xref: /illumos-gate/usr/src/uts/common/disp/fx.c (revision 03100a6332bd4edc7a53091fcf7c9a7131bcdaa7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/cred.h>
32 #include <sys/proc.h>
33 #include <sys/session.h>
34 #include <sys/strsubr.h>
35 #include <sys/user.h>
36 #include <sys/priocntl.h>
37 #include <sys/class.h>
38 #include <sys/disp.h>
39 #include <sys/procset.h>
40 #include <sys/debug.h>
41 #include <sys/kmem.h>
42 #include <sys/errno.h>
43 #include <sys/fx.h>
44 #include <sys/fxpriocntl.h>
45 #include <sys/cpuvar.h>
46 #include <sys/systm.h>
47 #include <sys/vtrace.h>
48 #include <sys/schedctl.h>
49 #include <sys/tnf_probe.h>
50 #include <sys/sunddi.h>
51 #include <sys/spl.h>
52 #include <sys/modctl.h>
53 #include <sys/policy.h>
54 #include <sys/sdt.h>
55 #include <sys/cpupart.h>
56 #include <sys/cpucaps.h>
57 
58 static pri_t fx_init(id_t, int, classfuncs_t **);
59 
60 static struct sclass csw = {
61 	"FX",
62 	fx_init,
63 	0
64 };
65 
66 static struct modlsched modlsched = {
67 	&mod_schedops, "Fixed priority sched class", &csw
68 };
69 
70 static struct modlinkage modlinkage = {
71 	MODREV_1, (void *)&modlsched, NULL
72 };
73 
74 
75 /*
76  * control flags (kparms->fx_cflags).
77  */
78 #define	FX_DOUPRILIM	0x01    /* change user priority limit */
79 #define	FX_DOUPRI	0x02    /* change user priority */
80 #define	FX_DOTQ		0x04    /* change FX time quantum */
81 
82 
83 #define	FXMAXUPRI 60		/* maximum user priority setting */
84 
85 #define	FX_MAX_UNPRIV_PRI	0	/* maximum unpriviledge priority */
86 
87 /*
88  * The fxproc_t structures that have a registered callback vector,
89  * are also kept in an array of circular doubly linked lists. A hash on
90  * the thread id (from ddi_get_kt_did()) is used to determine which list
91  * each of such fxproc structures should be placed. Each list has a dummy
92  * "head" which is never removed, so the list is never empty.
93  */
94 
95 #define	FX_CB_LISTS 16		/* number of lists, must be power of 2 */
96 #define	FX_CB_LIST_HASH(ktid)	((uint_t)ktid & (FX_CB_LISTS - 1))
97 
98 /* Insert fxproc into callback list */
99 #define	FX_CB_LIST_INSERT(fxpp)						\
100 {									\
101 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
102 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
103 	fxproc_t *headp = &fx_cb_plisthead[index];			\
104 	mutex_enter(lockp);						\
105 	fxpp->fx_cb_next = headp->fx_cb_next;				\
106 	fxpp->fx_cb_prev = headp;					\
107 	headp->fx_cb_next->fx_cb_prev = fxpp;				\
108 	headp->fx_cb_next = fxpp;					\
109 	mutex_exit(lockp);						\
110 }
111 
112 /*
113  * Remove thread from callback list.
114  */
115 #define	FX_CB_LIST_DELETE(fxpp)						\
116 {									\
117 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
118 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
119 	mutex_enter(lockp);						\
120 	fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next;		\
121 	fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev;		\
122 	mutex_exit(lockp);						\
123 }
124 
125 #define	FX_HAS_CB(fxpp)	(fxpp->fx_callback != NULL)
126 
127 /* adjust x to be between 0 and fx_maxumdpri */
128 
129 #define	FX_ADJUST_PRI(pri)						\
130 {									\
131 	if (pri < 0)							\
132 		pri = 0;  						\
133 	else if (pri > fx_maxumdpri) 					\
134 		pri = fx_maxumdpri;  					\
135 }
136 
137 #define	FX_ADJUST_QUANTUM(q)						\
138 {									\
139 	if (q > INT_MAX)						\
140 		q = INT_MAX;						\
141 	else if (q <= 0)						\
142 		q = FX_TQINF;						\
143 }
144 
145 #define	FX_ISVALID(pri, quantum) \
146 	(((pri >= 0) || (pri == FX_CB_NOCHANGE)) &&			\
147 	    ((quantum >= 0) || (quantum == FX_NOCHANGE) ||		\
148 		(quantum == FX_TQDEF) || (quantum == FX_TQINF)))
149 
150 
151 static id_t	fx_cid;		/* fixed priority class ID */
152 static fxdpent_t *fx_dptbl;	/* fixed priority disp parameter table */
153 
154 static pri_t	fx_maxupri = FXMAXUPRI;
155 static pri_t	fx_maxumdpri;	/* max user mode fixed priority */
156 
157 static pri_t	fx_maxglobpri;	/* maximum global priority used by fx class */
158 static kmutex_t	fx_dptblock;	/* protects fixed priority dispatch table */
159 
160 
161 static kmutex_t	fx_cb_list_lock[FX_CB_LISTS];	/* protects list of fxprocs */
162 						/* that have callbacks */
163 static fxproc_t	fx_cb_plisthead[FX_CB_LISTS];	/* dummy fxproc at head of */
164 						/* list of fxprocs with */
165 						/* callbacks */
166 
167 static int	fx_admin(caddr_t, cred_t *);
168 static int	fx_getclinfo(void *);
169 static int	fx_parmsin(void *);
170 static int	fx_parmsout(void *, pc_vaparms_t *);
171 static int	fx_vaparmsin(void *, pc_vaparms_t *);
172 static int	fx_vaparmsout(void *, pc_vaparms_t *);
173 static int	fx_getclpri(pcpri_t *);
174 static int	fx_alloc(void **, int);
175 static void	fx_free(void *);
176 static int	fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
177 static void	fx_exitclass(void *);
178 static int	fx_canexit(kthread_t *, cred_t *);
179 static int	fx_fork(kthread_t *, kthread_t *, void *);
180 static void	fx_forkret(kthread_t *, kthread_t *);
181 static void	fx_parmsget(kthread_t *, void *);
182 static int	fx_parmsset(kthread_t *, void *, id_t, cred_t *);
183 static void	fx_stop(kthread_t *, int, int);
184 static void	fx_exit(kthread_t *);
185 static pri_t	fx_swapin(kthread_t *, int);
186 static pri_t	fx_swapout(kthread_t *, int);
187 static void	fx_trapret(kthread_t *);
188 static void	fx_preempt(kthread_t *);
189 static void	fx_setrun(kthread_t *);
190 static void	fx_sleep(kthread_t *);
191 static void	fx_tick(kthread_t *);
192 static void	fx_wakeup(kthread_t *);
193 static int	fx_donice(kthread_t *, cred_t *, int, int *);
194 static pri_t	fx_globpri(kthread_t *);
195 static void	fx_yield(kthread_t *);
196 static void	fx_nullsys();
197 
198 extern fxdpent_t *fx_getdptbl(void);
199 
200 static void	fx_change_priority(kthread_t *, fxproc_t *);
201 static fxproc_t *fx_list_lookup(kt_did_t);
202 static void fx_list_release(fxproc_t *);
203 
204 
205 static struct classfuncs fx_classfuncs = {
206 	/* class functions */
207 	fx_admin,
208 	fx_getclinfo,
209 	fx_parmsin,
210 	fx_parmsout,
211 	fx_vaparmsin,
212 	fx_vaparmsout,
213 	fx_getclpri,
214 	fx_alloc,
215 	fx_free,
216 
217 	/* thread functions */
218 	fx_enterclass,
219 	fx_exitclass,
220 	fx_canexit,
221 	fx_fork,
222 	fx_forkret,
223 	fx_parmsget,
224 	fx_parmsset,
225 	fx_stop,
226 	fx_exit,
227 	fx_nullsys,	/* active */
228 	fx_nullsys,	/* inactive */
229 	fx_swapin,
230 	fx_swapout,
231 	fx_trapret,
232 	fx_preempt,
233 	fx_setrun,
234 	fx_sleep,
235 	fx_tick,
236 	fx_wakeup,
237 	fx_donice,
238 	fx_globpri,
239 	fx_nullsys,	/* set_process_group */
240 	fx_yield,
241 };
242 
243 
244 int
245 _init()
246 {
247 	return (mod_install(&modlinkage));
248 }
249 
250 int
251 _fini()
252 {
253 	return (EBUSY);
254 }
255 
256 int
257 _info(struct modinfo *modinfop)
258 {
259 	return (mod_info(&modlinkage, modinfop));
260 }
261 
262 /*
263  * Fixed priority class initialization. Called by dispinit() at boot time.
