1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 #include <sys/ctype.h> 78 #include <sys/smt.h> 79 80 struct kmem_cache *thread_cache; /* cache of free threads */ 81 struct kmem_cache *lwp_cache; /* cache of free lwps */ 82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 83 84 /* 85 * allthreads is only for use by kmem_readers. All kernel loops can use 86 * the current thread as a start/end point. 87 */ 88 kthread_t *allthreads = &t0; /* circular list of all threads */ 89 90 static kcondvar_t reaper_cv; /* synchronization var */ 91 kthread_t *thread_deathrow; /* circular list of reapable threads */ 92 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 93 kmutex_t reaplock; /* protects lwp and thread deathrows */ 94 int thread_reapcnt = 0; /* number of threads on deathrow */ 95 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 96 int reaplimit = 16; /* delay reaping until reaplimit */ 97 98 thread_free_lock_t *thread_free_lock; 99 /* protects tick thread from reaper */ 100 101 extern int nthread; 102 103 /* System Scheduling classes. */ 104 id_t syscid; /* system scheduling class ID */ 105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 106 107 void *segkp_thread; /* cookie for segkp pool */ 108 109 int lwp_cache_sz = 32; 110 int t_cache_sz = 8; 111 static kt_did_t next_t_id = 1; 112 113 /* Default mode for thread binding to CPUs and processor sets */ 114 int default_binding_mode = TB_ALLHARD; 115 116 /* 117 * Min/Max stack sizes for stack size parameters 118 */ 119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 120 #define MIN_STKSIZE DEFAULTSTKSZ 121 122 /* 123 * default_stksize overrides lwp_default_stksize if it is set. 124 */ 125 int default_stksize; 126 int lwp_default_stksize; 127 128 static zone_key_t zone_thread_key; 129 130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 133 134 /* 135 * forward declarations for internal thread specific data (tsd) 136 */ 137 static void *tsd_realloc(void *, size_t, size_t); 138 139 void thread_reaper(void); 140 141 /* forward declarations for stackinfo feature */ 142 static void stkinfo_begin(kthread_t *); 143 static void stkinfo_end(kthread_t *); 144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 145 146 /*ARGSUSED*/ 147 static int 148 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 149 { 150 bzero(buf, sizeof (turnstile_t)); 151 return (0); 152 } 153 154 /*ARGSUSED*/ 155 static void 156 turnstile_destructor(void *buf, void *cdrarg) 157 { 158 turnstile_t *ts = buf; 159 160 ASSERT(ts->ts_free == NULL); 161 ASSERT(ts->ts_waiters == 0); 162 ASSERT(ts->ts_inheritor == NULL); 163 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 164 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 165 } 166 167 void 168 thread_init(void) 169 { 170 kthread_t *tp; 171 extern char sys_name[]; 172 extern void idle(); 173 struct cpu *cpu = CPU; 174 int i; 175 kmutex_t *lp; 176 177 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 178 thread_free_lock = 179 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 180 for (i = 0; i < THREAD_FREE_NUM; i++) { 181 lp = &thread_free_lock[i].tf_lock; 182 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 183 } 184 185 #if defined(__i386) || defined(__amd64) 186 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 187 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 188 189 /* 190 * "struct _klwp" includes a "struct pcb", which includes a 191 * "struct fpu", which needs to be 64-byte aligned on amd64 192 * (and even on i386) for xsave/xrstor. 193 */ 194 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 195 64, NULL, NULL, NULL, NULL, NULL, 0); 196 #else 197 /* 198 * Allocate thread structures from static_arena. This prevents 199 * issues where a thread tries to relocate its own thread 200 * structure and touches it after the mapping has been suspended. 201 */ 202 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 203 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 204 205 lwp_stk_cache_init(); 206 207 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 208 0, NULL, NULL, NULL, NULL, NULL, 0); 209 #endif 210 211 turnstile_cache = kmem_cache_create("turnstile_cache", 212 sizeof (turnstile_t), 0, 213 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 214 215 label_init(); 216 cred_init(); 217 218 /* 219 * Initialize various resource management facilities. 220 */ 221 rctl_init(); 222 cpucaps_init(); 223 /* 224 * Zone_init() should be called before project_init() so that project ID 225 * for the first project is initialized correctly. 226 */ 227 zone_init(); 228 project_init(); 229 brand_init(); 230 kiconv_init(); 231 task_init(); 232 tcache_init(); 233 pool_init(); 234 235 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 236 237 /* 238 * Originally, we had two parameters to set default stack 239 * size: one for lwp's (lwp_default_stksize), and one for 240 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 241 * Now we have a third parameter that overrides both if it is 242 * set to a legal stack size, called default_stksize. 243 */ 244 245 if (default_stksize == 0) { 246 default_stksize = DEFAULTSTKSZ; 247 } else if (default_stksize % PAGESIZE != 0 || 248 default_stksize > MAX_STKSIZE || 249 default_stksize < MIN_STKSIZE) { 250 cmn_err(CE_WARN, "Illegal stack size. Using %d", 251 (int)DEFAULTSTKSZ); 252 default_stksize = DEFAULTSTKSZ; 253 } else { 254 lwp_default_stksize = default_stksize; 255 } 256 257 if (lwp_default_stksize == 0) { 258 lwp_default_stksize = default_stksize; 259 } else if (lwp_default_stksize % PAGESIZE != 0 || 260 lwp_default_stksize > MAX_STKSIZE || 261 lwp_default_stksize < MIN_STKSIZE) { 262 cmn_err(CE_WARN, "Illegal stack size. Using %d", 263 default_stksize); 264 lwp_default_stksize = default_stksize; 265 } 266 267 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 268 lwp_default_stksize, 269 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 270 271 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 272 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 273 274 (void) getcid(sys_name, &syscid); 275 curthread->t_cid = syscid; /* current thread is t0 */ 276 277 /* 278 * Set up the first CPU's idle thread. 279 * It runs whenever the CPU has nothing worthwhile to do. 280 */ 281 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 282 cpu->cpu_idle_thread = tp; 283 tp->t_preempt = 1; 284 tp->t_disp_queue = cpu->cpu_disp; 285 ASSERT(tp->t_disp_queue != NULL); 286 tp->t_bound_cpu = cpu; 287 tp->t_affinitycnt = 1; 288 289 /* 290 * Registering a thread in the callback table is usually 291 * done in the initialization code of the thread. In this 292 * case, we do it right after thread creation to avoid 293 * blocking idle thread while registering itself. It also 294 * avoids the possibility of reregistration in case a CPU 295 * restarts its idle thread. 296 */ 297 CALLB_CPR_INIT_SAFE(tp, "idle"); 298 299 /* 300 * Create the thread_reaper daemon. From this point on, exited 301 * threads will get reaped. 302 */ 303 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 304 NULL, 0, &p0, TS_RUN, minclsyspri); 305 306 /* 307 * Finish initializing the kernel memory allocator now that 308 * thread_create() is available. 309 */ 310 kmem_thread_init(); 311 312 if (boothowto & RB_DEBUG) 313 kdi_dvec_thravail(); 314 } 315 316 /* 317 * Create a thread. 318 * 319 * thread_create() blocks for memory if necessary. It never fails. 320 * 321 * If stk is NULL, the thread is created at the base of the stack 322 * and cannot be swapped. 323 */ 324 kthread_t * 325 thread_create( 326 caddr_t stk, 327 size_t stksize, 328 void (*proc)(), 329 void *arg, 330 size_t len, 331 proc_t *pp, 332 int state, 333 pri_t pri) 334 { 335 kthread_t *t; 336 extern struct classfuncs sys_classfuncs; 337 turnstile_t *ts; 338 339 /* 340 * Every thread keeps a turnstile around in case it needs to block. 