 || 260 lwp_default_stksize > MAX_STKSIZE || 261 lwp_default_stksize < MIN_STKSIZE) { 262 cmn_err(CE_WARN, "Illegal stack size. Using %d", 263 default_stksize); 264 lwp_default_stksize = default_stksize; 265 } 266 267 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 268 lwp_default_stksize, 269 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 270 271 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 272 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 273 274 (void) getcid(sys_name, &syscid); 275 curthread->t_cid = syscid; /* current thread is t0 */ 276 277 /* 278 * Set up the first CPU's idle thread. 279 * It runs whenever the CPU has nothing worthwhile to do. 280 */ 281 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 282 cpu->cpu_idle_thread = tp; 283 tp->t_preempt = 1; 284 tp->t_disp_queue = cpu->cpu_disp; 285 ASSERT(tp->t_disp_queue != NULL); 286 tp->t_bound_cpu = cpu; 287 tp->t_affinitycnt = 1; 288 289 /* 290 * Registering a thread in the callback table is usually 291 * done in the initialization code of the thread. In this 292 * case, we do it right after thread creation to avoid 293 * blocking idle thread while registering itself. It also 294 * avoids the possibility of reregistration in case a CPU 295 * restarts its idle thread. 296 */ 297 CALLB_CPR_INIT_SAFE(tp, "idle"); 298 299 /* 300 * Create the thread_reaper daemon. From this point on, exited 301 * threads will get reaped. 302 */ 303 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 304 NULL, 0, &p0, TS_RUN, minclsyspri); 305 306 /* 307 * Finish initializing the kernel memory allocator now that 308 * thread_create() is available. 309 */ 310 kmem_thread_init(); 311 312 if (boothowto & RB_DEBUG) 313 kdi_dvec_thravail(); 314 } 315 316 /* 317 * Create a thread. 318 * 319 * thread_create() blocks for memory if necessary. It never fails. 320 * 321 * If stk is NULL, the thread is created at the base of the stack 322 * and cannot be swapped. 323 */ 324 kthread_t * 325 thread_create( 326 caddr_t stk, 327 size_t stksize, 328 void (*proc)(), 329 void *arg, 330 size_t len, 331 proc_t *pp, 332 int state, 333 pri_t pri) 334 { 335 kthread_t *t; 336 extern struct classfuncs sys_classfuncs; 337 turnstile_t *ts; 338 339 /* 340 * Every thread keeps a turnstile around in case it needs to block. 341 * The only reason the turnstile is not simply part of the thread 342 * structure is that we may have to break the association whenever 343 * more than one thread blocks on a given synchronization object. 344 * From a memory-management standpoint, turnstiles are like the 345 * "attached mblks" that hang off dblks in the streams allocator. 346 */ 347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 348 349 if (stk == NULL) { 350 /* 351 * alloc both thread and stack in segkp chunk 352 */ 353 354 if (stksize < default_stksize) 355 stksize = default_stksize; 356 357 if (stksize == default_stksize) { 358 stk = (caddr_t)segkp_cache_get(segkp_thread); 359 } else { 360 stksize = roundup(stksize, PAGESIZE); 361 stk = (caddr_t)segkp_get(segkp, stksize, 362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 363 } 364 365 ASSERT(stk != NULL); 366 367 /* 368 * The machine-dependent mutex code may require that 369 * thread pointers (since they may be used for mutex owner 370 * fields) have certain alignment requirements. 371 * PTR24_ALIGN is the size of the alignment quanta. 372 * XXX - assumes stack grows toward low addresses. 373 */ 374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 375 cmn_err(CE_PANIC, "thread_create: proposed stack size" 376 " too small to hold thread."); 377 #ifdef STACK_GROWTH_DOWN 378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 379 stksize &= -PTR24_ALIGN; /* make thread aligned */ 380 t = (kthread_t *)(stk + stksize); 381 bzero(t, sizeof (kthread_t)); 382 if (audit_active) 383 audit_thread_create(t); 384 t->t_stk = stk + stksize; 385 t->t_stkbase = stk; 386 #else /* stack grows to larger addresses */ 387 stksize -= SA(sizeof (kthread_t)); 388 t = (kthread_t *)(stk); 389 bzero(t, sizeof (kthread_t)); 390 t->t_stk = stk + sizeof (kthread_t); 391 t->t_stkbase = stk + stksize + sizeof (kthread_t); 392 #endif /* STACK_GROWTH_DOWN */ 393 t->t_flag |= T_TALLOCSTK; 394 t->t_swap = stk; 395 } else { 396 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 397 bzero(t, sizeof (kthread_t)); 398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 399 if (audit_active) 400 audit_thread_create(t); 401 /* 402 * Initialize t_stk to the kernel stack pointer to use 403 * upon entry to the kernel 404 */ 405 #ifdef STACK_GROWTH_DOWN 406 t->t_stk = stk + stksize; 407 t->t_stkbase = stk; 408 #else 409 t->t_stk = stk; /* 3b2-like */ 410 t->t_stkbase = stk + stksize; 411 #endif /* STACK_GROWTH_DOWN */ 412 } 413 414 if (kmem_stackinfo != 0) { 415 stkinfo_begin(t); 416 } 417 418 t->t_ts = ts; 419 420 /* 421 * p_cred could be NULL if it thread_create is called before cred_init 422 * is called in main. 423 */ 424 mutex_enter(&pp->p_crlock); 425 if (pp->p_cred) 426 crhold(t->t_cred = pp->p_cred); 427 mutex_exit(&pp->p_crlock); 428 t->t_start = gethrestime_sec(); 429 t->t_startpc = proc; 430 t->t_procp = pp; 431 t->t_clfuncs = &sys_classfuncs.thread; 432 t->t_cid = syscid; 433 t->t_pri = pri; 434 t->t_stime = ddi_get_lbolt(); 435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 436 t->t_bind_cpu = PBIND_NONE; 437 t->t_bindflag = (uchar_t)default_binding_mode; 438 t->t_bind_pset = PS_NONE; 439 t->t_plockp = &pp->p_lock; 440 t->t_copyops = NULL; 441 t->t_taskq = NULL; 442 t->t_anttime = 0; 443 t->t_hatdepth = 0; 444 445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 446 447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 448 LOCK_INIT_CLEAR(&t->t_lock); 449 450 /* 451 * Callers who give us a NULL proc must do their own 452 * stack initialization. e.g. lwp_create() 453 */ 454 if (proc != NULL) { 455 t->t_stk = thread_stk_init(t->t_stk); 456 thread_load(t, proc, arg, len); 457 } 458 459 /* 460 * Put a hold on project0. If this thread is actually in a 461 * different project, then t_proj will be changed later in 462 * lwp_create(). All kernel-only threads must be in project 0. 463 */ 464 t->t_proj = project_hold(proj0p); 465 466 lgrp_affinity_init(&t->t_lgrp_affinity); 467 468 mutex_enter(&pidlock); 469 nthread++; 470 t->t_did = next_t_id++; 471 t->t_prev = curthread->t_prev; 472 t->t_next = curthread; 473 474 /* 475 * Add the thread to the list of all threads, and initialize 476 * its t_cpu pointer. We need to block preemption since 477 * cpu_offline walks the thread list looking for threads 478 * with t_cpu pointing to the CPU being offlined. We want 479 * to make sure that the list is consistent and that if t_cpu 480 * is set, the thread is on the list. 481 */ 482 kpreempt_disable(); 483 curthread->t_prev->t_next = t; 484 curthread->t_prev = t; 485 486 /* 487 * We'll always create in the default partition since that's where 488 * kernel threads go (we'll change this later if needed, in 489 * lwp_create()). 490 */ 491 t->t_cpupart = &cp_default; 492 493 /* 494 * For now, affiliate this thread with the root lgroup. 