1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/cred.h> 33 #include <sys/proc.h> 34 #include <sys/strsubr.h> 35 #include <sys/priocntl.h> 36 #include <sys/class.h> 37 #include <sys/disp.h> 38 #include <sys/procset.h> 39 #include <sys/debug.h> 40 #include <sys/kmem.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/schedctl.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/project.h> 47 #include <sys/modctl.h> 48 #include <sys/fss.h> 49 #include <sys/fsspriocntl.h> 50 #include <sys/cpupart.h> 51 #include <sys/zone.h> 52 #include <vm/rm.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/tnf_probe.h> 55 #include <sys/policy.h> 56 #include <sys/sdt.h> 57 #include <sys/cpucaps.h> 58 59 /* 60 * FSS Data Structures: 61 * 62 * fsszone 63 * ----- ----- 64 * ----- | | | | 65 * | |-------->| |<------->| |<---->... 66 * | | ----- ----- 67 * | | ^ ^ ^ 68 * | |--- | \ \ 69 * ----- | | \ \ 70 * fsspset | | \ \ 71 * | | \ \ 72 * | ----- ----- ----- 73 * -->| |<--->| |<--->| | 74 * | | | | | | 75 * ----- ----- ----- 76 * fssproj 77 * 78 * 79 * That is, fsspsets contain a list of fsszone's that are currently active in 80 * the pset, and a list of fssproj's, corresponding to projects with runnable 81 * threads on the pset. fssproj's in turn point to the fsszone which they 82 * are a member of. 83 * 84 * An fssproj_t is removed when there are no threads in it. 85 * 86 * An fsszone_t is removed when there are no projects with threads in it. 87 * 88 * Projects in a zone compete with each other for cpu time, receiving cpu 89 * allocation within a zone proportional to fssproj->fssp_shares 90 * (project.cpu-shares); at a higher level zones compete with each other, 91 * receiving allocation in a pset proportional to fsszone->fssz_shares 92 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 93 */ 94 95 static pri_t fss_init(id_t, int, classfuncs_t **); 96 97 static struct sclass fss = { 98 "FSS", 99 fss_init, 100 0 101 }; 102 103 extern struct mod_ops mod_schedops; 104 105 /* 106 * Module linkage information for the kernel. 107 */ 108 static struct modlsched modlsched = { 109 &mod_schedops, "fair share scheduling class", &fss 110 }; 111 112 static struct modlinkage modlinkage = { 113 MODREV_1, (void *)&modlsched, NULL 114 }; 115 116 #define FSS_MAXUPRI 60 117 118 /* 119 * The fssproc_t structures are kept in an array of circular doubly linked 120 * lists. A hash on the thread pointer is used to determine which list each 121 * thread should be placed in. Each list has a dummy "head" which is never 122 * removed, so the list is never empty. fss_update traverses these lists to 123 * update the priorities of threads that have been waiting on the run queue. 124 */ 125 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 126 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 127 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 128 129 #define FSS_LIST_INSERT(fssproc) \ 130 { \ 131 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 132 kmutex_t *lockp = &fss_listlock[index]; \ 133 fssproc_t *headp = &fss_listhead[index]; \ 134 mutex_enter(lockp); \ 135 fssproc->fss_next = headp->fss_next; \ 136 fssproc->fss_prev = headp; \ 137 headp->fss_next->fss_prev = fssproc; \ 138 headp->fss_next = fssproc; \ 139 mutex_exit(lockp); \ 140 } 141 142 #define FSS_LIST_DELETE(fssproc) \ 143 { \ 144 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 145 kmutex_t *lockp = &fss_listlock[index]; \ 146 mutex_enter(lockp); \ 147 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 148 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 149 mutex_exit(lockp); \ 