xref: /illumos-gate/usr/src/uts/common/disp/fx.c (revision 354507029a42e4bcb1ea64fc4685f2bfd4792db8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/cred.h>
33 #include <sys/proc.h>
34 #include <sys/session.h>
35 #include <sys/strsubr.h>
36 #include <sys/user.h>
37 #include <sys/priocntl.h>
38 #include <sys/class.h>
39 #include <sys/disp.h>
40 #include <sys/procset.h>
41 #include <sys/debug.h>
42 #include <sys/kmem.h>
43 #include <sys/errno.h>
44 #include <sys/fx.h>
45 #include <sys/fxpriocntl.h>
46 #include <sys/cpuvar.h>
47 #include <sys/systm.h>
48 #include <sys/vtrace.h>
49 #include <sys/schedctl.h>
50 #include <sys/tnf_probe.h>
51 #include <sys/sunddi.h>
52 #include <sys/spl.h>
53 #include <sys/modctl.h>
54 #include <sys/policy.h>
55 #include <sys/sdt.h>
56 #include <sys/cpupart.h>
57 #include <sys/cpucaps.h>
58 
59 static pri_t fx_init(id_t, int, classfuncs_t **);
60 
61 static struct sclass csw = {
62 	"FX",
63 	fx_init,
64 	0
65 };
66 
67 static struct modlsched modlsched = {
68 	&mod_schedops, "Fixed priority sched class", &csw
69 };
70 
71 static struct modlinkage modlinkage = {
72 	MODREV_1, (void *)&modlsched, NULL
73 };
74 
75 
76 /*
77  * control flags (kparms->fx_cflags).
78  */
79 #define	FX_DOUPRILIM	0x01    /* change user priority limit */
80 #define	FX_DOUPRI	0x02    /* change user priority */
81 #define	FX_DOTQ		0x04    /* change FX time quantum */
82 
83 
84 #define	FXMAXUPRI 60		/* maximum user priority setting */
85 
86 #define	FX_MAX_UNPRIV_PRI	0	/* maximum unpriviledge priority */
87 
88 /*
89  * The fxproc_t structures that have a registered callback vector,
90  * are also kept in an array of circular doubly linked lists. A hash on
91  * the thread id (from ddi_get_kt_did()) is used to determine which list
92  * each of such fxproc structures should be placed. Each list has a dummy
93  * "head" which is never removed, so the list is never empty.
94  */
95 
96 #define	FX_CB_LISTS 16		/* number of lists, must be power of 2 */
97 #define	FX_CB_LIST_HASH(ktid)	((uint_t)ktid & (FX_CB_LISTS - 1))
98 
99 /* Insert fxproc into callback list */
100 #define	FX_CB_LIST_INSERT(fxpp)						\
101 {									\
102 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
103 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
104 	fxproc_t *headp = &fx_cb_plisthead[index];			\
105 	mutex_enter(lockp);						\
106 	fxpp->fx_cb_next = headp->fx_cb_next;				\
107 	fxpp->fx_cb_prev = headp;					\
108 	headp->fx_cb_next->fx_cb_prev = fxpp;				\
109 	headp->fx_cb_next = fxpp;					\
110 	mutex_exit(lockp);						\
111 }
112 
113 /*
114  * Remove thread from callback list.
115  */
116 #define	FX_CB_LIST_DELETE(fxpp)						\
117 {									\
118 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
119 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
120 	mutex_enter(lockp);						\
121 	fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next;		\
122 	fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev;		\
123 	mutex_exit(lockp);						\
124 }
125 
126 #define	FX_HAS_CB(fxpp)	(fxpp->fx_callback != NULL)
127 
128 /* adjust x to be between 0 and fx_maxumdpri */
129 
130 #define	FX_ADJUST_PRI(pri)						\
131 {									\
132 	if (pri < 0)							\
133 		pri = 0;  						\
134 	else if (pri > fx_maxumdpri) 					\
135 		pri = fx_maxumdpri;  					\
136 }
137 
138 #define	FX_ADJUST_QUANTUM(q)						\
139 {									\
140 	if (q > INT_MAX)						\
141 		q = INT_MAX;						\
142 	else if (q <= 0)						\
143 		q = FX_TQINF;						\
144 }
145 
146 #define	FX_ISVALID(pri, quantum) \
147 	(((pri >= 0) || (pri == FX_CB_NOCHANGE)) &&			\
148 	    ((quantum >= 0) || (quantum == FX_NOCHANGE) ||		\
149 		(quantum == FX_TQDEF) || (quantum == FX_TQINF)))
150 
151 
152 static id_t	fx_cid;		/* fixed priority class ID */
153 static fxdpent_t *fx_dptbl;	/* fixed priority disp parameter table */
154 
155 static pri_t	fx_maxupri = FXMAXUPRI;
156 static pri_t	fx_maxumdpri;	/* max user mode fixed priority */
157 
158 static pri_t	fx_maxglobpri;	/* maximum global priority used by fx class */
159 static kmutex_t	fx_dptblock;	/* protects fixed priority dispatch table */
160 
161 
162 static kmutex_t	fx_cb_list_lock[FX_CB_LISTS];	/* protects list of fxprocs */
163 						/* that have callbacks */
164 static fxproc_t	fx_cb_plisthead[FX_CB_LISTS];	/* dummy fxproc at head of */
165 						/* list of fxprocs with */
166 						/* callbacks */
167 
168 static int	fx_admin(caddr_t, cred_t *);
169 static int	fx_getclinfo(void *);
170 static int	fx_parmsin(void *);
171 static int	fx_parmsout(void *, pc_vaparms_t *);
172 static int	fx_vaparmsin(void *, pc_vaparms_t *);
173 static int	fx_vaparmsout(void *, pc_vaparms_t *);
174 static int	fx_getclpri(pcpri_t *);
175 static int	fx_alloc(void **, int);
176 static void	fx_free(void *);
177 static int	fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
178 static void	fx_exitclass(void *);
179 static int	fx_canexit(kthread_t *, cred_t *);
180 static int	fx_fork(kthread_t *, kthread_t *, void *);
181 static void	fx_forkret(kthread_t *, kthread_t *);
182 static void	fx_parmsget(kthread_t *, void *);
183 static int	fx_parmsset(kthread_t *, void *, id_t, cred_t *);
184 static void	fx_stop(kthread_t *, int, int);
185 static void	fx_exit(kthread_t *);
186 static pri_t	fx_swapin(kthread_t *, int);
187 static pri_t	fx_swapout(kthread_t *, int);
188 static void	fx_trapret(kthread_t *);
189 static void	fx_preempt(kthread_t *);
190 static void	fx_setrun(kthread_t *);
191 static void	fx_sleep(kthread_t *);
192 static void	fx_tick(kthread_t *);
193 static void	fx_wakeup(kthread_t *);
194 static int	fx_donice(kthread_t *, cred_t *, int, int *);
195 static int	fx_doprio(kthread_t *, cred_t *, int, int *);
196 static pri_t	fx_globpri(kthread_t *);
197 static void	fx_yield(kthread_t *);
198 static void	fx_nullsys();
199 
200 extern fxdpent_t *fx_getdptbl(void);
201 
202 static void	fx_change_priority(kthread_t *, fxproc_t *);
203 static fxproc_t *fx_list_lookup(kt_did_t);
204 static void fx_list_release(fxproc_t *);
205 
206 
207 static struct classfuncs fx_classfuncs = {
208 	/* class functions */
209 	fx_admin,
210 	fx_getclinfo,
211 	fx_parmsin,
212 	fx_parmsout,
213 	fx_vaparmsin,
214 	fx_vaparmsout,
215 	fx_getclpri,
216 	fx_alloc,
217 	fx_free,
218 
219 	/* thread functions */
220 	fx_enterclass,
221 	fx_exitclass,
222 	fx_canexit,
223 	fx_fork,
224 	fx_forkret,
225 	fx_parmsget,
226 	fx_parmsset,
227 	fx_stop,
228 	fx_exit,
229 	fx_nullsys,	/* active */
230 	fx_nullsys,	/* inactive */
231 	fx_swapin,
232 	fx_swapout,
233 	fx_trapret,
234 	fx_preempt,
235 	fx_setrun,
236 	fx_sleep,
237 	fx_tick,
238 	fx_wakeup,
239 	fx_donice,
240 	fx_globpri,
241 	fx_nullsys,	/* set_process_group */
242 	fx_yield,
243 	fx_doprio,
244 };
245 
246 
247 int
248 _init()
249 {
250 	return (mod_install(&modlinkage));
251 }
252 
253 int
254 _fini()
255 {
256 	return (EBUSY);
257 }
258 
259 int
260 _info(struct modinfo *modinfop)
261 {
262 	return (mod_info(&modlinkage, modinfop));
263 }
264 
265 /*
266  * Fixed priority class initialization. Called by dispinit() at boot time.
