1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/cred.h> 32 #include <sys/proc.h> 33 #include <sys/session.h> 34 #include <sys/strsubr.h> 35 #include <sys/user.h> 36 #include <sys/priocntl.h> 37 #include <sys/class.h> 38 #include <sys/disp.h> 39 #include <sys/procset.h> 40 #include <sys/debug.h> 41 #include <sys/kmem.h> 42 #include <sys/errno.h> 43 #include <sys/fx.h> 44 #include <sys/fxpriocntl.h> 45 #include <sys/cpuvar.h> 46 #include <sys/systm.h> 47 #include <sys/vtrace.h> 48 #include <sys/schedctl.h> 49 #include <sys/tnf_probe.h> 50 #include <sys/sunddi.h> 51 #include <sys/spl.h> 52 #include <sys/modctl.h> 53 #include <sys/policy.h> 54 #include <sys/sdt.h> 55 #include <sys/cpupart.h> 56 #include <sys/cpucaps.h> 57 58 static pri_t fx_init(id_t, int, classfuncs_t **); 59 60 static struct sclass csw = { 61 "FX", 62 fx_init, 63 0 64 }; 65 66 static struct modlsched modlsched = { 67 &mod_schedops, "Fixed priority sched class", &csw 68 }; 69 70 static struct modlinkage modlinkage = { 71 MODREV_1, (void *)&modlsched, NULL 72 }; 73 74 75 /* 76 * control flags (kparms->fx_cflags). 77 */ 78 #define FX_DOUPRILIM 0x01 /* change user priority limit */ 79 #define FX_DOUPRI 0x02 /* change user priority */ 80 #define FX_DOTQ 0x04 /* change FX time quantum */ 81 82 83 #define FXMAXUPRI 60 /* maximum user priority setting */ 84 85 #define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */ 86 87 /* 88 * The fxproc_t structures that have a registered callback vector, 89 * are also kept in an array of circular doubly linked lists. A hash on 90 * the thread id (from ddi_get_kt_did()) is used to determine which list 91 * each of such fxproc structures should be placed. Each list has a dummy 92 * "head" which is never removed, so the list is never empty. 93 */ 94 95 #define FX_CB_LISTS 16 /* number of lists, must be power of 2 */ 96 #define FX_CB_LIST_HASH(ktid) ((uint_t)ktid & (FX_CB_LISTS - 1)) 97 98 /* Insert fxproc into callback list */ 99 #define FX_CB_LIST_INSERT(fxpp) \ 100 { \ 101 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \ 102 kmutex_t *lockp = &fx_cb_list_lock[index]; \ 103 fxproc_t *headp = &fx_cb_plisthead[index]; \ 104 mutex_enter(lockp); \ 105 fxpp->fx_cb_next = headp->fx_cb_next; \ 106 fxpp->fx_cb_prev = headp; \ 107 headp->fx_cb_next->fx_cb_prev = fxpp; \ 108 headp->fx_cb_next = fxpp; \ 109 mutex_exit(lockp); \ 110 } 111 112 /* 113 * Remove thread from callback list. 114 */ 115 #define FX_CB_LIST_DELETE(fxpp) \ 116 { \ 117 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \ 118 kmutex_t *lockp = &fx_cb_list_lock[index]; \ 119 mutex_enter(lockp); \ 120 fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next; \ 121 fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev; \ 122 mutex_exit(lockp); \ 123 } 124 125 #define FX_HAS_CB(fxpp) (fxpp->fx_callback != NULL) 126 127 /* adjust x to be between 0 and fx_maxumdpri */ 128 129 #define FX_ADJUST_PRI(pri) \ 130 { \ 131 if (pri < 0) \ 132 pri = 0; \ 133 else if (pri > fx_maxumdpri) \ 134 pri = fx_maxumdpri; \ 135 } 136 137 #define FX_ADJUST_QUANTUM(q) \ 138 { \ 139 if (q > INT_MAX) \ 140 q = INT_MAX; \ 141 else if (q <= 0) \ 142 q = FX_TQINF; \ 143 } 144 145 #define FX_ISVALID(pri, quantum) \ 146 (((pri >= 0) || (pri == FX_CB_NOCHANGE)) && \ 147 ((quantum >= 0) || (quantum == FX_NOCHANGE) || \ 148 (quantum == FX_TQDEF) || (quantum == FX_TQINF))) 149 150 151 static id_t fx_cid; /* fixed priority class ID */ 152 static fxdpent_t *fx_dptbl; /* fixed priority disp parameter table */ 153 154 static pri_t fx_maxupri = FXMAXUPRI; 155 static pri_t fx_maxumdpri; /* max user mode fixed priority */ 156 157 static pri_t fx_maxglobpri; /* maximum global priority used by fx class */ 158 static kmutex_t fx_dptblock; /* protects fixed priority dispatch table */ 159 160 161 static kmutex_t fx_cb_list_lock[FX_CB_LISTS]; /* protects list of fxprocs */ 162 /* that have callbacks */ 163 static fxproc_t fx_cb_plisthead[FX_CB_LISTS]; /* dummy fxproc at head of */ 164 /* list of fxprocs with */ 165 /* callbacks */ 166 167 static int fx_admin(caddr_t, cred_t *); 168 static int fx_getclinfo(void *); 169 static int fx_parmsin(void *); 170 static int fx_parmsout(void *, pc_vaparms_t *); 171 static int fx_vaparmsin(void *, pc_vaparms_t *); 172 static int fx_vaparmsout(void *, pc_vaparms_t *); 173 static int fx_getclpri(pcpri_t *); 174 static int fx_alloc(void **, int); 175 static void fx_free(void *); 176 static int fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 177 static void fx_exitclass(void *); 178 static int fx_canexit(kthread_t *, cred_t *); 179 static int fx_fork(kthread_t *, kthread_t *, void *); 180 static void fx_forkret(kthread_t *, kthread_t *); 181 static void fx_parmsget(kthread_t *, void *); 182 static int fx_parmsset(kthread_t *, void *, id_t, cred_t *); 183 static void fx_stop(kthread_t *, int, int); 184 static void fx_exit(kthread_t *); 185 static pri_t fx_swapin(kthread_t *, int); 186 static pri_t fx_swapout(kthread_t *, int); 187 static void fx_trapret(kthread_t *); 188 static void fx_preempt(kthread_t *); 189 static void fx_setrun(kthread_t *); 190 static void fx_sleep(kthread_t *); 191 static void fx_tick(kthread_t *); 192 static void fx_wakeup(kthread_t *); 193 static int fx_donice(kthread_t *, cred_t *, int, int *); 194 static pri_t fx_globpri(kthread_t *); 195 static void fx_yield(kthread_t *); 196 static void fx_nullsys(); 197 198 extern fxdpent_t *fx_getdptbl(void); 199 200 static void fx_change_priority(kthread_t *, fxproc_t *); 201 static fxproc_t *fx_list_lookup(kt_did_t); 202 static void fx_list_release(fxproc_t *); 203 204 205 static struct classfuncs fx_classfuncs = { 206 /* class functions */ 207 fx_admin, 208 fx_getclinfo, 209 fx_parmsin, 210 fx_parmsout, 211 fx_vaparmsin, 212 fx_vaparmsout, 213 fx_getclpri, 214 fx_alloc, 215 fx_free, 216 217 /* thread functions */ 218 fx_enterclass, 219 fx_exitclass, 220 fx_canexit, 221 fx_fork, 222 fx_forkret, 223 