150 } 151 152 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 153 154 /* 155 * Decay rate percentages are based on n/128 rather than n/100 so that 156 * calculations can avoid having to do an integer divide by 100 (divide 157 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 158 * 159 * FSS_DECAY_MIN = 83/128 ~= 65% 160 * FSS_DECAY_MAX = 108/128 ~= 85% 161 * FSS_DECAY_USG = 96/128 ~= 75% 162 */ 163 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 164 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 165 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 166 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 167 168 #define FSS_NICE_MIN 0 169 #define FSS_NICE_MAX (2 * NZERO - 1) 170 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 171 172 static int fss_nice_tick[FSS_NICE_RANGE]; 173 static int fss_nice_decay[FSS_NICE_RANGE]; 174 175 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 176 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 177 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 178 static pri_t fss_minglobpri; /* minimum global priority */ 179 180 static fssproc_t fss_listhead[FSS_LISTS]; 181 static kmutex_t fss_listlock[FSS_LISTS]; 182 183 static fsspset_t *fsspsets; 184 static kmutex_t fsspsets_lock; /* protects fsspsets */ 185 186 static id_t fss_cid; 187 188 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 189 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 190 static int fss_quantum = 11; 191 192 static void fss_newpri(fssproc_t *); 193 static void fss_update(void *); 194 static int fss_update_list(int); 195 static void fss_change_priority(kthread_t *, fssproc_t *); 196 197 static int fss_admin(caddr_t, cred_t *); 198 static int fss_getclinfo(void *); 199 static int fss_parmsin(void *); 200 static int fss_parmsout(void *, pc_vaparms_t *); 201 static int fss_vaparmsin(void *, pc_vaparms_t *); 202 static int fss_vaparmsout(void *, pc_vaparms_t *); 203 static int fss_getclpri(pcpri_t *); 204 static int fss_alloc(void **, int); 205 static void fss_free(void *); 206 207 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 208 static void fss_exitclass(void *); 209 static int fss_canexit(kthread_t *, cred_t *); 210 static int fss_fork(kthread_t *, kthread_t *, void *); 211 static void fss_forkret(kthread_t *, kthread_t *); 212 static void fss_parmsget(kthread_t *, void *); 213 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 214 static void fss_stop(kthread_t *, int, int); 215 static void fss_exit(kthread_t *); 216 static void fss_active(kthread_t *); 217 static void fss_inactive(kthread_t *); 218 static pri_t fss_swapin(kthread_t *, int); 219 static pri_t fss_swapout(kthread_t *, int); 220 static void fss_trapret(kthread_t *); 221 static void fss_preempt(kthread_t *); 222 static void fss_setrun(kthread_t *); 223 static void fss_sleep(kthread_t *); 224 static void fss_tick(kthread_t *); 225 static void fss_wakeup(kthread_t *); 226 static int fss_donice(kthread_t *, cred_t *, int, int *); 227 static pri_t fss_globpri(kthread_t *); 228 static void fss_yield(kthread_t *); 229 static void fss_nullsys(); 230 231 static struct classfuncs fss_classfuncs = { 232 /* class functions */ 233 fss_admin, 234 fss_getclinfo, 235 fss_parmsin, 236 fss_parmsout, 237 fss_vaparmsin, 238 fss_vaparmsout, 239 fss_getclpri, 240 fss_alloc, 241 fss_free, 242 243 /* thread functions */ 244 fss_enterclass, 245 fss_exitclass, 246 fss_canexit, 247 fss_fork, 248 fss_forkret, 249 fss_parmsget, 250 fss_parmsset, 251 fss_stop, 252 fss_exit, 253 fss_active, 254 fss_inactive, 255 fss_swapin, 256 