495 * Since the kernel does not (presently) allocate its memory 496 * in a locality aware fashion, the root is an appropriate home. 497 * If this thread is later associated with an lwp, it will have 498 * its lgroup re-assigned at that time. 499 */ 500 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 501 502 /* 503 * If the current CPU is in the default cpupart, use it. Otherwise, 504 * pick one that is; before entering the dispatcher code, we'll 505 * make sure to keep the invariant that ->t_cpu is set. (In fact, we 506 * rely on this, in ht_should_run(), in the call tree of 507 * disp_lowpri_cpu().) 508 */ 509 if (CPU->cpu_part == &cp_default) { 510 t->t_cpu = CPU; 511 } else { 512 t->t_cpu = cp_default.cp_cpulist; 513 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri); 514 } 515 516 t->t_disp_queue = t->t_cpu->cpu_disp; 517 kpreempt_enable(); 518 519 /* 520 * Initialize thread state and the dispatcher lock pointer. 521 * Need to hold onto pidlock to block allthreads walkers until 522 * the state is set. 523 */ 524 switch (state) { 525 case TS_RUN: 526 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 527 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 528 CL_SETRUN(t); 529 thread_unlock(t); 530 break; 531 532 case TS_ONPROC: 533 THREAD_ONPROC(t, t->t_cpu); 534 break; 535 536 case TS_FREE: 537 /* 538 * Free state will be used for intr threads. 539 * The interrupt routine must set the thread dispatcher 540 * lock pointer (t_lockp) if starting on a CPU 541 * other than the current one. 542 */ 543 THREAD_FREEINTR(t, CPU); 544 break; 545 546 case TS_STOPPED: 547 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 548 break; 549 550 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 551 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 552 } 553 mutex_exit(&pidlock); 554 return (t); 555 } 556 557 /* 558 * Move thread to project0 and take care of project reference counters. 559 */ 560 void 561 thread_rele(kthread_t *t) 562 { 563 kproject_t *kpj; 564 565 thread_lock(t); 566 567 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 568 kpj = ttoproj(t); 569 t->t_proj = proj0p; 570 571 thread_unlock(t); 572 573 if (kpj != proj0p) { 574 project_rele(kpj); 575 (void) project_hold(proj0p); 576 } 577 } 578 579 void 580 thread_exit(void) 581 { 582 kthread_t *t = curthread; 583 584 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 585 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 586 587 tsd_exit(); /* Clean up this thread's TSD */ 588 589 kcpc_passivate(); /* clean up performance counter state */ 590 591 /* 592 * No kernel thread should have called poll() without arranging 593 * calling pollcleanup() here. 594 */ 595 ASSERT(t->t_pollstate == NULL); 596 ASSERT(t->t_schedctl == NULL); 597 if (t->t_door) 598 door_slam(); /* in case thread did an upcall */ 599 600 thread_rele(t); 601 t->t_preempt++; 602 603 /* 604 * remove thread from the all threads list so that 605 * death-row can use the same pointers. 606 */ 607 mutex_enter(&pidlock); 608 t->t_next->t_prev = t->t_prev; 609 t->t_prev->t_next = t->t_next; 610 ASSERT(allthreads != t); /* t0 never exits */ 611 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 612 mutex_exit(&pidlock); 613 614 if (t->t_ctx != NULL) 615 exitctx(t); 616 if (t->t_procp->p_pctx != NULL) 617 exitpctx(t->t_procp); 618 619 if (kmem_stackinfo != 0) { 620 stkinfo_end(t); 621 } 622 623 t->t_state = TS_ZOMB; /* set zombie thread */ 624 625 swtch_from_zombie(); /* give up the CPU */ 626 /* NOTREACHED */ 627 } 628 629 /* 630 * Check to see if the specified thread is active (defined as being on 631 * the thread list). This is certainly a slow way to do this; if there's 632 * ever a reason to speed it up, we could maintain a hash table of active 633 * threads indexed by their t_did. 634 */ 635 static kthread_t * 636 did_to_thread(kt_did_t tid) 637 { 638 kthread_t *t; 639 640 ASSERT(MUTEX_HELD(&pidlock)); 641 for (t = curthread->t_next; t != curthread; t = t->t_next) { 642 if (t->t_did == tid) 643 break; 644 } 645 if (t->t_did == tid) 646 return (t); 647 else 648 return (NULL); 649 } 650 651 /* 652 * Wait for specified thread to exit. Returns immediately if the thread 653 * could not be found, meaning that it has either already exited or never 654 * existed. 655 */ 656 void 657 thread_join(kt_did_t tid) 658 { 659 kthread_t *t; 660 661 ASSERT(tid != curthread->t_did); 662 ASSERT(tid != t0.t_did); 663 664 mutex_enter(&pidlock); 665 /* 666 * Make sure we check that the thread is on the thread list 667 * before blocking on it; otherwise we could end up blocking on 668 * a cv that's already been freed. In other words, don't cache 669 * the thread pointer across calls to cv_wait. 670 * 671 * The choice of loop invariant means that whenever a thread 672 * is taken off the allthreads list, a cv_broadcast must be 673 * performed on that thread's t_joincv to wake up any waiters. 674 * The broadcast doesn't have to happen right away, but it 675 * shouldn't be postponed indefinitely (e.g., by doing it in 676 * thread_free which may only be executed when the deathrow 677 * queue is processed. 678 */ 679 while (t = did_to_thread(tid)) 680 cv_wait(&t->t_joincv, &pidlock); 681 mutex_exit(&pidlock); 682 } 683 684 void 685 thread_free_prevent(kthread_t *t) 686 { 687 kmutex_t *lp; 688 689 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 690 mutex_enter(lp); 691 } 692 693 void 694 thread_free_allow(kthread_t *t) 695 { 696 kmutex_t *lp; 697 698 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 699 mutex_exit(lp); 700 } 701 702 static void 703 thread_free_barrier(kthread_t *t) 704 { 705 kmutex_t *lp; 706 707 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 708 mutex_enter(lp); 709 mutex_exit(lp); 710 } 711 712 void 713 thread_free(kthread_t *t) 714 { 715 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 716 klwp_t *lwp = t->t_lwp; 717 caddr_t swap = t->t_swap; 718 719 ASSERT(t != &t0 && t->t_state == TS_FREE); 720 ASSERT(t->t_door == NULL); 721 ASSERT(t->t_schedctl == NULL); 722 ASSERT(t->t_pollstate == NULL); 723 724 t->t_pri = 0; 725 t->t_pc = 0; 726 t->t_sp = 0; 727 t->t_wchan0 = NULL; 728 t->t_wchan = NULL; 729 if (t->t_cred != NULL) { 730 crfree(t->t_cred); 731 t->t_cred = 0; 732 } 733 if (t->t_pdmsg) { 734 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 735 t->t_pdmsg = NULL; 736 } 737 if (audit_active) 738 audit_thread_free(t); 739 if (t->t_cldata) { 740 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 741 } 742 if (t->t_rprof != NULL) { 743 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 744 t->t_rprof = NULL; 745 } 746 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 747 if (lwp) 748 lwp_freeregs(lwp, 0); 749 if (t->t_ctx) 750 freectx(t, 0); 751 t->t_stk = NULL; 752 if (lwp) 753 lwp_stk_fini(lwp); 754 lock_clear(&t->t_lock); 755 756 if (t->t_ts->ts_waiters > 0) 757 panic("thread_free: turnstile still active"); 758 759 kmem_cache_free(turnstile_cache, t->t_ts); 760 761 free_afd(&t->t_activefd); 762 763 /* 764 * Barrier for the tick accounting code. The tick accounting code 765 * holds this lock to keep the thread from going away while it's 766 * looking at it. 767 */ 768 thread_free_barrier(t); 769 770 ASSERT(ttoproj(t) == proj0p); 771 project_rele(ttoproj(t)); 772 773 lgrp_affinity_free(&t->t_lgrp_affinity); 774 775 mutex_enter(&pidlock); 776 nthread--; 777 mutex_exit(&pidlock); 778 779 if (t->t_name != NULL) { 780 kmem_free(t->t_name, THREAD_NAME_MAX); 781 t->t_name = NULL; 782 } 783 784 /* 785 * Free thread, lwp and stack. This needs to be done carefully, since 786 * if T_TALLOCSTK is set, the thread is part of the stack. 