fx_parmsget, 224 fx_parmsset, 225 fx_stop, 226 fx_exit, 227 fx_nullsys, /* active */ 228 fx_nullsys, /* inactive */ 229 fx_swapin, 230 fx_swapout, 231 fx_trapret, 232 fx_preempt, 233 fx_setrun, 234 fx_sleep, 235 fx_tick, 236 fx_wakeup, 237 fx_donice, 238 fx_globpri, 239 fx_nullsys, /* set_process_group */ 240 fx_yield, 241 }; 242 243 244 int 245 _init() 246 { 247 return (mod_install(&modlinkage)); 248 } 249 250 int 251 _fini() 252 { 253 return (EBUSY); 254 } 255 256 int 257 _info(struct modinfo *modinfop) 258 { 259 return (mod_info(&modlinkage, modinfop)); 260 } 261 262 /* 263 * Fixed priority class initialization. Called by dispinit() at boot time. 264 * We can ignore the clparmsz argument since we know that the smallest 265 * possible parameter buffer is big enough for us. 266 */ 267 /* ARGSUSED */ 268 static pri_t 269 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 270 { 271 int i; 272 extern pri_t fx_getmaxumdpri(void); 273 274 fx_dptbl = fx_getdptbl(); 275 fx_maxumdpri = fx_getmaxumdpri(); 276 fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri; 277 278 fx_cid = cid; /* Record our class ID */ 279 280 /* 281 * Initialize the hash table for fxprocs with callbacks 282 */ 283 for (i = 0; i < FX_CB_LISTS; i++) { 284 fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev = 285 &fx_cb_plisthead[i]; 286 } 287 288 /* 289 * We're required to return a pointer to our classfuncs 290 * structure and the highest global priority value we use. 291 */ 292 *clfuncspp = &fx_classfuncs; 293 return (fx_maxglobpri); 294 } 295 296 /* 297 * Get or reset the fx_dptbl values per the user's request. 298 */ 299 static int 300 fx_admin(caddr_t uaddr, cred_t *reqpcredp) 301 { 302 fxadmin_t fxadmin; 303 fxdpent_t *tmpdpp; 304 int userdpsz; 305 int i; 306 size_t fxdpsz; 307 308 if (get_udatamodel() == DATAMODEL_NATIVE) { 309 if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t))) 310 return (EFAULT); 311 } 312 #ifdef _SYSCALL32_IMPL 313 else { 314 /* get fxadmin struct from ILP32 caller */ 315 fxadmin32_t fxadmin32; 316 if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t))) 317 return (EFAULT); 318 fxadmin.fx_dpents = 319 (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents; 320 fxadmin.fx_ndpents = fxadmin32.fx_ndpents; 321 fxadmin.fx_cmd = fxadmin32.fx_cmd; 322 } 323 #endif /* _SYSCALL32_IMPL */ 324 325 fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t); 326 327 switch (fxadmin.fx_cmd) { 328 case FX_GETDPSIZE: 329 fxadmin.fx_ndpents = fx_maxumdpri + 1; 330 331 if (get_udatamodel() == DATAMODEL_NATIVE) { 332 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t))) 333 return (EFAULT); 334 } 335 #ifdef _SYSCALL32_IMPL 336 else { 337 /* return fxadmin struct to ILP32 caller */ 338 fxadmin32_t fxadmin32; 339 fxadmin32.fx_dpents = 340 (caddr32_t)(uintptr_t)fxadmin.fx_dpents; 341 fxadmin32.fx_ndpents = fxadmin.fx_ndpents; 342 fxadmin32.fx_cmd = fxadmin.fx_cmd; 343 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t))) 344 return (EFAULT); 345 } 346 #endif /* _SYSCALL32_IMPL */ 347 break; 348 349 case FX_GETDPTBL: 350 userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t), 351 fxdpsz); 352 if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz)) 353 return (EFAULT); 354 355 fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t); 356 357 if (get_udatamodel() == DATAMODEL_NATIVE) { 358 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t))) 359 return (EFAULT); 360 } 361 #ifdef _SYSCALL32_IMPL 362 else { 363 /* return fxadmin struct to ILP32 callers */ 364 fxadmin32_t fxadmin32; 365 fxadmin32.fx_dpents = 366 (caddr32_t)(uintptr_t)fxadmin.fx_dpents; 367 fxadmin32.fx_ndpents = fxadmin.fx_ndpents; 368 fxadmin32.fx_cmd = fxadmin.fx_cmd; 369 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t))) 370 return (EFAULT); 371 } 372 #endif /* _SYSCALL32_IMPL */ 373 break; 374 375 case FX_SETDPTBL: 376 /* 377 * We require that the requesting process has sufficient 378 * privileges. We also require that the table supplied by 379 * the user exactly match the current fx_dptbl in size. 380 */ 381 if (secpolicy_dispadm(reqpcredp) != 0) { 382 return (EPERM); 383 } 384 if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) { 385 return (EINVAL); 386 } 387 388 /* 389 * We read the user supplied table into a temporary buffer 390 * where it is validated before being copied over the 391 * fx_dptbl. 392 */ 393 tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP); 394 if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) { 395 kmem_free(tmpdpp, fxdpsz); 396 return (EFAULT); 397 } 398 for (i = 0; i < fxadmin.fx_ndpents; i++) { 399 400 /* 401 * Validate the user supplied values. All we are doing 402 * here is verifying that the values are within their 403 * allowable ranges and will not panic the system. We 404 * make no attempt to ensure that the resulting 405 * configuration makes sense or results in reasonable 406 * performance. 407 */ 408 if (tmpdpp[i].fx_quantum <= 0 && 409 tmpdpp[i].fx_quantum != FX_TQINF) { 410 kmem_free(tmpdpp, fxdpsz); 411 return (EINVAL); 412 } 413 } 414 415 /* 416 * Copy the user supplied values over the current fx_dptbl 417 * values. The fx_globpri member is read-only so we don't 418 * overwrite it. 419 */ 420 mutex_enter(&fx_dptblock); 421 for (i = 0; i < fxadmin.fx_ndpents; i++) { 422 fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum; 423 } 424 mutex_exit(&fx_dptblock); 425 kmem_free(tmpdpp, fxdpsz); 426 break; 427 428 default: 429 return (EINVAL); 430 } 431 return (0); 432 } 433 434 /* 435 * Allocate a fixed priority class specific thread structure and 436 * initialize it with the parameters supplied. Also move the thread 437 * to specified priority. 438 */ 439 static int 440 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 441 void *bufp) 442 { 443 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 444 fxproc_t *fxpp; 445 pri_t reqfxupri; 446 pri_t reqfxuprilim; 447 448 fxpp = (fxproc_t *)bufp; 449 ASSERT(fxpp != NULL); 450 451 /* 452 * Initialize the fxproc structure. 