1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/cred.h> 31 #include <sys/proc.h> 32 #include <sys/strsubr.h> 33 #include <sys/priocntl.h> 34 #include <sys/class.h> 35 #include <sys/disp.h> 36 #include <sys/procset.h> 37 #include <sys/debug.h> 38 #include <sys/kmem.h> 39 #include <sys/errno.h> 40 #include <sys/systm.h> 41 #include <sys/schedctl.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/project.h> 45 #include <sys/modctl.h> 46 #include <sys/fss.h> 47 #include <sys/fsspriocntl.h> 48 #include <sys/cpupart.h> 49 #include <sys/zone.h> 50 #include <vm/rm.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/policy.h> 53 #include <sys/sdt.h> 54 #include <sys/cpucaps.h> 55 56 /* 57 * The fair share scheduling class ensures that collections of processes 58 * (zones and projects) each get their configured share of CPU. This is in 59 * contrast to the TS class which considers individual processes. 60 * 61 * The FSS cpu-share is set on zones using the zone.cpu-shares rctl and on 62 * projects using the project.cpu-shares rctl. By default the value is 1 63 * and it can range from 0 - 64k. A value of 0 means that processes in the 64 * collection will only get CPU resources when there are no other processes 65 * that need CPU. The cpu-share is used as one of the inputs to calculate a 66 * thread's "user-mode" priority (umdpri) for the scheduler. The umdpri falls 67 * in the range 0-59. FSS calculates other, internal, priorities which are not 68 * visible outside of the FSS class. 69 * 70 * The FSS class should approximate TS behavior when there are excess CPU 71 * resources. When there is a backlog of runnable processes, then the share 72 * is used as input into the runnable process's priority calculation, where 73 * the final umdpri is used by the scheduler to determine when the process runs. 74 * 75 * Projects in a zone compete with each other for CPU time, receiving CPU 76 * allocation within a zone proportional to the project's share; at a higher 77 * level zones compete with each other, receiving allocation in a pset 78 * proportional to the zone's share. 79 * 80 * The FSS priority calculation consists of several parts. 81 * 82 * 1) Once per second the fss_update function runs. The first thing it does is 83 * call fss_decay_usage. This function does three things. 84 * 85 * a) fss_decay_usage first decays the maxfsspri value for the pset. This 86 * value is used in the per-process priority calculation described in step 87 * (2b). The maxfsspri is decayed using the following formula: 88 * 89 * maxfsspri * fss_nice_decay[NZERO]) 90 * maxfsspri = ------------------------------------ 91 * FSS_DECAY_BASE 92 * 93 * 94 * - NZERO is the default process priority (i.e. 20) 95 * 96 * The fss_nice_decay array is a fixed set of values used to adjust the 97 * decay rate of processes based on their nice value. Entries in this 98 * array are initialized in fss_init using the following formula: 99 * 100 * (FSS_DECAY_MAX - FSS_DECAY_MIN) * i 101 * FSS_DECAY_MIN + ------------------------------------- 102 * FSS_NICE_RANGE - 1 103 * 104 * - FSS_DECAY_MIN is 82 = approximates 65% (82/128) 105 * - FSS_DECAY_MAX is 108 = approximates 85% (108/128) 106 * - FSS_NICE_RANGE is 40 (range is 0 - 39) 107 * 108 * b) The second thing fss_decay_usage does is update each project's "usage" 109 * for the last second and then recalculates the project's "share usage". 110 * 111 * The usage value is the recent CPU usage for all of the threads in the 112 * project. It is decayed and updated this way: 113 * 114 * (usage * FSS_DECAY_USG) 115 * usage = ------------------------- + ticks; 116 * FSS_DECAY_BASE 117 * 118 * - FSS_DECAY_BASE is 128 - used instead of 100 so we can shift vs divide 119 * - FSS_DECAY_USG is 96 - approximates 75% (96/128) 120 * - ticks is updated whenever a process in this project is running 121 * when the scheduler's tick processing fires. This is not a simple 122 * counter, the values are based on the entries in the fss_nice_tick 123 * array (see section 3 below). ticks is then reset to 0 so it can track 124 * the next seconds worth of nice-adjusted time for the project. 125 * 126 * c) The third thing fss_decay_usage does is update each project's "share 127 * usage" (shusage). This is the normalized usage value for the project and 128 * is calculated this way: 129 * 130 * pset_shares^2 zone_int_shares^2 131 * usage * ------------- * ------------------ 132 * kpj_shares^2 zone_ext_shares^2 133 * 134 * - usage - see (1b) for more details 135 * - pset_shares is the total of all *active* zone shares in the pset (by 136 * default there is only one pset) 137 * - kpj_shares is the individual project's share (project.cpu-shares rctl) 138 * - zone_int_shares is the sum of shares of all active projects within the 139 * zone (the zone-internal total) 140 * - zone_ext_shares is the share value for the zone (zone.cpu-shares rctl) 141 * 142 * The shusage is used in step (2b) to calculate the thread's new internal 143 * priority. A larger shusage value leads to a lower priority. 144 * 145 * 2) The fss_update function then calls fss_update_list to update the priority 146 * of all threads. This does two things. 147 * 148 * a) First the thread's internal priority is decayed using the following 149 * formula: 150 * 151 * fsspri * fss_nice_decay[nice_value]) 152 * fsspri = ------------------------------------ 153 * FSS_DECAY_BASE 154 * 155 * - FSS_DECAY_BASE is 128 as described above 156 * 157 * b) Second, if the thread is runnable (TS_RUN or TS_WAIT) calls fss_newpri 158 * to update the user-mode priority (umdpri) of the runnable thread. 159 * Threads that are running (TS_ONPROC) or waiting for an event (TS_SLEEP) 160 * are not updated at this time. The updated user-mode priority can cause 161 * threads to change their position in the run queue. 162 * 163 * The process's new internal fsspri is calculated using the following 164 * formula. All runnable threads in the project will use the same shusage 165 * and nrunnable values in their calculation. 166 * 167 * fsspri += shusage * nrunnable * ticks 168 * 169 * - shusage is the project's share usage, calculated in (1c) 170 * - nrunnable is the number of runnable threads in the project 171 * - ticks is the number of ticks this thread ran since the last fss_newpri 172 * invocation. 173 * 174 * Finally the process's new user-mode priority is calculated using the 175 * following formula: 176 * 177 * (fsspri * umdprirange) 178 * umdpri = maxumdpri - ------------------------ 179 * maxfsspri 180 * 181 * - maxumdpri is MINCLSYSPRI - 1 (i.e. 59) 182 * - umdprirange is maxumdpri - 1 (i.e. 58) 183 * - maxfsspri is the largest fsspri seen so far, as we're iterating all 184 * runnable processes 185 * 186 * Thus, a higher internal priority (fsspri) leads to a lower user-mode 187 * priority which means the thread runs less. The fsspri is higher when 188 * the project's normalized share usage is higher, when the project has 189 * more runnable threads, or when the thread has accumulated more run-time. 190 * 191 * This code has various checks to ensure the resulting umdpri is in the 192 * range 1-59. See fss_newpri for more details. 193 * 194 * To reiterate, the above processing is performed once per second to recompute 195 * the runnable thread user-mode priorities. 196 * 197 * 3) The final major component in the priority calculation is the tick 198 * processing which occurs on a thread that is running when the clock 199 * calls fss_tick. 200 * 201 * A thread can run continuously in user-land (compute-bound) for the 202 * fss_quantum (see "dispadmin -c FSS -g" for the configurable properties). 203 * The fss_quantum defaults to 11 (i.e. 11 ticks). 204 * 205 * Once the quantum has been consumed, the thread will call fss_newpri to 206 * recompute its umdpri priority, as described above in (2b). Threads that 207 * were T_ONPROC at the one second interval when runnable thread priorities 208 * were recalculated will have their umdpri priority recalculated when their 209 * quanta expires. 210 * 211 * To ensure that runnable threads within a project see the expected 212 * round-robin behavior, there is a special case in fss_newpri for a thread 213 * that has run for its quanta within the one second update interval. See 214 * the handling for the quanta_up parameter within fss_newpri. 215 * 216 * Also of interest, the fss_tick code increments the project's tick value 217 * using the fss_nice_tick array entry for the thread's nice value. The idea 218 * behind the fss_nice_tick array is that the cost of a tick is lower at 219 * positive nice values (so that it doesn't increase the project's usage 220 * as much as normal) with a 50% drop at the maximum level and a 50% 221 * increase at the minimum level. See (1b). The fss_nice_tick array is 222 * initialized in fss_init using the following formula: 223 * 224 * FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) - i) 225 * -------------------------------------------------- 226 * FSS_NICE_RANGE 227 * 228 * - FSS_TICK_COST is 1000, the tick cost for threads with nice level 0 229 * 230 * FSS Data Structures: 231 * 232 * fsszone 233 * ----- ----- 234 * ----- | | | | 235 * | |-------->| |<------->| |<---->... 236 * | | ----- ----- 237 * | | ^ ^ ^ 238 * | |--- | \ \ 239 * ----- | | \ \ 240 * fsspset | | \ \ 241 * | | \ \ 242 * | ----- ----- ----- 243 * -->| |<--->| |<--->| | 244 * | | | | | | 245 * ----- ----- ----- 246 * fssproj 247 * 248 * That is, fsspsets contain a list of fsszone's that are currently active in 249 * the pset, and a list of fssproj's, corresponding to projects with runnable 250 * threads on the pset. fssproj's in turn point to the fsszone which they 251 * are a member of. 252 * 253 * An fssproj_t is removed when there are no threads in it. 254 * 255 * An fsszone_t is removed when there are no projects with threads in it. 256 */ 257 258 static pri_t fss_init(id_t, int, classfuncs_t **); 259 260 static struct sclass fss = { 261 "FSS", 262 fss_init, 263 0 264 }; 265 266 extern struct mod_ops mod_schedops; 267 268 /* 269 * Module linkage information for the kernel. 270 */ 271 static struct modlsched modlsched = { 272 &mod_schedops, "fair share scheduling class", &fss 273 }; 274 275 static struct modlinkage modlinkage = { 276 MODREV_1, (void *)&modlsched, NULL 277 }; 278 279 #define FSS_MAXUPRI 60 280 281 /* 282 * The fssproc_t structures are kept in an array of circular doubly linked 283 * lists. A hash on the thread pointer is used to determine which list each 284 * thread should be placed in. Each list has a dummy "head" which is never 285 * removed, so the list is never empty. fss_update traverses these lists to 286 * update the priorities of threads that have been waiting on the run queue. 