787 */ 788 t->t_lwp = NULL; 789 t->t_swap = NULL; 790 791 if (swap) { 792 segkp_release(segkp, swap); 793 } 794 if (lwp) { 795 kmem_cache_free(lwp_cache, lwp); 796 } 797 if (!allocstk) { 798 kmem_cache_free(thread_cache, t); 799 } 800 } 801 802 /* 803 * Removes threads associated with the given zone from a deathrow queue. 804 * tp is a pointer to the head of the deathrow queue, and countp is a 805 * pointer to the current deathrow count. Returns a linked list of 806 * threads removed from the list. 807 */ 808 static kthread_t * 809 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 810 { 811 kthread_t *tmp, *list = NULL; 812 cred_t *cr; 813 814 ASSERT(MUTEX_HELD(&reaplock)); 815 while (*tp != NULL) { 816 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 817 tmp = *tp; 818 *tp = tmp->t_forw; 819 tmp->t_forw = list; 820 list = tmp; 821 (*countp)--; 822 } else { 823 tp = &(*tp)->t_forw; 824 } 825 } 826 return (list); 827 } 828 829 static void 830 thread_reap_list(kthread_t *t) 831 { 832 kthread_t *next; 833 834 while (t != NULL) { 835 next = t->t_forw; 836 thread_free(t); 837 t = next; 838 } 839 } 840 841 /* ARGSUSED */ 842 static void 843 thread_zone_destroy(zoneid_t zoneid, void *unused) 844 { 845 kthread_t *t, *l; 846 847 mutex_enter(&reaplock); 848 /* 849 * Pull threads and lwps associated with zone off deathrow lists. 850 */ 851 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 852 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 853 mutex_exit(&reaplock); 854 855 /* 856 * Guard against race condition in mutex_owner_running: 857 * thread=owner(mutex) 858 * <interrupt> 859 * thread exits mutex 860 * thread exits 861 * thread reaped 862 * thread struct freed 863 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 864 * A cross call to all cpus will cause the interrupt handler 865 * to reset the PC if it is in mutex_owner_running, refreshing 866 * stale thread pointers. 867 */ 868 mutex_sync(); /* sync with mutex code */ 869 870 /* 871 * Reap threads 872 */ 873 thread_reap_list(t); 874 875 /* 876 * Reap lwps 877 */ 878 thread_reap_list(l); 879 } 880 881 /* 882 * cleanup zombie threads that are on deathrow. 883 */ 884 void 885 thread_reaper() 886 { 887 kthread_t *t, *l; 888 callb_cpr_t cprinfo; 889 890 /* 891 * Register callback to clean up threads when zone is destroyed. 892 */ 893 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 894 895 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 896 for (;;) { 897 mutex_enter(&reaplock); 898 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 899 CALLB_CPR_SAFE_BEGIN(&cprinfo); 900 cv_wait(&reaper_cv, &reaplock); 901 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 902 } 903 /* 904 * mutex_sync() needs to be called when reaping, but 905 * not too often. We limit reaping rate to once 906 * per second. Reaplimit is max rate at which threads can 907 * be freed. Does not impact thread destruction/creation. 908 */ 909 t = thread_deathrow; 910 l = lwp_deathrow; 911 thread_deathrow = NULL; 912 lwp_deathrow = NULL; 913 thread_reapcnt = 0; 914 lwp_reapcnt = 0; 915 mutex_exit(&reaplock); 916 917 /* 918 * Guard against race condition in mutex_owner_running: 919 * thread=owner(mutex) 920 * <interrupt> 921 * thread exits mutex 922 * thread exits 923 * thread reaped 924 * thread struct freed 925 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 926 * A cross call to all cpus will cause the interrupt handler 927 * to reset the PC if it is in mutex_owner_running, refreshing 928 * stale thread pointers. 929 */ 930 mutex_sync(); /* sync with mutex code */ 931 /* 932 * Reap threads 933 */ 934 thread_reap_list(t); 935 936 /* 937 * Reap lwps 938 */ 939 thread_reap_list(l); 940 delay(hz); 941 } 942 } 943 944 /* 945 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 946 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 947 * that is reapable. The thread already holds the reaplock, and was already 948 * freed. 949 */ 950 void 951 reapq_move_lq_to_tq(kthread_t *t) 952 { 953 ASSERT(t->t_state == TS_FREE); 954 ASSERT(MUTEX_HELD(&reaplock)); 955 t->t_forw = thread_deathrow; 956 thread_deathrow = t; 957 thread_reapcnt++; 958 if (lwp_reapcnt + thread_reapcnt > reaplimit) 959 cv_signal(&reaper_cv); /* wake the reaper */ 960 } 961 962 /* 963 * This is called by resume() to put a zombie thread onto deathrow. 964 * The thread's state is changed to TS_FREE to indicate that is reapable. 965 * This is called from the idle thread so it must not block - just spin. 966 */ 967 void 968 reapq_add(kthread_t *t) 969 { 970 mutex_enter(&reaplock); 971 972 /* 973 * lwp_deathrow contains threads with lwp linkage and 974 * swappable thread stacks which have the default stacksize. 975 * These threads' lwps and stacks may be reused by lwp_create(). 976 * 977 * Anything else goes on thread_deathrow(), where it will eventually 978 * be thread_free()d. 979 */ 980 if (t->t_flag & T_LWPREUSE) { 981 ASSERT(ttolwp(t) != NULL); 982 t->t_forw = lwp_deathrow; 983 lwp_deathrow = t; 984 lwp_reapcnt++; 985 } else { 986 t->t_forw = thread_deathrow; 987 thread_deathrow = t; 988 thread_reapcnt++; 989 } 990 if (lwp_reapcnt + thread_reapcnt > reaplimit) 991 cv_signal(&reaper_cv); /* wake the reaper */ 992 t->t_state = TS_FREE; 993 lock_clear(&t->t_lock); 994 995 /* 996 * Before we return, we need to grab and drop the thread lock for 997 * the dead thread. At this point, the current thread is the idle 998 * thread, and the dead thread's CPU lock points to the current 999 * CPU -- and we must grab and drop the lock to synchronize with 1000 * a racing thread walking a blocking chain that the zombie thread 1001 * was recently in. By this point, that blocking chain is (by 1002 * definition) stale: the dead thread is not holding any locks, and 1003 * is therefore not in any blocking chains -- but if we do not regrab 1004 * our lock before freeing the dead thread's data structures, the 1005 * thread walking the (stale) blocking chain will die on memory 1006 * corruption when it attempts to drop the dead thread's lock. We 1007 * only need do this once because there is no way for the dead thread 1008 * to ever again be on a blocking chain: once we have grabbed and 1009 * dropped the thread lock, we are guaranteed that anyone that could 1010 * have seen this thread in a blocking chain can no longer see it. 1011 */ 1012 thread_lock(t); 1013 thread_unlock(t); 1014 1015 mutex_exit(&reaplock); 1016 } 1017 1018 static struct ctxop * 1019 ctxop_find_by_tmpl(kthread_t *t, const struct ctxop_template *ct, void *arg) 1020 { 1021 struct ctxop *ctx, *head; 1022 1023 ASSERT(MUTEX_HELD(&t->t_ctx_lock)); 1024 ASSERT(curthread->t_preempt > 0); 1025 1026 if (t->t_ctx == NULL) { 1027 return (NULL); 1028 } 1029 1030 ctx = head = t->t_ctx; 1031 do { 1032 if (ctx->save_op == ct->ct_save && 1033 ctx->restore_op == ct->ct_restore && 1034 ctx->fork_op == ct->ct_fork && 1035 ctx->lwp_create_op == ct->ct_lwp_create && 1036 ctx->exit_op == ct->ct_exit && 1037 ctx->free_op == ct->ct_free && 1038 ctx->arg == arg) { 1039 return (ctx); 1040 } 1041 1042 ctx = ctx->next; 1043 } while (ctx != head); 1044 1045 return (NULL); 1046 } 1047 1048 static void 1049 ctxop_detach_chain(kthread_t *t, struct ctxop *ctx) 1050 { 1051 ASSERT(t != NULL); 1052 ASSERT(t->t_ctx != NULL); 1053 ASSERT(ctx != NULL); 1054 ASSERT(ctx->next != NULL && ctx->prev != NULL); 1055 1056 ctx->prev->next = ctx->next; 1057 ctx->next->prev = ctx->prev; 1058 if (ctx->next == ctx) { 1059 /* last remaining item */ 1060 t->t_ctx = NULL; 1061 } else if (ctx == t->t_ctx) { 1062 /* fix up head of list */ 1063 t->t_ctx = ctx->next; 1064 } 1065 ctx->next = ctx->prev = NULL; 1066 } 1067 1068 struct ctxop * 1069 ctxop_allocate(const struct ctxop_template *ct, void *arg) 1070 { 1071 struct ctxop *ctx; 1072 1073 /* 1074 * No changes have been made to the interface yet, so we expect all 1075 * callers to use the original revision. 