453 */ 454 fxpp->fx_flags = 0; 455 fxpp->fx_callback = NULL; 456 fxpp->fx_cookie = NULL; 457 458 if (fxkparmsp == NULL) { 459 /* 460 * Use default values. 461 */ 462 fxpp->fx_pri = fxpp->fx_uprilim = 0; 463 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 464 fxpp->fx_nice = NZERO; 465 } else { 466 /* 467 * Use supplied values. 468 */ 469 470 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) { 471 reqfxuprilim = 0; 472 } else { 473 if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI && 474 secpolicy_setpriority(reqpcredp) != 0) 475 return (EPERM); 476 reqfxuprilim = fxkparmsp->fx_uprilim; 477 FX_ADJUST_PRI(reqfxuprilim); 478 } 479 480 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) { 481 reqfxupri = reqfxuprilim; 482 } else { 483 if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI && 484 secpolicy_setpriority(reqpcredp) != 0) 485 return (EPERM); 486 /* 487 * Set the user priority to the requested value 488 * or the upri limit, whichever is lower. 489 */ 490 reqfxupri = fxkparmsp->fx_upri; 491 FX_ADJUST_PRI(reqfxupri); 492 493 if (reqfxupri > reqfxuprilim) 494 reqfxupri = reqfxuprilim; 495 } 496 497 498 fxpp->fx_uprilim = reqfxuprilim; 499 fxpp->fx_pri = reqfxupri; 500 501 fxpp->fx_nice = NZERO - (NZERO * reqfxupri) 502 / fx_maxupri; 503 504 if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) || 505 (fxkparmsp->fx_tqntm == FX_TQDEF)) { 506 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 507 } else { 508 if (secpolicy_setpriority(reqpcredp) != 0) 509 return (EPERM); 510 511 if (fxkparmsp->fx_tqntm == FX_TQINF) 512 fxpp->fx_pquantum = FX_TQINF; 513 else { 514 fxpp->fx_pquantum = fxkparmsp->fx_tqntm; 515 } 516 } 517 518 } 519 520 fxpp->fx_timeleft = fxpp->fx_pquantum; 521 cpucaps_sc_init(&fxpp->fx_caps); 522 fxpp->fx_tp = t; 523 524 thread_lock(t); /* get dispatcher lock on thread */ 525 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 526 t->t_cid = cid; 527 t->t_cldata = (void *)fxpp; 528 t->t_schedflag &= ~TS_RUNQMATCH; 529 fx_change_priority(t, fxpp); 530 thread_unlock(t); 531 532 return (0); 533 } 534 535 /* 536 * The thread is exiting. 537 */ 538 static void 539 fx_exit(kthread_t *t) 540 { 541 fxproc_t *fxpp; 542 543 thread_lock(t); 544 fxpp = (fxproc_t *)(t->t_cldata); 545 546 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY); 547 548 if (FX_HAS_CB(fxpp)) { 549 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie); 550 fxpp->fx_callback = NULL; 551 fxpp->fx_cookie = NULL; 552 thread_unlock(t); 553 FX_CB_LIST_DELETE(fxpp); 554 return; 555 } 556 557 thread_unlock(t); 558 } 559 560 /* 561 * Exiting the class. Free fxproc structure of thread. 562 */ 563 static void 564 fx_exitclass(void *procp) 565 { 566 fxproc_t *fxpp = (fxproc_t *)procp; 567 568 thread_lock(fxpp->fx_tp); 569 if (FX_HAS_CB(fxpp)) { 570 571 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie); 572 573 fxpp->fx_callback = NULL; 574 fxpp->fx_cookie = NULL; 575 thread_unlock(fxpp->fx_tp); 576 FX_CB_LIST_DELETE(fxpp); 577 } else 578 thread_unlock(fxpp->fx_tp); 579 580 kmem_free(fxpp, sizeof (fxproc_t)); 581 } 582 583 /* ARGSUSED */ 584 static int 585 fx_canexit(kthread_t *t, cred_t *cred) 586 { 587 /* 588 * A thread can always leave the FX class 589 */ 590 return (0); 591 } 592 593 /* 594 * Initialize fixed-priority class specific proc structure for a child. 595 * callbacks are not inherited upon fork. 596 */ 597 static int 598 fx_fork(kthread_t *t, kthread_t *ct, void *bufp) 599 { 600 fxproc_t *pfxpp; /* ptr to parent's fxproc structure */ 601 fxproc_t *cfxpp; /* ptr to child's fxproc structure */ 602 603 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 604 605 cfxpp = (fxproc_t *)bufp; 606 ASSERT(cfxpp != NULL); 607 thread_lock(t); 608 pfxpp = (fxproc_t *)t->t_cldata; 609 /* 610 * Initialize child's fxproc structure. 611 */ 612 cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum; 613 cfxpp->fx_pri = pfxpp->fx_pri; 614 cfxpp->fx_uprilim = pfxpp->fx_uprilim; 615 cfxpp->fx_nice = pfxpp->fx_nice; 616 cfxpp->fx_callback = NULL; 617 cfxpp->fx_cookie = NULL; 618 cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ); 619 cpucaps_sc_init(&cfxpp->fx_caps); 620 621 cfxpp->fx_tp = ct; 622 ct->t_cldata = (void *)cfxpp; 623 thread_unlock(t); 624 625 /* 626 * Link new structure into fxproc list. 627 */ 628 return (0); 629 } 630 631 632 /* 633 * Child is placed at back of dispatcher queue and parent gives 634 * up processor so that the child runs first after the fork. 635 * This allows the child immediately execing to break the multiple 636 * use of copy on write pages with no disk home. The parent will 637 * get to steal them back rather than uselessly copying them. 638 */ 639 static void 640 fx_forkret(kthread_t *t, kthread_t *ct) 641 { 642 proc_t *pp = ttoproc(t); 643 proc_t *cp = ttoproc(ct); 644 fxproc_t *fxpp; 645 646 ASSERT(t == curthread); 647 ASSERT(MUTEX_HELD(&pidlock)); 648 649 /* 650 * Grab the child's p_lock before dropping pidlock to ensure 651 * the process does not disappear before we set it running. 652 */ 653 mutex_enter(&cp->p_lock); 654 mutex_exit(&pidlock); 655 continuelwps(cp); 656 mutex_exit(&cp->p_lock); 657 658 mutex_enter(&pp->p_lock); 659 continuelwps(pp); 660 mutex_exit(&pp->p_lock); 661 662 thread_lock(t); 663 fxpp = (fxproc_t *)(t->t_cldata); 664 t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 665 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri); 666 THREAD_TRANSITION(t); 667 fx_setrun(t); 668 thread_unlock(t); 669 670 swtch(); 671 } 672 673 674 /* 675 * Get information about the fixed-priority class into the buffer 676 * pointed to by fxinfop. The maximum configured user priority 677 * is the only information we supply. 678 */ 679 static int 680 fx_getclinfo(void *infop) 681 { 682 fxinfo_t *fxinfop = (fxinfo_t *)infop; 683 fxinfop->fx_maxupri = fx_maxupri; 684 return (0); 685 } 686 687 688 689 /* 690 * Return the global scheduling priority ranges for the fixed-priority 691 * class in pcpri_t structure. 