287 */ 288 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 289 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 290 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 291 292 #define FSS_LIST_INSERT(fssproc) \ 293 { \ 294 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 295 kmutex_t *lockp = &fss_listlock[index]; \ 296 fssproc_t *headp = &fss_listhead[index]; \ 297 mutex_enter(lockp); \ 298 fssproc->fss_next = headp->fss_next; \ 299 fssproc->fss_prev = headp; \ 300 headp->fss_next->fss_prev = fssproc; \ 301 headp->fss_next = fssproc; \ 302 mutex_exit(lockp); \ 303 } 304 305 #define FSS_LIST_DELETE(fssproc) \ 306 { \ 307 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 308 kmutex_t *lockp = &fss_listlock[index]; \ 309 mutex_enter(lockp); \ 310 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 311 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 312 mutex_exit(lockp); \ 313 } 314 315 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 316 317 /* 318 * Decay rate percentages are based on n/128 rather than n/100 so that 319 * calculations can avoid having to do an integer divide by 100 (divide 320 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 321 * 322 * FSS_DECAY_MIN = 83/128 ~= 65% 323 * FSS_DECAY_MAX = 108/128 ~= 85% 324 * FSS_DECAY_USG = 96/128 ~= 75% 325 */ 326 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 327 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 328 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 329 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 330 331 #define FSS_NICE_MIN 0 332 #define FSS_NICE_MAX (2 * NZERO - 1) 333 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 334 335 static int fss_nice_tick[FSS_NICE_RANGE]; 336 static int fss_nice_decay[FSS_NICE_RANGE]; 337 338 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 339 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 340 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 341 static pri_t fss_minglobpri; /* minimum global priority */ 342 343 static fssproc_t fss_listhead[FSS_LISTS]; 344 static kmutex_t fss_listlock[FSS_LISTS]; 345 346 static fsspset_t *fsspsets; 347 static kmutex_t fsspsets_lock; /* protects fsspsets */ 348 349 static id_t fss_cid; 350 351 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 352 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 353 static int fss_quantum = 11; 354 355 static void fss_newpri(fssproc_t *, boolean_t); 356 static void fss_update(void *); 357 static int fss_update_list(int); 358 static void fss_change_priority(kthread_t *, fssproc_t *); 359 360 static int fss_admin(caddr_t, cred_t *); 361 static int fss_getclinfo(void *); 362 static int fss_parmsin(void *); 363 static int fss_parmsout(void *, pc_vaparms_t *); 364 static int fss_vaparmsin(void *, pc_vaparms_t *); 365 static int fss_vaparmsout(void *, pc_vaparms_t *); 366 static int fss_getclpri(pcpri_t *); 367 static int fss_alloc(void **, int); 368 static void fss_free(void *); 369 370 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 371 static void fss_exitclass(void *); 372 static int fss_canexit(kthread_t *, cred_t *); 373 static int fss_fork(kthread_t *, kthread_t *, void *); 374 static void fss_forkret(kthread_t *, kthread_t *); 375 static void fss_parmsget(kthread_t *, void *); 376 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 377 static void fss_stop(kthread_t *, int, int); 378 static void fss_exit(kthread_t *); 379 static void fss_active(kthread_t *); 380 static void fss_inactive(kthread_t *); 381 static pri_t fss_swapin(kthread_t *, int); 382 static pri_t fss_swapout(kthread_t *, int); 383 static void fss_trapret(kthread_t *); 384 static void fss_preempt(kthread_t *); 385 static void fss_setrun(kthread_t *); 386 static void fss_sleep(kthread_t *); 387 static void fss_tick(kthread_t *); 388 static void fss_wakeup(kthread_t *); 389 static int fss_donice(kthread_t *, cred_t *, int, int *); 390 static int fss_doprio(kthread_t *, cred_t *, int, int *); 391 static pri_t fss_globpri(kthread_t *); 392 static void fss_yield(kthread_t *); 393 static void fss_nullsys(); 394 395 static struct classfuncs fss_classfuncs = { 396 /* class functions */ 397 fss_admin, 398 fss_getclinfo, 399 fss_parmsin, 400 fss_parmsout, 401 fss_vaparmsin, 402 fss_vaparmsout, 403 fss_getclpri, 404 fss_alloc, 405 fss_free, 406 407 /* thread functions */ 408 fss_enterclass, 409 fss_exitclass, 410 fss_canexit, 411 fss_fork, 412 fss_forkret, 413 fss_parmsget, 414 fss_parmsset, 415 fss_stop, 416 fss_exit, 417 fss_active, 418 fss_inactive, 419 fss_swapin, 420 fss_swapout, 421 fss_trapret, 422 fss_preempt, 423 fss_setrun, 424 fss_sleep, 425 fss_tick, 426 fss_wakeup, 427 fss_donice, 428 fss_globpri, 429 fss_nullsys, /* set_process_group */ 430 fss_yield, 431 fss_doprio, 432 }; 433 434 int 435 _init() 436 { 437 return (mod_install(&modlinkage)); 438 } 439 440 int 441 _fini() 442 { 443 return (EBUSY); 444 } 445 446 int 447 _info(struct modinfo *modinfop) 448 { 449 return (mod_info(&modlinkage, modinfop)); 450 } 451 452 /*ARGSUSED*/ 453 static int 454 fss_project_walker(kproject_t *kpj, void *buf) 455 { 456 return (0); 457 } 458 459 void * 460 fss_allocbuf(int op, int type) 461 { 462 fssbuf_t *fssbuf; 463 void **fsslist; 464 int cnt; 465 int i; 466 size_t size; 467 468 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 469 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 470 ASSERT(MUTEX_HELD(&cpu_lock)); 471 472 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 473 switch (op) { 474 case FSS_NPSET_BUF: 475 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 476 break; 477 case FSS_NPROJ_BUF: 478 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 479 break; 480 case FSS_ONE_BUF: 481 cnt = 1; 482 break; 483 } 484 485 switch (type) { 486 case FSS_ALLOC_PROJ: 487 size = sizeof (fssproj_t); 488 break; 489 case FSS_ALLOC_ZONE: 490 size = sizeof (fsszone_t); 491 break; 492 } 493 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 494 fssbuf->fssb_size = cnt; 495 fssbuf->fssb_list = fsslist; 496 for (i = 0; i < cnt; i++) 497 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 498 return (fssbuf); 499 } 500 501 void 502 fss_freebuf(fssbuf_t *fssbuf, int type) 503 { 504 void **fsslist; 505 int i; 506 size_t size; 507 508 ASSERT(fssbuf != NULL); 509 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 510 fsslist = fssbuf->fssb_list; 511 512 switch (type) { 513 case FSS_ALLOC_PROJ: 514 size = sizeof (fssproj_t); 515 break; 516 case FSS_ALLOC_ZONE: 517 size = sizeof (fsszone_t); 518 break; 519 } 520 521 for (i = 0; i < fssbuf->fssb_size; i++) { 522 if (fsslist[i] != NULL) 523 kmem_free(fsslist[i], size); 524 } 525 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 526 kmem_free(fssbuf, sizeof (fssbuf_t)); 527 } 528 529 static fsspset_t * 530 fss_find_fsspset(cpupart_t *cpupart) 531 { 532 int i; 533 fsspset_t *fsspset = NULL; 534 int found = 0; 535 536 ASSERT(cpupart != NULL); 537 ASSERT(MUTEX_HELD(&fsspsets_lock)); 538 539 /* 540 * Search for the cpupart pointer in the array of fsspsets. 541 */ 542 for (i = 0; i < max_ncpus; i++) { 543 fsspset = &fsspsets[i]; 544 if (fsspset->fssps_cpupart == cpupart) { 545 ASSERT(fsspset->fssps_nproj > 0); 546 found = 1; 547 break; 548 } 549 } 550 if (found == 0) { 551 /* 552 * If we didn't find anything, then use the first 553 * available slot in the fsspsets array. 554 */ 555 for (i = 0; i < max_ncpus; i++) { 556 fsspset = &fsspsets[i]; 557 if (fsspset->fssps_cpupart == NULL) { 558 ASSERT(fsspset->fssps_nproj == 0); 559 found = 1; 560 break; 561 } 562 } 563 fsspset->fssps_cpupart = cpupart; 564 } 565 ASSERT(found == 1); 566 return (fsspset); 567 } 568 569 static void 570 fss_del_fsspset(fsspset_t *fsspset) 571 { 572 ASSERT(MUTEX_HELD(&fsspsets_lock)); 573 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 574 ASSERT(fsspset->fssps_nproj == 0); 575 ASSERT(fsspset->fssps_list == NULL); 576 ASSERT(fsspset->fssps_zones == NULL); 577 fsspset->fssps_cpupart = NULL; 578 fsspset->fssps_maxfsspri = 0; 579 fsspset->fssps_shares = 0; 580 } 581 582 /* 583 * The following routine returns a pointer to the fsszone structure which 584 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 585 */ 586 static fsszone_t * 587 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 588 { 589 fsszone_t *fsszone; 590 591 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 592 593 if (fsspset->fssps_list != NULL) { 594 /* 595 * There are projects/zones active on this cpu partition 596 * already. Try to find our zone among them. 597 */ 598 fsszone = fsspset->fssps_zones; 599 do { 600 if (fsszone->fssz_zone == zone) { 601 return (fsszone); 602 } 603 fsszone = fsszone->fssz_next; 604 } while (fsszone != fsspset->fssps_zones); 605 } 606 return (NULL); 607 } 608 609 /* 610 * The following routine links new fsszone structure into doubly linked list of 611 * zones active on the specified cpu partition. 612 */ 613 static void 614 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 615 { 616 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 617 618 fsszone->fssz_zone = zone; 619 fsszone->fssz_rshares = zone->zone_shares; 620 621 if (fsspset->fssps_zones == NULL) { 622 /* 623 * This will be the first fsszone for this fsspset 624 */ 625 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 626 fsspset->fssps_zones = fsszone; 627 } else { 628 /* 629 * Insert this fsszone to the doubly linked list. 630 */ 631 fsszone_t *fssz_head = fsspset->fssps_zones; 632 633 fsszone->fssz_next = fssz_head; 634 fsszone->fssz_prev = fssz_head->fssz_prev; 635 fssz_head->fssz_prev->fssz_next = fsszone; 636 fssz_head->fssz_prev = fsszone; 637 fsspset->fssps_zones = fsszone; 638 } 639 } 640 641 /* 642 * The following routine removes a single fsszone structure from the doubly 643 * linked list of zones active on the specified cpu partition. Note that 644 * global fsspsets_lock must be held in case this fsszone structure is the last 645 * on the above mentioned list. Also note that the fsszone structure is not 646 * freed here, it is the responsibility of the caller to call kmem_free for it. 647 */ 648 static void 649 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 650 { 651 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 652 ASSERT(fsszone->fssz_nproj == 0); 653 ASSERT(fsszone->fssz_shares == 0); 654 ASSERT(fsszone->fssz_runnable == 0); 655 656 if (fsszone->fssz_next != fsszone) { 657 /* 658 * This is not the last zone in the list. 659 */ 660 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 661 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 662 if (fsspset->fssps_zones == fsszone) 663 fsspset->fssps_zones = fsszone->fssz_next; 664 } else { 665 /* 666 * This was the last zone active in this cpu partition. 