264  * We can ignore the clparmsz argument since we know that the smallest
265  * possible parameter buffer is big enough for us.
266  */
267 /* ARGSUSED */
268 static pri_t
269 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
270 {
271 	int i;
272 	extern pri_t fx_getmaxumdpri(void);
273 
274 	fx_dptbl = fx_getdptbl();
275 	fx_maxumdpri = fx_getmaxumdpri();
276 	fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
277 
278 	fx_cid = cid;		/* Record our class ID */
279 
280 	/*
281 	 * Initialize the hash table for fxprocs with callbacks
282 	 */
283 	for (i = 0; i < FX_CB_LISTS; i++) {
284 		fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
285 			&fx_cb_plisthead[i];
286 	}
287 
288 	/*
289 	 * We're required to return a pointer to our classfuncs
290 	 * structure and the highest global priority value we use.
291 	 */
292 	*clfuncspp = &fx_classfuncs;
293 	return (fx_maxglobpri);
294 }
295 
296 /*
297  * Get or reset the fx_dptbl values per the user's request.
298  */
299 static int
300 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
301 {
302 	fxadmin_t	fxadmin;
303 	fxdpent_t	*tmpdpp;
304 	int		userdpsz;
305 	int		i;
306 	size_t		fxdpsz;
307 
308 	if (get_udatamodel() == DATAMODEL_NATIVE) {
309 		if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
310 			return (EFAULT);
311 	}
312 #ifdef _SYSCALL32_IMPL
313 	else {
314 		/* get fxadmin struct from ILP32 caller */
315 		fxadmin32_t fxadmin32;
316 		if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
317 			return (EFAULT);
318 		fxadmin.fx_dpents =
319 		    (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
320 		fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
321 		fxadmin.fx_cmd = fxadmin32.fx_cmd;
322 	}
323 #endif /* _SYSCALL32_IMPL */
324 
325 	fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
326 
327 	switch (fxadmin.fx_cmd) {
328 	case FX_GETDPSIZE:
329 		fxadmin.fx_ndpents = fx_maxumdpri + 1;
330 
331 		if (get_udatamodel() == DATAMODEL_NATIVE) {
332 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
333 				return (EFAULT);
334 		}
335 #ifdef _SYSCALL32_IMPL
336 		else {
337 			/* return fxadmin struct to ILP32 caller */
338 			fxadmin32_t fxadmin32;
339 			fxadmin32.fx_dpents =
340 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
341 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
342 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
343 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
344 				return (EFAULT);
345 		}
346 #endif /* _SYSCALL32_IMPL */
347 		break;
348 
349 	case FX_GETDPTBL:
350 		userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
351 		    fxdpsz);
352 		if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
353 			return (EFAULT);
354 
355 		fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
356 
357 		if (get_udatamodel() == DATAMODEL_NATIVE) {
358 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
359 				return (EFAULT);
360 		}
361 #ifdef _SYSCALL32_IMPL
362 		else {
363 			/* return fxadmin struct to ILP32 callers */
364 			fxadmin32_t fxadmin32;
365 			fxadmin32.fx_dpents =
366 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
367 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
368 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
369 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
370 				return (EFAULT);
371 		}
372 #endif /* _SYSCALL32_IMPL */
373 		break;
374 
375 	case FX_SETDPTBL:
376 		/*
377 		 * We require that the requesting process has sufficient
378 		 * privileges. We also require that the table supplied by
379 		 * the user exactly match the current fx_dptbl in size.
380 		 */
381 		if (secpolicy_dispadm(reqpcredp) != 0) {
382 			return (EPERM);
383 		}
384 		if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
385 			return (EINVAL);
386 		}
387 
388 		/*
389 		 * We read the user supplied table into a temporary buffer
390 		 * where it is validated before being copied over the
391 		 * fx_dptbl.
392 		 */
393 		tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
394 		if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
395 			kmem_free(tmpdpp, fxdpsz);
396 			return (EFAULT);
397 		}
398 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
399 
400 			/*
401 			 * Validate the user supplied values. All we are doing
402 			 * here is verifying that the values are within their
403 			 * allowable ranges and will not panic the system. We
404 			 * make no attempt to ensure that the resulting
405 			 * configuration makes sense or results in reasonable
406 			 * performance.
407 			 */
408 			if (tmpdpp[i].fx_quantum <= 0 &&
409 			    tmpdpp[i].fx_quantum != FX_TQINF) {
410 				kmem_free(tmpdpp, fxdpsz);
411 				return (EINVAL);
412 			}
413 		}
414 
415 		/*
416 		 * Copy the user supplied values over the current fx_dptbl
417 		 * values. The fx_globpri member is read-only so we don't
418 		 * overwrite it.
419 		 */
420 		mutex_enter(&fx_dptblock);
421 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
422 			fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
423 		}
424 		mutex_exit(&fx_dptblock);
425 		kmem_free(tmpdpp, fxdpsz);
426 		break;
427 
428 	default:
429 		return (EINVAL);
430 	}
431 	return (0);
432 }
433 
434 /*
435  * Allocate a fixed priority class specific thread structure and
436  * initialize it with the parameters supplied. Also move the thread
437  * to specified priority.