692 */ 693 static int 694 fx_getclpri(pcpri_t *pcprip) 695 { 696 pcprip->pc_clpmax = fx_dptbl[fx_maxumdpri].fx_globpri; 697 pcprip->pc_clpmin = fx_dptbl[0].fx_globpri; 698 return (0); 699 } 700 701 702 static void 703 fx_nullsys() 704 {} 705 706 707 /* 708 * Get the fixed-priority parameters of the thread pointed to by 709 * fxprocp into the buffer pointed to by fxparmsp. 710 */ 711 static void 712 fx_parmsget(kthread_t *t, void *parmsp) 713 { 714 fxproc_t *fxpp = (fxproc_t *)t->t_cldata; 715 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 716 717 fxkparmsp->fx_upri = fxpp->fx_pri; 718 fxkparmsp->fx_uprilim = fxpp->fx_uprilim; 719 fxkparmsp->fx_tqntm = fxpp->fx_pquantum; 720 } 721 722 723 724 /* 725 * Check the validity of the fixed-priority parameters in the buffer 726 * pointed to by fxparmsp. 727 */ 728 static int 729 fx_parmsin(void *parmsp) 730 { 731 fxparms_t *fxparmsp = (fxparms_t *)parmsp; 732 uint_t cflags; 733 longlong_t ticks; 734 /* 735 * Check validity of parameters. 736 */ 737 738 if ((fxparmsp->fx_uprilim > fx_maxupri || 739 fxparmsp->fx_uprilim < 0) && 740 fxparmsp->fx_uprilim != FX_NOCHANGE) 741 return (EINVAL); 742 743 if ((fxparmsp->fx_upri > fx_maxupri || 744 fxparmsp->fx_upri < 0) && 745 fxparmsp->fx_upri != FX_NOCHANGE) 746 return (EINVAL); 747 748 if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) || 749 fxparmsp->fx_tqnsecs >= NANOSEC) 750 return (EINVAL); 751 752 cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0); 753 754 if (fxparmsp->fx_uprilim != FX_NOCHANGE) { 755 cflags |= FX_DOUPRILIM; 756 } 757 758 if (fxparmsp->fx_tqnsecs != FX_NOCHANGE) 759 cflags |= FX_DOTQ; 760 761 /* 762 * convert the buffer to kernel format. 763 */ 764 765 if (fxparmsp->fx_tqnsecs >= 0) { 766 if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) + 767 NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX) 768 return (ERANGE); 769 770 ((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks; 771 } else { 772 if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) && 773 (fxparmsp->fx_tqnsecs != FX_TQINF) && 774 (fxparmsp->fx_tqnsecs != FX_TQDEF)) 775 return (EINVAL); 776 ((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs; 777 } 778 779 ((fxkparms_t *)fxparmsp)->fx_cflags = cflags; 780 781 return (0); 782 } 783 784 785 /* 786 * Check the validity of the fixed-priority parameters in the pc_vaparms_t 787 * structure vaparmsp and put them in the buffer pointed to by fxprmsp. 788 * pc_vaparms_t contains (key, value) pairs of parameter. 789 */ 790 static int 791 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp) 792 { 793 uint_t secs = 0; 794 uint_t cnt; 795 int nsecs = 0; 796 int priflag, secflag, nsecflag, limflag; 797 longlong_t ticks; 798 fxkparms_t *fxprmsp = (fxkparms_t *)prmsp; 799 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 800 801 802 /* 803 * First check the validity of parameters and convert them 804 * from the user supplied format to the internal format. 805 */ 806 priflag = secflag = nsecflag = limflag = 0; 807 808 fxprmsp->fx_cflags = 0; 809 810 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 811 return (EINVAL); 812 813 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 814 815 switch (vpp->pc_key) { 816 case FX_KY_UPRILIM: 817 if (limflag++) 818 return (EINVAL); 819 fxprmsp->fx_cflags |= FX_DOUPRILIM; 820 fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm; 821 if (fxprmsp->fx_uprilim > fx_maxupri || 822 fxprmsp->fx_uprilim < 0) 823 return (EINVAL); 824 break; 825 826 case FX_KY_UPRI: 827 if (priflag++) 828 return (EINVAL); 829 fxprmsp->fx_cflags |= FX_DOUPRI; 830 fxprmsp->fx_upri = (pri_t)vpp->pc_parm; 831 if (fxprmsp->fx_upri > fx_maxupri || 832 fxprmsp->fx_upri < 0) 833 return (EINVAL); 834 break; 835 836 case FX_KY_TQSECS: 837 if (secflag++) 838 return (EINVAL); 839 fxprmsp->fx_cflags |= FX_DOTQ; 840 secs = (uint_t)vpp->pc_parm; 841 break; 842 843 case FX_KY_TQNSECS: 844 if (nsecflag++) 845 return (EINVAL); 846 fxprmsp->fx_cflags |= FX_DOTQ; 847 nsecs = (int)vpp->pc_parm; 848 break; 849 850 default: 851 return (EINVAL); 852 } 853 } 854 855 if (vaparmsp->pc_vaparmscnt == 0) { 856 /* 857 * Use default parameters. 858 */ 859 fxprmsp->fx_upri = 0; 860 fxprmsp->fx_uprilim = 0; 861 fxprmsp->fx_tqntm = FX_TQDEF; 862 fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ; 863 } else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) { 864 if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC) 865 return (EINVAL); 866 867 if (nsecs >= 0) { 868 if ((ticks = SEC_TO_TICK((longlong_t)secs) + 869 NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX) 870 return (ERANGE); 871 872 fxprmsp->fx_tqntm = (int)ticks; 873 } else { 874 if (nsecs != FX_TQINF && nsecs != FX_TQDEF) 875 return (EINVAL); 876 fxprmsp->fx_tqntm = nsecs; 877 } 878 } 879 880 return (0); 881 } 882 883 884 /* 885 * Nothing to do here but return success. 886 */ 887 /* ARGSUSED */ 888 static int 889 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 890 { 891 register fxkparms_t *fxkprmsp = (fxkparms_t *)parmsp; 892 893 if (vaparmsp != NULL) 894 return (0); 895 896 if (fxkprmsp->fx_tqntm < 0) { 897 /* 898 * Quantum field set to special value (e.g. FX_TQINF) 899 */ 900 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm; 901 ((fxparms_t *)fxkprmsp)->fx_tqsecs = 0; 902 903 } else { 904 /* Convert quantum from ticks to seconds-nanoseconds */ 905 906 timestruc_t ts; 907 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts); 908 ((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec; 909 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec; 910 } 911 912 return (0); 913 } 914 915 916 /* 917 * Copy all selected fixed-priority class parameters to the user. 918 * The parameters are specified by a key. 919 */ 920 static int 921 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 922 { 923 fxkparms_t *fxkprmsp = (fxkparms_t *)prmsp; 924 timestruc_t ts; 925 uint_t cnt; 926 uint_t secs; 927 int nsecs; 928 int priflag, secflag, nsecflag, limflag; 929 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 930 931 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 932 933 priflag = secflag = nsecflag = limflag = 0; 934 935 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 936 return (EINVAL); 937 938 if (fxkprmsp->fx_tqntm < 0) { 939 /* 940 * Quantum field set to special value (e.g. FX_TQINF). 