1076 */ 1077 VERIFY3U(ct->ct_rev, ==, CTXOP_TPL_REV); 1078 1079 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1080 ctx->save_op = ct->ct_save; 1081 ctx->restore_op = ct->ct_restore; 1082 ctx->fork_op = ct->ct_fork; 1083 ctx->lwp_create_op = ct->ct_lwp_create; 1084 ctx->exit_op = ct->ct_exit; 1085 ctx->free_op = ct->ct_free; 1086 ctx->arg = arg; 1087 ctx->save_ts = 0; 1088 ctx->restore_ts = 0; 1089 ctx->next = ctx->prev = NULL; 1090 1091 return (ctx); 1092 } 1093 1094 void 1095 ctxop_free(struct ctxop *ctx) 1096 { 1097 if (ctx->free_op != NULL) 1098 (ctx->free_op)(ctx->arg, 0); 1099 1100 kmem_free(ctx, sizeof (struct ctxop)); 1101 } 1102 1103 void 1104 ctxop_attach(kthread_t *t, struct ctxop *ctx) 1105 { 1106 ASSERT(ctx->next == NULL && ctx->prev == NULL); 1107 1108 /* 1109 * Keep ctxops in a doubly-linked list to allow traversal in both 1110 * directions. Using only the newest-to-oldest ordering was adequate 1111 * previously, but reversing the order for restore_op actions is 1112 * necessary if later-added ctxops depends on earlier ones. 1113 * 1114 * One example of such a dependency: Hypervisor software handling the 1115 * guest FPU expects that it save FPU state prior to host FPU handling 1116 * and consequently handle the guest logic _after_ the host FPU has 1117 * been restored. 1118 * 1119 * The t_ctx member points to the most recently added ctxop or is NULL 1120 * if no ctxops are associated with the thread. The 'next' pointers 1121 * form a loop of the ctxops in newest-to-oldest order. The 'prev' 1122 * pointers form a loop in the reverse direction, where t_ctx->prev is 1123 * the oldest entry associated with the thread. 1124 * 1125 * The protection of kpreempt_disable is required to safely perform the 1126 * list insertion, since there are inconsistent states between some of 1127 * the pointer assignments. 1128 */ 1129 kpreempt_disable(); 1130 if (t->t_ctx == NULL) { 1131 ctx->next = ctx; 1132 ctx->prev = ctx; 1133 } else { 1134 struct ctxop *head = t->t_ctx, *tail = t->t_ctx->prev; 1135 1136 ctx->next = head; 1137 ctx->prev = tail; 1138 head->prev = ctx; 1139 tail->next = ctx; 1140 } 1141 t->t_ctx = ctx; 1142 kpreempt_enable(); 1143 } 1144 1145 void 1146 ctxop_detach(kthread_t *t, struct ctxop *ctx) 1147 { 1148 /* 1149 * The incoming kthread_t (which is the thread for which the 1150 * context ops will be detached) should be one of the following: 1151 * 1152 * a) the current thread, 1153 * 1154 * b) a thread of a process that's being forked (SIDL), 1155 * 1156 * c) a thread that belongs to the same process as the current 1157 * thread and for which the current thread is the agent thread, 1158 * 1159 * d) a thread that is TS_STOPPED which is indicative of it 1160 * being (if curthread is not an agent) a thread being created 1161 * as part of an lwp creation. 1162 */ 1163 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1164 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1165 1166 /* 1167 * Serialize modifications to t->t_ctx to prevent the agent thread 1168 * and the target thread from racing with each other during lwp exit. 1169 */ 1170 mutex_enter(&t->t_ctx_lock); 1171 kpreempt_disable(); 1172 1173 VERIFY(t->t_ctx != NULL); 1174 1175 #ifdef DEBUG 1176 /* Check that provided `ctx` is actually present in the t_ctx chain */ 1177 struct ctxop *head, *cur; 1178 head = cur = t->t_ctx; 1179 for (;;) { 1180 if (cur == ctx) { 1181 break; 1182 } 1183 cur = cur->next; 1184 /* If we wrap, having not found `ctx`, this assert will fail */ 1185 ASSERT3P(cur, !=, head); 1186 } 1187 #endif /* DEBUG */ 1188 1189 ctxop_detach_chain(t, ctx); 1190 1191 mutex_exit(&t->t_ctx_lock); 1192 kpreempt_enable(); 1193 } 1194 1195 void 1196 ctxop_install(kthread_t *t, const struct ctxop_template *ct, void *arg) 1197 { 1198 ctxop_attach(t, ctxop_allocate(ct, arg)); 1199 } 1200 1201 int 1202 ctxop_remove(kthread_t *t, const struct ctxop_template *ct, void *arg) 1203 { 1204 struct ctxop *ctx; 1205 1206 /* 1207 * ctxop_remove() shares the same requirements for the acted-upon thread 1208 * as ctxop_detach() 1209 */ 1210 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1211 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1212 1213 /* 1214 * Serialize modifications to t->t_ctx to prevent the agent thread 1215 * and the target thread from racing with each other during lwp exit. 1216 */ 1217 mutex_enter(&t->t_ctx_lock); 1218 kpreempt_disable(); 1219 1220 ctx = ctxop_find_by_tmpl(t, ct, arg); 1221 if (ctx != NULL) { 1222 ctxop_detach_chain(t, ctx); 1223 ctxop_free(ctx); 1224 } 1225 1226 mutex_exit(&t->t_ctx_lock); 1227 kpreempt_enable(); 1228 1229 if (ctx != NULL) { 1230 return (1); 1231 } 1232 return (0); 1233 } 1234 1235 void 1236 savectx(kthread_t *t) 1237 { 1238 ASSERT(t == curthread); 1239 1240 if (t->t_ctx != NULL) { 1241 struct ctxop *ctx, *head; 1242 1243 /* Forward traversal */ 1244 ctx = head = t->t_ctx; 1245 do { 1246 if (ctx->save_op != NULL) { 1247 ctx->save_ts = gethrtime_unscaled(); 1248 (ctx->save_op)(ctx->arg); 1249 } 1250 ctx = ctx->next; 1251 } while (ctx != head); 1252 } 1253 } 1254 1255 void 1256 restorectx(kthread_t *t) 1257 { 1258 ASSERT(t == curthread); 1259 1260 if (t->t_ctx != NULL) { 1261 struct ctxop *ctx, *tail; 1262 1263 /* Backward traversal (starting at the tail) */ 1264 ctx = tail = t->t_ctx->prev; 1265 do { 1266 if (ctx->restore_op != NULL) { 1267 ctx->restore_ts = gethrtime_unscaled(); 1268 (ctx->restore_op)(ctx->arg); 1269 } 1270 ctx = ctx->prev; 1271 } while (ctx != tail); 1272 } 1273 } 1274 1275 void 1276 forkctx(kthread_t *t, kthread_t *ct) 1277 { 1278 if (t->t_ctx != NULL) { 1279 struct ctxop *ctx, *head; 1280 1281 /* Forward traversal */ 1282 ctx = head = t->t_ctx; 1283 do { 1284 if (ctx->fork_op != NULL) { 1285 (ctx->fork_op)(t, ct); 1286 } 1287 ctx = ctx->next; 1288 } while (ctx != head); 1289 } 1290 } 1291 1292 /* 1293 * Note that this operator is only invoked via the _lwp_create 1294 * system call. The system may have other reasons to create lwps 1295 * e.g. the agent lwp or the doors unreferenced lwp. 1296 */ 1297 void 1298 lwp_createctx(kthread_t *t, kthread_t *ct) 1299 { 1300 if (t->t_ctx != NULL) { 1301 struct ctxop *ctx, *head; 1302 1303 /* Forward traversal */ 1304 ctx = head = t->t_ctx; 1305 do { 1306 if (ctx->lwp_create_op != NULL) { 1307 (ctx->lwp_create_op)(t, ct); 1308 } 1309 ctx = ctx->next; 1310 } while (ctx != head); 1311 } 1312 } 1313 1314 /* 1315 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1316 * needed when the thread/LWP leaves the processor for the last time. This 1317 * routine is not intended to deal with freeing memory; freectx() is used for 1318 * that purpose during thread_free(). This routine is provided to allow for 1319 * clean-up that can't wait until thread_free(). 