438  */
439 static int
440 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
441     void *bufp)
442 {
443 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
444 	fxproc_t	*fxpp;
445 	pri_t		reqfxupri;
446 	pri_t		reqfxuprilim;
447 
448 	fxpp = (fxproc_t *)bufp;
449 	ASSERT(fxpp != NULL);
450 
451 	/*
452 	 * Initialize the fxproc structure.
453 	 */
454 	fxpp->fx_flags = 0;
455 	fxpp->fx_callback = NULL;
456 	fxpp->fx_cookie = NULL;
457 
458 	if (fxkparmsp == NULL) {
459 		/*
460 		 * Use default values.
461 		 */
462 		fxpp->fx_pri = fxpp->fx_uprilim = 0;
463 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
464 		fxpp->fx_nice =  NZERO;
465 	} else {
466 		/*
467 		 * Use supplied values.
468 		 */
469 
470 		if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
471 			reqfxuprilim = 0;
472 		} else {
473 			if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
474 			    secpolicy_setpriority(reqpcredp) != 0)
475 				return (EPERM);
476 			reqfxuprilim = fxkparmsp->fx_uprilim;
477 			FX_ADJUST_PRI(reqfxuprilim);
478 		}
479 
480 		if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
481 			reqfxupri = reqfxuprilim;
482 		} else {
483 			if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
484 			    secpolicy_setpriority(reqpcredp) != 0)
485 				return (EPERM);
486 			/*
487 			 * Set the user priority to the requested value
488 			 * or the upri limit, whichever is lower.
489 			 */
490 			reqfxupri = fxkparmsp->fx_upri;
491 			FX_ADJUST_PRI(reqfxupri);
492 
493 			if (reqfxupri > reqfxuprilim)
494 				reqfxupri = reqfxuprilim;
495 		}
496 
497 
498 		fxpp->fx_uprilim = reqfxuprilim;
499 		fxpp->fx_pri = reqfxupri;
500 
501 		fxpp->fx_nice = NZERO - (NZERO * reqfxupri)
502 			/ fx_maxupri;
503 
504 		if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
505 		    (fxkparmsp->fx_tqntm == FX_TQDEF)) {
506 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
507 		} else {
508 			if (secpolicy_setpriority(reqpcredp) != 0)
509 				return (EPERM);
510 
511 			if (fxkparmsp->fx_tqntm == FX_TQINF)
512 				fxpp->fx_pquantum = FX_TQINF;
513 			else {
514 				fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
515 			}
516 		}
517 
518 	}
519 
520 	fxpp->fx_timeleft = fxpp->fx_pquantum;
521 	cpucaps_sc_init(&fxpp->fx_caps);
522 	fxpp->fx_tp = t;
523 
524 	thread_lock(t);			/* get dispatcher lock on thread */
525 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
526 	t->t_cid = cid;
527 	t->t_cldata = (void *)fxpp;
528 	t->t_schedflag &= ~TS_RUNQMATCH;
529 	fx_change_priority(t, fxpp);
530 	thread_unlock(t);
531 
532 	return (0);
533 }
534 
535 /*
536  * The thread is exiting.
537  */
538 static void
539 fx_exit(kthread_t *t)
540 {
541 	fxproc_t *fxpp;
542 
543 	thread_lock(t);
544 	fxpp = (fxproc_t *)(t->t_cldata);
545 
546 	/*
547 	 * A thread could be exiting in between clock ticks, so we need to
548 	 * calculate how much CPU time it used since it was charged last time.
549 	 *
550 	 * CPU caps are not enforced on exiting processes - it is usually
551 	 * desirable to exit as soon as possible to free resources.
552 	 */
553 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
554 
555 	if (FX_HAS_CB(fxpp)) {
556 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
557 		fxpp->fx_callback = NULL;
558 		fxpp->fx_cookie = NULL;
559 		thread_unlock(t);
560 		FX_CB_LIST_DELETE(fxpp);
561 		return;
562 	}
563 
564 	thread_unlock(t);
565 }
566 
567 /*
568  * Exiting the class. Free fxproc structure of thread.
569  */
570 static void
571 fx_exitclass(void *procp)
572 {
573 	fxproc_t *fxpp = (fxproc_t *)procp;
574 
575 	thread_lock(fxpp->fx_tp);
576 	if (FX_HAS_CB(fxpp)) {
577 
578 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
579 
580 		fxpp->fx_callback = NULL;
581 		fxpp->fx_cookie = NULL;
582 		thread_unlock(fxpp->fx_tp);
583 		FX_CB_LIST_DELETE(fxpp);
584 	} else
585 		thread_unlock(fxpp->fx_tp);
586 
587 	kmem_free(fxpp, sizeof (fxproc_t));
588 }
589 
590 /* ARGSUSED */
591 static int
592 fx_canexit(kthread_t *t, cred_t *cred)
593 {
594 	/*
595 	 * A thread can always leave the FX class
596 	 */
597 	return (0);
598 }
599 
600 /*
601  * Initialize fixed-priority class specific proc structure for a child.
602  * callbacks are not inherited upon fork.
603  */
604 static int
605 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
606 {
607 	fxproc_t	*pfxpp;		/* ptr to parent's fxproc structure */
608 	fxproc_t	*cfxpp;		/* ptr to child's fxproc structure */
609 
610 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
611 
612 	cfxpp = (fxproc_t *)bufp;
613 	ASSERT(cfxpp != NULL);
614 	thread_lock(t);
615 	pfxpp = (fxproc_t *)t->t_cldata;
616 	/*
617 	 * Initialize child's fxproc structure.
618 	 */
619 	cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
620 	cfxpp->fx_pri = pfxpp->fx_pri;
621 	cfxpp->fx_uprilim = pfxpp->fx_uprilim;
622 	cfxpp->fx_nice = pfxpp->fx_nice;
623 	cfxpp->fx_callback = NULL;
624 	cfxpp->fx_cookie = NULL;
625 	cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
626 	cpucaps_sc_init(&cfxpp->fx_caps);
627 
628 	cfxpp->fx_tp = ct;
629 	ct->t_cldata = (void *)cfxpp;
630 	thread_unlock(t);
631 
632 	/*
633 	 * Link new structure into fxproc list.
634 	 */
635 	return (0);
636 }
637 
638 
639 /*
640  * Child is placed at back of dispatcher queue and parent gives
641  * up processor so that the child runs first after the fork.
642  * This allows the child immediately execing to break the multiple
643  * use of copy on write pages with no disk home. The parent will
644  * get to steal them back rather than uselessly copying them.
645  */
646 static void
647 fx_forkret(kthread_t *t, kthread_t *ct)
648 {
649 	proc_t	*pp = ttoproc(t);
650 	proc_t	*cp = ttoproc(ct);
651 	fxproc_t *fxpp;
652 
653 	ASSERT(t == curthread);
654 	ASSERT(MUTEX_HELD(&pidlock));
655 
656 	/*
657 	 * Grab the child's p_lock before dropping pidlock to ensure
658 	 * the process does not disappear before we set it running.