fss_swapout, 257 fss_trapret, 258 fss_preempt, 259 fss_setrun, 260 fss_sleep, 261 fss_tick, 262 fss_wakeup, 263 fss_donice, 264 fss_globpri, 265 fss_nullsys, /* set_process_group */ 266 fss_yield 267 }; 268 269 int 270 _init() 271 { 272 return (mod_install(&modlinkage)); 273 } 274 275 int 276 _fini() 277 { 278 return (EBUSY); 279 } 280 281 int 282 _info(struct modinfo *modinfop) 283 { 284 return (mod_info(&modlinkage, modinfop)); 285 } 286 287 /*ARGSUSED*/ 288 static int 289 fss_project_walker(kproject_t *kpj, void *buf) 290 { 291 return (0); 292 } 293 294 void * 295 fss_allocbuf(int op, int type) 296 { 297 fssbuf_t *fssbuf; 298 void **fsslist; 299 int cnt; 300 int i; 301 size_t size; 302 303 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 304 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 305 ASSERT(MUTEX_HELD(&cpu_lock)); 306 307 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 308 switch (op) { 309 case FSS_NPSET_BUF: 310 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 311 break; 312 case FSS_NPROJ_BUF: 313 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 314 break; 315 case FSS_ONE_BUF: 316 cnt = 1; 317 break; 318 } 319 320 switch (type) { 321 case FSS_ALLOC_PROJ: 322 size = sizeof (fssproj_t); 323 break; 324 case FSS_ALLOC_ZONE: 325 size = sizeof (fsszone_t); 326 break; 327 } 328 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 329 fssbuf->fssb_size = cnt; 330 fssbuf->fssb_list = fsslist; 331 for (i = 0; i < cnt; i++) 332 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 333 return (fssbuf); 334 } 335 336 void 337 fss_freebuf(fssbuf_t *fssbuf, int type) 338 { 339 void **fsslist; 340 int i; 341 size_t size; 342 343 ASSERT(fssbuf != NULL); 344 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 345 fsslist = fssbuf->fssb_list; 346 347 switch (type) { 348 case FSS_ALLOC_PROJ: 349 size = sizeof (fssproj_t); 350 break; 351 case FSS_ALLOC_ZONE: 352 size = sizeof (fsszone_t); 353 break; 354 } 355 356 for (i = 0; i < fssbuf->fssb_size; i++) { 357 if (fsslist[i] != NULL) 358 kmem_free(fsslist[i], size); 359 } 360 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 361 kmem_free(fssbuf, sizeof (fssbuf_t)); 362 } 363 364 static fsspset_t * 365 fss_find_fsspset(cpupart_t *cpupart) 366 { 367 int i; 368 fsspset_t *fsspset = NULL; 369 int found = 0; 370 371 ASSERT(cpupart != NULL); 372 ASSERT(MUTEX_HELD(&fsspsets_lock)); 373 374 /* 375 * Search for the cpupart pointer in the array of fsspsets. 376 */ 377 for (i = 0; i < max_ncpus; i++) { 378 fsspset = &fsspsets[i]; 379 if (fsspset->fssps_cpupart == cpupart) { 380 ASSERT(fsspset->fssps_nproj > 0); 381 found = 1; 382 break; 383 } 384 } 385 if (found == 0) { 386 /* 387 * If we didn't find anything, then use the first 388 * available slot in the fsspsets array. 389 */ 390 for (i = 0; i < max_ncpus; i++) { 391 fsspset = &fsspsets[i]; 392 if (fsspset->fssps_cpupart == NULL) { 393 ASSERT(fsspset->fssps_nproj == 0); 394 found = 1; 395 break; 396 } 397 } 398 fsspset->fssps_cpupart = cpupart; 399 } 400 ASSERT(found == 1); 401 return (fsspset); 402 } 403 404 static void 405 fss_del_fsspset(fsspset_t *fsspset) 406 { 407 ASSERT(MUTEX_HELD(&fsspsets_lock)); 408 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 409 ASSERT(fsspset->fssps_nproj == 0); 410 ASSERT(fsspset->fssps_list == NULL); 411 ASSERT(fsspset->fssps_zones == NULL); 412 fsspset->fssps_cpupart = NULL; 413 fsspset->fssps_maxfsspri = 0; 414 fsspset->fssps_shares = 0; 415 } 416 417 /* 418 * The following routine returns a pointer to the fsszone structure which 419 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 