341 * The only reason the turnstile is not simply part of the thread 342 * structure is that we may have to break the association whenever 343 * more than one thread blocks on a given synchronization object. 344 * From a memory-management standpoint, turnstiles are like the 345 * "attached mblks" that hang off dblks in the streams allocator. 346 */ 347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 348 349 if (stk == NULL) { 350 /* 351 * alloc both thread and stack in segkp chunk 352 */ 353 354 if (stksize < default_stksize) 355 stksize = default_stksize; 356 357 if (stksize == default_stksize) { 358 stk = (caddr_t)segkp_cache_get(segkp_thread); 359 } else { 360 stksize = roundup(stksize, PAGESIZE); 361 stk = (caddr_t)segkp_get(segkp, stksize, 362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 363 } 364 365 ASSERT(stk != NULL); 366 367 /* 368 * The machine-dependent mutex code may require that 369 * thread pointers (since they may be used for mutex owner 370 * fields) have certain alignment requirements. 371 * PTR24_ALIGN is the size of the alignment quanta. 372 * XXX - assumes stack grows toward low addresses. 373 */ 374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 375 cmn_err(CE_PANIC, "thread_create: proposed stack size" 376 " too small to hold thread."); 377 #ifdef STACK_GROWTH_DOWN 378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 379 stksize &= -PTR24_ALIGN; /* make thread aligned */ 380 t = (kthread_t *)(stk + stksize); 381 bzero(t, sizeof (kthread_t)); 382 if (audit_active) 383 audit_thread_create(t); 384 t->t_stk = stk + stksize; 385 t->t_stkbase = stk; 386 #else /* stack grows to larger addresses */ 387 stksize -= SA(sizeof (kthread_t)); 388 t = (kthread_t *)(stk); 389 bzero(t, sizeof (kthread_t)); 390 t->t_stk = stk + sizeof (kthread_t); 391 t->t_stkbase = stk + stksize + sizeof (kthread_t); 392 #endif /* STACK_GROWTH_DOWN */ 393 t->t_flag |= T_TALLOCSTK; 394 t->t_swap = stk; 395 } else { 396 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 397 bzero(t, sizeof (kthread_t)); 398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 399 if (audit_active) 400 audit_thread_create(t); 401 /* 402 * Initialize t_stk to the kernel stack pointer to use 403 * upon entry to the kernel 404 */ 405 #ifdef STACK_GROWTH_DOWN 406 t->t_stk = stk + stksize; 407 t->t_stkbase = stk; 408 #else 409 t->t_stk = stk; /* 3b2-like */ 410 t->t_stkbase = stk + stksize; 411 #endif /* STACK_GROWTH_DOWN */ 412 } 413 414 if (kmem_stackinfo != 0) { 415 stkinfo_begin(t); 416 } 417 418 t->t_ts = ts; 419 420 /* 421 * p_cred could be NULL if it thread_create is called before cred_init 422 * is called in main. 423 */ 424 mutex_enter(&pp->p_crlock); 425 if (pp->p_cred) 426 crhold(t->t_cred = pp->p_cred); 427 mutex_exit(&pp->p_crlock); 428 t->t_start = gethrestime_sec(); 429 t->t_startpc = proc; 430 t->t_procp = pp; 431 t->t_clfuncs = &sys_classfuncs.thread; 432 t->t_cid = syscid; 433 t->t_pri = pri; 434 t->t_stime = ddi_get_lbolt(); 435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 436 t->t_bind_cpu = PBIND_NONE; 437 t->t_bindflag = (uchar_t)default_binding_mode; 438 t->t_bind_pset = PS_NONE; 439 t->t_plockp = &pp->p_lock; 440 t->t_copyops = NULL; 441 t->t_taskq = NULL; 442 t->t_anttime = 0; 443 t->t_hatdepth = 0; 444 445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 446 447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 448 #ifndef NPROBE 449 /* Kernel probe */ 450 tnf_thread_create(t); 451 #endif /* NPROBE */ 452 LOCK_INIT_CLEAR(&t->t_lock); 453 454 /* 455 * Callers who give us a NULL proc must do their own 456 * stack initialization. e.g. lwp_create() 457 */ 458 if (proc != NULL) { 459 t->t_stk = thread_stk_init(t->t_stk); 460 thread_load(t, proc, arg, len); 461 } 462 463 /* 464 * Put a hold on project0. If this thread is actually in a 465 * different project, then t_proj will be changed later in 466 * lwp_create(). All kernel-only threads must be in project 0. 467 */ 468 t->t_proj = project_hold(proj0p); 469 470 lgrp_affinity_init(&t->t_lgrp_affinity); 471 472 mutex_enter(&pidlock); 473 nthread++; 474 t->t_did = next_t_id++; 475 t->t_prev = curthread->t_prev; 476 t->t_next = curthread; 477 478 /* 479 * Add the thread to the list of all threads, and initialize 480 * its t_cpu pointer. We need to block preemption since 481 * cpu_offline walks the thread list looking for threads 482 * with t_cpu pointing to the CPU being offlined. We want 483 * to make sure that the list is consistent and that if t_cpu 484 * is set, the thread is on the list. 485 */ 486 kpreempt_disable(); 487 curthread->t_prev->t_next = t; 488 curthread->t_prev = t; 489 490 /* 491 * We'll always create in the default partition since that's where 492 * kernel threads go (we'll change this later if needed, in 493 * lwp_create()). 494 */ 495 t->t_cpupart = &cp_default; 496 497 /* 498 * For now, affiliate this thread with the root lgroup. 499 * Since the kernel does not (presently) allocate its memory 500 * in a locality aware fashion, the root is an appropriate home. 501 * If this thread is later associated with an lwp, it will have 502 * its lgroup re-assigned at that time. 503 */ 504 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 505 506 /* 507 * If the current CPU is in the default cpupart, use it. Otherwise, 508 * pick one that is; before entering the dispatcher code, we'll 509 * make sure to keep the invariant that ->t_cpu is set. (In fact, we 510 * rely on this, in ht_should_run(), in the call tree of 511 * disp_lowpri_cpu().) 512 */ 513 if (CPU->cpu_part == &cp_default) { 514 t->t_cpu = CPU; 515 } else { 516 t->t_cpu = cp_default.cp_cpulist; 517 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri); 518 } 519 520 t->t_disp_queue = t->t_cpu->cpu_disp; 521 kpreempt_enable(); 522 523 /* 524 * Initialize thread state and the dispatcher lock pointer. 525 * Need to hold onto pidlock to block allthreads walkers until 526 * the state is set. 527 */ 528 switch (state) { 529 case TS_RUN: 530 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 531 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 532 CL_SETRUN(t); 533 thread_unlock(t); 534 break; 535 536 case TS_ONPROC: 537 THREAD_ONPROC(t, t->t_cpu); 538 break; 539 540 case TS_FREE: 541 /* 542 * Free state will be used for intr threads. 543 * The interrupt routine must set the thread dispatcher 544 * lock pointer (t_lockp) if starting on a CPU 545 * other than the current one. 546 */ 547 THREAD_FREEINTR(t, CPU); 548 break; 549 550 case TS_STOPPED: 551 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 552 break; 553 554 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 555 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 556 } 557 mutex_exit(&pidlock); 558 return (t); 559 } 560 561 /* 562 * Move thread to project0 and take care of project reference counters. 563 */ 564 void 565 thread_rele(kthread_t *t) 566 { 567 kproject_t *kpj; 568 569 thread_lock(t); 570 571 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 572 kpj = ttoproj(t); 573 t->t_proj = proj0p; 574 575 thread_unlock(t); 576 577 if (kpj != proj0p) { 578 project_rele(kpj); 579 (void) project_hold(proj0p); 580 } 581 } 582 583 void 584 thread_exit(void) 585 { 586 kthread_t *t = curthread; 587 588 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 589 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 590 591 tsd_exit(); /* Clean up this thread's TSD */ 592 593 kcpc_passivate(); /* clean up performance counter state */ 594 595 /* 596 * No kernel thread should have called poll() without arranging 597 * calling pollcleanup() here. 598 */ 599 ASSERT(t->t_pollstate == NULL); 600 ASSERT(t->t_schedctl == NULL); 601 if (t->t_door) 602 door_slam(); /* in case thread did an upcall */ 603 604 #ifndef NPROBE 605 /* Kernel probe */ 606 if (t->t_tnf_tpdp) 607 tnf_thread_exit(); 608 #endif /* NPROBE */ 609 610 thread_rele(t); 611 t->t_preempt++; 612 613 /* 614 * remove thread from the all threads list so that 615 * death-row can use the same pointers. 