659 	 */
660 	mutex_enter(&cp->p_lock);
661 	mutex_exit(&pidlock);
662 	continuelwps(cp);
663 	mutex_exit(&cp->p_lock);
664 
665 	mutex_enter(&pp->p_lock);
666 	continuelwps(pp);
667 	mutex_exit(&pp->p_lock);
668 
669 	thread_lock(t);
670 	fxpp = (fxproc_t *)(t->t_cldata);
671 	t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
672 	ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
673 	THREAD_TRANSITION(t);
674 	fx_setrun(t);
675 	thread_unlock(t);
676 
677 	swtch();
678 }
679 
680 
681 /*
682  * Get information about the fixed-priority class into the buffer
683  * pointed to by fxinfop. The maximum configured user priority
684  * is the only information we supply.
685  */
686 static int
687 fx_getclinfo(void *infop)
688 {
689 	fxinfo_t *fxinfop = (fxinfo_t *)infop;
690 	fxinfop->fx_maxupri = fx_maxupri;
691 	return (0);
692 }
693 
694 
695 
696 /*
697  * Return the global scheduling priority ranges for the fixed-priority
698  * class in pcpri_t structure.
699  */
700 static int
701 fx_getclpri(pcpri_t *pcprip)
702 {
703 	pcprip->pc_clpmax = fx_dptbl[fx_maxumdpri].fx_globpri;
704 	pcprip->pc_clpmin = fx_dptbl[0].fx_globpri;
705 	return (0);
706 }
707 
708 
709 static void
710 fx_nullsys()
711 {}
712 
713 
714 /*
715  * Get the fixed-priority parameters of the thread pointed to by
716  * fxprocp into the buffer pointed to by fxparmsp.
717  */
718 static void
719 fx_parmsget(kthread_t *t, void *parmsp)
720 {
721 	fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
722 	fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
723 
724 	fxkparmsp->fx_upri = fxpp->fx_pri;
725 	fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
726 	fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
727 }
728 
729 
730 
731 /*
732  * Check the validity of the fixed-priority parameters in the buffer
733  * pointed to by fxparmsp.
734  */
735 static int
736 fx_parmsin(void *parmsp)
737 {
738 	fxparms_t	*fxparmsp = (fxparms_t *)parmsp;
739 	uint_t		cflags;
740 	longlong_t	ticks;
741 	/*
742 	 * Check validity of parameters.
743 	 */
744 
745 	if ((fxparmsp->fx_uprilim > fx_maxupri ||
746 	    fxparmsp->fx_uprilim < 0) &&
747 	    fxparmsp->fx_uprilim != FX_NOCHANGE)
748 		return (EINVAL);
749 
750 	if ((fxparmsp->fx_upri > fx_maxupri ||
751 	    fxparmsp->fx_upri < 0) &&
752 	    fxparmsp->fx_upri != FX_NOCHANGE)
753 		return (EINVAL);
754 
755 	if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
756 		fxparmsp->fx_tqnsecs >= NANOSEC)
757 		return (EINVAL);
758 
759 	cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
760 
761 	if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
762 		cflags |= FX_DOUPRILIM;
763 	}
764 
765 	if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
766 		cflags |= FX_DOTQ;
767 
768 	/*
769 	 * convert the buffer to kernel format.
770 	 */
771 
772 	if (fxparmsp->fx_tqnsecs >= 0) {
773 		if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
774 		    NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
775 			return (ERANGE);
776 
777 		((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
778 	} else {
779 		if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
780 		    (fxparmsp->fx_tqnsecs != FX_TQINF) &&
781 		    (fxparmsp->fx_tqnsecs != FX_TQDEF))
782 			return (EINVAL);
783 		((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
784 	}
785 
786 	((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
787 
788 	return (0);
789 }
790 
791 
792 /*
793  * Check the validity of the fixed-priority parameters in the pc_vaparms_t
794  * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
795  * pc_vaparms_t contains (key, value) pairs of parameter.
796  */
797 static int
798 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
799 {
800 	uint_t		secs = 0;
801 	uint_t		cnt;
802 	int		nsecs = 0;
803 	int		priflag, secflag, nsecflag, limflag;
804 	longlong_t	ticks;
805 	fxkparms_t	*fxprmsp = (fxkparms_t *)prmsp;
806 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
807 
808 
809 	/*
810 	 * First check the validity of parameters and convert them
811 	 * from the user supplied format to the internal format.
812 	 */
813 	priflag = secflag = nsecflag = limflag = 0;
814 
815 	fxprmsp->fx_cflags = 0;
816 
817 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
818 		return (EINVAL);
819 
820 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
821 
822 		switch (vpp->pc_key) {
823 		case FX_KY_UPRILIM:
824 			if (limflag++)
825 				return (EINVAL);
826 			fxprmsp->fx_cflags |= FX_DOUPRILIM;
827 			fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
828 			if (fxprmsp->fx_uprilim > fx_maxupri ||
829 			    fxprmsp->fx_uprilim < 0)
830 				return (EINVAL);
831 			break;
832 
833 		case FX_KY_UPRI:
834 			if (priflag++)
835 				return (EINVAL);
836 			fxprmsp->fx_cflags |= FX_DOUPRI;
837 			fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
838 			if (fxprmsp->fx_upri > fx_maxupri ||
839 			    fxprmsp->fx_upri < 0)
840 				return (EINVAL);
841 			break;
842 
843 		case FX_KY_TQSECS:
844 			if (secflag++)
845 				return (EINVAL);
846 			fxprmsp->fx_cflags |= FX_DOTQ;
847 			secs = (uint_t)vpp->pc_parm;
848 			break;
849 
850 		case FX_KY_TQNSECS:
851 			if (nsecflag++)
852 				return (EINVAL);
853 			fxprmsp->fx_cflags |= FX_DOTQ;
854 			nsecs = (int)vpp->pc_parm;
855 			break;
856 
857 		default:
858 			return (EINVAL);
859 		}
860 	}
861 
862 	if (vaparmsp->pc_vaparmscnt == 0) {
863 		/*
864 		 * Use default parameters.
865 		 */
866 		fxprmsp->fx_upri = 0;
867 		fxprmsp->fx_uprilim = 0;
868 		fxprmsp->fx_tqntm = FX_TQDEF;
869 		fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
870 	} else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
871 		if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
872 			return (EINVAL);
873 
874 		if (nsecs >= 0) {
875 			if ((ticks = SEC_TO_TICK((longlong_t)secs) +
876 			    NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
877 				return (ERANGE);
878 
879 			fxprmsp->fx_tqntm = (int)ticks;
880 		} else {
881 			if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
882 				return (EINVAL);
883 			fxprmsp->fx_tqntm = nsecs;
884 		}
885 	}
886 
887 	return (0);
888 }
889 
890 
891 /*
892  * Nothing to do here but return success.