1320 */ 1321 void 1322 exitctx(kthread_t *t) 1323 { 1324 if (t->t_ctx != NULL) { 1325 struct ctxop *ctx, *head; 1326 1327 /* Forward traversal */ 1328 ctx = head = t->t_ctx; 1329 do { 1330 if (ctx->exit_op != NULL) { 1331 (ctx->exit_op)(t); 1332 } 1333 ctx = ctx->next; 1334 } while (ctx != head); 1335 } 1336 } 1337 1338 /* 1339 * freectx is called from thread_free() and exec() to get 1340 * rid of old thread context ops. 1341 */ 1342 void 1343 freectx(kthread_t *t, int isexec) 1344 { 1345 kpreempt_disable(); 1346 if (t->t_ctx != NULL) { 1347 struct ctxop *ctx, *head; 1348 1349 ctx = head = t->t_ctx; 1350 t->t_ctx = NULL; 1351 do { 1352 struct ctxop *next = ctx->next; 1353 1354 if (ctx->free_op != NULL) { 1355 (ctx->free_op)(ctx->arg, isexec); 1356 } 1357 kmem_free(ctx, sizeof (struct ctxop)); 1358 ctx = next; 1359 } while (ctx != head); 1360 } 1361 kpreempt_enable(); 1362 } 1363 1364 /* 1365 * freectx_ctx is called from lwp_create() when lwp is reused from 1366 * lwp_deathrow and its thread structure is added to thread_deathrow. 1367 * The thread structure to which this ctx was attached may be already 1368 * freed by the thread reaper so free_op implementations shouldn't rely 1369 * on thread structure to which this ctx was attached still being around. 1370 */ 1371 void 1372 freectx_ctx(struct ctxop *ctx) 1373 { 1374 struct ctxop *head = ctx; 1375 1376 ASSERT(ctx != NULL); 1377 1378 kpreempt_disable(); 1379 1380 head = ctx; 1381 do { 1382 struct ctxop *next = ctx->next; 1383 1384 if (ctx->free_op != NULL) { 1385 (ctx->free_op)(ctx->arg, 0); 1386 } 1387 kmem_free(ctx, sizeof (struct ctxop)); 1388 ctx = next; 1389 } while (ctx != head); 1390 kpreempt_enable(); 1391 } 1392 1393 /* 1394 * Set the thread running; arrange for it to be swapped in if necessary. 1395 */ 1396 void 1397 setrun_locked(kthread_t *t) 1398 { 1399 ASSERT(THREAD_LOCK_HELD(t)); 1400 if (t->t_state == TS_SLEEP) { 1401 /* 1402 * Take off sleep queue. 1403 */ 1404 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1405 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1406 /* 1407 * Already on dispatcher queue. 1408 */ 1409 return; 1410 } else if (t->t_state == TS_WAIT) { 1411 waitq_setrun(t); 1412 } else if (t->t_state == TS_STOPPED) { 1413 /* 1414 * Just calling setrun() is not sufficient to set a stopped 1415 * thread running. All bits indicating that a thread can be 1416 * run, which we group as TS_ALLSTART, must be set. Any cleared 1417 * bits under this mask are reasons the thread is not currently 1418 * runnable. The thread won't be stopped except for one of 1419 * those reasons. 1420 * 1421 * These flags must be set before calling setrun_locked(t). 1422 * They can't be passed as arguments because the streams 1423 * code calls setrun() indirectly and the mechanism for 1424 * doing so admits only one argument. Note that the 1425 * thread must be locked in order to change t_schedflags. 1426 */ 1427 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1428 return; 1429 /* 1430 * Process is no longer stopped (a thread is running). 1431 */ 1432 t->t_whystop = 0; 1433 t->t_whatstop = 0; 1434 /* 1435 * Strictly speaking, we do not have to clear these 1436 * flags here; they are cleared on entry to stop(). 1437 * However, they are confusing when doing kernel 1438 * debugging or when they are revealed by ps(1). 1439 */ 1440 t->t_schedflag &= ~TS_ALLSTART; 1441 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1442 ASSERT(t->t_lockp == &transition_lock); 1443 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1444 /* 1445 * Let the class put the process on the dispatcher queue. 1446 */ 1447 CL_SETRUN(t); 1448 } 1449 } 1450 1451 void 1452 setrun(kthread_t *t) 1453 { 1454 thread_lock(t); 1455 setrun_locked(t); 1456 thread_unlock(t); 1457 } 1458 1459 /* 1460 * Unpin an interrupted thread. 1461 * When an interrupt occurs, the interrupt is handled on the stack 1462 * of an interrupt thread, taken from a pool linked to the CPU structure. 1463 * 1464 * When swtch() is switching away from an interrupt thread because it 1465 * blocked or was preempted, this routine is called to complete the 1466 * saving of the interrupted thread state, and returns the interrupted 1467 * thread pointer so it may be resumed. 1468 * 1469 * Called by swtch() only at high spl. 1470 */ 1471 kthread_t * 1472 thread_unpin() 1473 { 1474 kthread_t *t = curthread; /* current thread */ 1475 kthread_t *itp; /* interrupted thread */ 1476 int i; /* interrupt level */ 1477 extern int intr_passivate(); 1478 1479 ASSERT(t->t_intr != NULL); 1480 1481 itp = t->t_intr; /* interrupted thread */ 1482 t->t_intr = NULL; /* clear interrupt ptr */ 1483 1484 smt_end_intr(); 1485 1486 /* 1487 * Get state from interrupt thread for the one 1488 * it interrupted. 1489 */ 1490 1491 i = intr_passivate(t, itp); 1492 1493 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1494 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1495 i, t, t, itp, itp); 1496 1497 /* 1498 * Dissociate the current thread from the interrupted thread's LWP. 1499 */ 1500 t->t_lwp = NULL; 1501 1502 /* 1503 * Interrupt handlers above the level that spinlocks block must 1504 * not block. 1505 */ 1506 #if DEBUG 1507 if (i < 0 || i > LOCK_LEVEL) 1508 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1509 #endif 1510 1511 /* 1512 * Compute the CPU's base interrupt level based on the active 1513 * interrupts. 1514 */ 1515 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1516 set_base_spl(); 1517 1518 return (itp); 1519 } 1520 1521 /* 1522 * Create and initialize an interrupt thread. 1523 * Returns non-zero on error. 1524 * Called at spl7() or better. 1525 */ 1526 void 1527 thread_create_intr(struct cpu *cp) 1528 { 1529 kthread_t *tp; 1530 1531 tp = thread_create(NULL, 0, 1532 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1533 1534 /* 1535 * Set the thread in the TS_FREE state. The state will change 1536 * to TS_ONPROC only while the interrupt is active. Think of these 1537 * as being on a private free list for the CPU. Being TS_FREE keeps 1538 * inactive interrupt threads out of debugger thread lists. 1539 * 1540 * We cannot call thread_create with TS_FREE because of the current 1541 * checks there for ONPROC. Fix this when thread_create takes flags. 1542 */ 1543 THREAD_FREEINTR(tp, cp); 1544 1545 /* 1546 * Nobody should ever reference the credentials of an interrupt 1547 * thread so make it NULL to catch any such references. 1548 */ 1549 tp->t_cred = NULL; 1550 tp->t_flag |= T_INTR_THREAD; 1551 tp->t_cpu = cp; 1552 tp->t_bound_cpu = cp; 1553 tp->t_disp_queue = cp->cpu_disp; 1554 tp->t_affinitycnt = 1; 1555 tp->t_preempt = 1; 1556 1557 /* 1558 * Don't make a user-requested binding on this thread so that 1559 * the processor can be offlined. 