267  * We can ignore the clparmsz argument since we know that the smallest
268  * possible parameter buffer is big enough for us.
269  */
270 /* ARGSUSED */
271 static pri_t
272 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
273 {
274 	int i;
275 	extern pri_t fx_getmaxumdpri(void);
276 
277 	fx_dptbl = fx_getdptbl();
278 	fx_maxumdpri = fx_getmaxumdpri();
279 	fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
280 
281 	fx_cid = cid;		/* Record our class ID */
282 
283 	/*
284 	 * Initialize the hash table for fxprocs with callbacks
285 	 */
286 	for (i = 0; i < FX_CB_LISTS; i++) {
287 		fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
288 		    &fx_cb_plisthead[i];
289 	}
290 
291 	/*
292 	 * We're required to return a pointer to our classfuncs
293 	 * structure and the highest global priority value we use.
294 	 */
295 	*clfuncspp = &fx_classfuncs;
296 	return (fx_maxglobpri);
297 }
298 
299 /*
300  * Get or reset the fx_dptbl values per the user's request.
301  */
302 static int
303 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
304 {
305 	fxadmin_t	fxadmin;
306 	fxdpent_t	*tmpdpp;
307 	int		userdpsz;
308 	int		i;
309 	size_t		fxdpsz;
310 
311 	if (get_udatamodel() == DATAMODEL_NATIVE) {
312 		if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
313 			return (EFAULT);
314 	}
315 #ifdef _SYSCALL32_IMPL
316 	else {
317 		/* get fxadmin struct from ILP32 caller */
318 		fxadmin32_t fxadmin32;
319 		if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
320 			return (EFAULT);
321 		fxadmin.fx_dpents =
322 		    (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
323 		fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
324 		fxadmin.fx_cmd = fxadmin32.fx_cmd;
325 	}
326 #endif /* _SYSCALL32_IMPL */
327 
328 	fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
329 
330 	switch (fxadmin.fx_cmd) {
331 	case FX_GETDPSIZE:
332 		fxadmin.fx_ndpents = fx_maxumdpri + 1;
333 
334 		if (get_udatamodel() == DATAMODEL_NATIVE) {
335 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
336 				return (EFAULT);
337 		}
338 #ifdef _SYSCALL32_IMPL
339 		else {
340 			/* return fxadmin struct to ILP32 caller */
341 			fxadmin32_t fxadmin32;
342 			fxadmin32.fx_dpents =
343 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
344 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
345 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
346 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
347 				return (EFAULT);
348 		}
349 #endif /* _SYSCALL32_IMPL */
350 		break;
351 
352 	case FX_GETDPTBL:
353 		userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
354 		    fxdpsz);
355 		if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
356 			return (EFAULT);
357 
358 		fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
359 
360 		if (get_udatamodel() == DATAMODEL_NATIVE) {
361 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
362 				return (EFAULT);
363 		}
364 #ifdef _SYSCALL32_IMPL
365 		else {
366 			/* return fxadmin struct to ILP32 callers */
367 			fxadmin32_t fxadmin32;
368 			fxadmin32.fx_dpents =
369 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
370 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
371 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
372 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
373 				return (EFAULT);
374 		}
375 #endif /* _SYSCALL32_IMPL */
376 		break;
377 
378 	case FX_SETDPTBL:
379 		/*
380 		 * We require that the requesting process has sufficient
381 		 * privileges. We also require that the table supplied by
382 		 * the user exactly match the current fx_dptbl in size.
383 		 */
384 		if (secpolicy_dispadm(reqpcredp) != 0) {
385 			return (EPERM);
386 		}
387 		if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
388 			return (EINVAL);
389 		}
390 
391 		/*
392 		 * We read the user supplied table into a temporary buffer
393 		 * where it is validated before being copied over the
394 		 * fx_dptbl.
395 		 */
396 		tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
397 		if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
398 			kmem_free(tmpdpp, fxdpsz);
399 			return (EFAULT);
400 		}
401 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
402 
403 			/*
404 			 * Validate the user supplied values. All we are doing
405 			 * here is verifying that the values are within their
406 			 * allowable ranges and will not panic the system. We
407 			 * make no attempt to ensure that the resulting
408 			 * configuration makes sense or results in reasonable
409 			 * performance.
410 			 */
411 			if (tmpdpp[i].fx_quantum <= 0 &&
412 			    tmpdpp[i].fx_quantum != FX_TQINF) {
413 				kmem_free(tmpdpp, fxdpsz);
414 				return (EINVAL);
415 			}
416 		}
417 
418 		/*
419 		 * Copy the user supplied values over the current fx_dptbl
420 		 * values. The fx_globpri member is read-only so we don't
421 		 * overwrite it.
422 		 */
423 		mutex_enter(&fx_dptblock);
424 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
425 			fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
426 		}
427 		mutex_exit(&fx_dptblock);
428 		kmem_free(tmpdpp, fxdpsz);
429 		break;
430 
431 	default:
432 		return (EINVAL);
433 	}
434 	return (0);
435 }
436 
437 /*
438  * Allocate a fixed priority class specific thread structure and
439  * initialize it with the parameters supplied. Also move the thread
440  * to specified priority.
441  */
442 static int
443 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
444     void *bufp)
445 {
446 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
447 	fxproc_t	*fxpp;
448 	pri_t		reqfxupri;
449 	pri_t		reqfxuprilim;
450 
451 	fxpp = (fxproc_t *)bufp;
452 	ASSERT(fxpp != NULL);
453 
454 	/*
455 	 * Initialize the fxproc structure.