616 */ 617 mutex_enter(&pidlock); 618 t->t_next->t_prev = t->t_prev; 619 t->t_prev->t_next = t->t_next; 620 ASSERT(allthreads != t); /* t0 never exits */ 621 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 622 mutex_exit(&pidlock); 623 624 if (t->t_ctx != NULL) 625 exitctx(t); 626 if (t->t_procp->p_pctx != NULL) 627 exitpctx(t->t_procp); 628 629 if (kmem_stackinfo != 0) { 630 stkinfo_end(t); 631 } 632 633 t->t_state = TS_ZOMB; /* set zombie thread */ 634 635 swtch_from_zombie(); /* give up the CPU */ 636 /* NOTREACHED */ 637 } 638 639 /* 640 * Check to see if the specified thread is active (defined as being on 641 * the thread list). This is certainly a slow way to do this; if there's 642 * ever a reason to speed it up, we could maintain a hash table of active 643 * threads indexed by their t_did. 644 */ 645 static kthread_t * 646 did_to_thread(kt_did_t tid) 647 { 648 kthread_t *t; 649 650 ASSERT(MUTEX_HELD(&pidlock)); 651 for (t = curthread->t_next; t != curthread; t = t->t_next) { 652 if (t->t_did == tid) 653 break; 654 } 655 if (t->t_did == tid) 656 return (t); 657 else 658 return (NULL); 659 } 660 661 /* 662 * Wait for specified thread to exit. Returns immediately if the thread 663 * could not be found, meaning that it has either already exited or never 664 * existed. 665 */ 666 void 667 thread_join(kt_did_t tid) 668 { 669 kthread_t *t; 670 671 ASSERT(tid != curthread->t_did); 672 ASSERT(tid != t0.t_did); 673 674 mutex_enter(&pidlock); 675 /* 676 * Make sure we check that the thread is on the thread list 677 * before blocking on it; otherwise we could end up blocking on 678 * a cv that's already been freed. In other words, don't cache 679 * the thread pointer across calls to cv_wait. 680 * 681 * The choice of loop invariant means that whenever a thread 682 * is taken off the allthreads list, a cv_broadcast must be 683 * performed on that thread's t_joincv to wake up any waiters. 684 * The broadcast doesn't have to happen right away, but it 685 * shouldn't be postponed indefinitely (e.g., by doing it in 686 * thread_free which may only be executed when the deathrow 687 * queue is processed. 688 */ 689 while (t = did_to_thread(tid)) 690 cv_wait(&t->t_joincv, &pidlock); 691 mutex_exit(&pidlock); 692 } 693 694 void 695 thread_free_prevent(kthread_t *t) 696 { 697 kmutex_t *lp; 698 699 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 700 mutex_enter(lp); 701 } 702 703 void 704 thread_free_allow(kthread_t *t) 705 { 706 kmutex_t *lp; 707 708 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 709 mutex_exit(lp); 710 } 711 712 static void 713 thread_free_barrier(kthread_t *t) 714 { 715 kmutex_t *lp; 716 717 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 718 mutex_enter(lp); 719 mutex_exit(lp); 720 } 721 722 void 723 thread_free(kthread_t *t) 724 { 725 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 726 klwp_t *lwp = t->t_lwp; 727 caddr_t swap = t->t_swap; 728 729 ASSERT(t != &t0 && t->t_state == TS_FREE); 730 ASSERT(t->t_door == NULL); 731 ASSERT(t->t_schedctl == NULL); 732 ASSERT(t->t_pollstate == NULL); 733 734 t->t_pri = 0; 735 t->t_pc = 0; 736 t->t_sp = 0; 737 t->t_wchan0 = NULL; 738 t->t_wchan = NULL; 739 if (t->t_cred != NULL) { 740 crfree(t->t_cred); 741 t->t_cred = 0; 742 } 743 if (t->t_pdmsg) { 744 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 745 t->t_pdmsg = NULL; 746 } 747 if (audit_active) 748 audit_thread_free(t); 749 #ifndef NPROBE 750 if (t->t_tnf_tpdp) 751 tnf_thread_free(t); 752 #endif /* NPROBE */ 753 if (t->t_cldata) { 754 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 755 } 756 if (t->t_rprof != NULL) { 757 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 758 t->t_rprof = NULL; 759 } 760 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 761 if (lwp) 762 lwp_freeregs(lwp, 0); 763 if (t->t_ctx) 764 freectx(t, 0); 765 t->t_stk = NULL; 766 if (lwp) 767 lwp_stk_fini(lwp); 768 lock_clear(&t->t_lock); 769 770 if (t->t_ts->ts_waiters > 0) 771 panic("thread_free: turnstile still active"); 772 773 kmem_cache_free(turnstile_cache, t->t_ts); 774 775 free_afd(&t->t_activefd); 776 777 /* 778 * Barrier for the tick accounting code. The tick accounting code 779 * holds this lock to keep the thread from going away while it's 780 * looking at it. 781 */ 782 thread_free_barrier(t); 783 784 ASSERT(ttoproj(t) == proj0p); 785 project_rele(ttoproj(t)); 786 787 lgrp_affinity_free(&t->t_lgrp_affinity); 788 789 mutex_enter(&pidlock); 790 nthread--; 791 mutex_exit(&pidlock); 792 793 if (t->t_name != NULL) { 794 kmem_free(t->t_name, THREAD_NAME_MAX); 795 t->t_name = NULL; 796 } 797 798 /* 799 * Free thread, lwp and stack. This needs to be done carefully, since 800 * if T_TALLOCSTK is set, the thread is part of the stack. 801 */ 802 t->t_lwp = NULL; 803 t->t_swap = NULL; 804 805 if (swap) { 806 segkp_release(segkp, swap); 807 } 808 if (lwp) { 809 kmem_cache_free(lwp_cache, lwp); 810 } 811 if (!allocstk) { 812 kmem_cache_free(thread_cache, t); 813 } 814 } 815 816 /* 817 * Removes threads associated with the given zone from a deathrow queue. 818 * tp is a pointer to the head of the deathrow queue, and countp is a 819 * pointer to the current deathrow count. Returns a linked list of 820 * threads removed from the list. 821 */ 822 static kthread_t * 823 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 824 { 825 kthread_t *tmp, *list = NULL; 826 cred_t *cr; 827 828 ASSERT(MUTEX_HELD(&reaplock)); 829 while (*tp != NULL) { 830 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 831 tmp = *tp; 832 *tp = tmp->t_forw; 833 tmp->t_forw = list; 834 list = tmp; 835 (*countp)--; 836 } else { 837 tp = &(*tp)->t_forw; 838 } 839 } 840 return (list); 841 } 842 843 static void 844 thread_reap_list(kthread_t *t) 845 { 846 kthread_t *next; 847 848 while (t != NULL) { 849 next = t->t_forw; 850 thread_free(t); 851 t = next; 852 } 853 } 854 855 /* ARGSUSED */ 856 static void 857 thread_zone_destroy(zoneid_t zoneid, void *unused) 858 { 859 kthread_t *t, *l; 860 861 mutex_enter(&reaplock); 862 /* 863 * Pull threads and lwps associated with zone off deathrow lists. 864 */ 865 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 866 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 867 mutex_exit(&reaplock); 868 869 /* 870 * Guard against race condition in mutex_owner_running: 871 * thread=owner(mutex) 872 * <interrupt> 873 * thread exits mutex 874 * thread exits 875 * thread reaped 876 * thread struct freed 877 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 878 * A cross call to all cpus will cause the interrupt handler 879 * to reset the PC if it is in mutex_owner_running, refreshing 880 * stale thread pointers. 881 */ 882 mutex_sync(); /* sync with mutex code */ 883 884 /* 885 * Reap threads 886 */ 887 thread_reap_list(t); 888 889 /* 890 * Reap lwps 891 */ 892 thread_reap_list(l); 893 } 894 895 /* 896 * cleanup zombie threads that are on deathrow. 897 */ 898 void 899 thread_reaper() 900 { 901 kthread_t *t, *l; 902 callb_cpr_t cprinfo; 903 904 /* 905 * Register callback to clean up threads when zone is destroyed. 906 */ 907 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 908 909 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 910 for (;;) { 911 mutex_enter(&reaplock); 912 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 913 CALLB_CPR_SAFE_BEGIN(&cprinfo); 914 cv_wait(&reaper_cv, &reaplock); 915 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 916 } 917 /* 918 * mutex_sync() needs to be called when reaping, but 919 * not too often. We limit reaping rate to once 920 * per second. Reaplimit is max rate at which threads can 921 * be freed. Does not impact thread destruction/creation. 