667 */ 668 fsspset->fssps_zones = NULL; 669 } 670 } 671 672 /* 673 * The following routine returns a pointer to the fssproj structure 674 * which belongs to project kpj and cpu partition fsspset, if such structure 675 * exists. 676 */ 677 static fssproj_t * 678 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 679 { 680 fssproj_t *fssproj; 681 682 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 683 684 if (fsspset->fssps_list != NULL) { 685 /* 686 * There are projects running on this cpu partition already. 687 * Try to find our project among them. 688 */ 689 fssproj = fsspset->fssps_list; 690 do { 691 if (fssproj->fssp_proj == kpj) { 692 ASSERT(fssproj->fssp_pset == fsspset); 693 return (fssproj); 694 } 695 fssproj = fssproj->fssp_next; 696 } while (fssproj != fsspset->fssps_list); 697 } 698 return (NULL); 699 } 700 701 /* 702 * The following routine links new fssproj structure into doubly linked list 703 * of projects running on the specified cpu partition. 704 */ 705 static void 706 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 707 fssproj_t *fssproj) 708 { 709 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 710 711 fssproj->fssp_pset = fsspset; 712 fssproj->fssp_proj = kpj; 713 fssproj->fssp_shares = kpj->kpj_shares; 714 715 fsspset->fssps_nproj++; 716 717 if (fsspset->fssps_list == NULL) { 718 /* 719 * This will be the first fssproj for this fsspset 720 */ 721 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 722 fsspset->fssps_list = fssproj; 723 } else { 724 /* 725 * Insert this fssproj to the doubly linked list. 726 */ 727 fssproj_t *fssp_head = fsspset->fssps_list; 728 729 fssproj->fssp_next = fssp_head; 730 fssproj->fssp_prev = fssp_head->fssp_prev; 731 fssp_head->fssp_prev->fssp_next = fssproj; 732 fssp_head->fssp_prev = fssproj; 733 fsspset->fssps_list = fssproj; 734 } 735 fssproj->fssp_fsszone = fsszone; 736 fsszone->fssz_nproj++; 737 ASSERT(fsszone->fssz_nproj != 0); 738 } 739 740 /* 741 * The following routine removes a single fssproj structure from the doubly 742 * linked list of projects running on the specified cpu partition. Note that 743 * global fsspsets_lock must be held in case if this fssproj structure is the 744 * last on the above mentioned list. Also note that the fssproj structure is 745 * not freed here, it is the responsibility of the caller to call kmem_free 746 * for it. 747 */ 748 static void 749 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 750 { 751 fsszone_t *fsszone; 752 753 ASSERT(MUTEX_HELD(&fsspsets_lock)); 754 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 755 ASSERT(fssproj->fssp_runnable == 0); 756 757 fsspset->fssps_nproj--; 758 759 fsszone = fssproj->fssp_fsszone; 760 fsszone->fssz_nproj--; 761 762 if (fssproj->fssp_next != fssproj) { 763 /* 764 * This is not the last part in the list. 765 */ 766 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 767 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 768 if (fsspset->fssps_list == fssproj) 769 fsspset->fssps_list = fssproj->fssp_next; 770 if (fsszone->fssz_nproj == 0) 771 fss_remove_fsszone(fsspset, fsszone); 772 } else { 773 /* 774 * This was the last project part running 775 * at this cpu partition. 776 */ 777 fsspset->fssps_list = NULL; 778 ASSERT(fsspset->fssps_nproj == 0); 779 ASSERT(fsszone->fssz_nproj == 0); 780 fss_remove_fsszone(fsspset, fsszone); 781 fss_del_fsspset(fsspset); 782 } 783 } 784 785 static void 786 fss_inactive(kthread_t *t) 787 { 788 fssproc_t *fssproc; 789 fssproj_t *fssproj; 790 fsspset_t *fsspset; 791 fsszone_t *fsszone; 792 793 ASSERT(THREAD_LOCK_HELD(t)); 794 fssproc = FSSPROC(t); 795 fssproj = FSSPROC2FSSPROJ(fssproc); 796 if (fssproj == NULL) /* if this thread already exited */ 797 return; 798 fsspset = FSSPROJ2FSSPSET(fssproj); 799 fsszone = fssproj->fssp_fsszone; 800 disp_lock_enter_high(&fsspset->fssps_displock); 801 ASSERT(fssproj->fssp_runnable > 0); 802 if (--fssproj->fssp_runnable == 0) { 803 fsszone->fssz_shares -= fssproj->fssp_shares; 804 if (--fsszone->fssz_runnable == 0) 805 fsspset->fssps_shares -= fsszone->fssz_rshares; 806 } 807 ASSERT(fssproc->fss_runnable == 1); 808 fssproc->fss_runnable = 0; 809 disp_lock_exit_high(&fsspset->fssps_displock); 810 } 811 812 static void 813 fss_active(kthread_t *t) 814 { 815 fssproc_t *fssproc; 816 fssproj_t *fssproj; 817 fsspset_t *fsspset; 818 fsszone_t *fsszone; 819 820 ASSERT(THREAD_LOCK_HELD(t)); 821 fssproc = FSSPROC(t); 822 fssproj = FSSPROC2FSSPROJ(fssproc); 823 if (fssproj == NULL) /* if this thread already exited */ 824 return; 825 fsspset = FSSPROJ2FSSPSET(fssproj); 826 fsszone = fssproj->fssp_fsszone; 827 disp_lock_enter_high(&fsspset->fssps_displock); 828 if (++fssproj->fssp_runnable == 1) { 829 fsszone->fssz_shares += fssproj->fssp_shares; 830 if (++fsszone->fssz_runnable == 1) 831 fsspset->fssps_shares += fsszone->fssz_rshares; 832 } 833 ASSERT(fssproc->fss_runnable == 0); 834 fssproc->fss_runnable = 1; 835 disp_lock_exit_high(&fsspset->fssps_displock); 836 } 837 838 /* 839 * Fair share scheduler initialization. Called by dispinit() at boot time. 840 * We can ignore clparmsz argument since we know that the smallest possible 841 * parameter buffer is big enough for us. 842 */ 843 /*ARGSUSED*/ 844 static pri_t 845 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 846 { 847 int i; 848 849 ASSERT(MUTEX_HELD(&cpu_lock)); 850 851 fss_cid = cid; 852 fss_maxumdpri = minclsyspri - 1; 853 fss_maxglobpri = minclsyspri; 854 fss_minglobpri = 0; 855 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 856 857 /* 858 * Initialize the fssproc hash table. 859 */ 860 for (i = 0; i < FSS_LISTS; i++) 861 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 862 &fss_listhead[i]; 863 864 *clfuncspp = &fss_classfuncs; 865 866 /* 867 * Fill in fss_nice_tick and fss_nice_decay arrays: 868 * The cost of a tick is lower at positive nice values (so that it 869 * will not increase its project's usage as much as normal) with 50% 870 * drop at the maximum level and 50% increase at the minimum level. 871 * The fsspri decay is slower at positive nice values. fsspri values 872 * of processes with negative nice levels must decay faster to receive 873 * time slices more frequently than normal. 874 */ 875 for (i = 0; i < FSS_NICE_RANGE; i++) { 876 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 877 - i)) / FSS_NICE_RANGE; 878 fss_nice_decay[i] = FSS_DECAY_MIN + 879 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 880 (FSS_NICE_RANGE - 1); 881 } 882 883 return (fss_maxglobpri); 884 } 885 886 /* 887 * Calculate the new fss_umdpri based on the usage, the normalized share usage 888 * and the number of active threads. Reset the tick counter for this thread. 889 * 890 * When calculating the new priority using the standard formula we can hit 891 * a scenario where we don't have good round-robin behavior. This would be 892 * most commonly seen when there is a zone with lots of runnable threads. 893 * In the bad scenario we will see the following behavior when using the 894 * standard formula and these conditions: 895 * 896 * - there are multiple runnable threads in the zone (project) 897 * - the fssps_maxfsspri is a very large value 898 * - (we also know all of these threads will use the project's 899 * fssp_shusage) 900 * 901 * Under these conditions, a thread with a low fss_fsspri value is chosen 902 * to run and the thread gets a high fss_umdpri. This thread can run for 903 * its full quanta (fss_timeleft) at which time fss_newpri is called to 904 * calculate the thread's new priority. 905 * 906 * In this case, because the newly calculated fsspri value is much smaller 907 * (orders of magnitude) than the fssps_maxfsspri value, if we used the 908 * standard formula the thread will still get a high fss_umdpri value and 909 * will run again for another quanta, even though there are other runnable 910 * threads in the project. 911 * 912 * For a thread that is runnable for a long time, the thread can continue 913 * to run for many quanta (totaling many seconds) before the thread's fsspri 914 * exceeds the fssps_maxfsspri and the thread's fss_umdpri is reset back 915 * down to 1. This behavior also keeps the fssps_maxfsspr at a high value, 916 * so that the next runnable thread might repeat this cycle. 917 * 918 * This leads to the case where we don't have round-robin behavior at quanta 919 * granularity, but instead, runnable threads within the project only run 920 * at several second intervals. 921 * 922 * To prevent this scenario from occuring, when a thread has consumed its 923 * quanta and there are multiple runnable threads in the project, we 924 * immediately cause the thread to hit fssps_maxfsspri so that it gets 925 * reset back to 1 and another runnable thread in the project can run. 926 */ 927 static void 928 fss_newpri(fssproc_t *fssproc, boolean_t quanta_up) 929 { 930 kthread_t *tp; 931 fssproj_t *fssproj; 932 fsspset_t *fsspset; 933 fsszone_t *fsszone; 934 fsspri_t fsspri, maxfsspri; 935 uint32_t n_runnable; 936 pri_t invpri; 937 uint32_t ticks; 938 939 tp = fssproc->fss_tp; 940 ASSERT(tp != NULL); 941 942 if (tp->t_cid != fss_cid) 943 return; 944 945 ASSERT(THREAD_LOCK_HELD(tp)); 946 947 fssproj = FSSPROC2FSSPROJ(fssproc); 948 fsszone = FSSPROJ2FSSZONE(fssproj); 949 if (fssproj == NULL) 950 /* 951 * No need to change priority of exited threads. 952 */ 953 return; 954 955 fsspset = FSSPROJ2FSSPSET(fssproj); 956 disp_lock_enter_high(&fsspset->fssps_displock); 957 958 ticks = fssproc->fss_ticks; 959 fssproc->fss_ticks = 0; 960 961 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 962 /* 963 * Special case: threads with no shares. 964 */ 965 fssproc->fss_umdpri = fss_minglobpri; 966 disp_lock_exit_high(&fsspset->fssps_displock); 967 return; 968 } 969 970 maxfsspri = fsspset->fssps_maxfsspri; 971 n_runnable = fssproj->fssp_runnable; 972 973 if (quanta_up && n_runnable > 1) { 974 fsspri = maxfsspri; 975 } else { 976 /* 977 * fsspri += fssp_shusage * nrunnable * ticks 978 * If all three values are non-0, this typically calculates to 979 * a large number (sometimes > 1M, sometimes > 100B) due to 980 * fssp_shusage which can be > 1T. 981 */ 982 fsspri = fssproc->fss_fsspri; 983 fsspri += fssproj->fssp_shusage * n_runnable * ticks; 984 } 985 986 fssproc->fss_fsspri = fsspri; 987 988 /* 989 * fss_maxumdpri is normally 59, since FSS priorities are 0-59. 990 * If the previous calculation resulted in 0 (e.g. was 0 and added 0 991 * because ticks == 0), then instead of 0, we use the largest priority, 992 * which is still small in comparison to the large numbers we typically 993 * see. 994 */ 995 if (fsspri < fss_maxumdpri) 996 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 997 998 /* 999 * The general priority formula: 1000 * 1001 * (fsspri * umdprirange) 1002 * pri = maxumdpri - ------------------------ 1003 * maxfsspri 1004 * 1005 * If this thread's fsspri is greater than the previous largest 1006 * fsspri, then record it as the new high and priority for this 1007 * thread will be one (the lowest priority assigned to a thread 1008 * that has non-zero shares). Because of this check, maxfsspri can 1009 * change as this function is called via the 1010 * fss_update -> fss_update_list -> fss_newpri code path to update 1011 * all runnable threads. See the code in fss_update for how we 1012 * mitigate this issue. 