456 	 */
457 	fxpp->fx_flags = 0;
458 	fxpp->fx_callback = NULL;
459 	fxpp->fx_cookie = NULL;
460 
461 	if (fxkparmsp == NULL) {
462 		/*
463 		 * Use default values.
464 		 */
465 		fxpp->fx_pri = fxpp->fx_uprilim = 0;
466 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
467 		fxpp->fx_nice =  NZERO;
468 	} else {
469 		/*
470 		 * Use supplied values.
471 		 */
472 
473 		if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
474 			reqfxuprilim = 0;
475 		} else {
476 			if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
477 			    secpolicy_setpriority(reqpcredp) != 0)
478 				return (EPERM);
479 			reqfxuprilim = fxkparmsp->fx_uprilim;
480 			FX_ADJUST_PRI(reqfxuprilim);
481 		}
482 
483 		if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
484 			reqfxupri = reqfxuprilim;
485 		} else {
486 			if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
487 			    secpolicy_setpriority(reqpcredp) != 0)
488 				return (EPERM);
489 			/*
490 			 * Set the user priority to the requested value
491 			 * or the upri limit, whichever is lower.
492 			 */
493 			reqfxupri = fxkparmsp->fx_upri;
494 			FX_ADJUST_PRI(reqfxupri);
495 
496 			if (reqfxupri > reqfxuprilim)
497 				reqfxupri = reqfxuprilim;
498 		}
499 
500 
501 		fxpp->fx_uprilim = reqfxuprilim;
502 		fxpp->fx_pri = reqfxupri;
503 
504 		fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri;
505 
506 		if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
507 		    (fxkparmsp->fx_tqntm == FX_TQDEF)) {
508 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
509 		} else {
510 			if (secpolicy_setpriority(reqpcredp) != 0)
511 				return (EPERM);
512 
513 			if (fxkparmsp->fx_tqntm == FX_TQINF)
514 				fxpp->fx_pquantum = FX_TQINF;
515 			else {
516 				fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
517 			}
518 		}
519 
520 	}
521 
522 	fxpp->fx_timeleft = fxpp->fx_pquantum;
523 	cpucaps_sc_init(&fxpp->fx_caps);
524 	fxpp->fx_tp = t;
525 
526 	thread_lock(t);			/* get dispatcher lock on thread */
527 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
528 	t->t_cid = cid;
529 	t->t_cldata = (void *)fxpp;
530 	t->t_schedflag &= ~TS_RUNQMATCH;
531 	fx_change_priority(t, fxpp);
532 	thread_unlock(t);
533 
534 	return (0);
535 }
536 
537 /*
538  * The thread is exiting.
539  */
540 static void
541 fx_exit(kthread_t *t)
542 {
543 	fxproc_t *fxpp;
544 
545 	thread_lock(t);
546 	fxpp = (fxproc_t *)(t->t_cldata);
547 
548 	/*
549 	 * A thread could be exiting in between clock ticks, so we need to
550 	 * calculate how much CPU time it used since it was charged last time.
551 	 *
552 	 * CPU caps are not enforced on exiting processes - it is usually
553 	 * desirable to exit as soon as possible to free resources.
554 	 */
555 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
556 
557 	if (FX_HAS_CB(fxpp)) {
558 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
559 		fxpp->fx_callback = NULL;
560 		fxpp->fx_cookie = NULL;
561 		thread_unlock(t);
562 		FX_CB_LIST_DELETE(fxpp);
563 		return;
564 	}
565 
566 	thread_unlock(t);
567 }
568 
569 /*
570  * Exiting the class. Free fxproc structure of thread.
571  */
572 static void
573 fx_exitclass(void *procp)
574 {
575 	fxproc_t *fxpp = (fxproc_t *)procp;
576 
577 	thread_lock(fxpp->fx_tp);
578 	if (FX_HAS_CB(fxpp)) {
579 
580 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
581 
582 		fxpp->fx_callback = NULL;
583 		fxpp->fx_cookie = NULL;
584 		thread_unlock(fxpp->fx_tp);
585 		FX_CB_LIST_DELETE(fxpp);
586 	} else
587 		thread_unlock(fxpp->fx_tp);
588 
589 	kmem_free(fxpp, sizeof (fxproc_t));
590 }
591 
592 /* ARGSUSED */
593 static int
594 fx_canexit(kthread_t *t, cred_t *cred)
595 {
596 	/*
597 	 * A thread can always leave the FX class
598 	 */
599 	return (0);
600 }
601 
602 /*
603  * Initialize fixed-priority class specific proc structure for a child.
604  * callbacks are not inherited upon fork.
605  */
606 static int
607 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
608 {
609 	fxproc_t	*pfxpp;		/* ptr to parent's fxproc structure */
610 	fxproc_t	*cfxpp;		/* ptr to child's fxproc structure */
611 
612 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
613 
614 	cfxpp = (fxproc_t *)bufp;
615 	ASSERT(cfxpp != NULL);
616 	thread_lock(t);
617 	pfxpp = (fxproc_t *)t->t_cldata;
618 	/*
619 	 * Initialize child's fxproc structure.
620 	 */
621 	cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
622 	cfxpp->fx_pri = pfxpp->fx_pri;
623 	cfxpp->fx_uprilim = pfxpp->fx_uprilim;
624 	cfxpp->fx_nice = pfxpp->fx_nice;
625 	cfxpp->fx_callback = NULL;
626 	cfxpp->fx_cookie = NULL;
627 	cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
628 	cpucaps_sc_init(&cfxpp->fx_caps);
629 
630 	cfxpp->fx_tp = ct;
631 	ct->t_cldata = (void *)cfxpp;
632 	thread_unlock(t);
633 
634 	/*
635 	 * Link new structure into fxproc list.
636 	 */
637 	return (0);
638 }
639 
640 
641 /*
642  * Child is placed at back of dispatcher queue and parent gives
643  * up processor so that the child runs first after the fork.
644  * This allows the child immediately execing to break the multiple
645  * use of copy on write pages with no disk home. The parent will
646  * get to steal them back rather than uselessly copying them.
647  */
648 static void
649 fx_forkret(kthread_t *t, kthread_t *ct)
650 {
651 	proc_t	*pp = ttoproc(t);
652 	proc_t	*cp = ttoproc(ct);
653 	fxproc_t *fxpp;
654 
655 	ASSERT(t == curthread);
656 	ASSERT(MUTEX_HELD(&pidlock));
657 
658 	/*
659 	 * Grab the child's p_lock before dropping pidlock to ensure
660 	 * the process does not disappear before we set it running.
661 	 */
662 	mutex_enter(&cp->p_lock);
663 	mutex_exit(&pidlock);
664 	continuelwps(cp);
665 	mutex_exit(&cp->p_lock);
666 
667 	mutex_enter(&pp->p_lock);
668 	continuelwps(pp);
669 	mutex_exit(&pp->p_lock);
670 
671 	thread_lock(t);
672 	fxpp = (fxproc_t *)(t->t_cldata);
673 	t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
674 	ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
675 	THREAD_TRANSITION(t);
676 	fx_setrun(t);
677 	thread_unlock(t);
678 
679 	swtch();
680 }
681 
682 
683 /*
684  * Get information about the fixed-priority class into the buffer
685  * pointed to by fxinfop. The maximum configured user priority
686  * is the only information we supply.