922 */ 923 t = thread_deathrow; 924 l = lwp_deathrow; 925 thread_deathrow = NULL; 926 lwp_deathrow = NULL; 927 thread_reapcnt = 0; 928 lwp_reapcnt = 0; 929 mutex_exit(&reaplock); 930 931 /* 932 * Guard against race condition in mutex_owner_running: 933 * thread=owner(mutex) 934 * <interrupt> 935 * thread exits mutex 936 * thread exits 937 * thread reaped 938 * thread struct freed 939 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 940 * A cross call to all cpus will cause the interrupt handler 941 * to reset the PC if it is in mutex_owner_running, refreshing 942 * stale thread pointers. 943 */ 944 mutex_sync(); /* sync with mutex code */ 945 /* 946 * Reap threads 947 */ 948 thread_reap_list(t); 949 950 /* 951 * Reap lwps 952 */ 953 thread_reap_list(l); 954 delay(hz); 955 } 956 } 957 958 /* 959 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 960 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 961 * that is reapable. The thread already holds the reaplock, and was already 962 * freed. 963 */ 964 void 965 reapq_move_lq_to_tq(kthread_t *t) 966 { 967 ASSERT(t->t_state == TS_FREE); 968 ASSERT(MUTEX_HELD(&reaplock)); 969 t->t_forw = thread_deathrow; 970 thread_deathrow = t; 971 thread_reapcnt++; 972 if (lwp_reapcnt + thread_reapcnt > reaplimit) 973 cv_signal(&reaper_cv); /* wake the reaper */ 974 } 975 976 /* 977 * This is called by resume() to put a zombie thread onto deathrow. 978 * The thread's state is changed to TS_FREE to indicate that is reapable. 979 * This is called from the idle thread so it must not block - just spin. 980 */ 981 void 982 reapq_add(kthread_t *t) 983 { 984 mutex_enter(&reaplock); 985 986 /* 987 * lwp_deathrow contains threads with lwp linkage and 988 * swappable thread stacks which have the default stacksize. 989 * These threads' lwps and stacks may be reused by lwp_create(). 990 * 991 * Anything else goes on thread_deathrow(), where it will eventually 992 * be thread_free()d. 993 */ 994 if (t->t_flag & T_LWPREUSE) { 995 ASSERT(ttolwp(t) != NULL); 996 t->t_forw = lwp_deathrow; 997 lwp_deathrow = t; 998 lwp_reapcnt++; 999 } else { 1000 t->t_forw = thread_deathrow; 1001 thread_deathrow = t; 1002 thread_reapcnt++; 1003 } 1004 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1005 cv_signal(&reaper_cv); /* wake the reaper */ 1006 t->t_state = TS_FREE; 1007 lock_clear(&t->t_lock); 1008 1009 /* 1010 * Before we return, we need to grab and drop the thread lock for 1011 * the dead thread. At this point, the current thread is the idle 1012 * thread, and the dead thread's CPU lock points to the current 1013 * CPU -- and we must grab and drop the lock to synchronize with 1014 * a racing thread walking a blocking chain that the zombie thread 1015 * was recently in. By this point, that blocking chain is (by 1016 * definition) stale: the dead thread is not holding any locks, and 1017 * is therefore not in any blocking chains -- but if we do not regrab 1018 * our lock before freeing the dead thread's data structures, the 1019 * thread walking the (stale) blocking chain will die on memory 1020 * corruption when it attempts to drop the dead thread's lock. We 1021 * only need do this once because there is no way for the dead thread 1022 * to ever again be on a blocking chain: once we have grabbed and 1023 * dropped the thread lock, we are guaranteed that anyone that could 1024 * have seen this thread in a blocking chain can no longer see it. 1025 */ 1026 thread_lock(t); 1027 thread_unlock(t); 1028 1029 mutex_exit(&reaplock); 1030 } 1031 1032 /* 1033 * Install thread context ops for the current thread. 1034 */ 1035 void 1036 installctx( 1037 kthread_t *t, 1038 void *arg, 1039 void (*save)(void *), 1040 void (*restore)(void *), 1041 void (*fork)(void *, void *), 1042 void (*lwp_create)(void *, void *), 1043 void (*exit)(void *), 1044 void (*free)(void *, int)) 1045 { 1046 struct ctxop *ctx; 1047 1048 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1049 ctx->save_op = save; 1050 ctx->restore_op = restore; 1051 ctx->fork_op = fork; 1052 ctx->lwp_create_op = lwp_create; 1053 ctx->exit_op = exit; 1054 ctx->free_op = free; 1055 ctx->arg = arg; 1056 ctx->save_ts = 0; 1057 ctx->restore_ts = 0; 1058 1059 /* 1060 * Keep ctxops in a doubly-linked list to allow traversal in both 1061 * directions. Using only the newest-to-oldest ordering was adequate 1062 * previously, but reversing the order for restore_op actions is 1063 * necessary if later-added ctxops depends on earlier ones. 1064 * 1065 * One example of such a dependency: Hypervisor software handling the 1066 * guest FPU expects that it save FPU state prior to host FPU handling 1067 * and consequently handle the guest logic _after_ the host FPU has 1068 * been restored. 1069 * 1070 * The t_ctx member points to the most recently added ctxop or is NULL 1071 * if no ctxops are associated with the thread. The 'next' pointers 1072 * form a loop of the ctxops in newest-to-oldest order. The 'prev' 1073 * pointers form a loop in the reverse direction, where t_ctx->prev is 1074 * the oldest entry associated with the thread. 1075 * 1076 * The protection of kpreempt_disable is required to safely perform the 1077 * list insertion, since there are inconsistent states between some of 1078 * the pointer assignments. 1079 */ 1080 kpreempt_disable(); 1081 if (t->t_ctx == NULL) { 1082 ctx->next = ctx; 1083 ctx->prev = ctx; 1084 } else { 1085 struct ctxop *head = t->t_ctx, *tail = t->t_ctx->prev; 1086 1087 ctx->next = head; 1088 ctx->prev = tail; 1089 head->prev = ctx; 1090 tail->next = ctx; 1091 } 1092 t->t_ctx = ctx; 1093 kpreempt_enable(); 1094 } 1095 1096 /* 1097 * Remove the thread context ops from a thread. 1098 */ 1099 int 1100 removectx( 1101 kthread_t *t, 1102 void *arg, 1103 void (*save)(void *), 1104 void (*restore)(void *), 1105 void (*fork)(void *, void *), 1106 void (*lwp_create)(void *, void *), 1107 void (*exit)(void *), 1108 void (*free)(void *, int)) 1109 { 1110 struct ctxop *ctx, *head; 1111 1112 /* 1113 * The incoming kthread_t (which is the thread for which the 1114 * context ops will be removed) should be one of the following: 1115 * 1116 * a) the current thread, 1117 * 1118 * b) a thread of a process that's being forked (SIDL), 1119 * 1120 * c) a thread that belongs to the same process as the current 1121 * thread and for which the current thread is the agent thread, 1122 * 1123 * d) a thread that is TS_STOPPED which is indicative of it 1124 * being (if curthread is not an agent) a thread being created 1125 * as part of an lwp creation. 