1013 * 1014 * Note that this formula cannot produce out of bounds priority 1015 * values (0-59); if it is changed, additional checks may need to be 1016 * added. 1017 */ 1018 if (fsspri >= maxfsspri) { 1019 fsspset->fssps_maxfsspri = fsspri; 1020 disp_lock_exit_high(&fsspset->fssps_displock); 1021 fssproc->fss_umdpri = 1; 1022 } else { 1023 disp_lock_exit_high(&fsspset->fssps_displock); 1024 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 1025 fssproc->fss_umdpri = fss_maxumdpri - invpri; 1026 } 1027 } 1028 1029 /* 1030 * Decays usages of all running projects, resets their tick counters and 1031 * calcluates the projects normalized share usage. Called once per second from 1032 * fss_update(). 1033 */ 1034 static void 1035 fss_decay_usage() 1036 { 1037 uint32_t zone_ext_shares, zone_int_shares; 1038 uint32_t kpj_shares, pset_shares; 1039 fsspset_t *fsspset; 1040 fssproj_t *fssproj; 1041 fsszone_t *fsszone; 1042 fsspri_t maxfsspri; 1043 int psetid; 1044 struct zone *zp; 1045 1046 mutex_enter(&fsspsets_lock); 1047 /* 1048 * Go through all active processor sets and decay usages of projects 1049 * running on them. 1050 */ 1051 for (psetid = 0; psetid < max_ncpus; psetid++) { 1052 fsspset = &fsspsets[psetid]; 1053 mutex_enter(&fsspset->fssps_lock); 1054 1055 fsspset->fssps_gen++; 1056 1057 if (fsspset->fssps_cpupart == NULL || 1058 (fssproj = fsspset->fssps_list) == NULL) { 1059 mutex_exit(&fsspset->fssps_lock); 1060 continue; 1061 } 1062 1063 /* 1064 * Decay maxfsspri for this cpu partition with the 1065 * fastest possible decay rate. 1066 */ 1067 disp_lock_enter(&fsspset->fssps_displock); 1068 1069 pset_shares = fsspset->fssps_shares; 1070 1071 maxfsspri = (fsspset->fssps_maxfsspri * 1072 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 1073 if (maxfsspri < fss_maxumdpri) 1074 maxfsspri = fss_maxumdpri; 1075 fsspset->fssps_maxfsspri = maxfsspri; 1076 1077 do { 1078 fsszone = fssproj->fssp_fsszone; 1079 zp = fsszone->fssz_zone; 1080 1081 /* 1082 * Reset zone's FSS stats if they are from a 1083 * previous cycle. 1084 */ 1085 if (fsspset->fssps_gen != zp->zone_fss_gen) { 1086 zp->zone_fss_gen = fsspset->fssps_gen; 1087 zp->zone_run_ticks = 0; 1088 } 1089 1090 /* 1091 * Decay project usage, then add in this cycle's 1092 * nice tick value. 1093 */ 1094 fssproj->fssp_usage = 1095 (fssproj->fssp_usage * FSS_DECAY_USG) / 1096 FSS_DECAY_BASE + 1097 fssproj->fssp_ticks; 1098 1099 fssproj->fssp_ticks = 0; 1100 zp->zone_run_ticks += fssproj->fssp_tick_cnt; 1101 fssproj->fssp_tick_cnt = 0; 1102 1103 /* 1104 * Readjust the project's number of shares if it has 1105 * changed since we checked it last time. 1106 */ 1107 kpj_shares = fssproj->fssp_proj->kpj_shares; 1108 if (fssproj->fssp_shares != kpj_shares) { 1109 if (fssproj->fssp_runnable != 0) { 1110 fsszone->fssz_shares -= 1111 fssproj->fssp_shares; 1112 fsszone->fssz_shares += kpj_shares; 1113 } 1114 fssproj->fssp_shares = kpj_shares; 1115 } 1116 1117 /* 1118 * Readjust the zone's number of shares if it 1119 * has changed since we checked it last time. 1120 */ 1121 zone_ext_shares = zp->zone_shares; 1122 if (fsszone->fssz_rshares != zone_ext_shares) { 1123 if (fsszone->fssz_runnable != 0) { 1124 fsspset->fssps_shares -= 1125 fsszone->fssz_rshares; 1126 fsspset->fssps_shares += 1127 zone_ext_shares; 1128 pset_shares = fsspset->fssps_shares; 1129 } 1130 fsszone->fssz_rshares = zone_ext_shares; 1131 } 1132 zone_int_shares = fsszone->fssz_shares; 1133 1134 /* 1135 * If anything is runnable in the project, track the 1136 * overall project share percent for monitoring useage. 1137 */ 1138 if (fssproj->fssp_runnable > 0) { 1139 uint32_t zone_shr_pct; 1140 uint32_t int_shr_pct; 1141 1142 /* 1143 * Times 1000 to get tenths of a percent 1144 * 1145 * zone_ext_shares 1146 * zone_shr_pct = --------------- 1147 * pset_shares 1148 * 1149 * kpj_shares 1150 * int_shr_pct = --------------- 1151 * zone_int_shares 1152 */ 1153 if (pset_shares == 0 || zone_int_shares == 0) { 1154 fssproj->fssp_shr_pct = 0; 1155 } else { 1156 zone_shr_pct = 1157 (zone_ext_shares * 1000) / 1158 pset_shares; 1159 int_shr_pct = (kpj_shares * 1000) / 1160 zone_int_shares; 1161 fssproj->fssp_shr_pct = 1162 (zone_shr_pct * int_shr_pct) / 1163 1000; 1164 } 1165 } else { 1166 DTRACE_PROBE1(fss__prj__norun, fssproj_t *, 1167 fssproj); 1168 } 1169 1170 /* 1171 * Calculate fssp_shusage value to be used 1172 * for fsspri increments for the next second. 1173 */ 1174 if (kpj_shares == 0 || zone_ext_shares == 0) { 1175 fssproj->fssp_shusage = 0; 1176 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 1177 uint32_t zone_shr_pct; 1178 1179 /* 1180 * Project 0 in the global zone has 50% 1181 * of its zone. See calculation above for 1182 * the zone's share percent. 1183 */ 1184 if (pset_shares == 0) 1185 zone_shr_pct = 1000; 1186 else 1187 zone_shr_pct = 1188 (zone_ext_shares * 1000) / 1189 pset_shares; 1190 1191 fssproj->fssp_shr_pct = zone_shr_pct / 2; 1192 1193 fssproj->fssp_shusage = (fssproj->fssp_usage * 1194 zone_int_shares * zone_int_shares) / 1195 (zone_ext_shares * zone_ext_shares); 1196 } else { 1197 /* 1198 * Thread's priority is based on its project's 1199 * normalized usage (shusage) value which gets 1200 * calculated this way: 1201 * 1202 * pset_shares^2 zone_int_shares^2 1203 * usage * ------------- * ------------------ 1204 * kpj_shares^2 zone_ext_shares^2 1205 * 1206 * Where zone_int_shares is the sum of shares 1207 * of all active projects within the zone (and 1208 * the pset), and zone_ext_shares is the number 1209 * of zone shares (ie, zone.cpu-shares). 1210 * 1211 * If there is only one zone active on the pset 1212 * the above reduces to: 1213 * 1214 * zone_int_shares^2 1215 * shusage = usage * --------------------- 1216 * kpj_shares^2 1217 * 1218 * If there's only one project active in the 1219 * zone this formula reduces to: 1220 * 1221 * pset_shares^2 1222 * shusage = usage * ---------------------- 1223 * zone_ext_shares^2 1224 * 1225 * shusage is one input to calculating fss_pri 1226 * in fss_newpri(). Larger values tend toward 1227 * lower priorities for processes in the proj. 1228 */ 1229 fssproj->fssp_shusage = fssproj->fssp_usage * 1230 pset_shares * zone_int_shares; 1231 fssproj->fssp_shusage /= 1232 kpj_shares * zone_ext_shares; 1233 fssproj->fssp_shusage *= 1234 pset_shares * zone_int_shares; 1235 fssproj->fssp_shusage /= 1236 kpj_shares * zone_ext_shares; 1237 } 1238 fssproj = fssproj->fssp_next; 1239 } while (fssproj != fsspset->fssps_list); 1240 1241 disp_lock_exit(&fsspset->fssps_displock); 1242 mutex_exit(&fsspset->fssps_lock); 1243 } 1244 mutex_exit(&fsspsets_lock); 1245 } 1246 1247 static void 1248 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 1249 { 1250 pri_t new_pri; 1251 1252 ASSERT(THREAD_LOCK_HELD(t)); 1253 new_pri = fssproc->fss_umdpri; 1254 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 1255 1256 t->t_cpri = fssproc->fss_upri; 1257 fssproc->fss_flags &= ~FSSRESTORE; 1258 if (t == curthread || t->t_state == TS_ONPROC) { 1259 /* 1260 * curthread is always onproc 1261 */ 1262 cpu_t *cp = t->t_disp_queue->disp_cpu; 1263 THREAD_CHANGE_PRI(t, new_pri); 1264 if (t == cp->cpu_dispthread) 1265 cp->cpu_dispatch_pri = DISP_PRIO(t); 1266 if (DISP_MUST_SURRENDER(t)) { 1267 fssproc->fss_flags |= FSSBACKQ; 1268 cpu_surrender(t); 1269 } else { 1270 fssproc->fss_timeleft = fss_quantum; 1271 } 1272 } else { 1273 /* 1274 * When the priority of a thread is changed, it may be 1275 * necessary to adjust its position on a sleep queue or 1276 * dispatch queue. The function thread_change_pri accomplishes 1277 * this. 1278 */ 1279 if (thread_change_pri(t, new_pri, 0)) { 1280 /* 1281 * The thread was on a run queue. 1282 */ 1283 fssproc->fss_timeleft = fss_quantum; 1284 } else { 1285 fssproc->fss_flags |= FSSBACKQ; 1286 } 1287 } 1288 } 1289 1290 /* 1291 * Update priorities of all fair-sharing threads that are currently runnable 1292 * at a user mode priority based on the number of shares and current usage. 1293 * Called once per second via timeout which we reset here. 1294 * 1295 * There are several lists of fair-sharing threads broken up by a hash on the 1296 * thread pointer. Each list has its own lock. This avoids blocking all 1297 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 1298 * fss_update traverses each list in turn. 1299 * 1300 * Each time we're run (once/second) we may start at the next list and iterate 1301 * through all of the lists. By starting with a different list, we mitigate any 1302 * effects we would see updating the fssps_maxfsspri value in fss_newpri. 1303 */ 1304 static void 1305 fss_update(void *arg) 1306 { 1307 int i; 1308 int new_marker = -1; 1309 static int fss_update_marker; 1310 1311 /* 1312 * Decay and update usages for all projects. 1313 */ 1314 fss_decay_usage(); 1315 1316 /* 1317 * Start with the fss_update_marker list, then do the rest. 1318 */ 1319 i = fss_update_marker; 1320 1321 /* 1322 * Go around all threads, set new priorities and decay 1323 * per-thread CPU usages. 1324 */ 1325 do { 1326 /* 1327 * If this is the first list after the current marker to have 1328 * threads with priority updates, advance the marker to this 1329 * list for the next time fss_update runs. 1330 */ 1331 if (fss_update_list(i) && 1332 new_marker == -1 && i != fss_update_marker) 1333 new_marker = i; 1334 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1335 1336 /* 1337 * Advance marker for the next fss_update call 1338 */ 1339 if (new_marker != -1) 1340 fss_update_marker = new_marker; 1341 1342 (void) timeout(fss_update, arg, hz); 1343 } 1344 1345 /* 1346 * Updates priority for a list of threads. Returns 1 if the priority of one 1347 * of the threads was actually updated, 0 if none were for various reasons 1348 * (thread is no longer in the FSS class, is not runnable, has the preemption 1349 * control no-preempt bit set, etc.) 1350 */ 1351 static int 1352 fss_update_list(int i) 1353 { 1354 fssproc_t *fssproc; 1355 fssproj_t *fssproj; 1356 fsspri_t fsspri; 1357 pri_t fss_umdpri; 1358 kthread_t *t; 1359 int updated = 0; 1360 1361 mutex_enter(&fss_listlock[i]); 1362 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1363 fssproc = fssproc->fss_next) { 1364 t = fssproc->fss_tp; 1365 /* 1366 * Lock the thread and verify the state. 1367 */ 1368 thread_lock(t); 1369 /* 1370 * Skip the thread if it is no longer in the FSS class or 1371 * is running with kernel mode priority. 