687  */
688 static int
689 fx_getclinfo(void *infop)
690 {
691 	fxinfo_t *fxinfop = (fxinfo_t *)infop;
692 	fxinfop->fx_maxupri = fx_maxupri;
693 	return (0);
694 }
695 
696 
697 
698 /*
699  * Return the user mode scheduling priority range.
700  */
701 static int
702 fx_getclpri(pcpri_t *pcprip)
703 {
704 	pcprip->pc_clpmax = fx_maxupri;
705 	pcprip->pc_clpmin = 0;
706 	return (0);
707 }
708 
709 
710 static void
711 fx_nullsys()
712 {}
713 
714 
715 /*
716  * Get the fixed-priority parameters of the thread pointed to by
717  * fxprocp into the buffer pointed to by fxparmsp.
718  */
719 static void
720 fx_parmsget(kthread_t *t, void *parmsp)
721 {
722 	fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
723 	fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
724 
725 	fxkparmsp->fx_upri = fxpp->fx_pri;
726 	fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
727 	fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
728 }
729 
730 
731 
732 /*
733  * Check the validity of the fixed-priority parameters in the buffer
734  * pointed to by fxparmsp.
735  */
736 static int
737 fx_parmsin(void *parmsp)
738 {
739 	fxparms_t	*fxparmsp = (fxparms_t *)parmsp;
740 	uint_t		cflags;
741 	longlong_t	ticks;
742 	/*
743 	 * Check validity of parameters.
744 	 */
745 
746 	if ((fxparmsp->fx_uprilim > fx_maxupri ||
747 	    fxparmsp->fx_uprilim < 0) &&
748 	    fxparmsp->fx_uprilim != FX_NOCHANGE)
749 		return (EINVAL);
750 
751 	if ((fxparmsp->fx_upri > fx_maxupri ||
752 	    fxparmsp->fx_upri < 0) &&
753 	    fxparmsp->fx_upri != FX_NOCHANGE)
754 		return (EINVAL);
755 
756 	if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
757 	    fxparmsp->fx_tqnsecs >= NANOSEC)
758 		return (EINVAL);
759 
760 	cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
761 
762 	if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
763 		cflags |= FX_DOUPRILIM;
764 	}
765 
766 	if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
767 		cflags |= FX_DOTQ;
768 
769 	/*
770 	 * convert the buffer to kernel format.
771 	 */
772 
773 	if (fxparmsp->fx_tqnsecs >= 0) {
774 		if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
775 		    NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
776 			return (ERANGE);
777 
778 		((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
779 	} else {
780 		if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
781 		    (fxparmsp->fx_tqnsecs != FX_TQINF) &&
782 		    (fxparmsp->fx_tqnsecs != FX_TQDEF))
783 			return (EINVAL);
784 		((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
785 	}
786 
787 	((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
788 
789 	return (0);
790 }
791 
792 
793 /*
794  * Check the validity of the fixed-priority parameters in the pc_vaparms_t
795  * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
796  * pc_vaparms_t contains (key, value) pairs of parameter.
797  */
798 static int
799 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
800 {
801 	uint_t		secs = 0;
802 	uint_t		cnt;
803 	int		nsecs = 0;
804 	int		priflag, secflag, nsecflag, limflag;
805 	longlong_t	ticks;
806 	fxkparms_t	*fxprmsp = (fxkparms_t *)prmsp;
807 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
808 
809 
810 	/*
811 	 * First check the validity of parameters and convert them
812 	 * from the user supplied format to the internal format.
813 	 */
814 	priflag = secflag = nsecflag = limflag = 0;
815 
816 	fxprmsp->fx_cflags = 0;
817 
818 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
819 		return (EINVAL);
820 
821 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
822 
823 		switch (vpp->pc_key) {
824 		case FX_KY_UPRILIM:
825 			if (limflag++)
826 				return (EINVAL);
827 			fxprmsp->fx_cflags |= FX_DOUPRILIM;
828 			fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
829 			if (fxprmsp->fx_uprilim > fx_maxupri ||
830 			    fxprmsp->fx_uprilim < 0)
831 				return (EINVAL);
832 			break;
833 
834 		case FX_KY_UPRI:
835 			if (priflag++)
836 				return (EINVAL);
837 			fxprmsp->fx_cflags |= FX_DOUPRI;
838 			fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
839 			if (fxprmsp->fx_upri > fx_maxupri ||
840 			    fxprmsp->fx_upri < 0)
841 				return (EINVAL);
842 			break;
843 
844 		case FX_KY_TQSECS:
845 			if (secflag++)
846 				return (EINVAL);
847 			fxprmsp->fx_cflags |= FX_DOTQ;
848 			secs = (uint_t)vpp->pc_parm;
849 			break;
850 
851 		case FX_KY_TQNSECS:
852 			if (nsecflag++)
853 				return (EINVAL);
854 			fxprmsp->fx_cflags |= FX_DOTQ;
855 			nsecs = (int)vpp->pc_parm;
856 			break;
857 
858 		default:
859 			return (EINVAL);
860 		}
861 	}
862 
863 	if (vaparmsp->pc_vaparmscnt == 0) {
864 		/*
865 		 * Use default parameters.
866 		 */
867 		fxprmsp->fx_upri = 0;
868 		fxprmsp->fx_uprilim = 0;
869 		fxprmsp->fx_tqntm = FX_TQDEF;
870 		fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
871 	} else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
872 		if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
873 			return (EINVAL);
874 
875 		if (nsecs >= 0) {
876 			if ((ticks = SEC_TO_TICK((longlong_t)secs) +
877 			    NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
878 				return (ERANGE);
879 
880 			fxprmsp->fx_tqntm = (int)ticks;
881 		} else {
882 			if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
883 				return (EINVAL);
884 			fxprmsp->fx_tqntm = nsecs;
885 		}
886 	}
887 
888 	return (0);
889 }
890 
891 
892 /*
893  * Nothing to do here but return success.
894  */
895 /* ARGSUSED */
896 static int
897 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
898 {
899 	register fxkparms_t	*fxkprmsp = (fxkparms_t *)parmsp;
900 
901 	if (vaparmsp != NULL)
902 		return (0);
903 
904 	if (fxkprmsp->fx_tqntm < 0) {
905 		/*
906 		 * Quantum field set to special value (e.g. FX_TQINF)
907 		 */
908 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
909 		((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
910 
911 	} else {
912 		/* Convert quantum from ticks to seconds-nanoseconds */
913 
914 		timestruc_t ts;
915 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
916 		((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
917 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
918 	}
919 
920 	return (0);
921 }
922 
923 
924 /*
925  * Copy all selected fixed-priority class parameters to the user.
926  * The parameters are specified by a key.