420 */ 421 static fsszone_t * 422 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 423 { 424 fsszone_t *fsszone; 425 426 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 427 428 if (fsspset->fssps_list != NULL) { 429 /* 430 * There are projects/zones active on this cpu partition 431 * already. Try to find our zone among them. 432 */ 433 fsszone = fsspset->fssps_zones; 434 do { 435 if (fsszone->fssz_zone == zone) { 436 return (fsszone); 437 } 438 fsszone = fsszone->fssz_next; 439 } while (fsszone != fsspset->fssps_zones); 440 } 441 return (NULL); 442 } 443 444 /* 445 * The following routine links new fsszone structure into doubly linked list of 446 * zones active on the specified cpu partition. 447 */ 448 static void 449 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 450 { 451 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 452 453 fsszone->fssz_zone = zone; 454 fsszone->fssz_rshares = zone->zone_shares; 455 456 if (fsspset->fssps_zones == NULL) { 457 /* 458 * This will be the first fsszone for this fsspset 459 */ 460 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 461 fsspset->fssps_zones = fsszone; 462 } else { 463 /* 464 * Insert this fsszone to the doubly linked list. 465 */ 466 fsszone_t *fssz_head = fsspset->fssps_zones; 467 468 fsszone->fssz_next = fssz_head; 469 fsszone->fssz_prev = fssz_head->fssz_prev; 470 fssz_head->fssz_prev->fssz_next = fsszone; 471 fssz_head->fssz_prev = fsszone; 472 fsspset->fssps_zones = fsszone; 473 } 474 } 475 476 /* 477 * The following routine removes a single fsszone structure from the doubly 478 * linked list of zones active on the specified cpu partition. Note that 479 * global fsspsets_lock must be held in case this fsszone structure is the last 480 * on the above mentioned list. Also note that the fsszone structure is not 481 * freed here, it is the responsibility of the caller to call kmem_free for it. 482 */ 483 static void 484 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 485 { 486 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 487 ASSERT(fsszone->fssz_nproj == 0); 488 ASSERT(fsszone->fssz_shares == 0); 489 ASSERT(fsszone->fssz_runnable == 0); 490 491 if (fsszone->fssz_next != fsszone) { 492 /* 493 * This is not the last zone in the list. 494 */ 495 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 496 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 497 if (fsspset->fssps_zones == fsszone) 498 fsspset->fssps_zones = fsszone->fssz_next; 499 } else { 500 /* 501 * This was the last zone active in this cpu partition. 502 */ 503 fsspset->fssps_zones = NULL; 504 } 505 } 506 507 /* 508 * The following routine returns a pointer to the fssproj structure 509 * which belongs to project kpj and cpu partition fsspset, if such structure 510 * exists. 511 */ 512 static fssproj_t * 513 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 514 { 515 fssproj_t *fssproj; 516 517 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 518 519 if (fsspset->fssps_list != NULL) { 520 /* 521 * There are projects running on this cpu partition already. 522 * Try to find our project among them. 523 */ 524 fssproj = fsspset->fssps_list; 525 do { 526 if (fssproj->fssp_proj == kpj) { 527 ASSERT(fssproj->fssp_pset == fsspset); 528 return (fssproj); 529 } 530 fssproj = fssproj->fssp_next; 531 } while (fssproj != fsspset->fssps_list); 532 } 533 return (NULL); 534 } 535 536 /* 537 * The following routine links new fssproj structure into doubly linked list 538 * of projects running on the specified cpu partition. 