893  */
894 /* ARGSUSED */
895 static int
896 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
897 {
898 	register fxkparms_t	*fxkprmsp = (fxkparms_t *)parmsp;
899 
900 	if (vaparmsp != NULL)
901 		return (0);
902 
903 	if (fxkprmsp->fx_tqntm < 0) {
904 		/*
905 		 * Quantum field set to special value (e.g. FX_TQINF)
906 		 */
907 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
908 		((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
909 
910 	} else {
911 		/* Convert quantum from ticks to seconds-nanoseconds */
912 
913 		timestruc_t ts;
914 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
915 		((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
916 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
917 	}
918 
919 	return (0);
920 }
921 
922 
923 /*
924  * Copy all selected fixed-priority class parameters to the user.
925  * The parameters are specified by a key.
926  */
927 static int
928 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
929 {
930 	fxkparms_t	*fxkprmsp = (fxkparms_t *)prmsp;
931 	timestruc_t	ts;
932 	uint_t		cnt;
933 	uint_t		secs;
934 	int		nsecs;
935 	int		priflag, secflag, nsecflag, limflag;
936 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
937 
938 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
939 
940 	priflag = secflag = nsecflag = limflag = 0;
941 
942 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
943 		return (EINVAL);
944 
945 	if (fxkprmsp->fx_tqntm < 0) {
946 		/*
947 		 * Quantum field set to special value (e.g. FX_TQINF).
948 		 */
949 		secs = 0;
950 		nsecs = fxkprmsp->fx_tqntm;
951 	} else {
952 		/*
953 		 * Convert quantum from ticks to seconds-nanoseconds.
954 		 */
955 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
956 		secs = ts.tv_sec;
957 		nsecs = ts.tv_nsec;
958 	}
959 
960 
961 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
962 
963 		switch (vpp->pc_key) {
964 		case FX_KY_UPRILIM:
965 			if (limflag++)
966 				return (EINVAL);
967 			if (copyout(&fxkprmsp->fx_uprilim,
968 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
969 				return (EFAULT);
970 			break;
971 
972 		case FX_KY_UPRI:
973 			if (priflag++)
974 				return (EINVAL);
975 			if (copyout(&fxkprmsp->fx_upri,
976 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
977 				return (EFAULT);
978 			break;
979 
980 		case FX_KY_TQSECS:
981 			if (secflag++)
982 				return (EINVAL);
983 			if (copyout(&secs,
984 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
985 				return (EFAULT);
986 			break;
987 
988 		case FX_KY_TQNSECS:
989 			if (nsecflag++)
990 				return (EINVAL);
991 			if (copyout(&nsecs,
992 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
993 				return (EFAULT);
994 			break;
995 
996 		default:
997 			return (EINVAL);
998 		}
999 	}
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Set the scheduling parameters of the thread pointed to by fxprocp
1006  * to those specified in the buffer pointed to by fxparmsp.
1007  */
1008 /* ARGSUSED */
1009 static int
1010 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1011 {
1012 	char		nice;
1013 	pri_t		reqfxuprilim;
1014 	pri_t		reqfxupri;
1015 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
1016 	fxproc_t	*fxpp;
1017 
1018 
1019 	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1020 
1021 	thread_lock(tx);
1022 	fxpp = (fxproc_t *)tx->t_cldata;
1023 
1024 	if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1025 		reqfxuprilim = fxpp->fx_uprilim;
1026 	else
1027 		reqfxuprilim = fxkparmsp->fx_uprilim;
1028 
1029 	/*
1030 	 * Basic permissions enforced by generic kernel code
1031 	 * for all classes require that a thread attempting
1032 	 * to change the scheduling parameters of a target
1033 	 * thread be privileged or have a real or effective
1034 	 * UID matching that of the target thread. We are not
1035 	 * called unless these basic permission checks have
1036 	 * already passed. The fixed priority class requires in
1037 	 * addition that the calling thread be privileged if it
1038 	 * is attempting to raise the pri above its current
1039 	 * value This may have been checked previously but if our
1040 	 * caller passed us a non-NULL credential pointer we assume
1041 	 * it hasn't and we check it here.
1042 	 */
1043 
1044 	if ((reqpcredp != NULL) &&
1045 	    (reqfxuprilim > fxpp->fx_uprilim ||
1046 	    ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1047 	    secpolicy_setpriority(reqpcredp) != 0) {
1048 		thread_unlock(tx);
1049 		return (EPERM);
1050 	}
1051 
1052 	FX_ADJUST_PRI(reqfxuprilim);
1053 
1054 	if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1055 		reqfxupri = fxpp->fx_pri;
1056 	else
1057 		reqfxupri = fxkparmsp->fx_upri;
1058 
1059 
1060 	/*
1061 	 * Make sure the user priority doesn't exceed the upri limit.
1062 	 */
1063 	if (reqfxupri > reqfxuprilim)
1064 		reqfxupri = reqfxuprilim;
1065 
1066 	/*
1067 	 * Set fx_nice to the nice value corresponding to the user
1068 	 * priority we are setting.  Note that setting the nice field
1069 	 * of the parameter struct won't affect upri or nice.
1070 	 */
1071 
1072 	nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1073 
1074 	if (nice > NZERO)
1075 		nice = NZERO;
1076 
1077 	fxpp->fx_uprilim = reqfxuprilim;
1078 	fxpp->fx_pri = reqfxupri;
1079 
1080 	if (fxkparmsp->fx_tqntm == FX_TQINF)
1081 		fxpp->fx_pquantum = FX_TQINF;
1082 	else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1083 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1084 	else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1085 		fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1086 
1087 	fxpp->fx_nice = nice;
1088 
1089 	fx_change_priority(tx, fxpp);
1090 	thread_unlock(tx);
1091 	return (0);
1092 }
1093 
1094 
1095 /*
1096  * Return the global scheduling priority that would be assigned
1097  * to a thread entering the fixed-priority class with the fx_upri.
1098  */
1099 static pri_t
1100 fx_globpri(kthread_t *t)
1101 {
1102 	fxproc_t *fxpp;
1103 
1104 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1105 
1106 	fxpp = (fxproc_t *)t->t_cldata;
1107 	return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1108 
1109 }
1110 
1111 /*
1112  * Arrange for thread to be placed in appropriate location
1113  * on dispatcher queue.
1114  *
1115  * This is called with the current thread in TS_ONPROC and locked.
1116  */
1117 static void
1118 fx_preempt(kthread_t *t)
1119 {
1120 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1121 
1122 	ASSERT(t == curthread);
1123 	ASSERT(THREAD_LOCK_HELD(curthread));
1124 
1125 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1126 
1127 	/*
1128 	 * Check to see if we're doing "preemption control" here.  If
1129 	 * we are, and if the user has requested that this thread not
1130 	 * be preempted, and if preemptions haven't been put off for
1131 	 * too long, let the preemption happen here but try to make
1132 	 * sure the thread is rescheduled as soon as possible.  We do
1133 	 * this by putting it on the front of the highest priority run
1134 	 * queue in the FX class.  If the preemption has been put off
1135 	 * for too long, clear the "nopreempt" bit and let the thread
1136 	 * be preempted.