1372 */ 1373 if (t->t_cid != fss_cid) 1374 goto next; 1375 1376 fssproj = FSSPROC2FSSPROJ(fssproc); 1377 if (fssproj == NULL) 1378 goto next; 1379 1380 if (fssproj->fssp_shares != 0) { 1381 /* 1382 * Decay fsspri value. 1383 */ 1384 fsspri = fssproc->fss_fsspri; 1385 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1386 FSS_DECAY_BASE; 1387 fssproc->fss_fsspri = fsspri; 1388 } 1389 1390 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1391 goto next; 1392 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) { 1393 /* 1394 * Make next syscall/trap call fss_trapret 1395 */ 1396 t->t_trapret = 1; 1397 aston(t); 1398 if (t->t_state == TS_ONPROC) 1399 DTRACE_PROBE1(fss__onproc, fssproc_t *, 1400 fssproc); 1401 goto next; 1402 } 1403 fss_newpri(fssproc, B_FALSE); 1404 updated = 1; 1405 1406 fss_umdpri = fssproc->fss_umdpri; 1407 1408 /* 1409 * Only dequeue the thread if it needs to be moved; otherwise 1410 * it should just round-robin here. 1411 */ 1412 if (t->t_pri != fss_umdpri) 1413 fss_change_priority(t, fssproc); 1414 next: 1415 thread_unlock(t); 1416 } 1417 mutex_exit(&fss_listlock[i]); 1418 return (updated); 1419 } 1420 1421 /*ARGSUSED*/ 1422 static int 1423 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1424 { 1425 fssadmin_t fssadmin; 1426 1427 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1428 return (EFAULT); 1429 1430 switch (fssadmin.fss_cmd) { 1431 case FSS_SETADMIN: 1432 if (secpolicy_dispadm(reqpcredp) != 0) 1433 return (EPERM); 1434 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1435 return (EINVAL); 1436 fss_quantum = fssadmin.fss_quantum; 1437 break; 1438 case FSS_GETADMIN: 1439 fssadmin.fss_quantum = fss_quantum; 1440 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1441 return (EFAULT); 1442 break; 1443 default: 1444 return (EINVAL); 1445 } 1446 return (0); 1447 } 1448 1449 static int 1450 fss_getclinfo(void *infop) 1451 { 1452 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1453 fssinfo->fss_maxupri = fss_maxupri; 1454 return (0); 1455 } 1456 1457 static int 1458 fss_parmsin(void *parmsp) 1459 { 1460 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1461 1462 /* 1463 * Check validity of parameters. 1464 */ 1465 if ((fssparmsp->fss_uprilim > fss_maxupri || 1466 fssparmsp->fss_uprilim < -fss_maxupri) && 1467 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1468 return (EINVAL); 1469 1470 if ((fssparmsp->fss_upri > fss_maxupri || 1471 fssparmsp->fss_upri < -fss_maxupri) && 1472 fssparmsp->fss_upri != FSS_NOCHANGE) 1473 return (EINVAL); 1474 1475 return (0); 1476 } 1477 1478 /*ARGSUSED*/ 1479 static int 1480 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1481 { 1482 return (0); 1483 } 1484 1485 static int 1486 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1487 { 1488 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1489 int priflag = 0; 1490 int limflag = 0; 1491 uint_t cnt; 1492 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1493 1494 /* 1495 * FSS_NOCHANGE (-32768) is outside of the range of values for 1496 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1497 * FSS_NOCHANGE should be replaced by a flag word. 1498 */ 1499 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1500 fssparmsp->fss_upri = FSS_NOCHANGE; 1501 1502 /* 1503 * Get the varargs parameter and check validity of parameters. 1504 */ 1505 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1506 return (EINVAL); 1507 1508 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1509 switch (vpp->pc_key) { 1510 case FSS_KY_UPRILIM: 1511 if (limflag++) 1512 return (EINVAL); 1513 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1514 if (fssparmsp->fss_uprilim > fss_maxupri || 1515 fssparmsp->fss_uprilim < -fss_maxupri) 1516 return (EINVAL); 1517 break; 1518 case FSS_KY_UPRI: 1519 if (priflag++) 1520 return (EINVAL); 1521 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1522 if (fssparmsp->fss_upri > fss_maxupri || 1523 fssparmsp->fss_upri < -fss_maxupri) 1524 return (EINVAL); 1525 break; 1526 default: 1527 return (EINVAL); 1528 } 1529 } 1530 1531 if (vaparmsp->pc_vaparmscnt == 0) { 1532 /* 1533 * Use default parameters. 1534 */ 1535 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1536 } 1537 1538 return (0); 1539 } 1540 1541 /* 1542 * Copy all selected fair-sharing class parameters to the user. The parameters 1543 * are specified by a key. 1544 */ 1545 static int 1546 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1547 { 1548 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1549 int priflag = 0; 1550 int limflag = 0; 1551 uint_t cnt; 1552 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1553 1554 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1555 1556 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1557 return (EINVAL); 1558 1559 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1560 switch (vpp->pc_key) { 1561 case FSS_KY_UPRILIM: 1562 if (limflag++) 1563 return (EINVAL); 1564 if (copyout(&fssparmsp->fss_uprilim, 1565 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1566 return (EFAULT); 1567 break; 1568 case FSS_KY_UPRI: 1569 if (priflag++) 1570 return (EINVAL); 1571 if (copyout(&fssparmsp->fss_upri, 1572 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1573 return (EFAULT); 1574 break; 1575 default: 1576 return (EINVAL); 1577 } 1578 } 1579 1580 return (0); 1581 } 1582 1583 /* 1584 * Return the user mode scheduling priority range. 1585 */ 1586 static int 1587 fss_getclpri(pcpri_t *pcprip) 1588 { 1589 pcprip->pc_clpmax = fss_maxupri; 1590 pcprip->pc_clpmin = -fss_maxupri; 1591 return (0); 1592 } 1593 1594 static int 1595 fss_alloc(void **p, int flag) 1596 { 1597 void *bufp; 1598 1599 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1600 return (ENOMEM); 1601 } else { 1602 *p = bufp; 1603 return (0); 1604 } 1605 } 1606 1607 static void 1608 fss_free(void *bufp) 1609 { 1610 if (bufp) 1611 kmem_free(bufp, sizeof (fssproc_t)); 1612 } 1613 1614 /* 1615 * Thread functions 1616 */ 1617 static int 1618 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1619 void *bufp) 1620 { 1621 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1622 fssproc_t *fssproc; 1623 pri_t reqfssuprilim; 1624 pri_t reqfssupri; 1625 static uint32_t fssexists = 0; 1626 fsspset_t *fsspset; 1627 fssproj_t *fssproj; 1628 fsszone_t *fsszone; 1629 kproject_t *kpj; 1630 zone_t *zone; 1631 int fsszone_allocated = 0; 1632 1633 fssproc = (fssproc_t *)bufp; 1634 ASSERT(fssproc != NULL); 1635 1636 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1637 1638 /* 1639 * Only root can move threads to FSS class. 1640 */ 1641 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1642 return (EPERM); 1643 /* 1644 * Initialize the fssproc structure. 1645 */ 1646 fssproc->fss_umdpri = fss_maxumdpri / 2; 1647 1648 if (fssparmsp == NULL) { 1649 /* 1650 * Use default values. 1651 */ 1652 fssproc->fss_nice = NZERO; 1653 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1654 } else { 1655 /* 1656 * Use supplied values. 1657 */ 1658 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1659 reqfssuprilim = 0; 1660 } else { 1661 if (fssparmsp->fss_uprilim > 0 && 1662 secpolicy_setpriority(reqpcredp) != 0) 1663 return (EPERM); 1664 reqfssuprilim = fssparmsp->fss_uprilim; 1665 } 1666 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1667 reqfssupri = reqfssuprilim; 1668 } else { 1669 if (fssparmsp->fss_upri > 0 && 1670 secpolicy_setpriority(reqpcredp) != 0) 1671 return (EPERM); 1672 /* 1673 * Set the user priority to the requested value or 1674 * the upri limit, whichever is lower. 1675 */ 1676 reqfssupri = fssparmsp->fss_upri; 1677 if (reqfssupri > reqfssuprilim) 1678 reqfssupri = reqfssuprilim; 1679 } 1680 fssproc->fss_uprilim = reqfssuprilim; 1681 fssproc->fss_upri = reqfssupri; 1682 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1683 if (fssproc->fss_nice > FSS_NICE_MAX) 1684 fssproc->fss_nice = FSS_NICE_MAX; 1685 } 1686 1687 fssproc->fss_timeleft = fss_quantum; 1688 fssproc->fss_tp = t; 1689 cpucaps_sc_init(&fssproc->fss_caps); 1690 1691 /* 1692 * Put a lock on our fsspset structure. 1693 */ 1694 mutex_enter(&fsspsets_lock); 1695 fsspset = fss_find_fsspset(t->t_cpupart); 1696 mutex_enter(&fsspset->fssps_lock); 1697 mutex_exit(&fsspsets_lock); 1698 1699 zone = ttoproc(t)->p_zone; 1700 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1701 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1702 == NULL) { 1703 mutex_exit(&fsspset->fssps_lock); 1704 return (ENOMEM); 1705 } else { 1706 fsszone_allocated = 1; 1707 fss_insert_fsszone(fsspset, zone, fsszone); 1708 } 1709 } 1710 kpj = ttoproj(t); 1711 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1712 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1713 == NULL) { 1714 if (fsszone_allocated) { 1715 fss_remove_fsszone(fsspset, fsszone); 1716 kmem_free(fsszone, sizeof (fsszone_t)); 1717 } 1718 mutex_exit(&fsspset->fssps_lock); 1719 return (ENOMEM); 1720 } else { 1721 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1722 } 1723 } 1724 fssproj->fssp_threads++; 1725 fssproc->fss_proj = fssproj; 1726 1727 /* 1728 * Reset priority. Process goes to a "user mode" priority here 1729 * regardless of whether or not it has slept since entering the kernel. 1730 */ 1731 thread_lock(t); 1732 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1733 t->t_cid = cid; 1734 t->t_cldata = (void *)fssproc; 1735 t->t_schedflag |= TS_RUNQMATCH; 1736 fss_change_priority(t, fssproc); 1737 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 1738 t->t_state == TS_WAIT) 1739 fss_active(t); 1740 thread_unlock(t); 1741 1742 mutex_exit(&fsspset->fssps_lock); 1743 1744 /* 1745 * Link new structure into fssproc list. 1746 */ 1747 FSS_LIST_INSERT(fssproc); 1748 1749 /* 1750 * If this is the first fair-sharing thread to occur since boot, 1751 * we set up the initial call to fss_update() here. Use an atomic 1752 * compare-and-swap since that's easier and faster than a mutex 1753 * (but check with an ordinary load first since most of the time 1754 * this will already be done). 