927  */
928 static int
929 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
930 {
931 	fxkparms_t	*fxkprmsp = (fxkparms_t *)prmsp;
932 	timestruc_t	ts;
933 	uint_t		cnt;
934 	uint_t		secs;
935 	int		nsecs;
936 	int		priflag, secflag, nsecflag, limflag;
937 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
938 
939 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
940 
941 	priflag = secflag = nsecflag = limflag = 0;
942 
943 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
944 		return (EINVAL);
945 
946 	if (fxkprmsp->fx_tqntm < 0) {
947 		/*
948 		 * Quantum field set to special value (e.g. FX_TQINF).
949 		 */
950 		secs = 0;
951 		nsecs = fxkprmsp->fx_tqntm;
952 	} else {
953 		/*
954 		 * Convert quantum from ticks to seconds-nanoseconds.
955 		 */
956 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
957 		secs = ts.tv_sec;
958 		nsecs = ts.tv_nsec;
959 	}
960 
961 
962 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
963 
964 		switch (vpp->pc_key) {
965 		case FX_KY_UPRILIM:
966 			if (limflag++)
967 				return (EINVAL);
968 			if (copyout(&fxkprmsp->fx_uprilim,
969 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
970 				return (EFAULT);
971 			break;
972 
973 		case FX_KY_UPRI:
974 			if (priflag++)
975 				return (EINVAL);
976 			if (copyout(&fxkprmsp->fx_upri,
977 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
978 				return (EFAULT);
979 			break;
980 
981 		case FX_KY_TQSECS:
982 			if (secflag++)
983 				return (EINVAL);
984 			if (copyout(&secs,
985 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
986 				return (EFAULT);
987 			break;
988 
989 		case FX_KY_TQNSECS:
990 			if (nsecflag++)
991 				return (EINVAL);
992 			if (copyout(&nsecs,
993 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
994 				return (EFAULT);
995 			break;
996 
997 		default:
998 			return (EINVAL);
999 		}
1000 	}
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Set the scheduling parameters of the thread pointed to by fxprocp
1007  * to those specified in the buffer pointed to by fxparmsp.
1008  */
1009 /* ARGSUSED */
1010 static int
1011 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1012 {
1013 	char		nice;
1014 	pri_t		reqfxuprilim;
1015 	pri_t		reqfxupri;
1016 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
1017 	fxproc_t	*fxpp;
1018 
1019 
1020 	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1021 
1022 	thread_lock(tx);
1023 	fxpp = (fxproc_t *)tx->t_cldata;
1024 
1025 	if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1026 		reqfxuprilim = fxpp->fx_uprilim;
1027 	else
1028 		reqfxuprilim = fxkparmsp->fx_uprilim;
1029 
1030 	/*
1031 	 * Basic permissions enforced by generic kernel code
1032 	 * for all classes require that a thread attempting
1033 	 * to change the scheduling parameters of a target
1034 	 * thread be privileged or have a real or effective
1035 	 * UID matching that of the target thread. We are not
1036 	 * called unless these basic permission checks have
1037 	 * already passed. The fixed priority class requires in
1038 	 * addition that the calling thread be privileged if it
1039 	 * is attempting to raise the pri above its current
1040 	 * value This may have been checked previously but if our
1041 	 * caller passed us a non-NULL credential pointer we assume
1042 	 * it hasn't and we check it here.
1043 	 */
1044 
1045 	if ((reqpcredp != NULL) &&
1046 	    (reqfxuprilim > fxpp->fx_uprilim ||
1047 	    ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1048 	    secpolicy_setpriority(reqpcredp) != 0) {
1049 		thread_unlock(tx);
1050 		return (EPERM);
1051 	}
1052 
1053 	FX_ADJUST_PRI(reqfxuprilim);
1054 
1055 	if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1056 		reqfxupri = fxpp->fx_pri;
1057 	else
1058 		reqfxupri = fxkparmsp->fx_upri;
1059 
1060 
1061 	/*
1062 	 * Make sure the user priority doesn't exceed the upri limit.
1063 	 */
1064 	if (reqfxupri > reqfxuprilim)
1065 		reqfxupri = reqfxuprilim;
1066 
1067 	/*
1068 	 * Set fx_nice to the nice value corresponding to the user
1069 	 * priority we are setting.  Note that setting the nice field
1070 	 * of the parameter struct won't affect upri or nice.
1071 	 */
1072 
1073 	nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1074 
1075 	if (nice > NZERO)
1076 		nice = NZERO;
1077 
1078 	fxpp->fx_uprilim = reqfxuprilim;
1079 	fxpp->fx_pri = reqfxupri;
1080 
1081 	if (fxkparmsp->fx_tqntm == FX_TQINF)
1082 		fxpp->fx_pquantum = FX_TQINF;
1083 	else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1084 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1085 	else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1086 		fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1087 
1088 	fxpp->fx_nice = nice;
1089 
1090 	fx_change_priority(tx, fxpp);
1091 	thread_unlock(tx);
1092 	return (0);
1093 }
1094 
1095 
1096 /*
1097  * Return the global scheduling priority that would be assigned
1098  * to a thread entering the fixed-priority class with the fx_upri.
1099  */
1100 static pri_t
1101 fx_globpri(kthread_t *t)
1102 {
1103 	fxproc_t *fxpp;
1104 
1105 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1106 
1107 	fxpp = (fxproc_t *)t->t_cldata;
1108 	return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1109 
1110 }
1111 
1112 /*
1113  * Arrange for thread to be placed in appropriate location
1114  * on dispatcher queue.
1115  *
1116  * This is called with the current thread in TS_ONPROC and locked.
1117  */
1118 static void
1119 fx_preempt(kthread_t *t)
1120 {
1121 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1122 
1123 	ASSERT(t == curthread);
1124 	ASSERT(THREAD_LOCK_HELD(curthread));
1125 
1126 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1127 
1128 	/*
1129 	 * Check to see if we're doing "preemption control" here.  If
1130 	 * we are, and if the user has requested that this thread not
1131 	 * be preempted, and if preemptions haven't been put off for
1132 	 * too long, let the preemption happen here but try to make
1133 	 * sure the thread is rescheduled as soon as possible.  We do
1134 	 * this by putting it on the front of the highest priority run
1135 	 * queue in the FX class.  If the preemption has been put off
1136 	 * for too long, clear the "nopreempt" bit and let the thread
1137 	 * be preempted.
1138 	 */
1139 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1140 		if (fxpp->fx_pquantum == FX_TQINF ||
1141 		    fxpp->fx_timeleft > -SC_MAX_TICKS) {
1142 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1143 			schedctl_set_yield(t, 1);
1144 			setfrontdq(t);
1145 			return;
1146 		} else {
1147 			schedctl_set_nopreempt(t, 0);
1148 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1149 			TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
1150 			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1151 			    tnf_lwpid, lwpid, t->t_tid);
1152 			/*
1153 			 * Fall through and be preempted below.