1126 */ 1127 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1128 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1129 1130 /* 1131 * Serialize modifications to t->t_ctx to prevent the agent thread 1132 * and the target thread from racing with each other during lwp exit. 1133 */ 1134 mutex_enter(&t->t_ctx_lock); 1135 kpreempt_disable(); 1136 1137 if (t->t_ctx == NULL) { 1138 mutex_exit(&t->t_ctx_lock); 1139 kpreempt_enable(); 1140 return (0); 1141 } 1142 1143 ctx = head = t->t_ctx; 1144 do { 1145 if (ctx->save_op == save && ctx->restore_op == restore && 1146 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1147 ctx->exit_op == exit && ctx->free_op == free && 1148 ctx->arg == arg) { 1149 ctx->prev->next = ctx->next; 1150 ctx->next->prev = ctx->prev; 1151 if (ctx->next == ctx) { 1152 /* last remaining item */ 1153 t->t_ctx = NULL; 1154 } else if (ctx == t->t_ctx) { 1155 /* fix up head of list */ 1156 t->t_ctx = ctx->next; 1157 } 1158 ctx->next = ctx->prev = NULL; 1159 1160 mutex_exit(&t->t_ctx_lock); 1161 if (ctx->free_op != NULL) 1162 (ctx->free_op)(ctx->arg, 0); 1163 kmem_free(ctx, sizeof (struct ctxop)); 1164 kpreempt_enable(); 1165 return (1); 1166 } 1167 1168 ctx = ctx->next; 1169 } while (ctx != head); 1170 1171 mutex_exit(&t->t_ctx_lock); 1172 kpreempt_enable(); 1173 return (0); 1174 } 1175 1176 void 1177 savectx(kthread_t *t) 1178 { 1179 ASSERT(t == curthread); 1180 1181 if (t->t_ctx != NULL) { 1182 struct ctxop *ctx, *head; 1183 1184 /* Forward traversal */ 1185 ctx = head = t->t_ctx; 1186 do { 1187 if (ctx->save_op != NULL) { 1188 ctx->save_ts = gethrtime_unscaled(); 1189 (ctx->save_op)(ctx->arg); 1190 } 1191 ctx = ctx->next; 1192 } while (ctx != head); 1193 } 1194 } 1195 1196 void 1197 restorectx(kthread_t *t) 1198 { 1199 ASSERT(t == curthread); 1200 1201 if (t->t_ctx != NULL) { 1202 struct ctxop *ctx, *tail; 1203 1204 /* Backward traversal (starting at the tail) */ 1205 ctx = tail = t->t_ctx->prev; 1206 do { 1207 if (ctx->restore_op != NULL) { 1208 ctx->restore_ts = gethrtime_unscaled(); 1209 (ctx->restore_op)(ctx->arg); 1210 } 1211 ctx = ctx->prev; 1212 } while (ctx != tail); 1213 } 1214 } 1215 1216 void 1217 forkctx(kthread_t *t, kthread_t *ct) 1218 { 1219 if (t->t_ctx != NULL) { 1220 struct ctxop *ctx, *head; 1221 1222 /* Forward traversal */ 1223 ctx = head = t->t_ctx; 1224 do { 1225 if (ctx->fork_op != NULL) { 1226 (ctx->fork_op)(t, ct); 1227 } 1228 ctx = ctx->next; 1229 } while (ctx != head); 1230 } 1231 } 1232 1233 /* 1234 * Note that this operator is only invoked via the _lwp_create 1235 * system call. The system may have other reasons to create lwps 1236 * e.g. the agent lwp or the doors unreferenced lwp. 1237 */ 1238 void 1239 lwp_createctx(kthread_t *t, kthread_t *ct) 1240 { 1241 if (t->t_ctx != NULL) { 1242 struct ctxop *ctx, *head; 1243 1244 /* Forward traversal */ 1245 ctx = head = t->t_ctx; 1246 do { 1247 if (ctx->lwp_create_op != NULL) { 1248 (ctx->lwp_create_op)(t, ct); 1249 } 1250 ctx = ctx->next; 1251 } while (ctx != head); 1252 } 1253 } 1254 1255 /* 1256 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1257 * needed when the thread/LWP leaves the processor for the last time. This 1258 * routine is not intended to deal with freeing memory; freectx() is used for 1259 * that purpose during thread_free(). This routine is provided to allow for 1260 * clean-up that can't wait until thread_free(). 1261 */ 1262 void 1263 exitctx(kthread_t *t) 1264 { 1265 if (t->t_ctx != NULL) { 1266 struct ctxop *ctx, *head; 1267 1268 /* Forward traversal */ 1269 ctx = head = t->t_ctx; 1270 do { 1271 if (ctx->exit_op != NULL) { 1272 (ctx->exit_op)(t); 1273 } 1274 ctx = ctx->next; 1275 } while (ctx != head); 1276 } 1277 } 1278 1279 /* 1280 * freectx is called from thread_free() and exec() to get 1281 * rid of old thread context ops. 1282 */ 1283 void 1284 freectx(kthread_t *t, int isexec) 1285 { 1286 kpreempt_disable(); 1287 if (t->t_ctx != NULL) { 1288 struct ctxop *ctx, *head; 1289 1290 ctx = head = t->t_ctx; 1291 t->t_ctx = NULL; 1292 do { 1293 struct ctxop *next = ctx->next; 1294 1295 if (ctx->free_op != NULL) { 1296 (ctx->free_op)(ctx->arg, isexec); 1297 } 1298 kmem_free(ctx, sizeof (struct ctxop)); 1299 ctx = next; 1300 } while (ctx != head); 1301 } 1302 kpreempt_enable(); 1303 } 1304 1305 /* 1306 * freectx_ctx is called from lwp_create() when lwp is reused from 1307 * lwp_deathrow and its thread structure is added to thread_deathrow. 1308 * The thread structure to which this ctx was attached may be already 1309 * freed by the thread reaper so free_op implementations shouldn't rely 1310 * on thread structure to which this ctx was attached still being around. 1311 */ 1312 void 1313 freectx_ctx(struct ctxop *ctx) 1314 { 1315 struct ctxop *head = ctx; 1316 1317 ASSERT(ctx != NULL); 1318 1319 kpreempt_disable(); 1320 1321 head = ctx; 1322 do { 1323 struct ctxop *next = ctx->next; 1324 1325 if (ctx->free_op != NULL) { 1326 (ctx->free_op)(ctx->arg, 0); 1327 } 1328 kmem_free(ctx, sizeof (struct ctxop)); 1329 ctx = next; 1330 } while (ctx != head); 1331 kpreempt_enable(); 1332 } 1333 1334 /* 1335 * Set the thread running; arrange for it to be swapped in if necessary. 1336 */ 1337 void 1338 setrun_locked(kthread_t *t) 1339 { 1340 ASSERT(THREAD_LOCK_HELD(t)); 1341 if (t->t_state == TS_SLEEP) { 1342 /* 1343 * Take off sleep queue. 1344 */ 1345 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1346 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1347 /* 1348 * Already on dispatcher queue. 1349 */ 1350 return; 1351 } else if (t->t_state == TS_WAIT) { 1352 waitq_setrun(t); 1353 } else if (t->t_state == TS_STOPPED) { 1354 /* 1355 * All of the sending of SIGCONT (TC_XSTART) and /proc 1356 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1357 * requested that the thread be run. 1358 * Just calling setrun() is not sufficient to set a stopped 1359 * thread running. TP_TXSTART is always set if the thread 1360 * is not stopped by a jobcontrol stop signal. 1361 * TP_TPSTART is always set if /proc is not controlling it. 1362 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1363 * The thread won't be stopped unless one of these 1364 * three mechanisms did it. 1365 * 1366 * These flags must be set before calling setrun_locked(t). 1367 * They can't be passed as arguments because the streams 1368 * code calls setrun() indirectly and the mechanism for 1369 * doing so admits only one argument. Note that the 1370 * thread must be locked in order to change t_schedflags. 1371 */ 1372 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1373 return; 1374 /* 1375 * Process is no longer stopped (a thread is running). 1376 */ 1377 t->t_whystop = 0; 1378 t->t_whatstop = 0; 1379 /* 1380 * Strictly speaking, we do not have to clear these 1381 * flags here; they are cleared on entry to stop(). 1382 * However, they are confusing when doing kernel 1383 * debugging or when they are revealed by ps(1). 1384 */ 1385 t->t_schedflag &= ~TS_ALLSTART; 1386 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1387 ASSERT(t->t_lockp == &transition_lock); 1388 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1389 /* 1390 * Let the class put the process on the dispatcher queue. 1391 */ 1392 CL_SETRUN(t); 1393 } 1394 } 1395 1396 void 1397 setrun(kthread_t *t) 1398 { 1399 thread_lock(t); 1400 setrun_locked(t); 1401 thread_unlock(t); 1402 } 1403 1404 /* 1405 * Unpin an interrupted thread. 1406 * When an interrupt occurs, the interrupt is handled on the stack 1407 * of an interrupt thread, taken from a pool linked to the CPU structure. 1408 * 1409 * When swtch() is switching away from an interrupt thread because it 1410 * blocked or was preempted, this routine is called to complete the 1411 * saving of the interrupted thread state, and returns the interrupted 1412 * thread pointer so it may be resumed. 1413 * 1414 * Called by swtch() only at high spl. 1415 */ 1416 kthread_t * 1417 thread_unpin() 1418 { 1419 kthread_t *t = curthread; /* current thread */ 1420 kthread_t *itp; /* interrupted thread */ 1421 int i; /* interrupt level */ 1422 extern int intr_passivate(); 1423 1424 ASSERT(t->t_intr != NULL); 1425 1426 itp = t->t_intr; /* interrupted thread */ 1427 t->t_intr = NULL; /* clear interrupt ptr */ 1428 1429 smt_end_intr(); 1430 1431 /* 1432 * Get state from interrupt thread for the one 1433 * it interrupted. 1434 */ 1435 1436 i = intr_passivate(t, itp); 1437 1438 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1439 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1440 i, t, t, itp, itp); 1441 1442 /* 1443 * Dissociate the current thread from the interrupted thread's LWP. 1444 */ 1445 t->t_lwp = NULL; 1446 1447 /* 1448 * Interrupt handlers above the level that spinlocks block must 1449 * not block. 