941 */ 942 secs = 0; 943 nsecs = fxkprmsp->fx_tqntm; 944 } else { 945 /* 946 * Convert quantum from ticks to seconds-nanoseconds. 947 */ 948 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts); 949 secs = ts.tv_sec; 950 nsecs = ts.tv_nsec; 951 } 952 953 954 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 955 956 switch (vpp->pc_key) { 957 case FX_KY_UPRILIM: 958 if (limflag++) 959 return (EINVAL); 960 if (copyout(&fxkprmsp->fx_uprilim, 961 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 962 return (EFAULT); 963 break; 964 965 case FX_KY_UPRI: 966 if (priflag++) 967 return (EINVAL); 968 if (copyout(&fxkprmsp->fx_upri, 969 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 970 return (EFAULT); 971 break; 972 973 case FX_KY_TQSECS: 974 if (secflag++) 975 return (EINVAL); 976 if (copyout(&secs, 977 (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t))) 978 return (EFAULT); 979 break; 980 981 case FX_KY_TQNSECS: 982 if (nsecflag++) 983 return (EINVAL); 984 if (copyout(&nsecs, 985 (void *)(uintptr_t)vpp->pc_parm, sizeof (int))) 986 return (EFAULT); 987 break; 988 989 default: 990 return (EINVAL); 991 } 992 } 993 994 return (0); 995 } 996 997 /* 998 * Set the scheduling parameters of the thread pointed to by fxprocp 999 * to those specified in the buffer pointed to by fxparmsp. 1000 */ 1001 /* ARGSUSED */ 1002 static int 1003 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1004 { 1005 char nice; 1006 pri_t reqfxuprilim; 1007 pri_t reqfxupri; 1008 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 1009 fxproc_t *fxpp; 1010 1011 1012 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1013 1014 thread_lock(tx); 1015 fxpp = (fxproc_t *)tx->t_cldata; 1016 1017 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) 1018 reqfxuprilim = fxpp->fx_uprilim; 1019 else 1020 reqfxuprilim = fxkparmsp->fx_uprilim; 1021 1022 /* 1023 * Basic permissions enforced by generic kernel code 1024 * for all classes require that a thread attempting 1025 * to change the scheduling parameters of a target 1026 * thread be privileged or have a real or effective 1027 * UID matching that of the target thread. We are not 1028 * called unless these basic permission checks have 1029 * already passed. The fixed priority class requires in 1030 * addition that the calling thread be privileged if it 1031 * is attempting to raise the pri above its current 1032 * value This may have been checked previously but if our 1033 * caller passed us a non-NULL credential pointer we assume 1034 * it hasn't and we check it here. 1035 */ 1036 1037 if ((reqpcredp != NULL) && 1038 (reqfxuprilim > fxpp->fx_uprilim || 1039 ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) && 1040 secpolicy_setpriority(reqpcredp) != 0) { 1041 thread_unlock(tx); 1042 return (EPERM); 1043 } 1044 1045 FX_ADJUST_PRI(reqfxuprilim); 1046 1047 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) 1048 reqfxupri = fxpp->fx_pri; 1049 else 1050 reqfxupri = fxkparmsp->fx_upri; 1051 1052 1053 /* 1054 * Make sure the user priority doesn't exceed the upri limit. 1055 */ 1056 if (reqfxupri > reqfxuprilim) 1057 reqfxupri = reqfxuprilim; 1058 1059 /* 1060 * Set fx_nice to the nice value corresponding to the user 1061 * priority we are setting. Note that setting the nice field 1062 * of the parameter struct won't affect upri or nice. 1063 */ 1064 1065 nice = NZERO - (reqfxupri * NZERO) / fx_maxupri; 1066 1067 if (nice > NZERO) 1068 nice = NZERO; 1069 1070 fxpp->fx_uprilim = reqfxuprilim; 1071 fxpp->fx_pri = reqfxupri; 1072 1073 if (fxkparmsp->fx_tqntm == FX_TQINF) 1074 fxpp->fx_pquantum = FX_TQINF; 1075 else if (fxkparmsp->fx_tqntm == FX_TQDEF) 1076 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1077 else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0) 1078 fxpp->fx_pquantum = fxkparmsp->fx_tqntm; 1079 1080 fxpp->fx_nice = nice; 1081 1082 fx_change_priority(tx, fxpp); 1083 thread_unlock(tx); 1084 return (0); 1085 } 1086 1087 1088 /* 1089 * Return the global scheduling priority that would be assigned 1090 * to a thread entering the fixed-priority class with the fx_upri. 1091 */ 1092 static pri_t 1093 fx_globpri(kthread_t *t) 1094 { 1095 fxproc_t *fxpp; 1096 1097 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1098 1099 fxpp = (fxproc_t *)t->t_cldata; 1100 return (fx_dptbl[fxpp->fx_pri].fx_globpri); 1101 1102 } 1103 1104 /* 1105 * Arrange for thread to be placed in appropriate location 1106 * on dispatcher queue. 1107 * 1108 * This is called with the current thread in TS_ONPROC and locked. 1109 */ 1110 static void 1111 fx_preempt(kthread_t *t) 1112 { 1113 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1114 1115 ASSERT(t == curthread); 1116 ASSERT(THREAD_LOCK_HELD(curthread)); 1117 1118 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY); 1119 1120 /* 1121 * Check to see if we're doing "preemption control" here. If 1122 * we are, and if the user has requested that this thread not 1123 * be preempted, and if preemptions haven't been put off for 1124 * too long, let the preemption happen here but try to make 1125 * sure the thread is rescheduled as soon as possible. We do 1126 * this by putting it on the front of the highest priority run 1127 * queue in the FX class. If the preemption has been put off 1128 * for too long, clear the "nopreempt" bit and let the thread 1129 * be preempted. 