1154 			 */
1155 		}
1156 	}
1157 
1158 	if (FX_HAS_CB(fxpp)) {
1159 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1160 		pri_t	newpri = fxpp->fx_pri;
1161 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1162 		    &new_quantum, &newpri);
1163 		FX_ADJUST_QUANTUM(new_quantum);
1164 		if ((int)new_quantum != fxpp->fx_pquantum) {
1165 			fxpp->fx_pquantum = (int)new_quantum;
1166 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1167 		}
1168 		FX_ADJUST_PRI(newpri);
1169 		fxpp->fx_pri = newpri;
1170 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1171 	}
1172 
1173 	/*
1174 	 * This thread may be placed on wait queue by CPU Caps. In this case we
1175 	 * do not need to do anything until it is removed from the wait queue.
1176 	 */
1177 	if (CPUCAPS_ENFORCE(t)) {
1178 		return;
1179 	}
1180 
1181 	if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1182 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1183 		fxpp->fx_flags &= ~FXBACKQ;
1184 		setbackdq(t);
1185 	} else {
1186 		setfrontdq(t);
1187 	}
1188 }
1189 
1190 static void
1191 fx_setrun(kthread_t *t)
1192 {
1193 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1194 
1195 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1196 	fxpp->fx_flags &= ~FXBACKQ;
1197 
1198 	if (t->t_disp_time != lbolt)
1199 		setbackdq(t);
1200 	else
1201 		setfrontdq(t);
1202 }
1203 
1204 
1205 /*
1206  * Prepare thread for sleep. We reset the thread priority so it will
1207  * run at the kernel priority level when it wakes up.
1208  */
1209 static void
1210 fx_sleep(kthread_t *t)
1211 {
1212 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1213 
1214 	ASSERT(t == curthread);
1215 	ASSERT(THREAD_LOCK_HELD(t));
1216 
1217 	/*
1218 	 * Account for time spent on CPU before going to sleep.
1219 	 */
1220 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1221 
1222 	if (FX_HAS_CB(fxpp)) {
1223 		FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1224 	}
1225 	t->t_stime = lbolt;		/* time stamp for the swapper */
1226 }
1227 
1228 
1229 /*
1230  * Return Values:
1231  *
1232  *	-1 if the thread is loaded or is not eligible to be swapped in.
1233  *
1234  * FX and RT threads are designed so that they don't swapout; however,
1235  * it is possible that while the thread is swapped out and in another class, it
1236  * can be changed to FX or RT.  Since these threads should be swapped in
1237  * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1238  * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1239  * RT threads.
1240  */
1241 /* ARGSUSED */
1242 static pri_t
1243 fx_swapin(kthread_t *t, int flags)
1244 {
1245 	pri_t	tpri = -1;
1246 
1247 	ASSERT(THREAD_LOCK_HELD(t));
1248 
1249 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1250 		tpri = (pri_t)SHRT_MAX - 1;
1251 	}
1252 
1253 	return (tpri);
1254 }
1255 
1256 /*
1257  * Return Values
1258  *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1259  */
1260 /* ARGSUSED */
1261 static pri_t
1262 fx_swapout(kthread_t *t, int flags)
1263 {
1264 	ASSERT(THREAD_LOCK_HELD(t));
1265 
1266 	return (-1);
1267 
1268 }
1269 
1270 /* ARGSUSED */
1271 static void
1272 fx_stop(kthread_t *t, int why, int what)
1273 {
1274 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1275 
1276 	ASSERT(THREAD_LOCK_HELD(t));
1277 
1278 	if (FX_HAS_CB(fxpp)) {
1279 		FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1280 	}
1281 }
1282 
1283 /*
1284  * Check for time slice expiration.  If time slice has expired
1285  * set runrun to cause preemption.
1286  */
1287 static void
1288 fx_tick(kthread_t *t)
1289 {
1290 	boolean_t call_cpu_surrender = B_FALSE;
1291 	fxproc_t *fxpp;
1292 
1293 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1294 
1295 	thread_lock(t);
1296 
1297 	fxpp = (fxproc_t *)(t->t_cldata);
1298 
1299 	if (FX_HAS_CB(fxpp)) {
1300 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1301 		pri_t	newpri = fxpp->fx_pri;
1302 		FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1303 		    &new_quantum, &newpri);
1304 		FX_ADJUST_QUANTUM(new_quantum);
1305 		if ((int)new_quantum != fxpp->fx_pquantum) {
1306 			fxpp->fx_pquantum = (int)new_quantum;
1307 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1308 		}
1309 		FX_ADJUST_PRI(newpri);
1310 		if (newpri != fxpp->fx_pri) {
1311 			fxpp->fx_pri = newpri;
1312 			fx_change_priority(t, fxpp);
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Keep track of thread's project CPU usage.  Note that projects
1318 	 * get charged even when threads are running in the kernel.
1319 	 */
1320 	call_cpu_surrender =  CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1321 	    CPUCAPS_CHARGE_ENFORCE);
1322 
1323 	if ((fxpp->fx_pquantum != FX_TQINF) &&
1324 	    (--fxpp->fx_timeleft <= 0)) {
1325 		pri_t	new_pri;
1326 
1327 		/*
1328 		 * If we're doing preemption control and trying to
1329 		 * avoid preempting this thread, just note that
1330 		 * the thread should yield soon and let it keep
1331 		 * running (unless it's been a while).
1332 		 */
1333 		if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1334 			if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1335 				DTRACE_SCHED1(schedctl__nopreempt,
1336 				    kthread_t *, t);
1337 				schedctl_set_yield(t, 1);
1338 				thread_unlock_nopreempt(t);
1339 				return;
1340 			}
1341 			TNF_PROBE_2(schedctl_failsafe,
1342 			    "schedctl FX fx_tick", /* CSTYLED */,
1343 			    tnf_pid, pid, ttoproc(t)->p_pid,
1344 			    tnf_lwpid, lwpid, t->t_tid);
1345 		}
1346 		new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1347 		ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1348 		/*
1349 		 * When the priority of a thread is changed,
1350 		 * it may be necessary to adjust its position
1351 		 * on a sleep queue or dispatch queue. Even
1352 		 * when the priority is not changed, we need
1353 		 * to preserve round robin on dispatch queue.
1354 		 * The function thread_change_pri accomplishes
1355 		 * this.
1356 		 */
1357 		if (thread_change_pri(t, new_pri, 0)) {
1358 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1359 		} else {
1360 			call_cpu_surrender = B_TRUE;
1361 		}
1362 	} else if (t->t_state == TS_ONPROC &&
1363 	    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1364 		call_cpu_surrender = B_TRUE;
1365 	}
1366 
1367 	if (call_cpu_surrender) {
1368 		fxpp->fx_flags |= FXBACKQ;
1369 		cpu_surrender(t);
1370 	}
1371 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1372 }
1373 
1374 
1375 static void
1376 fx_trapret(kthread_t *t)
1377 {
1378 	cpu_t		*cp = CPU;
1379 
1380 	ASSERT(THREAD_LOCK_HELD(t));
1381 	ASSERT(t == curthread);
1382 	ASSERT(cp->cpu_dispthread == t);
1383 	ASSERT(t->t_state == TS_ONPROC);
1384 }
1385 
1386 
1387 /*
1388  * Processes waking up go to the back of their queue.