539 */ 540 static void 541 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 542 fssproj_t *fssproj) 543 { 544 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 545 546 fssproj->fssp_pset = fsspset; 547 fssproj->fssp_proj = kpj; 548 fssproj->fssp_shares = kpj->kpj_shares; 549 550 fsspset->fssps_nproj++; 551 552 if (fsspset->fssps_list == NULL) { 553 /* 554 * This will be the first fssproj for this fsspset 555 */ 556 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 557 fsspset->fssps_list = fssproj; 558 } else { 559 /* 560 * Insert this fssproj to the doubly linked list. 561 */ 562 fssproj_t *fssp_head = fsspset->fssps_list; 563 564 fssproj->fssp_next = fssp_head; 565 fssproj->fssp_prev = fssp_head->fssp_prev; 566 fssp_head->fssp_prev->fssp_next = fssproj; 567 fssp_head->fssp_prev = fssproj; 568 fsspset->fssps_list = fssproj; 569 } 570 fssproj->fssp_fsszone = fsszone; 571 fsszone->fssz_nproj++; 572 ASSERT(fsszone->fssz_nproj != 0); 573 } 574 575 /* 576 * The following routine removes a single fssproj structure from the doubly 577 * linked list of projects running on the specified cpu partition. Note that 578 * global fsspsets_lock must be held in case if this fssproj structure is the 579 * last on the above mentioned list. Also note that the fssproj structure is 580 * not freed here, it is the responsibility of the caller to call kmem_free 581 * for it. 582 */ 583 static void 584 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 585 { 586 fsszone_t *fsszone; 587 588 ASSERT(MUTEX_HELD(&fsspsets_lock)); 589 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 590 ASSERT(fssproj->fssp_runnable == 0); 591 592 fsspset->fssps_nproj--; 593 594 fsszone = fssproj->fssp_fsszone; 595 fsszone->fssz_nproj--; 596 597 if (fssproj->fssp_next != fssproj) { 598 /* 599 * This is not the last part in the list. 600 */ 601 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 602 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 603 if (fsspset->fssps_list == fssproj) 604 fsspset->fssps_list = fssproj->fssp_next; 605 if (fsszone->fssz_nproj == 0) 606 fss_remove_fsszone(fsspset, fsszone); 607 } else { 608 /* 609 * This was the last project part running 610 * at this cpu partition. 611 */ 612 fsspset->fssps_list = NULL; 613 ASSERT(fsspset->fssps_nproj == 0); 614 ASSERT(fsszone->fssz_nproj == 0); 615 fss_remove_fsszone(fsspset, fsszone); 616 fss_del_fsspset(fsspset); 617 } 618 } 619 620 static void 621 fss_inactive(kthread_t *t) 622 { 623 fssproc_t *fssproc; 624 fssproj_t *fssproj; 625 fsspset_t *fsspset; 626 fsszone_t *fsszone; 627 628 ASSERT(THREAD_LOCK_HELD(t)); 629 fssproc = FSSPROC(t); 630 fssproj = FSSPROC2FSSPROJ(fssproc); 631 if (fssproj == NULL) /* if this thread already exited */ 632 return; 633 fsspset = FSSPROJ2FSSPSET(fssproj); 634 fsszone = fssproj->fssp_fsszone; 635 disp_lock_enter_high(&fsspset->fssps_displock); 636 ASSERT(fssproj->fssp_runnable > 0); 637 if (--fssproj->fssp_runnable == 0) { 638 fsszone->fssz_shares -= fssproj->fssp_shares; 639 if (--fsszone->fssz_runnable == 0) 640 fsspset->fssps_shares -= fsszone->fssz_rshares; 641 } 642 ASSERT(fssproc->fss_runnable == 1); 643 fssproc->fss_runnable = 0; 644 disp_lock_exit_high(&fsspset->fssps_displock); 645 } 646 647 static void 648 fss_active(kthread_t *t) 649 { 650 fssproc_t *fssproc; 651 fssproj_t *fssproj; 652 fsspset_t *fsspset; 653 fsszone_t *fsszone; 654 655 ASSERT(THREAD_LOCK_HELD(t)); 656 fssproc = FSSPROC(t); 657 fssproj = FSSPROC2FSSPROJ(fssproc); 658 if (fssproj == NULL) /* if this thread already exited */ 659 return; 660 fsspset = FSSPROJ2FSSPSET(fssproj); 661 fsszone = fssproj->fssp_fsszone; 662 