1130 */ 1131 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1132 if (fxpp->fx_pquantum == FX_TQINF || 1133 fxpp->fx_timeleft > -SC_MAX_TICKS) { 1134 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1135 schedctl_set_yield(t, 1); 1136 setfrontdq(t); 1137 return; 1138 } else { 1139 schedctl_set_nopreempt(t, 0); 1140 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1141 TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt", 1142 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1143 tnf_lwpid, lwpid, t->t_tid); 1144 /* 1145 * Fall through and be preempted below. 1146 */ 1147 } 1148 } 1149 1150 if (FX_HAS_CB(fxpp)) { 1151 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1152 pri_t newpri = fxpp->fx_pri; 1153 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie, 1154 &new_quantum, &newpri); 1155 FX_ADJUST_QUANTUM(new_quantum); 1156 if ((int)new_quantum != fxpp->fx_pquantum) { 1157 fxpp->fx_pquantum = (int)new_quantum; 1158 fxpp->fx_timeleft = fxpp->fx_pquantum; 1159 } 1160 FX_ADJUST_PRI(newpri); 1161 fxpp->fx_pri = newpri; 1162 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1163 } 1164 1165 /* 1166 * This thread may be placed on wait queue by CPU Caps. In this case we 1167 * do not need to do anything until it is removed from the wait queue. 1168 */ 1169 if (CPUCAPS_ENFORCE(t)) { 1170 return; 1171 } 1172 1173 if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) { 1174 fxpp->fx_timeleft = fxpp->fx_pquantum; 1175 fxpp->fx_flags &= ~FXBACKQ; 1176 setbackdq(t); 1177 } else { 1178 setfrontdq(t); 1179 } 1180 } 1181 1182 static void 1183 fx_setrun(kthread_t *t) 1184 { 1185 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1186 1187 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1188 fxpp->fx_flags &= ~FXBACKQ; 1189 1190 if (t->t_disp_time != lbolt) 1191 setbackdq(t); 1192 else 1193 setfrontdq(t); 1194 } 1195 1196 1197 /* 1198 * Prepare thread for sleep. We reset the thread priority so it will 1199 * run at the kernel priority level when it wakes up. 1200 */ 1201 static void 1202 fx_sleep(kthread_t *t) 1203 { 1204 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1205 1206 ASSERT(t == curthread); 1207 ASSERT(THREAD_LOCK_HELD(t)); 1208 1209 /* 1210 * Account for time spent on CPU before going to sleep. 1211 */ 1212 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY); 1213 1214 if (FX_HAS_CB(fxpp)) { 1215 FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie); 1216 } 1217 t->t_stime = lbolt; /* time stamp for the swapper */ 1218 } 1219 1220 1221 /* 1222 * Return Values: 1223 * 1224 * -1 if the thread is loaded or is not eligible to be swapped in. 1225 * 1226 * FX and RT threads are designed so that they don't swapout; however, 1227 * it is possible that while the thread is swapped out and in another class, it 1228 * can be changed to FX or RT. Since these threads should be swapped in 1229 * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin 1230 * returns SHRT_MAX - 1, so that it gives deference to any swapped out 1231 * RT threads. 1232 */ 1233 /* ARGSUSED */ 1234 static pri_t 1235 fx_swapin(kthread_t *t, int flags) 1236 { 1237 pri_t tpri = -1; 1238 1239 ASSERT(THREAD_LOCK_HELD(t)); 1240 1241 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1242 tpri = (pri_t)SHRT_MAX - 1; 1243 } 1244 1245 return (tpri); 1246 } 1247 1248 /* 1249 * Return Values 1250 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1251 */ 1252 /* ARGSUSED */ 1253 static pri_t 1254 fx_swapout(kthread_t *t, int flags) 1255 { 1256 ASSERT(THREAD_LOCK_HELD(t)); 1257 1258 return (-1); 1259 1260 } 1261 1262 /* ARGSUSED */ 1263 static void 1264 fx_stop(kthread_t *t, int why, int what) 1265 { 1266 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1267 1268 ASSERT(THREAD_LOCK_HELD(t)); 1269 1270 if (FX_HAS_CB(fxpp)) { 1271 FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie); 1272 } 1273 } 1274 1275 /* 1276 * Check for time slice expiration. If time slice has expired 1277 * set runrun to cause preemption. 1278 */ 1279 static void 1280 fx_tick(kthread_t *t) 1281 { 1282 boolean_t call_cpu_surrender = B_FALSE; 1283 fxproc_t *fxpp; 1284 1285 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1286 1287 thread_lock(t); 1288 1289 fxpp = (fxproc_t *)(t->t_cldata); 1290 1291 if (FX_HAS_CB(fxpp)) { 1292 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1293 pri_t newpri = fxpp->fx_pri; 1294 FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie, 1295 &new_quantum, &newpri); 1296 FX_ADJUST_QUANTUM(new_quantum); 1297 if ((int)new_quantum != fxpp->fx_pquantum) { 1298 fxpp->fx_pquantum = (int)new_quantum; 1299 fxpp->fx_timeleft = fxpp->fx_pquantum; 1300 } 1301 FX_ADJUST_PRI(newpri); 1302 if (newpri != fxpp->fx_pri) { 1303 fxpp->fx_pri = newpri; 1304 fx_change_priority(t, fxpp); 1305 } 1306 } 1307 1308 /* 1309 * Keep track of thread's project CPU usage. Note that projects 1310 * get charged even when threads are running in the kernel. 1311 */ 1312 call_cpu_surrender = CPUCAPS_CHARGE(t, &fxpp->fx_caps, 1313 CPUCAPS_CHARGE_ENFORCE); 1314 1315 if ((fxpp->fx_pquantum != FX_TQINF) && 1316 (--fxpp->fx_timeleft <= 0)) { 1317 pri_t new_pri; 1318 1319 /* 1320 * If we're doing preemption control and trying to 1321 * avoid preempting this thread, just note that 1322 * the thread should yield soon and let it keep 1323 * running (unless it's been a while). 1324 */ 1325 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1326 if (fxpp->fx_timeleft > -SC_MAX_TICKS) { 1327 DTRACE_SCHED1(schedctl__nopreempt, 1328 kthread_t *, t); 1329 schedctl_set_yield(t, 1); 1330 thread_unlock_nopreempt(t); 1331 return; 1332 } 1333 TNF_PROBE_2(schedctl_failsafe, 1334 "schedctl FX fx_tick", /* CSTYLED */, 1335 tnf_pid, pid, ttoproc(t)->p_pid, 1336 tnf_lwpid, lwpid, t->t_tid); 1337 } 1338 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 1339 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri); 1340 /* 1341 * When the priority of a thread is changed, 1342 * it may be necessary to adjust its position 1343 * on a sleep queue or dispatch queue. Even 1344 * when the priority is not changed, we need 1345 * to preserve round robin on dispatch queue. 