1389  */
1390 static void
1391 fx_wakeup(kthread_t *t)
1392 {
1393 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1394 
1395 	ASSERT(THREAD_LOCK_HELD(t));
1396 
1397 	t->t_stime = lbolt;		/* time stamp for the swapper */
1398 	if (FX_HAS_CB(fxpp)) {
1399 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1400 		pri_t	newpri = fxpp->fx_pri;
1401 		FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1402 		    &new_quantum, &newpri);
1403 		FX_ADJUST_QUANTUM(new_quantum);
1404 		if ((int)new_quantum != fxpp->fx_pquantum) {
1405 			fxpp->fx_pquantum = (int)new_quantum;
1406 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1407 		}
1408 
1409 		FX_ADJUST_PRI(newpri);
1410 		if (newpri != fxpp->fx_pri) {
1411 			fxpp->fx_pri = newpri;
1412 			THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1413 		}
1414 	}
1415 
1416 	fxpp->fx_flags &= ~FXBACKQ;
1417 
1418 	if (t->t_disp_time != lbolt)
1419 		setbackdq(t);
1420 	else
1421 		setfrontdq(t);
1422 }
1423 
1424 
1425 /*
1426  * When a thread yields, put it on the back of the run queue.
1427  */
1428 static void
1429 fx_yield(kthread_t *t)
1430 {
1431 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1432 
1433 	ASSERT(t == curthread);
1434 	ASSERT(THREAD_LOCK_HELD(t));
1435 
1436 	/*
1437 	 * Collect CPU usage spent before yielding CPU.
1438 	 */
1439 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1440 
1441 	if (FX_HAS_CB(fxpp))  {
1442 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1443 		pri_t	newpri = fxpp->fx_pri;
1444 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1445 		    &new_quantum, &newpri);
1446 		FX_ADJUST_QUANTUM(new_quantum);
1447 		if ((int)new_quantum != fxpp->fx_pquantum) {
1448 			fxpp->fx_pquantum = (int)new_quantum;
1449 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1450 		}
1451 		FX_ADJUST_PRI(newpri);
1452 		fxpp->fx_pri = newpri;
1453 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1454 	}
1455 
1456 	/*
1457 	 * Clear the preemption control "yield" bit since the user is
1458 	 * doing a yield.
1459 	 */
1460 	if (t->t_schedctl)
1461 		schedctl_set_yield(t, 0);
1462 
1463 	if (fxpp->fx_timeleft <= 0) {
1464 		/*
1465 		 * Time slice was artificially extended to avoid
1466 		 * preemption, so pretend we're preempting it now.
1467 		 */
1468 		DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1469 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1470 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1471 		ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1472 	}
1473 
1474 	fxpp->fx_flags &= ~FXBACKQ;
1475 	setbackdq(t);
1476 }
1477 
1478 /*
1479  * Increment the nice value of the specified thread by incr and
1480  * return the new value in *retvalp.
1481  */
1482 static int
1483 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1484 {
1485 	int		newnice;
1486 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1487 	fxkparms_t	fxkparms;
1488 
1489 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1490 
1491 	/* If there's no change to priority, just return current setting */
1492 	if (incr == 0) {
1493 		if (retvalp) {
1494 			*retvalp = fxpp->fx_nice - NZERO;
1495 		}
1496 		return (0);
1497 	}
1498 
1499 	if ((incr < 0 || incr > 2 * NZERO) &&
1500 	    secpolicy_setpriority(cr) != 0)
1501 		return (EPERM);
1502 
1503 	/*
1504 	 * Specifying a nice increment greater than the upper limit of
1505 	 * 2 * NZERO - 1 will result in the thread's nice value being
1506 	 * set to the upper limit.  We check for this before computing
1507 	 * the new value because otherwise we could get overflow
1508 	 * if a privileged user specified some ridiculous increment.
1509 	 */
1510 	if (incr > 2 * NZERO - 1)
1511 		incr = 2 * NZERO - 1;
1512 
1513 	newnice = fxpp->fx_nice + incr;
1514 	if (newnice > NZERO)
1515 		newnice = NZERO;
1516 	else if (newnice < 0)
1517 		newnice = 0;
1518 
1519 	fxkparms.fx_uprilim = fxkparms.fx_upri =
1520 	    -((newnice - NZERO) * fx_maxupri) / NZERO;
1521 
1522 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1523 
1524 	fxkparms.fx_tqntm = FX_TQDEF;
1525 
1526 	/*
1527 	 * Reset the uprilim and upri values of the thread. Adjust
1528 	 * time quantum accordingly.
1529 	 */
1530 
1531 	(void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1532 
1533 	/*
1534 	 * Although fx_parmsset already reset fx_nice it may
1535 	 * not have been set to precisely the value calculated above
1536 	 * because fx_parmsset determines the nice value from the
1537 	 * user priority and we may have truncated during the integer
1538 	 * conversion from nice value to user priority and back.
1539 	 * We reset fx_nice to the value we calculated above.
1540 	 */
1541 	fxpp->fx_nice = (char)newnice;
1542 
1543 	if (retvalp)
1544 		*retvalp = newnice - NZERO;
1545 
1546 	return (0);
1547 }
1548 
1549 /*
1550  * Increment the priority of the specified thread by incr and
1551  * return the new value in *retvalp.
1552  */
1553 static int
1554 fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1555 {
1556 	int		newpri;
1557 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1558 	fxkparms_t	fxkparms;
1559 
1560 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1561 
1562 	/* If there's no change to priority, just return current setting */
1563 	if (incr == 0) {
1564 		*retvalp = fxpp->fx_pri;
1565 		return (0);
1566 	}
1567 
1568 	newpri = fxpp->fx_pri + incr;
1569 	if (newpri > fx_maxupri || newpri < 0)
1570 		return (EINVAL);
1571 
1572 	*retvalp = newpri;
1573 	fxkparms.fx_uprilim = fxkparms.fx_upri = newpri;
1574 	fxkparms.fx_tqntm = FX_NOCHANGE;
1575 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1576 
1577 	/*
1578 	 * Reset the uprilim and upri values of the thread.
1579 	 */
1580 	return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr));
1581 }
1582 
1583 static void
1584 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1585 {
1586 	pri_t	new_pri;
1587 
1588 	ASSERT(THREAD_LOCK_HELD(t));
1589 	new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1590 	ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1591 	t->t_cpri = fxpp->fx_pri;
1592 	if (t == curthread || t->t_state == TS_ONPROC) {
1593 		/* curthread is always onproc */
1594 		cpu_t	*cp = t->t_disp_queue->disp_cpu;
1595 		THREAD_CHANGE_PRI(t, new_pri);
1596 		if (t == cp->cpu_dispthread)
1597 			cp->cpu_dispatch_pri = DISP_PRIO(t);
1598 		if (DISP_MUST_SURRENDER(t)) {
1599 			fxpp->fx_flags |= FXBACKQ;
1600 			cpu_surrender(t);
1601 		} else {
1602 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1603 		}
1604 	} else {
1605 		/*
1606 		 * When the priority of a thread is changed,
1607 		 * it may be necessary to adjust its position
1608 		 * on a sleep queue or dispatch queue.
1609 		 * The function thread_change_pri accomplishes
1610 		 * this.