1755 */ 1756 if (fssexists == 0 && atomic_cas_32(&fssexists, 0, 1) == 0) 1757 (void) timeout(fss_update, NULL, hz); 1758 1759 return (0); 1760 } 1761 1762 /* 1763 * Remove fssproc_t from the list. 1764 */ 1765 static void 1766 fss_exitclass(void *procp) 1767 { 1768 fssproc_t *fssproc = (fssproc_t *)procp; 1769 fssproj_t *fssproj; 1770 fsspset_t *fsspset; 1771 fsszone_t *fsszone; 1772 kthread_t *t = fssproc->fss_tp; 1773 1774 /* 1775 * We should be either getting this thread off the deathrow or 1776 * this thread has already moved to another scheduling class and 1777 * we're being called with its old cldata buffer pointer. In both 1778 * cases, the content of this buffer can not be changed while we're 1779 * here. 1780 */ 1781 mutex_enter(&fsspsets_lock); 1782 thread_lock(t); 1783 if (t->t_cid != fss_cid) { 1784 /* 1785 * We're being called as a result of the priocntl() system 1786 * call -- someone is trying to move our thread to another 1787 * scheduling class. We can't call fss_inactive() here 1788 * because our thread's t_cldata pointer already points 1789 * to another scheduling class specific data. 1790 */ 1791 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1792 1793 fssproj = FSSPROC2FSSPROJ(fssproc); 1794 fsspset = FSSPROJ2FSSPSET(fssproj); 1795 fsszone = fssproj->fssp_fsszone; 1796 1797 if (fssproc->fss_runnable) { 1798 disp_lock_enter_high(&fsspset->fssps_displock); 1799 if (--fssproj->fssp_runnable == 0) { 1800 fsszone->fssz_shares -= fssproj->fssp_shares; 1801 if (--fsszone->fssz_runnable == 0) 1802 fsspset->fssps_shares -= 1803 fsszone->fssz_rshares; 1804 } 1805 disp_lock_exit_high(&fsspset->fssps_displock); 1806 } 1807 thread_unlock(t); 1808 1809 mutex_enter(&fsspset->fssps_lock); 1810 if (--fssproj->fssp_threads == 0) { 1811 fss_remove_fssproj(fsspset, fssproj); 1812 if (fsszone->fssz_nproj == 0) 1813 kmem_free(fsszone, sizeof (fsszone_t)); 1814 kmem_free(fssproj, sizeof (fssproj_t)); 1815 } 1816 mutex_exit(&fsspset->fssps_lock); 1817 1818 } else { 1819 ASSERT(t->t_state == TS_FREE); 1820 /* 1821 * We're being called from thread_free() when our thread 1822 * is removed from the deathrow. There is nothing we need 1823 * do here since everything should've been done earlier 1824 * in fss_exit(). 1825 */ 1826 thread_unlock(t); 1827 } 1828 mutex_exit(&fsspsets_lock); 1829 1830 FSS_LIST_DELETE(fssproc); 1831 fss_free(fssproc); 1832 } 1833 1834 /*ARGSUSED*/ 1835 static int 1836 fss_canexit(kthread_t *t, cred_t *credp) 1837 { 1838 /* 1839 * A thread is allowed to exit FSS only if we have sufficient 1840 * privileges. 1841 */ 1842 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1843 return (EPERM); 1844 else 1845 return (0); 1846 } 1847 1848 /* 1849 * Initialize fair-share class specific proc structure for a child. 1850 */ 1851 static int 1852 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1853 { 1854 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1855 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1856 fssproj_t *fssproj; 1857 fsspset_t *fsspset; 1858 1859 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1860 ASSERT(ct->t_state == TS_STOPPED); 1861 1862 cfssproc = (fssproc_t *)bufp; 1863 ASSERT(cfssproc != NULL); 1864 bzero(cfssproc, sizeof (fssproc_t)); 1865 1866 thread_lock(pt); 1867 pfssproc = FSSPROC(pt); 1868 fssproj = FSSPROC2FSSPROJ(pfssproc); 1869 fsspset = FSSPROJ2FSSPSET(fssproj); 1870 thread_unlock(pt); 1871 1872 mutex_enter(&fsspset->fssps_lock); 1873 /* 1874 * Initialize child's fssproc structure. 1875 */ 1876 thread_lock(pt); 1877 ASSERT(FSSPROJ(pt) == fssproj); 1878 cfssproc->fss_proj = fssproj; 1879 cfssproc->fss_timeleft = fss_quantum; 1880 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1881 cfssproc->fss_fsspri = 0; 1882 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1883 cfssproc->fss_upri = pfssproc->fss_upri; 1884 cfssproc->fss_tp = ct; 1885 cfssproc->fss_nice = pfssproc->fss_nice; 1886 cpucaps_sc_init(&cfssproc->fss_caps); 1887 1888 cfssproc->fss_flags = 1889 pfssproc->fss_flags & ~(FSSBACKQ | FSSRESTORE); 1890 ct->t_cldata = (void *)cfssproc; 1891 ct->t_schedflag |= TS_RUNQMATCH; 1892 thread_unlock(pt); 1893 1894 fssproj->fssp_threads++; 1895 mutex_exit(&fsspset->fssps_lock); 1896 1897 /* 1898 * Link new structure into fssproc hash table. 1899 */ 1900 FSS_LIST_INSERT(cfssproc); 1901 return (0); 1902 } 1903 1904 /* 1905 * Child is placed at back of dispatcher queue and parent gives up processor 1906 * so that the child runs first after the fork. This allows the child 1907 * immediately execing to break the multiple use of copy on write pages with no 1908 * disk home. The parent will get to steal them back rather than uselessly 1909 * copying them. 1910 */ 1911 static void 1912 fss_forkret(kthread_t *t, kthread_t *ct) 1913 { 1914 proc_t *pp = ttoproc(t); 1915 proc_t *cp = ttoproc(ct); 1916 fssproc_t *fssproc; 1917 1918 ASSERT(t == curthread); 1919 ASSERT(MUTEX_HELD(&pidlock)); 1920 1921 /* 1922 * Grab the child's p_lock before dropping pidlock to ensure the 1923 * process does not disappear before we set it running. 1924 */ 1925 mutex_enter(&cp->p_lock); 1926 continuelwps(cp); 1927 mutex_exit(&cp->p_lock); 1928 1929 mutex_enter(&pp->p_lock); 1930 mutex_exit(&pidlock); 1931 continuelwps(pp); 1932 1933 thread_lock(t); 1934 1935 fssproc = FSSPROC(t); 1936 fss_newpri(fssproc, B_FALSE); 1937 fssproc->fss_timeleft = fss_quantum; 1938 t->t_pri = fssproc->fss_umdpri; 1939 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1940 THREAD_TRANSITION(t); 1941 1942 /* 1943 * We don't want to call fss_setrun(t) here because it may call 1944 * fss_active, which we don't need. 1945 */ 1946 fssproc->fss_flags &= ~FSSBACKQ; 1947 1948 if (t->t_disp_time != ddi_get_lbolt()) 1949 setbackdq(t); 1950 else 1951 setfrontdq(t); 1952 1953 thread_unlock(t); 1954 /* 1955 * Safe to drop p_lock now since it is safe to change 1956 * the scheduling class after this point. 1957 */ 1958 mutex_exit(&pp->p_lock); 1959 1960 swtch(); 1961 } 1962 1963 /* 1964 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1965 * the buffer pointed by fssparmsp. 1966 */ 1967 static void 1968 fss_parmsget(kthread_t *t, void *parmsp) 1969 { 1970 fssproc_t *fssproc = FSSPROC(t); 1971 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1972 1973 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1974 fssparmsp->fss_upri = fssproc->fss_upri; 1975 } 1976 1977 /*ARGSUSED*/ 1978 static int 1979 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1980 { 1981 char nice; 1982 pri_t reqfssuprilim; 1983 pri_t reqfssupri; 1984 fssproc_t *fssproc = FSSPROC(t); 1985 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1986 1987 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1988 1989 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1990 reqfssuprilim = fssproc->fss_uprilim; 1991 else 1992 reqfssuprilim = fssparmsp->fss_uprilim; 1993 1994 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1995 reqfssupri = fssproc->fss_upri; 1996 else 1997 reqfssupri = fssparmsp->fss_upri; 1998 1999 /* 2000 * Make sure the user priority doesn't exceed the upri limit. 2001 */ 2002 if (reqfssupri > reqfssuprilim) 2003 reqfssupri = reqfssuprilim; 2004 2005 /* 2006 * Basic permissions enforced by generic kernel code for all classes 2007 * require that a thread attempting to change the scheduling parameters 2008 * of a target thread be privileged or have a real or effective UID 2009 * matching that of the target thread. We are not called unless these 2010 * basic permission checks have already passed. The fair-sharing class 2011 * requires in addition that the calling thread be privileged if it 2012 * is attempting to raise the upri limit above its current value. 2013 * This may have been checked previously but if our caller passed us 2014 * a non-NULL credential pointer we assume it hasn't and we check it 2015 * here. 2016 */ 2017 if ((reqpcredp != NULL) && 2018 (reqfssuprilim > fssproc->fss_uprilim) && 2019 secpolicy_raisepriority(reqpcredp) != 0) 2020 return (EPERM); 2021 2022 /* 2023 * Set fss_nice to the nice value corresponding to the user priority we 2024 * are setting. Note that setting the nice field of the parameter 2025 * struct won't affect upri or nice. 2026 */ 2027 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 2028 if (nice > FSS_NICE_MAX) 2029 nice = FSS_NICE_MAX; 2030 2031 thread_lock(t); 2032 2033 fssproc->fss_uprilim = reqfssuprilim; 2034 fssproc->fss_upri = reqfssupri; 2035 fssproc->fss_nice = nice; 2036 fss_newpri(fssproc, B_FALSE); 2037 2038 fss_change_priority(t, fssproc); 2039 thread_unlock(t); 2040 return (0); 2041 2042 } 2043 2044 /* 2045 * The thread is being stopped. 2046 */ 2047 /*ARGSUSED*/ 2048 static void 2049 fss_stop(kthread_t *t, int why, int what) 2050 { 2051 ASSERT(THREAD_LOCK_HELD(t)); 2052 ASSERT(t == curthread); 2053 2054 fss_inactive(t); 2055 } 2056 2057 /* 2058 * The current thread is exiting, do necessary adjustments to its project 2059 */ 2060 static void 2061 fss_exit(kthread_t *t) 2062 { 2063 fsspset_t *fsspset; 2064 fssproj_t *fssproj; 2065 fssproc_t *fssproc; 2066 fsszone_t *fsszone; 2067 int free = 0; 2068 2069 /* 2070 * Thread t here is either a current thread (in which case we hold 2071 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 2072 * in which case we hold pidlock and thread is no longer on the 2073 * thread list. 2074 */ 2075 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 2076 2077 fssproc = FSSPROC(t); 2078 fssproj = FSSPROC2FSSPROJ(fssproc); 2079 fsspset = FSSPROJ2FSSPSET(fssproj); 2080 fsszone = fssproj->fssp_fsszone; 2081 2082 mutex_enter(&fsspsets_lock); 2083 mutex_enter(&fsspset->fssps_lock); 2084 2085 thread_lock(t); 2086 disp_lock_enter_high(&fsspset->fssps_displock); 2087 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 2088 if (--fssproj->fssp_runnable == 0) { 2089 fsszone->fssz_shares -= fssproj->fssp_shares; 2090 if (--fsszone->fssz_runnable == 0) 2091 fsspset->fssps_shares -= fsszone->fssz_rshares; 2092 } 2093 ASSERT(fssproc->fss_runnable == 1); 2094 fssproc->fss_runnable = 0; 2095 } 2096 if (--fssproj->fssp_threads == 0) { 2097 fss_remove_fssproj(fsspset, fssproj); 2098 free = 1; 2099 } 2100 disp_lock_exit_high(&fsspset->fssps_displock); 2101 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 2102 thread_unlock(t); 2103 2104 if (free) { 2105 if (fsszone->fssz_nproj == 0) 2106 kmem_free(fsszone, sizeof (fsszone_t)); 2107 kmem_free(fssproj, sizeof (fssproj_t)); 2108 } 2109 mutex_exit(&fsspset->fssps_lock); 2110 mutex_exit(&fsspsets_lock); 2111 2112 /* 2113 * A thread could be exiting in between clock ticks, so we need to 2114 * calculate how much CPU time it used since it was charged last time. 2115 * 2116 * CPU caps are not enforced on exiting processes - it is usually 2117 * desirable to exit as soon as possible to free resources. 2118 */ 2119 if (CPUCAPS_ON()) { 2120 thread_lock(t); 2121 fssproc = FSSPROC(t); 2122 (void) cpucaps_charge(t, &fssproc->fss_caps, 2123 CPUCAPS_CHARGE_ONLY); 2124 thread_unlock(t); 2125 } 2126 } 2127 2128 static void 2129 fss_nullsys() 2130 { 2131 } 2132 2133 /* 2134 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 2135 * swapped in. Otherwise, it returns the thread's effective priority based 2136 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 2137 */ 2138 /*ARGSUSED*/ 2139 static pri_t 2140 fss_swapin(kthread_t *t, int flags) 2141 { 2142 fssproc_t *fssproc = FSSPROC(t); 2143 long epri = -1; 2144 proc_t *pp = ttoproc(t); 2145 2146 ASSERT(THREAD_LOCK_HELD(t)); 2147 2148 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 2149 time_t swapout_time; 2150 2151 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 2152 if (INHERITED(t)) { 2153 epri = (long)DISP_PRIO(t) + swapout_time; 2154 } else { 2155 /* 2156 * Threads which have been out for a long time, 2157 * have high user mode priority and are associated 2158 * with a small address space are more deserving. 