1560 */ 1561 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1562 tp->t_bind_pset = PS_NONE; 1563 1564 #if defined(__x86) 1565 tp->t_stk -= STACK_ALIGN; 1566 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1567 #endif 1568 1569 /* 1570 * Link onto CPU's interrupt pool. 1571 */ 1572 tp->t_link = cp->cpu_intr_thread; 1573 cp->cpu_intr_thread = tp; 1574 } 1575 1576 /* 1577 * TSD -- THREAD SPECIFIC DATA 1578 */ 1579 static kmutex_t tsd_mutex; /* linked list spin lock */ 1580 static uint_t tsd_nkeys; /* size of destructor array */ 1581 /* per-key destructor funcs */ 1582 static void (**tsd_destructor)(void *); 1583 /* list of tsd_thread's */ 1584 static struct tsd_thread *tsd_list; 1585 1586 /* 1587 * Default destructor 1588 * Needed because NULL destructor means that the key is unused 1589 */ 1590 /* ARGSUSED */ 1591 void 1592 tsd_defaultdestructor(void *value) 1593 {} 1594 1595 /* 1596 * Create a key (index into per thread array) 1597 * Locks out tsd_create, tsd_destroy, and tsd_exit 1598 * May allocate memory with lock held 1599 */ 1600 void 1601 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1602 { 1603 int i; 1604 uint_t nkeys; 1605 1606 /* 1607 * if key is allocated, do nothing 1608 */ 1609 mutex_enter(&tsd_mutex); 1610 if (*keyp) { 1611 mutex_exit(&tsd_mutex); 1612 return; 1613 } 1614 /* 1615 * find an unused key 1616 */ 1617 if (destructor == NULL) 1618 destructor = tsd_defaultdestructor; 1619 1620 for (i = 0; i < tsd_nkeys; ++i) 1621 if (tsd_destructor[i] == NULL) 1622 break; 1623 1624 /* 1625 * if no unused keys, increase the size of the destructor array 1626 */ 1627 if (i == tsd_nkeys) { 1628 if ((nkeys = (tsd_nkeys << 1)) == 0) 1629 nkeys = 1; 1630 tsd_destructor = 1631 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1632 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1633 (size_t)(nkeys * sizeof (void (*)(void *)))); 1634 tsd_nkeys = nkeys; 1635 } 1636 1637 /* 1638 * allocate the next available unused key 1639 */ 1640 tsd_destructor[i] = destructor; 1641 *keyp = i + 1; 1642 mutex_exit(&tsd_mutex); 1643 } 1644 1645 /* 1646 * Destroy a key -- this is for unloadable modules 1647 * 1648 * Assumes that the caller is preventing tsd_set and tsd_get 1649 * Locks out tsd_create, tsd_destroy, and tsd_exit 1650 * May free memory with lock held 1651 */ 1652 void 1653 tsd_destroy(uint_t *keyp) 1654 { 1655 uint_t key; 1656 struct tsd_thread *tsd; 1657 1658 /* 1659 * protect the key namespace and our destructor lists 1660 */ 1661 mutex_enter(&tsd_mutex); 1662 key = *keyp; 1663 *keyp = 0; 1664 1665 ASSERT(key <= tsd_nkeys); 1666 1667 /* 1668 * if the key is valid 1669 */ 1670 if (key != 0) { 1671 uint_t k = key - 1; 1672 /* 1673 * for every thread with TSD, call key's destructor 1674 */ 1675 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1676 /* 1677 * no TSD for key in this thread 1678 */ 1679 if (key > tsd->ts_nkeys) 1680 continue; 1681 /* 1682 * call destructor for key 1683 */ 1684 if (tsd->ts_value[k] && tsd_destructor[k]) 1685 (*tsd_destructor[k])(tsd->ts_value[k]); 1686 /* 1687 * reset value for key 1688 */ 1689 tsd->ts_value[k] = NULL; 1690 } 1691 /* 1692 * actually free the key (NULL destructor == unused) 1693 */ 1694 tsd_destructor[k] = NULL; 1695 } 1696 1697 mutex_exit(&tsd_mutex); 1698 } 1699 1700 /* 1701 * Quickly return the per thread value that was stored with the specified key 1702 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1703 */ 1704 void * 1705 tsd_get(uint_t key) 1706 { 1707 return (tsd_agent_get(curthread, key)); 1708 } 1709 1710 /* 1711 * Set a per thread value indexed with the specified key 1712 */ 1713 int 1714 tsd_set(uint_t key, void *value) 1715 { 1716 return (tsd_agent_set(curthread, key, value)); 1717 } 1718 1719 /* 1720 * Like tsd_get(), except that the agent lwp can get the tsd of 1721 * another thread in the same process (the agent thread only runs when the 1722 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1723 */ 1724 void * 1725 tsd_agent_get(kthread_t *t, uint_t key) 1726 { 1727 struct tsd_thread *tsd = t->t_tsd; 1728 1729 ASSERT(t == curthread || 1730 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1731 1732 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1733 return (tsd->ts_value[key - 1]); 1734 return (NULL); 1735 } 1736 1737 /* 1738 * Like tsd_set(), except that the agent lwp can set the tsd of 1739 * another thread in the same process, or syslwp can set the tsd 1740 * of a thread it's in the middle of creating. 1741 * 1742 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1743 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1744 * lock held 1745 */ 1746 int 1747 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1748 { 1749 struct tsd_thread *tsd = t->t_tsd; 1750 1751 ASSERT(t == curthread || 1752 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1753 1754 if (key == 0) 1755 return (EINVAL); 1756 if (tsd == NULL) 1757 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1758 if (key <= tsd->ts_nkeys) { 1759 tsd->ts_value[key - 1] = value; 1760 return (0); 1761 } 1762 1763 ASSERT(key <= tsd_nkeys); 1764 1765 /* 1766 * lock out tsd_destroy() 1767 */ 1768 mutex_enter(&tsd_mutex); 1769 if (tsd->ts_nkeys == 0) { 1770 /* 1771 * Link onto list of threads with TSD 1772 */ 1773 if ((tsd->ts_next = tsd_list) != NULL) 1774 tsd_list->ts_prev = tsd; 1775 tsd_list = tsd; 1776 } 1777 1778 /* 1779 * Allocate thread local storage and set the value for key 1780 */ 1781 tsd->ts_value = tsd_realloc(tsd->ts_value, 1782 tsd->ts_nkeys * sizeof (void *), 1783 key * sizeof (void *)); 1784 tsd->ts_nkeys = key; 1785 tsd->ts_value[key - 1] = value; 1786 mutex_exit(&tsd_mutex); 1787 1788 return (0); 1789 } 1790 1791 1792 /* 1793 * Return the per thread value that was stored with the specified key 1794 * If necessary, create the key and the value 1795 * Assumes the caller is protecting *keyp from tsd_destroy 1796 */ 1797 void * 1798 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1799 { 1800 void *value; 1801 uint_t key = *keyp; 1802 struct tsd_thread *tsd = curthread->t_tsd; 1803 1804 if (tsd == NULL) 1805 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1806 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1807 return (value); 1808 if (key == 0) 1809 tsd_create(keyp, destroy); 1810 (void) tsd_set(*keyp, value = (*allocate)()); 1811 1812 return (value); 1813 } 1814 1815 /* 1816 * Called from thread_exit() to run the destructor function for each tsd 1817 * Locks out tsd_create and tsd_destroy 1818 * Assumes that the destructor *DOES NOT* use tsd 1819 */ 1820 void 1821 tsd_exit(void) 1822 { 1823 int i; 1824 struct tsd_thread *tsd = curthread->t_tsd; 1825 1826 if (tsd == NULL) 1827 return; 1828 1829 if (tsd->ts_nkeys == 0) { 1830 kmem_free(tsd, sizeof (*tsd)); 1831 curthread->t_tsd = NULL; 1832 return; 1833 } 1834 1835 /* 1836 * lock out tsd_create and tsd_destroy, call 1837 * the destructor, and mark the value as destroyed. 