1346 * The function thread_change_pri accomplishes 1347 * this. 1348 */ 1349 if (thread_change_pri(t, new_pri, 0)) { 1350 fxpp->fx_timeleft = fxpp->fx_pquantum; 1351 } else { 1352 call_cpu_surrender = B_TRUE; 1353 } 1354 } else if (t->t_state == TS_ONPROC && 1355 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1356 call_cpu_surrender = B_TRUE; 1357 } 1358 1359 if (call_cpu_surrender) { 1360 fxpp->fx_flags |= FXBACKQ; 1361 cpu_surrender(t); 1362 } 1363 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1364 } 1365 1366 1367 static void 1368 fx_trapret(kthread_t *t) 1369 { 1370 cpu_t *cp = CPU; 1371 1372 ASSERT(THREAD_LOCK_HELD(t)); 1373 ASSERT(t == curthread); 1374 ASSERT(cp->cpu_dispthread == t); 1375 ASSERT(t->t_state == TS_ONPROC); 1376 } 1377 1378 1379 /* 1380 * Processes waking up go to the back of their queue. 1381 */ 1382 static void 1383 fx_wakeup(kthread_t *t) 1384 { 1385 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1386 1387 ASSERT(THREAD_LOCK_HELD(t)); 1388 1389 t->t_stime = lbolt; /* time stamp for the swapper */ 1390 if (FX_HAS_CB(fxpp)) { 1391 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1392 pri_t newpri = fxpp->fx_pri; 1393 FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie, 1394 &new_quantum, &newpri); 1395 FX_ADJUST_QUANTUM(new_quantum); 1396 if ((int)new_quantum != fxpp->fx_pquantum) { 1397 fxpp->fx_pquantum = (int)new_quantum; 1398 fxpp->fx_timeleft = fxpp->fx_pquantum; 1399 } 1400 1401 FX_ADJUST_PRI(newpri); 1402 if (newpri != fxpp->fx_pri) { 1403 fxpp->fx_pri = newpri; 1404 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1405 } 1406 } 1407 1408 fxpp->fx_flags &= ~FXBACKQ; 1409 1410 if (t->t_disp_time != lbolt) 1411 setbackdq(t); 1412 else 1413 setfrontdq(t); 1414 } 1415 1416 1417 /* 1418 * When a thread yields, put it on the back of the run queue. 1419 */ 1420 static void 1421 fx_yield(kthread_t *t) 1422 { 1423 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1424 1425 ASSERT(t == curthread); 1426 ASSERT(THREAD_LOCK_HELD(t)); 1427 1428 /* 1429 * Collect CPU usage spent before yielding CPU. 1430 */ 1431 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY); 1432 1433 if (FX_HAS_CB(fxpp)) { 1434 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1435 pri_t newpri = fxpp->fx_pri; 1436 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie, 1437 &new_quantum, &newpri); 1438 FX_ADJUST_QUANTUM(new_quantum); 1439 if ((int)new_quantum != fxpp->fx_pquantum) { 1440 fxpp->fx_pquantum = (int)new_quantum; 1441 fxpp->fx_timeleft = fxpp->fx_pquantum; 1442 } 1443 FX_ADJUST_PRI(newpri); 1444 fxpp->fx_pri = newpri; 1445 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1446 } 1447 1448 /* 1449 * Clear the preemption control "yield" bit since the user is 1450 * doing a yield. 1451 */ 1452 if (t->t_schedctl) 1453 schedctl_set_yield(t, 0); 1454 1455 if (fxpp->fx_timeleft <= 0) { 1456 /* 1457 * Time slice was artificially extended to avoid 1458 * preemption, so pretend we're preempting it now. 1459 */ 1460 DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft); 1461 fxpp->fx_timeleft = fxpp->fx_pquantum; 1462 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1463 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri); 1464 } 1465 1466 fxpp->fx_flags &= ~FXBACKQ; 1467 setbackdq(t); 1468 } 1469 1470 1471 /* 1472 * Increment the nice value of the specified thread by incr and 1473 * return the new value in *retvalp. 1474 */ 1475 static int 1476 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 1477 { 1478 int newnice; 1479 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1480 fxkparms_t fxkparms; 1481 1482 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1483 1484 /* If there's no change to priority, just return current setting */ 1485 if (incr == 0) { 1486 if (retvalp) { 1487 *retvalp = fxpp->fx_nice - NZERO; 1488 } 1489 return (0); 1490 } 1491 1492 if ((incr < 0 || incr > 2 * NZERO) && 1493 secpolicy_setpriority(cr) != 0) 1494 return (EPERM); 1495 1496 /* 1497 * Specifying a nice increment greater than the upper limit of 1498 * 2 * NZERO - 1 will result in the thread's nice value being 1499 * set to the upper limit. We check for this before computing 1500 * the new value because otherwise we could get overflow 1501 * if a privileged user specified some ridiculous increment. 1502 */ 1503 if (incr > 2 * NZERO - 1) 1504 incr = 2 * NZERO - 1; 1505 1506 newnice = fxpp->fx_nice + incr; 1507 if (newnice > NZERO) 1508 newnice = NZERO; 1509 else if (newnice < 0) 1510 newnice = 0; 1511 1512 fxkparms.fx_uprilim = fxkparms.fx_upri = 1513 -((newnice - NZERO) * fx_maxupri) / NZERO; 1514 1515 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI; 1516 1517 fxkparms.fx_tqntm = FX_TQDEF; 1518 1519 /* 1520 * Reset the uprilim and upri values of the thread. Adjust 1521 * time quantum accordingly. 1522 */ 1523 1524 (void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL); 1525 1526 /* 1527 * Although fx_parmsset already reset fx_nice it may 1528 * not have been set to precisely the value calculated above 1529 * because fx_parmsset determines the nice value from the 1530 * user priority and we may have truncated during the integer 1531 * conversion from nice value to user priority and back. 1532 * We reset fx_nice to the value we calculated above. 1533 */ 1534 fxpp->fx_nice = (char)newnice; 1535 1536 if (retvalp) 1537 *retvalp = newnice - NZERO; 1538 1539 return (0); 1540 } 1541 1542 static void 1543 fx_change_priority(kthread_t *t, fxproc_t *fxpp) 1544 { 1545 pri_t new_pri; 1546 1547 ASSERT(THREAD_LOCK_HELD(t)); 1548 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 1549 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri); 1550 if (t == curthread || t->t_state == TS_ONPROC) { 1551 /* curthread is always onproc */ 1552 cpu_t *cp = t->t_disp_queue->disp_cpu; 1553 THREAD_CHANGE_PRI(t, new_pri); 1554 if (t == cp->cpu_dispthread) 1555 cp->cpu_dispatch_pri = DISP_PRIO(t); 1556 if (DISP_MUST_SURRENDER(t)) { 1557 fxpp->fx_flags |= FXBACKQ; 1558 cpu_surrender(t); 1559 } else { 1560 fxpp->fx_timeleft = fxpp->fx_pquantum; 1561 } 1562 } else { 1563 /* 1564 * When the priority of a thread is changed, 1565 * it may be necessary to adjust its position 1566 * on a sleep queue or dispatch queue. 