disp_lock_enter_high(&fsspset->fssps_displock); 663 if (++fssproj->fssp_runnable == 1) { 664 fsszone->fssz_shares += fssproj->fssp_shares; 665 if (++fsszone->fssz_runnable == 1) 666 fsspset->fssps_shares += fsszone->fssz_rshares; 667 } 668 ASSERT(fssproc->fss_runnable == 0); 669 fssproc->fss_runnable = 1; 670 disp_lock_exit_high(&fsspset->fssps_displock); 671 } 672 673 /* 674 * Fair share scheduler initialization. Called by dispinit() at boot time. 675 * We can ignore clparmsz argument since we know that the smallest possible 676 * parameter buffer is big enough for us. 677 */ 678 /*ARGSUSED*/ 679 static pri_t 680 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 681 { 682 int i; 683 684 ASSERT(MUTEX_HELD(&cpu_lock)); 685 686 fss_cid = cid; 687 fss_maxumdpri = minclsyspri - 1; 688 fss_maxglobpri = minclsyspri; 689 fss_minglobpri = 0; 690 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 691 692 /* 693 * Initialize the fssproc hash table. 694 */ 695 for (i = 0; i < FSS_LISTS; i++) 696 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 697 &fss_listhead[i]; 698 699 *clfuncspp = &fss_classfuncs; 700 701 /* 702 * Fill in fss_nice_tick and fss_nice_decay arrays: 703 * The cost of a tick is lower at positive nice values (so that it 704 * will not increase its project's usage as much as normal) with 50% 705 * drop at the maximum level and 50% increase at the minimum level. 706 * The fsspri decay is slower at positive nice values. fsspri values 707 * of processes with negative nice levels must decay faster to receive 708 * time slices more frequently than normal. 709 */ 710 for (i = 0; i < FSS_NICE_RANGE; i++) { 711 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 712 - i)) / FSS_NICE_RANGE; 713 fss_nice_decay[i] = FSS_DECAY_MIN + 714 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 715 (FSS_NICE_RANGE - 1); 716 } 717 718 return (fss_maxglobpri); 719 } 720 721 /* 722 * Calculate the new cpupri based on the usage, the number of shares and 723 * the number of active threads. Reset the tick counter for this thread. 724 */ 725 static void 726 fss_newpri(fssproc_t *fssproc) 727 { 728 kthread_t *tp; 729 fssproj_t *fssproj; 730 fsspset_t *fsspset; 731 fsszone_t *fsszone; 732 fsspri_t fsspri, maxfsspri; 733 pri_t invpri; 734 uint32_t ticks; 735 736 tp = fssproc->fss_tp; 737 ASSERT(tp != NULL); 738 739 if (tp->t_cid != fss_cid) 740 return; 741 742 ASSERT(THREAD_LOCK_HELD(tp)); 743 744 fssproj = FSSPROC2FSSPROJ(fssproc); 745 fsszone = FSSPROJ2FSSZONE(fssproj); 746 if (fssproj == NULL) 747 /* 748 * No need to change priority of exited threads. 749 */ 750 return; 751 752 fsspset = FSSPROJ2FSSPSET(fssproj); 753 disp_lock_enter_high(&fsspset->fssps_displock); 754 755 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 756 /* 757 * Special case: threads with no shares. 758 */ 759 fssproc->fss_umdpri = fss_minglobpri; 760 fssproc->fss_ticks = 0; 761 disp_lock_exit_high(&fsspset->fssps_displock); 762 return; 763 } 764 765 /* 766 * fsspri += shusage * nrunnable * ticks 767 */ 768 ticks = fssproc->fss_ticks; 769 fssproc->fss_ticks = 0; 770 fsspri = fssproc->fss_fsspri; 771 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 772 fssproc->fss_fsspri = fsspri; 773 774 if (fsspri < fss_maxumdpri) 775 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 776 777 /* 778 * The general priority formula: 779 * 780 * (fsspri * umdprirange) 781 * pri = maxumdpri - ------------------------ 782 * maxfsspri 783 * 784 * If this thread's fsspri is greater than the previous largest 785 * fsspri, then record it as the new high and priority for this 786 * thread will be one (the lowest priority assigned to a thread 787 * that has non-zero shares). 