1838 */ 1839 mutex_enter(&tsd_mutex); 1840 1841 for (i = 0; i < tsd->ts_nkeys; i++) { 1842 if (tsd->ts_value[i] && tsd_destructor[i]) 1843 (*tsd_destructor[i])(tsd->ts_value[i]); 1844 tsd->ts_value[i] = NULL; 1845 } 1846 1847 /* 1848 * remove from linked list of threads with TSD 1849 */ 1850 if (tsd->ts_next) 1851 tsd->ts_next->ts_prev = tsd->ts_prev; 1852 if (tsd->ts_prev) 1853 tsd->ts_prev->ts_next = tsd->ts_next; 1854 if (tsd_list == tsd) 1855 tsd_list = tsd->ts_next; 1856 1857 mutex_exit(&tsd_mutex); 1858 1859 /* 1860 * free up the TSD 1861 */ 1862 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1863 kmem_free(tsd, sizeof (struct tsd_thread)); 1864 curthread->t_tsd = NULL; 1865 } 1866 1867 /* 1868 * realloc 1869 */ 1870 static void * 1871 tsd_realloc(void *old, size_t osize, size_t nsize) 1872 { 1873 void *new; 1874 1875 new = kmem_zalloc(nsize, KM_SLEEP); 1876 if (old) { 1877 bcopy(old, new, osize); 1878 kmem_free(old, osize); 1879 } 1880 return (new); 1881 } 1882 1883 /* 1884 * Return non-zero if an interrupt is being serviced. 1885 */ 1886 int 1887 servicing_interrupt() 1888 { 1889 int onintr = 0; 1890 1891 /* Are we an interrupt thread */ 1892 if (curthread->t_flag & T_INTR_THREAD) 1893 return (1); 1894 /* Are we servicing a high level interrupt? */ 1895 if (CPU_ON_INTR(CPU)) { 1896 kpreempt_disable(); 1897 onintr = CPU_ON_INTR(CPU); 1898 kpreempt_enable(); 1899 } 1900 return (onintr); 1901 } 1902 1903 1904 /* 1905 * Change the dispatch priority of a thread in the system. 1906 * Used when raising or lowering a thread's priority. 1907 * (E.g., priority inheritance) 1908 * 1909 * Since threads are queued according to their priority, we 1910 * we must check the thread's state to determine whether it 1911 * is on a queue somewhere. If it is, we've got to: 1912 * 1913 * o Dequeue the thread. 1914 * o Change its effective priority. 1915 * o Enqueue the thread. 1916 * 1917 * Assumptions: The thread whose priority we wish to change 1918 * must be locked before we call thread_change_(e)pri(). 1919 * The thread_change(e)pri() function doesn't drop the thread 1920 * lock--that must be done by its caller. 1921 */ 1922 void 1923 thread_change_epri(kthread_t *t, pri_t disp_pri) 1924 { 1925 uint_t state; 1926 1927 ASSERT(THREAD_LOCK_HELD(t)); 1928 1929 /* 1930 * If the inherited priority hasn't actually changed, 1931 * just return. 1932 */ 1933 if (t->t_epri == disp_pri) 1934 return; 1935 1936 state = t->t_state; 1937 1938 /* 1939 * If it's not on a queue, change the priority with impunity. 1940 */ 1941 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1942 t->t_epri = disp_pri; 1943 if (state == TS_ONPROC) { 1944 cpu_t *cp = t->t_disp_queue->disp_cpu; 1945 1946 if (t == cp->cpu_dispthread) 1947 cp->cpu_dispatch_pri = DISP_PRIO(t); 1948 } 1949 } else if (state == TS_SLEEP) { 1950 /* 1951 * Take the thread out of its sleep queue. 1952 * Change the inherited priority. 1953 * Re-enqueue the thread. 1954 * Each synchronization object exports a function 1955 * to do this in an appropriate manner. 1956 */ 1957 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1958 } else if (state == TS_WAIT) { 1959 /* 1960 * Re-enqueue a thread on the wait queue if its 1961 * effective priority needs to change. 1962 */ 1963 if (disp_pri != t->t_epri) 1964 waitq_change_pri(t, disp_pri); 1965 } else { 1966 /* 1967 * The thread is on a run queue. 1968 * Note: setbackdq() may not put the thread 1969 * back on the same run queue where it originally 1970 * resided. 1971 */ 1972 (void) dispdeq(t); 1973 t->t_epri = disp_pri; 1974 setbackdq(t); 1975 } 1976 schedctl_set_cidpri(t); 1977 } 1978 1979 /* 1980 * Function: Change the t_pri field of a thread. 1981 * Side Effects: Adjust the thread ordering on a run queue 1982 * or sleep queue, if necessary. 1983 * Returns: 1 if the thread was on a run queue, else 0. 1984 */ 1985 int 1986 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1987 { 1988 uint_t state; 1989 int on_rq = 0; 1990 1991 ASSERT(THREAD_LOCK_HELD(t)); 1992 1993 state = t->t_state; 1994 THREAD_WILLCHANGE_PRI(t, disp_pri); 1995 1996 /* 1997 * If it's not on a queue, change the priority with impunity. 1998 */ 1999 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 2000 t->t_pri = disp_pri; 2001 2002 if (state == TS_ONPROC) { 2003 cpu_t *cp = t->t_disp_queue->disp_cpu; 2004 2005 if (t == cp->cpu_dispthread) 2006 cp->cpu_dispatch_pri = DISP_PRIO(t); 2007 } 2008 } else if (state == TS_SLEEP) { 2009 /* 2010 * If the priority has changed, take the thread out of 2011 * its sleep queue and change the priority. 2012 * Re-enqueue the thread. 2013 * Each synchronization object exports a function 2014 * to do this in an appropriate manner. 2015 */ 2016 if (disp_pri != t->t_pri) 2017 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 2018 } else if (state == TS_WAIT) { 2019 /* 2020 * Re-enqueue a thread on the wait queue if its 2021 * priority needs to change. 2022 */ 2023 if (disp_pri != t->t_pri) 2024 waitq_change_pri(t, disp_pri); 2025 } else { 2026 /* 2027 * The thread is on a run queue. 2028 * Note: setbackdq() may not put the thread 2029 * back on the same run queue where it originally 2030 * resided. 2031 * 2032 * We still requeue the thread even if the priority 2033 * is unchanged to preserve round-robin (and other) 2034 * effects between threads of the same priority. 2035 */ 2036 on_rq = dispdeq(t); 2037 ASSERT(on_rq); 2038 t->t_pri = disp_pri; 2039 if (front) { 2040 setfrontdq(t); 2041 } else { 2042 setbackdq(t); 2043 } 2044 } 2045 schedctl_set_cidpri(t); 2046 return (on_rq); 2047 } 2048 2049 /* 2050 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 2051 * specific pattern. 2052 */ 2053 static void 2054 stkinfo_begin(kthread_t *t) 2055 { 2056 caddr_t start; /* stack start */ 2057 caddr_t end; /* stack end */ 2058 uint64_t *ptr; /* pattern pointer */ 2059 2060 /* 2061 * Stack grows up or down, see thread_create(), 2062 * compute stack memory area start and end (start < end). 2063 */ 2064 if (t->t_stk > t->t_stkbase) { 2065 /* stack grows down */ 2066 start = t->t_stkbase; 2067 end = t->t_stk; 2068 } else { 2069 /* stack grows up */ 2070 start = t->t_stk; 2071 end = t->t_stkbase; 2072 } 2073 2074 /* 2075 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2076 * alignement for start and end in stack area boundaries 2077 * (protection against corrupt t_stkbase/t_stk data). 2078 */ 2079 if ((((uintptr_t)start) & 0x7) != 0) { 2080 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2081 } 2082 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2083 2084 if ((end <= start) || (end - start) > (1024 * 1024)) { 2085 /* negative or stack size > 1 meg, assume bogus */ 2086 return; 2087 } 2088 2089 /* fill stack area with a pattern (instead of zeros) */ 2090 ptr = (uint64_t *)((void *)start); 2091 while (ptr < (uint64_t *)((void *)end)) { 2092 *ptr++ = KMEM_STKINFO_PATTERN; 2093 } 2094 } 2095 2096 2097 /* 2098 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 2099 * compute the percentage of kernel stack really used, and set in the log 2100 * if it's the latest highest percentage. 