1137 	 */
1138 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1139 		if (fxpp->fx_pquantum == FX_TQINF ||
1140 		    fxpp->fx_timeleft > -SC_MAX_TICKS) {
1141 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1142 			schedctl_set_yield(t, 1);
1143 			setfrontdq(t);
1144 			return;
1145 		} else {
1146 			schedctl_set_nopreempt(t, 0);
1147 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1148 			TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
1149 			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1150 			    tnf_lwpid, lwpid, t->t_tid);
1151 			/*
1152 			 * Fall through and be preempted below.
1153 			 */
1154 		}
1155 	}
1156 
1157 	if (FX_HAS_CB(fxpp)) {
1158 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1159 		pri_t	newpri = fxpp->fx_pri;
1160 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1161 			&new_quantum, &newpri);
1162 		FX_ADJUST_QUANTUM(new_quantum);
1163 		if ((int)new_quantum != fxpp->fx_pquantum) {
1164 			fxpp->fx_pquantum = (int)new_quantum;
1165 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1166 		}
1167 		FX_ADJUST_PRI(newpri);
1168 		fxpp->fx_pri = newpri;
1169 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1170 	}
1171 
1172 	/*
1173 	 * This thread may be placed on wait queue by CPU Caps. In this case we
1174 	 * do not need to do anything until it is removed from the wait queue.
1175 	 */
1176 	if (CPUCAPS_ENFORCE(t)) {
1177 		return;
1178 	}
1179 
1180 	if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1181 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1182 		fxpp->fx_flags &= ~FXBACKQ;
1183 		setbackdq(t);
1184 	} else {
1185 		setfrontdq(t);
1186 	}
1187 }
1188 
1189 static void
1190 fx_setrun(kthread_t *t)
1191 {
1192 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1193 
1194 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1195 	fxpp->fx_flags &= ~FXBACKQ;
1196 
1197 	if (t->t_disp_time != lbolt)
1198 		setbackdq(t);
1199 	else
1200 		setfrontdq(t);
1201 }
1202 
1203 
1204 /*
1205  * Prepare thread for sleep. We reset the thread priority so it will
1206  * run at the kernel priority level when it wakes up.
1207  */
1208 static void
1209 fx_sleep(kthread_t *t)
1210 {
1211 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1212 
1213 	ASSERT(t == curthread);
1214 	ASSERT(THREAD_LOCK_HELD(t));
1215 
1216 	/*
1217 	 * Account for time spent on CPU before going to sleep.
1218 	 */
1219 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1220 
1221 	if (FX_HAS_CB(fxpp)) {
1222 		FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1223 	}
1224 	t->t_stime = lbolt;		/* time stamp for the swapper */
1225 }
1226 
1227 
1228 /*
1229  * Return Values:
1230  *
1231  *	-1 if the thread is loaded or is not eligible to be swapped in.
1232  *
1233  * FX and RT threads are designed so that they don't swapout; however,
1234  * it is possible that while the thread is swapped out and in another class, it
1235  * can be changed to FX or RT.  Since these threads should be swapped in
1236  * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1237  * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1238  * RT threads.
1239  */
1240 /* ARGSUSED */
1241 static pri_t
1242 fx_swapin(kthread_t *t, int flags)
1243 {
1244 	pri_t	tpri = -1;
1245 
1246 	ASSERT(THREAD_LOCK_HELD(t));
1247 
1248 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1249 		tpri = (pri_t)SHRT_MAX - 1;
1250 	}
1251 
1252 	return (tpri);
1253 }
1254 
1255 /*
1256  * Return Values
1257  *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1258  */
1259 /* ARGSUSED */
1260 static pri_t
1261 fx_swapout(kthread_t *t, int flags)
1262 {
1263 	ASSERT(THREAD_LOCK_HELD(t));
1264 
1265 	return (-1);
1266 
1267 }
1268 
1269 /* ARGSUSED */
1270 static void
1271 fx_stop(kthread_t *t, int why, int what)
1272 {
1273 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1274 
1275 	ASSERT(THREAD_LOCK_HELD(t));
1276 
1277 	if (FX_HAS_CB(fxpp)) {
1278 		FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1279 	}
1280 }
1281 
1282 /*
1283  * Check for time slice expiration.  If time slice has expired
1284  * set runrun to cause preemption.
1285  */
1286 static void
1287 fx_tick(kthread_t *t)
1288 {
1289 	boolean_t call_cpu_surrender = B_FALSE;
1290 	fxproc_t *fxpp;
1291 
1292 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1293 
1294 	thread_lock(t);
1295 
1296 	fxpp = (fxproc_t *)(t->t_cldata);
1297 
1298 	if (FX_HAS_CB(fxpp)) {
1299 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1300 		pri_t	newpri = fxpp->fx_pri;
1301 		FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1302 			&new_quantum, &newpri);
1303 		FX_ADJUST_QUANTUM(new_quantum);
1304 		if ((int)new_quantum != fxpp->fx_pquantum) {
1305 			fxpp->fx_pquantum = (int)new_quantum;
1306 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1307 		}
1308 		FX_ADJUST_PRI(newpri);
1309 		if (newpri != fxpp->fx_pri) {
1310 			fxpp->fx_pri = newpri;
1311 			fx_change_priority(t, fxpp);
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * Keep track of thread's project CPU usage.  Note that projects
1317 	 * get charged even when threads are running in the kernel.
1318 	 */
1319 	call_cpu_surrender =  CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1320 	    CPUCAPS_CHARGE_ENFORCE);
1321 
1322 	if ((fxpp->fx_pquantum != FX_TQINF) &&
1323 	    (--fxpp->fx_timeleft <= 0)) {
1324 		pri_t	new_pri;
1325 
1326 		/*
1327 		 * If we're doing preemption control and trying to
1328 		 * avoid preempting this thread, just note that
1329 		 * the thread should yield soon and let it keep
1330 		 * running (unless it's been a while).
1331 		 */
1332 		if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1333 			if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1334 				DTRACE_SCHED1(schedctl__nopreempt,
1335 				    kthread_t *, t);
1336 				schedctl_set_yield(t, 1);
1337 				thread_unlock_nopreempt(t);
1338 				return;
1339 			}
1340 			TNF_PROBE_2(schedctl_failsafe,
1341 			    "schedctl FX fx_tick", /* CSTYLED */,
1342 			    tnf_pid, pid, ttoproc(t)->p_pid,
1343 			    tnf_lwpid, lwpid, t->t_tid);
1344 		}
1345 		new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1346 		ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1347 		/*
1348 		 * When the priority of a thread is changed,
1349 		 * it may be necessary to adjust its position
1350 		 * on a sleep queue or dispatch queue. Even
1351 		 * when the priority is not changed, we need
1352 		 * to preserve round robin on dispatch queue.
1353 		 * The function thread_change_pri accomplishes
1354 		 * this.