2159 */ 2160 epri = fssproc->fss_umdpri; 2161 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 2162 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 2163 } 2164 /* 2165 * Scale epri so that SHRT_MAX / 2 represents zero priority. 2166 */ 2167 epri += SHRT_MAX / 2; 2168 if (epri < 0) 2169 epri = 0; 2170 else if (epri > SHRT_MAX) 2171 epri = SHRT_MAX; 2172 } 2173 return ((pri_t)epri); 2174 } 2175 2176 /* 2177 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 2178 * be swapped out. Otherwise, it returns the thread's effective priority 2179 * based on if the swapper is in softswap or hardswap mode. 2180 */ 2181 static pri_t 2182 fss_swapout(kthread_t *t, int flags) 2183 { 2184 long epri = -1; 2185 proc_t *pp = ttoproc(t); 2186 time_t swapin_time; 2187 2188 ASSERT(THREAD_LOCK_HELD(t)); 2189 2190 if (INHERITED(t) || 2191 (t->t_proc_flag & TP_LWPEXIT) || 2192 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) || 2193 !(t->t_schedflag & TS_LOAD) || 2194 !(SWAP_OK(t))) 2195 return (-1); 2196 2197 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 2198 2199 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 2200 2201 if (flags == SOFTSWAP) { 2202 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 2203 epri = 0; 2204 } else { 2205 return ((pri_t)epri); 2206 } 2207 } else { 2208 pri_t pri; 2209 2210 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 2211 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 2212 pri = fss_maxumdpri; 2213 epri = swapin_time - 2214 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 2215 } else { 2216 return ((pri_t)epri); 2217 } 2218 } 2219 2220 /* 2221 * Scale epri so that SHRT_MAX / 2 represents zero priority. 2222 */ 2223 epri += SHRT_MAX / 2; 2224 if (epri < 0) 2225 epri = 0; 2226 else if (epri > SHRT_MAX) 2227 epri = SHRT_MAX; 2228 2229 return ((pri_t)epri); 2230 } 2231 2232 /* 2233 * Run swap-out checks when returning to userspace. 2234 */ 2235 static void 2236 fss_trapret(kthread_t *t) 2237 { 2238 cpu_t *cp = CPU; 2239 2240 ASSERT(THREAD_LOCK_HELD(t)); 2241 ASSERT(t == curthread); 2242 ASSERT(cp->cpu_dispthread == t); 2243 ASSERT(t->t_state == TS_ONPROC); 2244 2245 /* 2246 * Swapout lwp if the swapper is waiting for this thread to reach 2247 * a safe point. 2248 */ 2249 if (t->t_schedflag & TS_SWAPENQ) { 2250 thread_unlock(t); 2251 swapout_lwp(ttolwp(t)); 2252 thread_lock(t); 2253 } 2254 } 2255 2256 /* 2257 * Arrange for thread to be placed in appropriate location on dispatcher queue. 2258 * This is called with the current thread in TS_ONPROC and locked. 2259 */ 2260 static void 2261 fss_preempt(kthread_t *t) 2262 { 2263 fssproc_t *fssproc = FSSPROC(t); 2264 klwp_t *lwp; 2265 uint_t flags; 2266 2267 ASSERT(t == curthread); 2268 ASSERT(THREAD_LOCK_HELD(curthread)); 2269 ASSERT(t->t_state == TS_ONPROC); 2270 2271 /* 2272 * This thread may be placed on wait queue by CPU Caps. In this case we 2273 * do not need to do anything until it is removed from the wait queue. 2274 * Do not enforce CPU caps on threads running at a kernel priority 2275 */ 2276 if (CPUCAPS_ON()) { 2277 (void) cpucaps_charge(t, &fssproc->fss_caps, 2278 CPUCAPS_CHARGE_ENFORCE); 2279 2280 if (CPUCAPS_ENFORCE(t)) 2281 return; 2282 } 2283 2284 /* 2285 * If preempted in user-land mark the thread as swappable because it 2286 * cannot be holding any kernel locks. 2287 */ 2288 ASSERT(t->t_schedflag & TS_DONT_SWAP); 2289 lwp = ttolwp(t); 2290 if (lwp != NULL && lwp->lwp_state == LWP_USER) 2291 t->t_schedflag &= ~TS_DONT_SWAP; 2292 2293 /* 2294 * Check to see if we're doing "preemption control" here. If 2295 * we are, and if the user has requested that this thread not 2296 * be preempted, and if preemptions haven't been put off for 2297 * too long, let the preemption happen here but try to make 2298 * sure the thread is rescheduled as soon as possible. We do 2299 * this by putting it on the front of the highest priority run 2300 * queue in the FSS class. If the preemption has been put off 2301 * for too long, clear the "nopreempt" bit and let the thread 2302 * be preempted. 2303 */ 2304 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2305 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2306 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 2307 /* 2308 * If not already remembered, remember current 2309 * priority for restoration in fss_yield(). 2310 */ 2311 if (!(fssproc->fss_flags & FSSRESTORE)) { 2312 fssproc->fss_scpri = t->t_pri; 2313 fssproc->fss_flags |= FSSRESTORE; 2314 } 2315 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2316 t->t_schedflag |= TS_DONT_SWAP; 2317 schedctl_set_yield(t, 1); 2318 setfrontdq(t); 2319 return; 2320 } else { 2321 if (fssproc->fss_flags & FSSRESTORE) { 2322 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2323 fssproc->fss_flags &= ~FSSRESTORE; 2324 } 2325 schedctl_set_nopreempt(t, 0); 2326 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2327 /* 2328 * Fall through and be preempted below. 2329 */ 2330 } 2331 } 2332 2333 flags = fssproc->fss_flags & FSSBACKQ; 2334 2335 if (flags == FSSBACKQ) { 2336 fssproc->fss_timeleft = fss_quantum; 2337 fssproc->fss_flags &= ~FSSBACKQ; 2338 setbackdq(t); 2339 } else { 2340 setfrontdq(t); 2341 } 2342 } 2343 2344 /* 2345 * Called when a thread is waking up and is to be placed on the run queue. 2346 */ 2347 static void 2348 fss_setrun(kthread_t *t) 2349 { 2350 fssproc_t *fssproc = FSSPROC(t); 2351 2352 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2353 2354 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2355 fss_active(t); 2356 2357 fssproc->fss_timeleft = fss_quantum; 2358 2359 fssproc->fss_flags &= ~FSSBACKQ; 2360 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2361 2362 if (t->t_disp_time != ddi_get_lbolt()) 2363 setbackdq(t); 2364 else 2365 setfrontdq(t); 2366 } 2367 2368 /* 2369 * Prepare thread for sleep. 2370 */ 2371 static void 2372 fss_sleep(kthread_t *t) 2373 { 2374 fssproc_t *fssproc = FSSPROC(t); 2375 2376 ASSERT(t == curthread); 2377 ASSERT(THREAD_LOCK_HELD(t)); 2378 2379 ASSERT(t->t_state == TS_ONPROC); 2380 2381 /* 2382 * Account for time spent on CPU before going to sleep. 2383 */ 2384 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2385 2386 fss_inactive(t); 2387 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2388 } 2389 2390 /* 2391 * A tick interrupt has ocurrend on a running thread. Check to see if our 2392 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2393 * t_schedflag if the thread is eligible to be swapped out. 2394 */ 2395 static void 2396 fss_tick(kthread_t *t) 2397 { 2398 fssproc_t *fssproc; 2399 fssproj_t *fssproj; 2400 klwp_t *lwp; 2401 boolean_t call_cpu_surrender = B_FALSE; 2402 boolean_t cpucaps_enforce = B_FALSE; 2403 2404 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2405 2406 /* 2407 * It's safe to access fsspset and fssproj structures because we're 2408 * holding our p_lock here. 2409 */ 2410 thread_lock(t); 2411 fssproc = FSSPROC(t); 2412 fssproj = FSSPROC2FSSPROJ(fssproc); 2413 if (fssproj != NULL) { 2414 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2415 disp_lock_enter_high(&fsspset->fssps_displock); 2416 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2417 fssproj->fssp_tick_cnt++; 2418 fssproc->fss_ticks++; 2419 disp_lock_exit_high(&fsspset->fssps_displock); 2420 } 2421 2422 /* 2423 * Keep track of thread's project CPU usage. Note that projects 2424 * get charged even when threads are running in the kernel. 2425 * Do not surrender CPU if running in the SYS class. 2426 */ 2427 if (CPUCAPS_ON()) { 2428 cpucaps_enforce = cpucaps_charge(t, &fssproc->fss_caps, 2429 CPUCAPS_CHARGE_ENFORCE); 2430 } 2431 2432 if (--fssproc->fss_timeleft <= 0) { 2433 pri_t new_pri; 2434 2435 /* 2436 * If we're doing preemption control and trying to avoid 2437 * preempting this thread, just note that the thread should 2438 * yield soon and let it keep running (unless it's been a 2439 * while). 2440 */ 2441 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2442 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2443 DTRACE_SCHED1(schedctl__nopreempt, 2444 kthread_t *, t); 2445 schedctl_set_yield(t, 1); 2446 thread_unlock_nopreempt(t); 2447 return; 2448 } 2449 } 2450 fssproc->fss_flags &= ~FSSRESTORE; 2451 2452 fss_newpri(fssproc, B_TRUE); 2453 new_pri = fssproc->fss_umdpri; 2454 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2455 2456 /* 2457 * When the priority of a thread is changed, it may be 2458 * necessary to adjust its position on a sleep queue or 2459 * dispatch queue. The function thread_change_pri accomplishes 2460 * this. 2461 */ 2462 if (thread_change_pri(t, new_pri, 0)) { 2463 if ((t->t_schedflag & TS_LOAD) && 2464 (lwp = t->t_lwp) && 2465 lwp->lwp_state == LWP_USER) 2466 t->t_schedflag &= ~TS_DONT_SWAP; 2467 fssproc->fss_timeleft = fss_quantum; 2468 } else { 2469 call_cpu_surrender = B_TRUE; 2470 } 2471 } else if (t->t_state == TS_ONPROC && 2472 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2473 /* 2474 * If there is a higher-priority thread which is waiting for a 2475 * processor, then thread surrenders the processor. 2476 */ 2477 call_cpu_surrender = B_TRUE; 2478 } 2479 2480 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) { 2481 /* 2482 * The thread used more than half of its quantum, so assume that 2483 * it used the whole quantum. 2484 * 2485 * Update thread's priority just before putting it on the wait 2486 * queue so that it gets charged for the CPU time from its 2487 * quantum even before that quantum expires. 2488 */ 2489 fss_newpri(fssproc, B_FALSE); 2490 if (t->t_pri != fssproc->fss_umdpri) 2491 fss_change_priority(t, fssproc); 2492 2493 /* 2494 * We need to call cpu_surrender for this thread due to cpucaps 2495 * enforcement, but fss_change_priority may have already done 2496 * so. In this case FSSBACKQ is set and there is no need to call 2497 * cpu-surrender again. 2498 */ 2499 if (!