2101 */ 2102 static void 2103 stkinfo_end(kthread_t *t) 2104 { 2105 caddr_t start; /* stack start */ 2106 caddr_t end; /* stack end */ 2107 uint64_t *ptr; /* pattern pointer */ 2108 size_t stksz; /* stack size */ 2109 size_t smallest = 0; 2110 size_t percent = 0; 2111 uint_t index = 0; 2112 uint_t i; 2113 static size_t smallest_percent = (size_t)-1; 2114 static uint_t full = 0; 2115 2116 /* create the stackinfo log, if doesn't already exist */ 2117 mutex_enter(&kmem_stkinfo_lock); 2118 if (kmem_stkinfo_log == NULL) { 2119 kmem_stkinfo_log = (kmem_stkinfo_t *) 2120 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 2121 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 2122 if (kmem_stkinfo_log == NULL) { 2123 mutex_exit(&kmem_stkinfo_lock); 2124 return; 2125 } 2126 } 2127 mutex_exit(&kmem_stkinfo_lock); 2128 2129 /* 2130 * Stack grows up or down, see thread_create(), 2131 * compute stack memory area start and end (start < end). 2132 */ 2133 if (t->t_stk > t->t_stkbase) { 2134 /* stack grows down */ 2135 start = t->t_stkbase; 2136 end = t->t_stk; 2137 } else { 2138 /* stack grows up */ 2139 start = t->t_stk; 2140 end = t->t_stkbase; 2141 } 2142 2143 /* stack size as found in kthread_t */ 2144 stksz = end - start; 2145 2146 /* 2147 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2148 * alignement for start and end in stack area boundaries 2149 * (protection against corrupt t_stkbase/t_stk data). 2150 */ 2151 if ((((uintptr_t)start) & 0x7) != 0) { 2152 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2153 } 2154 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2155 2156 if ((end <= start) || (end - start) > (1024 * 1024)) { 2157 /* negative or stack size > 1 meg, assume bogus */ 2158 return; 2159 } 2160 2161 /* search until no pattern in the stack */ 2162 if (t->t_stk > t->t_stkbase) { 2163 /* stack grows down */ 2164 #if defined(__x86) 2165 /* 2166 * 6 longs are pushed on stack, see thread_load(). Skip 2167 * them, so if kthread has never run, percent is zero. 2168 * 8 bytes alignement is preserved for a 32 bit kernel, 2169 * 6 x 4 = 24, 24 is a multiple of 8. 2170 * 2171 */ 2172 end -= (6 * sizeof (long)); 2173 #endif 2174 ptr = (uint64_t *)((void *)start); 2175 while (ptr < (uint64_t *)((void *)end)) { 2176 if (*ptr != KMEM_STKINFO_PATTERN) { 2177 percent = stkinfo_percent(end, 2178 start, (caddr_t)ptr); 2179 break; 2180 } 2181 ptr++; 2182 } 2183 } else { 2184 /* stack grows up */ 2185 ptr = (uint64_t *)((void *)end); 2186 ptr--; 2187 while (ptr >= (uint64_t *)((void *)start)) { 2188 if (*ptr != KMEM_STKINFO_PATTERN) { 2189 percent = stkinfo_percent(start, 2190 end, (caddr_t)ptr); 2191 break; 2192 } 2193 ptr--; 2194 } 2195 } 2196 2197 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2198 size_t, stksz, size_t, percent); 2199 2200 if (percent == 0) { 2201 return; 2202 } 2203 2204 mutex_enter(&kmem_stkinfo_lock); 2205 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2206 /* 2207 * The log is full and already contains the highest values 2208 */ 2209 mutex_exit(&kmem_stkinfo_lock); 2210 return; 2211 } 2212 2213 /* keep a log of the highest used stack */ 2214 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2215 if (kmem_stkinfo_log[i].percent == 0) { 2216 index = i; 2217 full++; 2218 break; 2219 } 2220 if (smallest == 0) { 2221 smallest = kmem_stkinfo_log[i].percent; 2222 index = i; 2223 continue; 2224 } 2225 if (kmem_stkinfo_log[i].percent < smallest) { 2226 smallest = kmem_stkinfo_log[i].percent; 2227 index = i; 2228 } 2229 } 2230 2231 if (percent >= kmem_stkinfo_log[index].percent) { 2232 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2233 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2234 kmem_stkinfo_log[index].start = start; 2235 kmem_stkinfo_log[index].stksz = stksz; 2236 kmem_stkinfo_log[index].percent = percent; 2237 kmem_stkinfo_log[index].t_tid = t->t_tid; 2238 kmem_stkinfo_log[index].cmd[0] = '\0'; 2239 if (t->t_tid != 0) { 2240 stksz = strlen((t->t_procp)->p_user.u_comm); 2241 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2242 stksz = KMEM_STKINFO_STR_SIZE - 1; 2243 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2244 } else { 2245 stksz += 1; 2246 } 2247 (void) memcpy(kmem_stkinfo_log[index].cmd, 2248 (t->t_procp)->p_user.u_comm, stksz); 2249 } 2250 if (percent < smallest_percent) { 2251 smallest_percent = percent; 2252 } 2253 } 2254 mutex_exit(&kmem_stkinfo_lock); 2255 } 2256 2257 /* 2258 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2259 */ 2260 static size_t 2261 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2262 { 2263 size_t percent; 2264 size_t s; 2265 2266 if (t_stk > t_stkbase) { 2267 /* stack grows down */ 2268 if (sp > t_stk) { 2269 return (0); 2270 } 2271 if (sp < t_stkbase) { 2272 return (100); 2273 } 2274 percent = t_stk - sp + 1; 2275 s = t_stk - t_stkbase + 1; 2276 } else { 2277 /* stack grows up */ 2278 if (sp < t_stk) { 2279 return (0); 2280 } 2281 if (sp > t_stkbase) { 2282 return (100); 2283 } 2284 percent = sp - t_stk + 1; 2285 s = t_stkbase - t_stk + 1; 2286 } 2287 percent = ((100 * percent) / s) + 1; 2288 if (percent > 100) { 2289 percent = 100; 2290 } 2291 return (percent); 2292 } 2293 2294 /* 2295 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters 2296 * long. It is expected that callers (acting on behalf of userland clients) 2297 * will perform any required checks to return the correct error semantics. 2298 * It is also expected callers on behalf of userland clients have done 2299 * any necessary permission checks. 2300 */ 2301 int 2302 thread_setname(kthread_t *t, const char *name) 2303 { 2304 char *buf = NULL; 2305 2306 /* 2307 * We optimistically assume that a thread's name will only be set 2308 * once and so allocate memory in preparation of setting t_name. 2309 * If it turns out a name has already been set, we just discard (free) 2310 * the buffer we just allocated and reuse the current buffer 2311 * (as all should be THREAD_NAME_MAX large). 2312 * 2313 * Such an arrangement means over the lifetime of a kthread_t, t_name 2314 * is either NULL or has one value (the address of the buffer holding 2315 * the current thread name). The assumption is that most kthread_t 2316 * instances will not have a name assigned, so dynamically allocating 2317 * the memory should minimize the footprint of this feature, but by 2318 * having the buffer persist for the life of the thread, it simplifies 2319 * usage in highly constrained situations (e.g. dtrace). 2320 */ 2321 if (name != NULL && name[0] != '\0') { 2322 for (size_t i = 0; name[i] != '\0'; i++) { 2323 if (!isprint(name[i])) 2324 return (EINVAL); 2325 } 2326 2327 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP); 2328 (void) strlcpy(buf, name, THREAD_NAME_MAX); 2329 } 2330 2331 mutex_enter(&ttoproc(t)->p_lock); 2332 if (t->t_name == NULL) { 2333 t->t_name = buf; 2334 } else { 2335 if (buf != NULL) { 2336 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX); 2337 kmem_free(buf, THREAD_NAME_MAX); 2338 } else { 2339 bzero(t->t_name, THREAD_NAME_MAX); 2340 } 2341 } 2342 mutex_exit(&ttoproc(t)->p_lock); 2343 return (0); 2344 } 2345 2346 int 2347 thread_vsetname(kthread_t *t, const char *fmt, ...) 2348 { 2349 char name[THREAD_NAME_MAX]; 2350 va_list va; 2351 int rc; 2352 2353 va_start(va, fmt); 2354 rc = vsnprintf(name, sizeof (name), fmt, va); 2355 va_end(va); 2356 2357 if (rc < 0) 2358 return (EINVAL); 2359 2360 if (rc >= sizeof (name)) 2361 return (ENAMETOOLONG); 2362 2363 return (thread_setname(t, name)); 2364 } 2365