1355 		 */
1356 		if (thread_change_pri(t, new_pri, 0)) {
1357 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1358 		} else {
1359 			call_cpu_surrender = B_TRUE;
1360 		}
1361 	} else if (t->t_state == TS_ONPROC &&
1362 		    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1363 		call_cpu_surrender = B_TRUE;
1364 	}
1365 
1366 	if (call_cpu_surrender) {
1367 		fxpp->fx_flags |= FXBACKQ;
1368 		cpu_surrender(t);
1369 	}
1370 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1371 }
1372 
1373 
1374 static void
1375 fx_trapret(kthread_t *t)
1376 {
1377 	cpu_t		*cp = CPU;
1378 
1379 	ASSERT(THREAD_LOCK_HELD(t));
1380 	ASSERT(t == curthread);
1381 	ASSERT(cp->cpu_dispthread == t);
1382 	ASSERT(t->t_state == TS_ONPROC);
1383 }
1384 
1385 
1386 /*
1387  * Processes waking up go to the back of their queue.
1388  */
1389 static void
1390 fx_wakeup(kthread_t *t)
1391 {
1392 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1393 
1394 	ASSERT(THREAD_LOCK_HELD(t));
1395 
1396 	t->t_stime = lbolt;		/* time stamp for the swapper */
1397 	if (FX_HAS_CB(fxpp)) {
1398 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1399 		pri_t	newpri = fxpp->fx_pri;
1400 		FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1401 			&new_quantum, &newpri);
1402 		FX_ADJUST_QUANTUM(new_quantum);
1403 		if ((int)new_quantum != fxpp->fx_pquantum) {
1404 			fxpp->fx_pquantum = (int)new_quantum;
1405 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1406 		}
1407 
1408 		FX_ADJUST_PRI(newpri);
1409 		if (newpri != fxpp->fx_pri) {
1410 			fxpp->fx_pri = newpri;
1411 			THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1412 		}
1413 	}
1414 
1415 	fxpp->fx_flags &= ~FXBACKQ;
1416 
1417 	if (t->t_disp_time != lbolt)
1418 		setbackdq(t);
1419 	else
1420 		setfrontdq(t);
1421 }
1422 
1423 
1424 /*
1425  * When a thread yields, put it on the back of the run queue.
1426  */
1427 static void
1428 fx_yield(kthread_t *t)
1429 {
1430 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1431 
1432 	ASSERT(t == curthread);
1433 	ASSERT(THREAD_LOCK_HELD(t));
1434 
1435 	/*
1436 	 * Collect CPU usage spent before yielding CPU.
1437 	 */
1438 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1439 
1440 	if (FX_HAS_CB(fxpp))  {
1441 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1442 		pri_t	newpri = fxpp->fx_pri;
1443 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1444 				&new_quantum, &newpri);
1445 		FX_ADJUST_QUANTUM(new_quantum);
1446 		if ((int)new_quantum != fxpp->fx_pquantum) {
1447 			fxpp->fx_pquantum = (int)new_quantum;
1448 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1449 		}
1450 		FX_ADJUST_PRI(newpri);
1451 		fxpp->fx_pri = newpri;
1452 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1453 	}
1454 
1455 	/*
1456 	 * Clear the preemption control "yield" bit since the user is
1457 	 * doing a yield.
1458 	 */
1459 	if (t->t_schedctl)
1460 		schedctl_set_yield(t, 0);
1461 
1462 	if (fxpp->fx_timeleft <= 0) {
1463 		/*
1464 		 * Time slice was artificially extended to avoid
1465 		 * preemption, so pretend we're preempting it now.
1466 		 */
1467 		DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1468 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1469 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1470 		ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1471 	}
1472 
1473 	fxpp->fx_flags &= ~FXBACKQ;
1474 	setbackdq(t);
1475 }
1476 
1477 
1478 /*
1479  * Increment the nice value of the specified thread by incr and
1480  * return the new value in *retvalp.
1481  */
1482 static int
1483 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1484 {
1485 	int		newnice;
1486 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1487 	fxkparms_t	fxkparms;
1488 
1489 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1490 
1491 	/* If there's no change to priority, just return current setting */
1492 	if (incr == 0) {
1493 		if (retvalp) {
1494 			*retvalp = fxpp->fx_nice - NZERO;
1495 		}
1496 		return (0);
1497 	}
1498 
1499 	if ((incr < 0 || incr > 2 * NZERO) &&
1500 	    secpolicy_setpriority(cr) != 0)
1501 		return (EPERM);
1502 
1503 	/*
1504 	 * Specifying a nice increment greater than the upper limit of
1505 	 * 2 * NZERO - 1 will result in the thread's nice value being
1506 	 * set to the upper limit.  We check for this before computing
1507 	 * the new value because otherwise we could get overflow
1508 	 * if a privileged user specified some ridiculous increment.
1509 	 */
1510 	if (incr > 2 * NZERO - 1)
1511 		incr = 2 * NZERO - 1;
1512 
1513 	newnice = fxpp->fx_nice + incr;
1514 	if (newnice > NZERO)
1515 		newnice = NZERO;
1516 	else if (newnice < 0)
1517 		newnice = 0;
1518 
1519 	fxkparms.fx_uprilim = fxkparms.fx_upri =
1520 		-((newnice - NZERO) * fx_maxupri) / NZERO;
1521 
1522 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1523 
1524 	fxkparms.fx_tqntm = FX_TQDEF;
1525 
1526 	/*
1527 	 * Reset the uprilim and upri values of the thread. Adjust
1528 	 * time quantum accordingly.
1529 	 */
1530 
1531 	(void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1532 
1533 	/*
1534 	 * Although fx_parmsset already reset fx_nice it may
1535 	 * not have been set to precisely the value calculated above
1536 	 * because fx_parmsset determines the nice value from the
1537 	 * user priority and we may have truncated during the integer
1538 	 * conversion from nice value to user priority and back.
1539 	 * We reset fx_nice to the value we calculated above.
1540 	 */
1541 	fxpp->fx_nice = (char)newnice;
1542 
1543 	if (retvalp)
1544 		*retvalp = newnice - NZERO;
1545 
1546 	return (0);
1547 }
1548 
1549 static void
1550 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1551 {
1552 	pri_t	new_pri;
1553 
1554 	ASSERT(THREAD_LOCK_HELD(t));
1555 	new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1556 	ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1557 	if (t == curthread || t->t_state == TS_ONPROC) {
1558 		/* curthread is always onproc */
1559 		cpu_t	*cp = t->t_disp_queue->disp_cpu;
1560 		THREAD_CHANGE_PRI(t, new_pri);
1561 		if (t == cp->cpu_dispthread)
1562 			cp->cpu_dispatch_pri = DISP_PRIO(t);
1563 		if (DISP_MUST_SURRENDER(t)) {
1564 			fxpp->fx_flags |= FXBACKQ;
1565 			cpu_surrender(t);
1566 		} else {
1567 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1568 		}
1569 	} else {
1570 		/*
1571 		 * When the priority of a thread is changed,
1572 		 * it may be necessary to adjust its position
1573 		 * on a sleep queue or dispatch queue.
1574 		 * The function thread_change_pri accomplishes
1575 		 * this.
1576 		 */
1577 		if (thread_change_pri(t, new_pri, 0)) {
1578 			/*
1579 			 * The thread was on a run queue. Reset
1580 			 * its CPU timeleft from the quantum
1581 			 * associated with the new priority.