1450 */ 1451 #if DEBUG 1452 if (i < 0 || i > LOCK_LEVEL) 1453 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1454 #endif 1455 1456 /* 1457 * Compute the CPU's base interrupt level based on the active 1458 * interrupts. 1459 */ 1460 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1461 set_base_spl(); 1462 1463 return (itp); 1464 } 1465 1466 /* 1467 * Create and initialize an interrupt thread. 1468 * Returns non-zero on error. 1469 * Called at spl7() or better. 1470 */ 1471 void 1472 thread_create_intr(struct cpu *cp) 1473 { 1474 kthread_t *tp; 1475 1476 tp = thread_create(NULL, 0, 1477 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1478 1479 /* 1480 * Set the thread in the TS_FREE state. The state will change 1481 * to TS_ONPROC only while the interrupt is active. Think of these 1482 * as being on a private free list for the CPU. Being TS_FREE keeps 1483 * inactive interrupt threads out of debugger thread lists. 1484 * 1485 * We cannot call thread_create with TS_FREE because of the current 1486 * checks there for ONPROC. Fix this when thread_create takes flags. 1487 */ 1488 THREAD_FREEINTR(tp, cp); 1489 1490 /* 1491 * Nobody should ever reference the credentials of an interrupt 1492 * thread so make it NULL to catch any such references. 1493 */ 1494 tp->t_cred = NULL; 1495 tp->t_flag |= T_INTR_THREAD; 1496 tp->t_cpu = cp; 1497 tp->t_bound_cpu = cp; 1498 tp->t_disp_queue = cp->cpu_disp; 1499 tp->t_affinitycnt = 1; 1500 tp->t_preempt = 1; 1501 1502 /* 1503 * Don't make a user-requested binding on this thread so that 1504 * the processor can be offlined. 1505 */ 1506 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1507 tp->t_bind_pset = PS_NONE; 1508 1509 #if defined(__i386) || defined(__amd64) 1510 tp->t_stk -= STACK_ALIGN; 1511 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1512 #endif 1513 1514 /* 1515 * Link onto CPU's interrupt pool. 1516 */ 1517 tp->t_link = cp->cpu_intr_thread; 1518 cp->cpu_intr_thread = tp; 1519 } 1520 1521 /* 1522 * TSD -- THREAD SPECIFIC DATA 1523 */ 1524 static kmutex_t tsd_mutex; /* linked list spin lock */ 1525 static uint_t tsd_nkeys; /* size of destructor array */ 1526 /* per-key destructor funcs */ 1527 static void (**tsd_destructor)(void *); 1528 /* list of tsd_thread's */ 1529 static struct tsd_thread *tsd_list; 1530 1531 /* 1532 * Default destructor 1533 * Needed because NULL destructor means that the key is unused 1534 */ 1535 /* ARGSUSED */ 1536 void 1537 tsd_defaultdestructor(void *value) 1538 {} 1539 1540 /* 1541 * Create a key (index into per thread array) 1542 * Locks out tsd_create, tsd_destroy, and tsd_exit 1543 * May allocate memory with lock held 1544 */ 1545 void 1546 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1547 { 1548 int i; 1549 uint_t nkeys; 1550 1551 /* 1552 * if key is allocated, do nothing 1553 */ 1554 mutex_enter(&tsd_mutex); 1555 if (*keyp) { 1556 mutex_exit(&tsd_mutex); 1557 return; 1558 } 1559 /* 1560 * find an unused key 1561 */ 1562 if (destructor == NULL) 1563 destructor = tsd_defaultdestructor; 1564 1565 for (i = 0; i < tsd_nkeys; ++i) 1566 if (tsd_destructor[i] == NULL) 1567 break; 1568 1569 /* 1570 * if no unused keys, increase the size of the destructor array 1571 */ 1572 if (i == tsd_nkeys) { 1573 if ((nkeys = (tsd_nkeys << 1)) == 0) 1574 nkeys = 1; 1575 tsd_destructor = 1576 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1577 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1578 (size_t)(nkeys * sizeof (void (*)(void *)))); 1579 tsd_nkeys = nkeys; 1580 } 1581 1582 /* 1583 * allocate the next available unused key 1584 */ 1585 tsd_destructor[i] = destructor; 1586 *keyp = i + 1; 1587 mutex_exit(&tsd_mutex); 1588 } 1589 1590 /* 1591 * Destroy a key -- this is for unloadable modules 1592 * 1593 * Assumes that the caller is preventing tsd_set and tsd_get 1594 * Locks out tsd_create, tsd_destroy, and tsd_exit 1595 * May free memory with lock held 1596 */ 1597 void 1598 tsd_destroy(uint_t *keyp) 1599 { 1600 uint_t key; 1601 struct tsd_thread *tsd; 1602 1603 /* 1604 * protect the key namespace and our destructor lists 1605 */ 1606 mutex_enter(&tsd_mutex); 1607 key = *keyp; 1608 *keyp = 0; 1609 1610 ASSERT(key <= tsd_nkeys); 1611 1612 /* 1613 * if the key is valid 1614 */ 1615 if (key != 0) { 1616 uint_t k = key - 1; 1617 /* 1618 * for every thread with TSD, call key's destructor 1619 */ 1620 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1621 /* 1622 * no TSD for key in this thread 1623 */ 1624 if (key > tsd->ts_nkeys) 1625 continue; 1626 /* 1627 * call destructor for key 1628 */ 1629 if (tsd->ts_value[k] && tsd_destructor[k]) 1630 (*tsd_destructor[k])(tsd->ts_value[k]); 1631 /* 1632 * reset value for key 1633 */ 1634 tsd->ts_value[k] = NULL; 1635 } 1636 /* 1637 * actually free the key (NULL destructor == unused) 1638 */ 1639 tsd_destructor[k] = NULL; 1640 } 1641 1642 mutex_exit(&tsd_mutex); 1643 } 1644 1645 /* 1646 * Quickly return the per thread value that was stored with the specified key 1647 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1648 */ 1649 void * 1650 tsd_get(uint_t key) 1651 { 1652 return (tsd_agent_get(curthread, key)); 1653 } 1654 1655 /* 1656 * Set a per thread value indexed with the specified key 1657 */ 1658 int 1659 tsd_set(uint_t key, void *value) 1660 { 1661 return (tsd_agent_set(curthread, key, value)); 1662 } 1663 1664 /* 1665 * Like tsd_get(), except that the agent lwp can get the tsd of 1666 * another thread in the same process (the agent thread only runs when the 1667 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1668 */ 1669 void * 1670 tsd_agent_get(kthread_t *t, uint_t key) 1671 { 1672 struct tsd_thread *tsd = t->t_tsd; 1673 1674 ASSERT(t == curthread || 1675 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1676 1677 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1678 return (tsd->ts_value[key - 1]); 1679 return (NULL); 1680 } 1681 1682 /* 1683 * Like tsd_set(), except that the agent lwp can set the tsd of 1684 * another thread in the same process, or syslwp can set the tsd 1685 * of a thread it's in the middle of creating. 1686 * 1687 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1688 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1689 * lock held 1690 */ 1691 int 1692 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1693 { 1694 struct tsd_thread *tsd = t->t_tsd; 1695 1696 ASSERT(t == curthread || 1697 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1698 1699 if (key == 0) 1700 return (EINVAL); 1701 if (tsd == NULL) 1702 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1703 if (key <= tsd->ts_nkeys) { 1704 tsd->ts_value[key - 1] = value; 1705 return (0); 1706 } 1707 1708 ASSERT(key <= tsd_nkeys); 1709 1710 /* 1711 * lock out tsd_destroy() 1712 */ 1713 mutex_enter(&tsd_mutex); 1714 if (tsd->ts_nkeys == 0) { 1715 /* 1716 * Link onto list of threads with TSD 1717 */ 1718 if ((tsd->ts_next = tsd_list) != NULL) 1719 tsd_list->ts_prev = tsd; 1720 tsd_list = tsd; 1721 } 1722 1723 /* 1724 * Allocate thread local storage and set the value for key 1725 */ 1726 tsd->ts_value = tsd_realloc(tsd->ts_value, 1727 tsd->ts_nkeys * sizeof (void *), 1728 key * sizeof (void *)); 1729 tsd->ts_nkeys = key; 1730 tsd->ts_value[key - 1] = value; 1731 mutex_exit(&tsd_mutex); 1732 1733 return (0); 1734 } 1735 1736 1737 /* 1738 * Return the per thread value that was stored with the specified key 1739 * If necessary, create the key and the value 1740 * Assumes the caller is protecting *keyp from tsd_destroy 1741 */ 1742 void * 1743 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1744 { 1745 void *value; 1746 uint_t key = *keyp; 1747 struct tsd_thread *tsd = curthread->t_tsd; 1748 1749 if (tsd == NULL) 1750 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1751 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1752 return (value); 1753 if (key == 0) 1754 tsd_create(keyp, destroy); 1755 (void) tsd_set(*keyp, value = (*allocate)()); 1756 1757 return (value); 1758 } 1759 1760 /* 1761 * Called from thread_exit() to run the destructor function for each tsd 1762 * Locks out tsd_create and tsd_destroy 1763 * Assumes that the destructor *DOES NOT* use tsd 1764 */ 1765 void 1766 tsd_exit(void) 1767 { 1768 int i; 1769 struct tsd_thread *tsd = curthread->t_tsd; 1770 1771 if (tsd == NULL) 1772 return; 1773 1774 if (tsd->ts_nkeys == 0) { 1775 kmem_free(tsd, sizeof (*tsd)); 1776 curthread->t_tsd = NULL; 1777 return; 1778 } 1779 1780 /* 1781 * lock out tsd_create and tsd_destroy, call 1782 * the destructor, and mark the value as destroyed. 