1611 		 */
1612 		if (thread_change_pri(t, new_pri, 0)) {
1613 			/*
1614 			 * The thread was on a run queue. Reset
1615 			 * its CPU timeleft from the quantum
1616 			 * associated with the new priority.
1617 			 */
1618 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1619 		} else {
1620 			fxpp->fx_flags |= FXBACKQ;
1621 		}
1622 	}
1623 }
1624 
1625 static int
1626 fx_alloc(void **p, int flag)
1627 {
1628 	void *bufp;
1629 
1630 	bufp = kmem_alloc(sizeof (fxproc_t), flag);
1631 	if (bufp == NULL) {
1632 		return (ENOMEM);
1633 	} else {
1634 		*p = bufp;
1635 		return (0);
1636 	}
1637 }
1638 
1639 static void
1640 fx_free(void *bufp)
1641 {
1642 	if (bufp)
1643 		kmem_free(bufp, sizeof (fxproc_t));
1644 }
1645 
1646 /*
1647  * Release the callback list mutex after successful lookup
1648  */
1649 void
1650 fx_list_release(fxproc_t *fxpp)
1651 {
1652 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1653 	kmutex_t *lockp = &fx_cb_list_lock[index];
1654 	mutex_exit(lockp);
1655 }
1656 
1657 fxproc_t *
1658 fx_list_lookup(kt_did_t ktid)
1659 {
1660 	int index = FX_CB_LIST_HASH(ktid);
1661 	kmutex_t *lockp = &fx_cb_list_lock[index];
1662 	fxproc_t *fxpp;
1663 
1664 	mutex_enter(lockp);
1665 
1666 	for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1667 	    fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1668 		if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1669 		    fxpp->fx_callback != NULL) {
1670 			/*
1671 			 * The caller is responsible for calling
1672 			 * fx_list_release to drop the lock upon
1673 			 * successful lookup
1674 			 */
1675 			return (fxpp);
1676 		}
1677 	}
1678 	mutex_exit(lockp);
1679 	return ((fxproc_t *)NULL);
1680 }
1681 
1682 
1683 /*
1684  * register a callback set of routines for current thread
1685  * thread should already be in FX class
1686  */
1687 int
1688 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1689 	pri_t pri, clock_t quantum)
1690 {
1691 
1692 	fxproc_t	*fxpp;
1693 
1694 	if (fx_callback == NULL)
1695 		return (EINVAL);
1696 
1697 	if (secpolicy_dispadm(CRED()) != 0)
1698 		return (EPERM);
1699 
1700 	if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1701 		return (EINVAL);
1702 
1703 	if (!FX_ISVALID(pri, quantum))
1704 		return (EINVAL);
1705 
1706 	thread_lock(curthread);		/* get dispatcher lock on thread */
1707 
1708 	if (curthread->t_cid != fx_cid) {
1709 		thread_unlock(curthread);
1710 		return (EINVAL);
1711 	}
1712 
1713 	fxpp = (fxproc_t *)(curthread->t_cldata);
1714 	ASSERT(fxpp != NULL);
1715 	if (FX_HAS_CB(fxpp)) {
1716 		thread_unlock(curthread);
1717 		return (EINVAL);
1718 	}
1719 
1720 	fxpp->fx_callback = fx_callback;
1721 	fxpp->fx_cookie = cookie;
1722 
1723 	if (pri != FX_CB_NOCHANGE) {
1724 		fxpp->fx_pri = pri;
1725 		FX_ADJUST_PRI(fxpp->fx_pri);
1726 		if (quantum == FX_TQDEF) {
1727 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1728 		} else if (quantum == FX_TQINF) {
1729 			fxpp->fx_pquantum = FX_TQINF;
1730 		} else if (quantum != FX_NOCHANGE) {
1731 			FX_ADJUST_QUANTUM(quantum);
1732 			fxpp->fx_pquantum = quantum;
1733 		}
1734 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1735 		if (quantum == FX_TQINF)
1736 			fxpp->fx_pquantum = FX_TQINF;
1737 		else {
1738 			FX_ADJUST_QUANTUM(quantum);
1739 			fxpp->fx_pquantum = quantum;
1740 		}
1741 	}
1742 
1743 	fxpp->fx_ktid = ddi_get_kt_did();
1744 
1745 	fx_change_priority(curthread, fxpp);
1746 
1747 	thread_unlock(curthread);
1748 
1749 	/*
1750 	 * Link new structure into fxproc list.
1751 	 */
1752 	FX_CB_LIST_INSERT(fxpp);
1753 	return (0);
1754 }
1755 
1756 /* unregister a callback set of routines for current thread */
1757 int
1758 fx_unregister_callbacks()
1759 {
1760 	fxproc_t	*fxpp;
1761 
1762 	if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1763 		/*
1764 		 * did not have a registered callback;
1765 		 */
1766 		return (EINVAL);
1767 	}
1768 
1769 	thread_lock(fxpp->fx_tp);
1770 	fxpp->fx_callback = NULL;
1771 	fxpp->fx_cookie = NULL;
1772 	thread_unlock(fxpp->fx_tp);
1773 	fx_list_release(fxpp);
1774 
1775 	FX_CB_LIST_DELETE(fxpp);
1776 	return (0);
1777 }
1778 
1779 /*
1780  * modify priority and/or quantum value of a thread with callback
1781  */
1782 int
1783 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1784 {
1785 	fxproc_t	*fxpp;
1786 
1787 	if (!FX_ISVALID(pri, quantum))
1788 		return (EINVAL);
1789 
1790 	if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1791 		/*
1792 		 * either thread had exited or did not have a registered
1793 		 * callback;
1794 		 */
1795 		return (ESRCH);
1796 	}
1797 
1798 	thread_lock(fxpp->fx_tp);
1799 
1800 	if (pri != FX_CB_NOCHANGE) {
1801 		fxpp->fx_pri = pri;
1802 		FX_ADJUST_PRI(fxpp->fx_pri);
1803 		if (quantum == FX_TQDEF) {
1804 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1805 		} else if (quantum == FX_TQINF) {
1806 			fxpp->fx_pquantum = FX_TQINF;
1807 		} else if (quantum != FX_NOCHANGE) {
1808 			FX_ADJUST_QUANTUM(quantum);
1809 			fxpp->fx_pquantum = quantum;
1810 		}
1811 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1812 		if (quantum == FX_TQINF) {
1813 			fxpp->fx_pquantum = FX_TQINF;
1814 		} else {
1815 			FX_ADJUST_QUANTUM(quantum);
1816 			fxpp->fx_pquantum = quantum;
1817 		}
1818 	}
1819 
1820 	fx_change_priority(fxpp->fx_tp, fxpp);
1821 
1822 	thread_unlock(fxpp->fx_tp);
1823 	fx_list_release(fxpp);
1824 	return (0);
1825 }
1826 
1827 
1828 /*
1829  * return an iblock cookie for mutex initialization to be used in callbacks
1830  */
1831 void *
1832 fx_get_mutex_cookie()
1833 {
1834 	return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1835 }
1836 
1837 /*
1838  * return maximum relative priority
1839  */
1840 pri_t
1841 fx_get_maxpri()
1842 {
1843 	return (fx_maxumdpri);
1844 }
1845