(fssproc->fss_flags & FSSBACKQ)) 2500 call_cpu_surrender = B_TRUE; 2501 } 2502 2503 if (call_cpu_surrender) { 2504 fssproc->fss_flags |= FSSBACKQ; 2505 cpu_surrender(t); 2506 } 2507 2508 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2509 } 2510 2511 /* 2512 * Processes waking up go to the back of their queue. We don't need to assign 2513 * a time quantum here because thread is still at a kernel mode priority and 2514 * the time slicing is not done for threads running in the kernel after 2515 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2516 * thread returns to user mode. 2517 */ 2518 static void 2519 fss_wakeup(kthread_t *t) 2520 { 2521 fssproc_t *fssproc; 2522 2523 ASSERT(THREAD_LOCK_HELD(t)); 2524 ASSERT(t->t_state == TS_SLEEP); 2525 2526 fss_active(t); 2527 2528 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2529 fssproc = FSSPROC(t); 2530 fssproc->fss_flags &= ~FSSBACKQ; 2531 2532 /* Recalculate the priority. */ 2533 if (t->t_disp_time == ddi_get_lbolt()) { 2534 setfrontdq(t); 2535 } else { 2536 fssproc->fss_timeleft = fss_quantum; 2537 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2538 setbackdq(t); 2539 } 2540 } 2541 2542 /* 2543 * fss_donice() is called when a nice(1) command is issued on the thread to 2544 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2545 * Thread priority adjustments should be done via priocntl(1). 2546 */ 2547 static int 2548 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2549 { 2550 int newnice; 2551 fssproc_t *fssproc = FSSPROC(t); 2552 fssparms_t fssparms; 2553 2554 /* 2555 * If there is no change to priority, just return current setting. 2556 */ 2557 if (incr == 0) { 2558 if (retvalp) 2559 *retvalp = fssproc->fss_nice - NZERO; 2560 return (0); 2561 } 2562 2563 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_raisepriority(cr) != 0) 2564 return (EPERM); 2565 2566 /* 2567 * Specifying a nice increment greater than the upper limit of 2568 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2569 * value being set to the upper limit. We check for this before 2570 * computing the new value because otherwise we could get overflow 2571 * if a privileged user specified some ridiculous increment. 2572 */ 2573 if (incr > FSS_NICE_MAX) 2574 incr = FSS_NICE_MAX; 2575 2576 newnice = fssproc->fss_nice + incr; 2577 if (newnice > FSS_NICE_MAX) 2578 newnice = FSS_NICE_MAX; 2579 else if (newnice < FSS_NICE_MIN) 2580 newnice = FSS_NICE_MIN; 2581 2582 fssparms.fss_uprilim = fssparms.fss_upri = 2583 -((newnice - NZERO) * fss_maxupri) / NZERO; 2584 2585 /* 2586 * Reset the uprilim and upri values of the thread. 2587 */ 2588 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2589 2590 /* 2591 * Although fss_parmsset already reset fss_nice it may not have been 2592 * set to precisely the value calculated above because fss_parmsset 2593 * determines the nice value from the user priority and we may have 2594 * truncated during the integer conversion from nice value to user 2595 * priority and back. We reset fss_nice to the value we calculated 2596 * above. 2597 */ 2598 fssproc->fss_nice = (char)newnice; 2599 2600 if (retvalp) 2601 *retvalp = newnice - NZERO; 2602 return (0); 2603 } 2604 2605 /* 2606 * Increment the priority of the specified thread by incr and 2607 * return the new value in *retvalp. 2608 */ 2609 static int 2610 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2611 { 2612 int newpri; 2613 fssproc_t *fssproc = FSSPROC(t); 2614 fssparms_t fssparms; 2615 2616 /* 2617 * If there is no change to priority, just return current setting. 2618 */ 2619 if (incr == 0) { 2620 *retvalp = fssproc->fss_upri; 2621 return (0); 2622 } 2623 2624 newpri = fssproc->fss_upri + incr; 2625 if (newpri > fss_maxupri || newpri < -fss_maxupri) 2626 return (EINVAL); 2627 2628 *retvalp = newpri; 2629 fssparms.fss_uprilim = fssparms.fss_upri = newpri; 2630 2631 /* 2632 * Reset the uprilim and upri values of the thread. 2633 */ 2634 return (fss_parmsset(t, &fssparms, (id_t)0, cr)); 2635 } 2636 2637 /* 2638 * Return the global scheduling priority that would be assigned to a thread 2639 * entering the fair-sharing class with the fss_upri. 2640 */ 2641 /*ARGSUSED*/ 2642 static pri_t 2643 fss_globpri(kthread_t *t) 2644 { 2645 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2646 2647 return (fss_maxumdpri / 2); 2648 } 2649 2650 /* 2651 * Called from the yield(2) system call when a thread is yielding (surrendering) 2652 * the processor. The kernel thread is placed at the back of a dispatch queue. 2653 */ 2654 static void 2655 fss_yield(kthread_t *t) 2656 { 2657 fssproc_t *fssproc = FSSPROC(t); 2658 2659 ASSERT(t == curthread); 2660 ASSERT(THREAD_LOCK_HELD(t)); 2661 2662 /* 2663 * Collect CPU usage spent before yielding 2664 */ 2665 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2666 2667 /* 2668 * Clear the preemption control "yield" bit since the user is 2669 * doing a yield. 2670 */ 2671 if (t->t_schedctl) 2672 schedctl_set_yield(t, 0); 2673 /* 2674 * If fss_preempt() artifically increased the thread's priority 2675 * to avoid preemption, restore the original priority now. 2676 */ 2677 if (fssproc->fss_flags & FSSRESTORE) { 2678 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2679 fssproc->fss_flags &= ~FSSRESTORE; 2680 } 2681 if (fssproc->fss_timeleft < 0) { 2682 /* 2683 * Time slice was artificially extended to avoid preemption, 2684 * so pretend we're preempting it now. 2685 */ 2686 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2687 fssproc->fss_timeleft = fss_quantum; 2688 } 2689 fssproc->fss_flags &= ~FSSBACKQ; 2690 setbackdq(t); 2691 } 2692 2693 void 2694 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2695 fssbuf_t *zonebuf) 2696 { 2697 kproject_t *kpj_new = kp; 2698 zone_t *zone = zp; 2699 fssproj_t *fssproj_old, *fssproj_new; 2700 fsspset_t *fsspset; 2701 kproject_t *kpj_old; 2702 fssproc_t *fssproc; 2703 fsszone_t *fsszone_old, *fsszone_new; 2704 int free = 0; 2705 int id; 2706 2707 ASSERT(MUTEX_HELD(&cpu_lock)); 2708 ASSERT(MUTEX_HELD(&pidlock)); 2709 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2710 2711 if (t->t_cid != fss_cid) 2712 return; 2713 2714 fssproc = FSSPROC(t); 2715 mutex_enter(&fsspsets_lock); 2716 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2717 if (fssproj_old == NULL) { 2718 mutex_exit(&fsspsets_lock); 2719 return; 2720 } 2721 2722 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2723 mutex_enter(&fsspset->fssps_lock); 2724 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2725 fsszone_old = fssproj_old->fssp_fsszone; 2726 2727 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2728 2729 if (kpj_old == kpj_new) { 2730 mutex_exit(&fsspset->fssps_lock); 2731 mutex_exit(&fsspsets_lock); 2732 return; 2733 } 2734 2735 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2736 /* 2737 * If the zone for the new project is not currently active on 2738 * the cpu partition we're on, get one of the pre-allocated 2739 * buffers and link it in our per-pset zone list. Such buffers 2740 * should already exist. 2741 */ 2742 for (id = 0; id < zonebuf->fssb_size; id++) { 2743 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2744 fss_insert_fsszone(fsspset, zone, fsszone_new); 2745 zonebuf->fssb_list[id] = NULL; 2746 break; 2747 } 2748 } 2749 } 2750 ASSERT(fsszone_new != NULL); 2751 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2752 /* 2753 * If our new project is not currently running 2754 * on the cpu partition we're on, get one of the 2755 * pre-allocated buffers and link it in our new cpu 2756 * partition doubly linked list. Such buffers should already 2757 * exist. 2758 */ 2759 for (id = 0; id < projbuf->fssb_size; id++) { 2760 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2761 fss_insert_fssproj(fsspset, kpj_new, 2762 fsszone_new, fssproj_new); 2763 projbuf->fssb_list[id] = NULL; 2764 break; 2765 } 2766 } 2767 } 2768 ASSERT(fssproj_new != NULL); 2769 2770 thread_lock(t); 2771 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2772 t->t_state == TS_WAIT) 2773 fss_inactive(t); 2774 ASSERT(fssproj_old->fssp_threads > 0); 2775 if (--fssproj_old->fssp_threads == 0) { 2776 fss_remove_fssproj(fsspset, fssproj_old); 2777 free = 1; 2778 } 2779 fssproc->fss_proj = fssproj_new; 2780 fssproc->fss_fsspri = 0; 2781 fssproj_new->fssp_threads++; 2782 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2783 t->t_state == TS_WAIT) 2784 fss_active(t); 2785 thread_unlock(t); 2786 if (free) { 2787 if (fsszone_old->fssz_nproj == 0) 2788 kmem_free(fsszone_old, sizeof (fsszone_t)); 2789 kmem_free(fssproj_old, sizeof (fssproj_t)); 2790 } 2791 2792 mutex_exit(&fsspset->fssps_lock); 2793 mutex_exit(&fsspsets_lock); 2794 } 2795 2796 void 2797 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2798 fssbuf_t *zonebuf) 2799 { 2800 fsspset_t *fsspset_old, *fsspset_new; 2801 fssproj_t *fssproj_old, *fssproj_new; 2802 fsszone_t *fsszone_old, *fsszone_new; 2803 fssproc_t *fssproc; 2804 kproject_t *kpj; 2805 zone_t *zone; 2806 int id; 2807 2808 ASSERT(MUTEX_HELD(&cpu_lock)); 2809 ASSERT(MUTEX_HELD(&pidlock)); 2810 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2811 2812 if (t->t_cid != fss_cid) 2813 return; 2814 2815 fssproc = FSSPROC(t); 2816 zone = ttoproc(t)->p_zone; 2817 mutex_enter(&fsspsets_lock); 2818 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2819 if (fssproj_old == NULL) { 2820 mutex_exit(&fsspsets_lock); 2821 return; 2822 } 2823 fsszone_old = fssproj_old->fssp_fsszone; 2824 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2825 kpj = FSSPROJ2KPROJ(fssproj_old); 2826 2827 if (fsspset_old->fssps_cpupart == newcp) { 2828 mutex_exit(&fsspsets_lock); 2829 return; 2830 } 2831 2832 ASSERT(ttoproj(t) == kpj); 2833 2834 fsspset_new = fss_find_fsspset(newcp); 2835 2836 mutex_enter(&fsspset_new->fssps_lock); 2837 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2838 for (id = 0; id < zonebuf->fssb_size; id++) { 2839 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2840 fss_insert_fsszone(fsspset_new, zone, 2841 fsszone_new); 2842 zonebuf->fssb_list[id] = NULL; 2843 break; 2844 } 2845 } 2846 } 2847 ASSERT(fsszone_new != NULL); 2848 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2849 for (id = 0; id < projbuf->fssb_size; id++) { 2850 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2851 fss_insert_fssproj(fsspset_new, kpj, 2852 fsszone_new, fssproj_new); 2853 projbuf->fssb_list[id] = NULL; 2854 break; 2855 } 2856 } 2857 } 2858 ASSERT(fssproj_new != NULL); 2859 2860 fssproj_new->fssp_threads++; 2861 thread_lock(t); 2862 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2863 t->t_state == TS_WAIT) 2864 fss_inactive(t); 2865 fssproc->fss_proj = fssproj_new; 2866 fssproc->fss_fsspri = 0; 2867 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2868 t->t_state == TS_WAIT) 2869 fss_active(t); 2870 thread_unlock(t); 2871 mutex_exit(&fsspset_new->fssps_lock); 2872 2873 mutex_enter(&fsspset_old->fssps_lock); 2874 if (--fssproj_old->fssp_threads == 0) { 2875 fss_remove_fssproj(fsspset_old, fssproj_old); 2876 if (fsszone_old->fssz_nproj == 0) 2877 kmem_free(fsszone_old, sizeof (fsszone_t)); 2878 kmem_free(fssproj_old, sizeof (fssproj_t)); 2879 } 2880 mutex_exit(&fsspset_old->fssps_lock); 2881 2882 mutex_exit(&fsspsets_lock); 2883 } 2884