1783 */ 1784 mutex_enter(&tsd_mutex); 1785 1786 for (i = 0; i < tsd->ts_nkeys; i++) { 1787 if (tsd->ts_value[i] && tsd_destructor[i]) 1788 (*tsd_destructor[i])(tsd->ts_value[i]); 1789 tsd->ts_value[i] = NULL; 1790 } 1791 1792 /* 1793 * remove from linked list of threads with TSD 1794 */ 1795 if (tsd->ts_next) 1796 tsd->ts_next->ts_prev = tsd->ts_prev; 1797 if (tsd->ts_prev) 1798 tsd->ts_prev->ts_next = tsd->ts_next; 1799 if (tsd_list == tsd) 1800 tsd_list = tsd->ts_next; 1801 1802 mutex_exit(&tsd_mutex); 1803 1804 /* 1805 * free up the TSD 1806 */ 1807 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1808 kmem_free(tsd, sizeof (struct tsd_thread)); 1809 curthread->t_tsd = NULL; 1810 } 1811 1812 /* 1813 * realloc 1814 */ 1815 static void * 1816 tsd_realloc(void *old, size_t osize, size_t nsize) 1817 { 1818 void *new; 1819 1820 new = kmem_zalloc(nsize, KM_SLEEP); 1821 if (old) { 1822 bcopy(old, new, osize); 1823 kmem_free(old, osize); 1824 } 1825 return (new); 1826 } 1827 1828 /* 1829 * Return non-zero if an interrupt is being serviced. 1830 */ 1831 int 1832 servicing_interrupt() 1833 { 1834 int onintr = 0; 1835 1836 /* Are we an interrupt thread */ 1837 if (curthread->t_flag & T_INTR_THREAD) 1838 return (1); 1839 /* Are we servicing a high level interrupt? */ 1840 if (CPU_ON_INTR(CPU)) { 1841 kpreempt_disable(); 1842 onintr = CPU_ON_INTR(CPU); 1843 kpreempt_enable(); 1844 } 1845 return (onintr); 1846 } 1847 1848 1849 /* 1850 * Change the dispatch priority of a thread in the system. 1851 * Used when raising or lowering a thread's priority. 1852 * (E.g., priority inheritance) 1853 * 1854 * Since threads are queued according to their priority, we 1855 * we must check the thread's state to determine whether it 1856 * is on a queue somewhere. If it is, we've got to: 1857 * 1858 * o Dequeue the thread. 1859 * o Change its effective priority. 1860 * o Enqueue the thread. 1861 * 1862 * Assumptions: The thread whose priority we wish to change 1863 * must be locked before we call thread_change_(e)pri(). 1864 * The thread_change(e)pri() function doesn't drop the thread 1865 * lock--that must be done by its caller. 1866 */ 1867 void 1868 thread_change_epri(kthread_t *t, pri_t disp_pri) 1869 { 1870 uint_t state; 1871 1872 ASSERT(THREAD_LOCK_HELD(t)); 1873 1874 /* 1875 * If the inherited priority hasn't actually changed, 1876 * just return. 1877 */ 1878 if (t->t_epri == disp_pri) 1879 return; 1880 1881 state = t->t_state; 1882 1883 /* 1884 * If it's not on a queue, change the priority with impunity. 1885 */ 1886 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1887 t->t_epri = disp_pri; 1888 if (state == TS_ONPROC) { 1889 cpu_t *cp = t->t_disp_queue->disp_cpu; 1890 1891 if (t == cp->cpu_dispthread) 1892 cp->cpu_dispatch_pri = DISP_PRIO(t); 1893 } 1894 } else if (state == TS_SLEEP) { 1895 /* 1896 * Take the thread out of its sleep queue. 1897 * Change the inherited priority. 1898 * Re-enqueue the thread. 1899 * Each synchronization object exports a function 1900 * to do this in an appropriate manner. 1901 */ 1902 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1903 } else if (state == TS_WAIT) { 1904 /* 1905 * Re-enqueue a thread on the wait queue if its 1906 * effective priority needs to change. 1907 */ 1908 if (disp_pri != t->t_epri) 1909 waitq_change_pri(t, disp_pri); 1910 } else { 1911 /* 1912 * The thread is on a run queue. 1913 * Note: setbackdq() may not put the thread 1914 * back on the same run queue where it originally 1915 * resided. 1916 */ 1917 (void) dispdeq(t); 1918 t->t_epri = disp_pri; 1919 setbackdq(t); 1920 } 1921 schedctl_set_cidpri(t); 1922 } 1923 1924 /* 1925 * Function: Change the t_pri field of a thread. 1926 * Side Effects: Adjust the thread ordering on a run queue 1927 * or sleep queue, if necessary. 1928 * Returns: 1 if the thread was on a run queue, else 0. 1929 */ 1930 int 1931 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1932 { 1933 uint_t state; 1934 int on_rq = 0; 1935 1936 ASSERT(THREAD_LOCK_HELD(t)); 1937 1938 state = t->t_state; 1939 THREAD_WILLCHANGE_PRI(t, disp_pri); 1940 1941 /* 1942 * If it's not on a queue, change the priority with impunity. 1943 */ 1944 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1945 t->t_pri = disp_pri; 1946 1947 if (state == TS_ONPROC) { 1948 cpu_t *cp = t->t_disp_queue->disp_cpu; 1949 1950 if (t == cp->cpu_dispthread) 1951 cp->cpu_dispatch_pri = DISP_PRIO(t); 1952 } 1953 } else if (state == TS_SLEEP) { 1954 /* 1955 * If the priority has changed, take the thread out of 1956 * its sleep queue and change the priority. 1957 * Re-enqueue the thread. 1958 * Each synchronization object exports a function 1959 * to do this in an appropriate manner. 1960 */ 1961 if (disp_pri != t->t_pri) 1962 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1963 } else if (state == TS_WAIT) { 1964 /* 1965 * Re-enqueue a thread on the wait queue if its 1966 * priority needs to change. 1967 */ 1968 if (disp_pri != t->t_pri) 1969 waitq_change_pri(t, disp_pri); 1970 } else { 1971 /* 1972 * The thread is on a run queue. 1973 * Note: setbackdq() may not put the thread 1974 * back on the same run queue where it originally 1975 * resided. 1976 * 1977 * We still requeue the thread even if the priority 1978 * is unchanged to preserve round-robin (and other) 1979 * effects between threads of the same priority. 1980 */ 1981 on_rq = dispdeq(t); 1982 ASSERT(on_rq); 1983 t->t_pri = disp_pri; 1984 if (front) { 1985 setfrontdq(t); 1986 } else { 1987 setbackdq(t); 1988 } 1989 } 1990 schedctl_set_cidpri(t); 1991 return (on_rq); 1992 } 1993 1994 /* 1995 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 1996 * specific pattern. 1997 */ 1998 static void 1999 stkinfo_begin(kthread_t *t) 2000 { 2001 caddr_t start; /* stack start */ 2002 caddr_t end; /* stack end */ 2003 uint64_t *ptr; /* pattern pointer */ 2004 2005 /* 2006 * Stack grows up or down, see thread_create(), 2007 * compute stack memory area start and end (start < end). 2008 */ 2009 if (t->t_stk > t->t_stkbase) { 2010 /* stack grows down */ 2011 start = t->t_stkbase; 2012 end = t->t_stk; 2013 } else { 2014 /* stack grows up */ 2015 start = t->t_stk; 2016 end = t->t_stkbase; 2017 } 2018 2019 /* 2020 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2021 * alignement for start and end in stack area boundaries 2022 * (protection against corrupt t_stkbase/t_stk data). 2023 */ 2024 if ((((uintptr_t)start) & 0x7) != 0) { 2025 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2026 } 2027 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2028 2029 if ((end <= start) || (end - start) > (1024 * 1024)) { 2030 /* negative or stack size > 1 meg, assume bogus */ 2031 return; 2032 } 2033 2034 /* fill stack area with a pattern (instead of zeros) */ 2035 ptr = (uint64_t *)((void *)start); 2036 while (ptr < (uint64_t *)((void *)end)) { 2037 *ptr++ = KMEM_STKINFO_PATTERN; 2038 } 2039 } 2040 2041 2042 /* 2043 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 2044 * compute the percentage of kernel stack really used, and set in the log 2045 * if it's the latest highest percentage. 