1582 			 */
1583 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1584 		} else {
1585 			fxpp->fx_flags |= FXBACKQ;
1586 		}
1587 	}
1588 }
1589 
1590 static int
1591 fx_alloc(void **p, int flag)
1592 {
1593 	void *bufp;
1594 
1595 	bufp = kmem_alloc(sizeof (fxproc_t), flag);
1596 	if (bufp == NULL) {
1597 		return (ENOMEM);
1598 	} else {
1599 		*p = bufp;
1600 		return (0);
1601 	}
1602 }
1603 
1604 static void
1605 fx_free(void *bufp)
1606 {
1607 	if (bufp)
1608 		kmem_free(bufp, sizeof (fxproc_t));
1609 }
1610 
1611 /*
1612  * Release the callback list mutex after successful lookup
1613  */
1614 void
1615 fx_list_release(fxproc_t *fxpp)
1616 {
1617 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1618 	kmutex_t *lockp = &fx_cb_list_lock[index];
1619 	mutex_exit(lockp);
1620 }
1621 
1622 fxproc_t *
1623 fx_list_lookup(kt_did_t ktid)
1624 {
1625 	int index = FX_CB_LIST_HASH(ktid);
1626 	kmutex_t *lockp = &fx_cb_list_lock[index];
1627 	fxproc_t *fxpp;
1628 
1629 	mutex_enter(lockp);
1630 
1631 	for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1632 	    fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1633 		if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1634 		    fxpp->fx_callback != NULL) {
1635 			/*
1636 			 * The caller is responsible for calling
1637 			 * fx_list_release to drop the lock upon
1638 			 * successful lookup
1639 			 */
1640 			return (fxpp);
1641 		}
1642 	}
1643 	mutex_exit(lockp);
1644 	return ((fxproc_t *)NULL);
1645 }
1646 
1647 
1648 /*
1649  * register a callback set of routines for current thread
1650  * thread should already be in FX class
1651  */
1652 int
1653 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1654 	pri_t pri, clock_t quantum)
1655 {
1656 
1657 	fxproc_t	*fxpp;
1658 
1659 	if (fx_callback == NULL)
1660 		return (EINVAL);
1661 
1662 	if (secpolicy_dispadm(CRED()) != 0)
1663 		return (EPERM);
1664 
1665 	if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1666 		return (EINVAL);
1667 
1668 	if (!FX_ISVALID(pri, quantum))
1669 		return (EINVAL);
1670 
1671 	thread_lock(curthread);		/* get dispatcher lock on thread */
1672 
1673 	if (curthread->t_cid != fx_cid) {
1674 		thread_unlock(curthread);
1675 		return (EINVAL);
1676 	}
1677 
1678 	fxpp = (fxproc_t *)(curthread->t_cldata);
1679 	ASSERT(fxpp != NULL);
1680 	if (FX_HAS_CB(fxpp)) {
1681 		thread_unlock(curthread);
1682 		return (EINVAL);
1683 	}
1684 
1685 	fxpp->fx_callback = fx_callback;
1686 	fxpp->fx_cookie = cookie;
1687 
1688 	if (pri != FX_CB_NOCHANGE) {
1689 		fxpp->fx_pri = pri;
1690 		FX_ADJUST_PRI(fxpp->fx_pri);
1691 		if (quantum == FX_TQDEF) {
1692 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1693 		} else if (quantum == FX_TQINF) {
1694 			fxpp->fx_pquantum = FX_TQINF;
1695 		} else if (quantum != FX_NOCHANGE) {
1696 			FX_ADJUST_QUANTUM(quantum);
1697 			fxpp->fx_pquantum = quantum;
1698 		}
1699 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1700 		if (quantum == FX_TQINF)
1701 			fxpp->fx_pquantum = FX_TQINF;
1702 		else {
1703 			FX_ADJUST_QUANTUM(quantum);
1704 			fxpp->fx_pquantum = quantum;
1705 		}
1706 	}
1707 
1708 	fxpp->fx_ktid = ddi_get_kt_did();
1709 
1710 	fx_change_priority(curthread, fxpp);
1711 
1712 	thread_unlock(curthread);
1713 
1714 	/*
1715 	 * Link new structure into fxproc list.
1716 	 */
1717 	FX_CB_LIST_INSERT(fxpp);
1718 	return (0);
1719 }
1720 
1721 /* unregister a callback set of routines for current thread */
1722 int
1723 fx_unregister_callbacks()
1724 {
1725 	fxproc_t	*fxpp;
1726 
1727 	if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1728 		/*
1729 		 * did not have a registered callback;
1730 		 */
1731 		return (EINVAL);
1732 	}
1733 
1734 	thread_lock(fxpp->fx_tp);
1735 	fxpp->fx_callback = NULL;
1736 	fxpp->fx_cookie = NULL;
1737 	thread_unlock(fxpp->fx_tp);
1738 	fx_list_release(fxpp);
1739 
1740 	FX_CB_LIST_DELETE(fxpp);
1741 	return (0);
1742 }
1743 
1744 /*
1745  * modify priority and/or quantum value of a thread with callback
1746  */
1747 int
1748 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1749 {
1750 	fxproc_t	*fxpp;
1751 
1752 	if (!FX_ISVALID(pri, quantum))
1753 		return (EINVAL);
1754 
1755 	if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1756 		/*
1757 		 * either thread had exited or did not have a registered
1758 		 * callback;
1759 		 */
1760 		return (ESRCH);
1761 	}
1762 
1763 	thread_lock(fxpp->fx_tp);
1764 
1765 	if (pri != FX_CB_NOCHANGE) {
1766 		fxpp->fx_pri = pri;
1767 		FX_ADJUST_PRI(fxpp->fx_pri);
1768 		if (quantum == FX_TQDEF) {
1769 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1770 		} else if (quantum == FX_TQINF) {
1771 			fxpp->fx_pquantum = FX_TQINF;
1772 		} else if (quantum != FX_NOCHANGE) {
1773 			FX_ADJUST_QUANTUM(quantum);
1774 			fxpp->fx_pquantum = quantum;
1775 		}
1776 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1777 		if (quantum == FX_TQINF) {
1778 			fxpp->fx_pquantum = FX_TQINF;
1779 		} else {
1780 			FX_ADJUST_QUANTUM(quantum);
1781 			fxpp->fx_pquantum = quantum;
1782 		}
1783 	}
1784 
1785 	fx_change_priority(fxpp->fx_tp, fxpp);
1786 
1787 	thread_unlock(fxpp->fx_tp);
1788 	fx_list_release(fxpp);
1789 	return (0);
1790 }
1791 
1792 
1793 /*
1794  * return an iblock cookie for mutex initialization to be used in callbacks
1795  */
1796 void *
1797 fx_get_mutex_cookie()
1798 {
1799 	return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1800 }
1801 
1802 /*
1803  * return maximum relative priority
1804  */
1805 pri_t
1806 fx_get_maxpri()
1807 {
1808 	return (fx_maxumdpri);
1809 }
1810