1567 * The function thread_change_pri accomplishes 1568 * this. 1569 */ 1570 if (thread_change_pri(t, new_pri, 0)) { 1571 /* 1572 * The thread was on a run queue. Reset 1573 * its CPU timeleft from the quantum 1574 * associated with the new priority. 1575 */ 1576 fxpp->fx_timeleft = fxpp->fx_pquantum; 1577 } else { 1578 fxpp->fx_flags |= FXBACKQ; 1579 } 1580 } 1581 } 1582 1583 static int 1584 fx_alloc(void **p, int flag) 1585 { 1586 void *bufp; 1587 1588 bufp = kmem_alloc(sizeof (fxproc_t), flag); 1589 if (bufp == NULL) { 1590 return (ENOMEM); 1591 } else { 1592 *p = bufp; 1593 return (0); 1594 } 1595 } 1596 1597 static void 1598 fx_free(void *bufp) 1599 { 1600 if (bufp) 1601 kmem_free(bufp, sizeof (fxproc_t)); 1602 } 1603 1604 /* 1605 * Release the callback list mutex after successful lookup 1606 */ 1607 void 1608 fx_list_release(fxproc_t *fxpp) 1609 { 1610 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); 1611 kmutex_t *lockp = &fx_cb_list_lock[index]; 1612 mutex_exit(lockp); 1613 } 1614 1615 fxproc_t * 1616 fx_list_lookup(kt_did_t ktid) 1617 { 1618 int index = FX_CB_LIST_HASH(ktid); 1619 kmutex_t *lockp = &fx_cb_list_lock[index]; 1620 fxproc_t *fxpp; 1621 1622 mutex_enter(lockp); 1623 1624 for (fxpp = fx_cb_plisthead[index].fx_cb_next; 1625 fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) { 1626 if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid && 1627 fxpp->fx_callback != NULL) { 1628 /* 1629 * The caller is responsible for calling 1630 * fx_list_release to drop the lock upon 1631 * successful lookup 1632 */ 1633 return (fxpp); 1634 } 1635 } 1636 mutex_exit(lockp); 1637 return ((fxproc_t *)NULL); 1638 } 1639 1640 1641 /* 1642 * register a callback set of routines for current thread 1643 * thread should already be in FX class 1644 */ 1645 int 1646 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie, 1647 pri_t pri, clock_t quantum) 1648 { 1649 1650 fxproc_t *fxpp; 1651 1652 if (fx_callback == NULL) 1653 return (EINVAL); 1654 1655 if (secpolicy_dispadm(CRED()) != 0) 1656 return (EPERM); 1657 1658 if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV) 1659 return (EINVAL); 1660 1661 if (!FX_ISVALID(pri, quantum)) 1662 return (EINVAL); 1663 1664 thread_lock(curthread); /* get dispatcher lock on thread */ 1665 1666 if (curthread->t_cid != fx_cid) { 1667 thread_unlock(curthread); 1668 return (EINVAL); 1669 } 1670 1671 fxpp = (fxproc_t *)(curthread->t_cldata); 1672 ASSERT(fxpp != NULL); 1673 if (FX_HAS_CB(fxpp)) { 1674 thread_unlock(curthread); 1675 return (EINVAL); 1676 } 1677 1678 fxpp->fx_callback = fx_callback; 1679 fxpp->fx_cookie = cookie; 1680 1681 if (pri != FX_CB_NOCHANGE) { 1682 fxpp->fx_pri = pri; 1683 FX_ADJUST_PRI(fxpp->fx_pri); 1684 if (quantum == FX_TQDEF) { 1685 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1686 } else if (quantum == FX_TQINF) { 1687 fxpp->fx_pquantum = FX_TQINF; 1688 } else if (quantum != FX_NOCHANGE) { 1689 FX_ADJUST_QUANTUM(quantum); 1690 fxpp->fx_pquantum = quantum; 1691 } 1692 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) { 1693 if (quantum == FX_TQINF) 1694 fxpp->fx_pquantum = FX_TQINF; 1695 else { 1696 FX_ADJUST_QUANTUM(quantum); 1697 fxpp->fx_pquantum = quantum; 1698 } 1699 } 1700 1701 fxpp->fx_ktid = ddi_get_kt_did(); 1702 1703 fx_change_priority(curthread, fxpp); 1704 1705 thread_unlock(curthread); 1706 1707 /* 1708 * Link new structure into fxproc list. 1709 */ 1710 FX_CB_LIST_INSERT(fxpp); 1711 return (0); 1712 } 1713 1714 /* unregister a callback set of routines for current thread */ 1715 int 1716 fx_unregister_callbacks() 1717 { 1718 fxproc_t *fxpp; 1719 1720 if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) { 1721 /* 1722 * did not have a registered callback; 1723 */ 1724 return (EINVAL); 1725 } 1726 1727 thread_lock(fxpp->fx_tp); 1728 fxpp->fx_callback = NULL; 1729 fxpp->fx_cookie = NULL; 1730 thread_unlock(fxpp->fx_tp); 1731 fx_list_release(fxpp); 1732 1733 FX_CB_LIST_DELETE(fxpp); 1734 return (0); 1735 } 1736 1737 /* 1738 * modify priority and/or quantum value of a thread with callback 1739 */ 1740 int 1741 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri) 1742 { 1743 fxproc_t *fxpp; 1744 1745 if (!FX_ISVALID(pri, quantum)) 1746 return (EINVAL); 1747 1748 if ((fxpp = fx_list_lookup(ktid)) == NULL) { 1749 /* 1750 * either thread had exited or did not have a registered 1751 * callback; 1752 */ 1753 return (ESRCH); 1754 } 1755 1756 thread_lock(fxpp->fx_tp); 1757 1758 if (pri != FX_CB_NOCHANGE) { 1759 fxpp->fx_pri = pri; 1760 FX_ADJUST_PRI(fxpp->fx_pri); 1761 if (quantum == FX_TQDEF) { 1762 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1763 } else if (quantum == FX_TQINF) { 1764 fxpp->fx_pquantum = FX_TQINF; 1765 } else if (quantum != FX_NOCHANGE) { 1766 FX_ADJUST_QUANTUM(quantum); 1767 fxpp->fx_pquantum = quantum; 1768 } 1769 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) { 1770 if (quantum == FX_TQINF) { 1771 fxpp->fx_pquantum = FX_TQINF; 1772 } else { 1773 FX_ADJUST_QUANTUM(quantum); 1774 fxpp->fx_pquantum = quantum; 1775 } 1776 } 1777 1778 fx_change_priority(fxpp->fx_tp, fxpp); 1779 1780 thread_unlock(fxpp->fx_tp); 1781 fx_list_release(fxpp); 1782 return (0); 1783 } 1784 1785 1786 /* 1787 * return an iblock cookie for mutex initialization to be used in callbacks 1788 */ 1789 void * 1790 fx_get_mutex_cookie() 1791 { 1792 return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL)); 1793 } 1794 1795 /* 1796 * return maximum relative priority 1797 */ 1798 pri_t 1799 fx_get_maxpri() 1800 { 1801 return (fx_maxumdpri); 1802 } 1803