2046 */ 2047 static void 2048 stkinfo_end(kthread_t *t) 2049 { 2050 caddr_t start; /* stack start */ 2051 caddr_t end; /* stack end */ 2052 uint64_t *ptr; /* pattern pointer */ 2053 size_t stksz; /* stack size */ 2054 size_t smallest = 0; 2055 size_t percent = 0; 2056 uint_t index = 0; 2057 uint_t i; 2058 static size_t smallest_percent = (size_t)-1; 2059 static uint_t full = 0; 2060 2061 /* create the stackinfo log, if doesn't already exist */ 2062 mutex_enter(&kmem_stkinfo_lock); 2063 if (kmem_stkinfo_log == NULL) { 2064 kmem_stkinfo_log = (kmem_stkinfo_t *) 2065 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 2066 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 2067 if (kmem_stkinfo_log == NULL) { 2068 mutex_exit(&kmem_stkinfo_lock); 2069 return; 2070 } 2071 } 2072 mutex_exit(&kmem_stkinfo_lock); 2073 2074 /* 2075 * Stack grows up or down, see thread_create(), 2076 * compute stack memory area start and end (start < end). 2077 */ 2078 if (t->t_stk > t->t_stkbase) { 2079 /* stack grows down */ 2080 start = t->t_stkbase; 2081 end = t->t_stk; 2082 } else { 2083 /* stack grows up */ 2084 start = t->t_stk; 2085 end = t->t_stkbase; 2086 } 2087 2088 /* stack size as found in kthread_t */ 2089 stksz = end - start; 2090 2091 /* 2092 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2093 * alignement for start and end in stack area boundaries 2094 * (protection against corrupt t_stkbase/t_stk data). 2095 */ 2096 if ((((uintptr_t)start) & 0x7) != 0) { 2097 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2098 } 2099 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2100 2101 if ((end <= start) || (end - start) > (1024 * 1024)) { 2102 /* negative or stack size > 1 meg, assume bogus */ 2103 return; 2104 } 2105 2106 /* search until no pattern in the stack */ 2107 if (t->t_stk > t->t_stkbase) { 2108 /* stack grows down */ 2109 #if defined(__i386) || defined(__amd64) 2110 /* 2111 * 6 longs are pushed on stack, see thread_load(). Skip 2112 * them, so if kthread has never run, percent is zero. 2113 * 8 bytes alignement is preserved for a 32 bit kernel, 2114 * 6 x 4 = 24, 24 is a multiple of 8. 2115 * 2116 */ 2117 end -= (6 * sizeof (long)); 2118 #endif 2119 ptr = (uint64_t *)((void *)start); 2120 while (ptr < (uint64_t *)((void *)end)) { 2121 if (*ptr != KMEM_STKINFO_PATTERN) { 2122 percent = stkinfo_percent(end, 2123 start, (caddr_t)ptr); 2124 break; 2125 } 2126 ptr++; 2127 } 2128 } else { 2129 /* stack grows up */ 2130 ptr = (uint64_t *)((void *)end); 2131 ptr--; 2132 while (ptr >= (uint64_t *)((void *)start)) { 2133 if (*ptr != KMEM_STKINFO_PATTERN) { 2134 percent = stkinfo_percent(start, 2135 end, (caddr_t)ptr); 2136 break; 2137 } 2138 ptr--; 2139 } 2140 } 2141 2142 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2143 size_t, stksz, size_t, percent); 2144 2145 if (percent == 0) { 2146 return; 2147 } 2148 2149 mutex_enter(&kmem_stkinfo_lock); 2150 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2151 /* 2152 * The log is full and already contains the highest values 2153 */ 2154 mutex_exit(&kmem_stkinfo_lock); 2155 return; 2156 } 2157 2158 /* keep a log of the highest used stack */ 2159 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2160 if (kmem_stkinfo_log[i].percent == 0) { 2161 index = i; 2162 full++; 2163 break; 2164 } 2165 if (smallest == 0) { 2166 smallest = kmem_stkinfo_log[i].percent; 2167 index = i; 2168 continue; 2169 } 2170 if (kmem_stkinfo_log[i].percent < smallest) { 2171 smallest = kmem_stkinfo_log[i].percent; 2172 index = i; 2173 } 2174 } 2175 2176 if (percent >= kmem_stkinfo_log[index].percent) { 2177 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2178 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2179 kmem_stkinfo_log[index].start = start; 2180 kmem_stkinfo_log[index].stksz = stksz; 2181 kmem_stkinfo_log[index].percent = percent; 2182 kmem_stkinfo_log[index].t_tid = t->t_tid; 2183 kmem_stkinfo_log[index].cmd[0] = '\0'; 2184 if (t->t_tid != 0) { 2185 stksz = strlen((t->t_procp)->p_user.u_comm); 2186 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2187 stksz = KMEM_STKINFO_STR_SIZE - 1; 2188 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2189 } else { 2190 stksz += 1; 2191 } 2192 (void) memcpy(kmem_stkinfo_log[index].cmd, 2193 (t->t_procp)->p_user.u_comm, stksz); 2194 } 2195 if (percent < smallest_percent) { 2196 smallest_percent = percent; 2197 } 2198 } 2199 mutex_exit(&kmem_stkinfo_lock); 2200 } 2201 2202 /* 2203 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2204 */ 2205 static size_t 2206 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2207 { 2208 size_t percent; 2209 size_t s; 2210 2211 if (t_stk > t_stkbase) { 2212 /* stack grows down */ 2213 if (sp > t_stk) { 2214 return (0); 2215 } 2216 if (sp < t_stkbase) { 2217 return (100); 2218 } 2219 percent = t_stk - sp + 1; 2220 s = t_stk - t_stkbase + 1; 2221 } else { 2222 /* stack grows up */ 2223 if (sp < t_stk) { 2224 return (0); 2225 } 2226 if (sp > t_stkbase) { 2227 return (100); 2228 } 2229 percent = sp - t_stk + 1; 2230 s = t_stkbase - t_stk + 1; 2231 } 2232 percent = ((100 * percent) / s) + 1; 2233 if (percent > 100) { 2234 percent = 100; 2235 } 2236 return (percent); 2237 } 2238 2239 /* 2240 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters 2241 * long. It is expected that callers (acting on behalf of userland clients) 2242 * will perform any required checks to return the correct error semantics. 2243 * It is also expected callers on behalf of userland clients have done 2244 * any necessary permission checks. 2245 */ 2246 int 2247 thread_setname(kthread_t *t, const char *name) 2248 { 2249 char *buf = NULL; 2250 2251 /* 2252 * We optimistically assume that a thread's name will only be set 2253 * once and so allocate memory in preparation of setting t_name. 2254 * If it turns out a name has already been set, we just discard (free) 2255 * the buffer we just allocated and reuse the current buffer 2256 * (as all should be THREAD_NAME_MAX large). 2257 * 2258 * Such an arrangement means over the lifetime of a kthread_t, t_name 2259 * is either NULL or has one value (the address of the buffer holding 2260 * the current thread name). The assumption is that most kthread_t 2261 * instances will not have a name assigned, so dynamically allocating 2262 * the memory should minimize the footprint of this feature, but by 2263 * having the buffer persist for the life of the thread, it simplifies 2264 * usage in highly constrained situations (e.g. dtrace). 2265 */ 2266 if (name != NULL && name[0] != '\0') { 2267 for (size_t i = 0; name[i] != '\0'; i++) { 2268 if (!isprint(name[i])) 2269 return (EINVAL); 2270 } 2271 2272 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP); 2273 (void) strlcpy(buf, name, THREAD_NAME_MAX); 2274 } 2275 2276 mutex_enter(&ttoproc(t)->p_lock); 2277 if (t->t_name == NULL) { 2278 t->t_name = buf; 2279 } else { 2280 if (buf != NULL) { 2281 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX); 2282 kmem_free(buf, THREAD_NAME_MAX); 2283 } else { 2284 bzero(t->t_name, THREAD_NAME_MAX); 2285 } 2286 } 2287 mutex_exit(&ttoproc(t)->p_lock); 2288 return (0); 2289 } 2290 2291 int 2292 thread_vsetname(kthread_t *t, const char *fmt, ...) 2293 { 2294 char name[THREAD_NAME_MAX]; 2295 va_list va; 2296 int rc; 2297 2298 va_start(va, fmt); 2299 rc = vsnprintf(name, sizeof (name), fmt, va); 2300 va_end(va); 2301 2302 if (rc < 0) 2303 return (EINVAL); 2304 2305 if (rc >= sizeof (name)) 2306 return (ENAMETOOLONG); 2307 2308 return (thread_setname(t, name)); 2309 } 2310