788 * Note that this formula cannot produce out of bounds priority 789 * values; if it is changed, additional checks may need to be 790 * added. 791 */ 792 maxfsspri = fsspset->fssps_maxfsspri; 793 if (fsspri >= maxfsspri) { 794 fsspset->fssps_maxfsspri = fsspri; 795 disp_lock_exit_high(&fsspset->fssps_displock); 796 fssproc->fss_umdpri = 1; 797 } else { 798 disp_lock_exit_high(&fsspset->fssps_displock); 799 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 800 fssproc->fss_umdpri = fss_maxumdpri - invpri; 801 } 802 } 803 804 /* 805 * Decays usages of all running projects and resets their tick counters. 806 * Called once per second from fss_update() after updating priorities. 807 */ 808 static void 809 fss_decay_usage() 810 { 811 uint32_t zone_ext_shares, zone_int_shares; 812 uint32_t kpj_shares, pset_shares; 813 fsspset_t *fsspset; 814 fssproj_t *fssproj; 815 fsszone_t *fsszone; 816 fsspri_t maxfsspri; 817 int psetid; 818 819 mutex_enter(&fsspsets_lock); 820 /* 821 * Go through all active processor sets and decay usages of projects 822 * running on them. 823 */ 824 for (psetid = 0; psetid < max_ncpus; psetid++) { 825 fsspset = &fsspsets[psetid]; 826 mutex_enter(&fsspset->fssps_lock); 827 828 if (fsspset->fssps_cpupart == NULL || 829 (fssproj = fsspset->fssps_list) == NULL) { 830 mutex_exit(&fsspset->fssps_lock); 831 continue; 832 } 833 834 /* 835 * Decay maxfsspri for this cpu partition with the 836 * fastest possible decay rate. 837 */ 838 disp_lock_enter(&fsspset->fssps_displock); 839 840 maxfsspri = (fsspset->fssps_maxfsspri * 841 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 842 if (maxfsspri < fss_maxumdpri) 843 maxfsspri = fss_maxumdpri; 844 fsspset->fssps_maxfsspri = maxfsspri; 845 846 do { 847 /* 848 * Decay usage for each project running on 849 * this cpu partition. 850 */ 851 fssproj->fssp_usage = 852 (fssproj->fssp_usage * FSS_DECAY_USG) / 853 FSS_DECAY_BASE + fssproj->fssp_ticks; 854 fssproj->fssp_ticks = 0; 855 856 fsszone = fssproj->fssp_fsszone; 857 /* 858 * Readjust the project's number of shares if it has 859 * changed since we checked it last time. 860 */ 861 kpj_shares = fssproj->fssp_proj->kpj_shares; 862 if (fssproj->fssp_shares != kpj_shares) { 863 if (fssproj->fssp_runnable != 0) { 864 fsszone->fssz_shares -= 865 fssproj->fssp_shares; 866 fsszone->fssz_shares += kpj_shares; 867 } 868 fssproj->fssp_shares = kpj_shares; 869 } 870 871 /* 872 * Readjust the zone's number of shares if it 873 * has changed since we checked it last time. 874 */ 875 zone_ext_shares = fsszone->fssz_zone->zone_shares; 876 if (fsszone->fssz_rshares != zone_ext_shares) { 877 if (fsszone->fssz_runnable != 0) { 878 fsspset->fssps_shares -= 879 fsszone->fssz_rshares; 880 fsspset->fssps_shares += 881 zone_ext_shares; 882 } 883 fsszone->fssz_rshares = zone_ext_shares; 884 } 885 zone_int_shares = fsszone->fssz_shares; 886 pset_shares = fsspset->fssps_shares; 887 /* 888 * Calculate fssp_shusage value to be used 889 * for fsspri increments for the next second. 890 */ 891 if (kpj_shares == 0 || zone_ext_shares == 0) { 892 fssproj->fssp_shusage = 0; 893 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 894 /* 895 * Project 0 in the global zone has 50% 896 * of its zone. 897 */ 898 fssproj->fssp_shusage = (fssproj->fssp_usage * 899 zone_int_shares * zone_int_shares) / 900 (zone_ext_shares * zone_ext_shares); 901 } else { 902 /* 903 * Thread's priority is based on its project's 904 * normalized usage (shusage) value which gets 905 * calculated this way: 906 * 907 * pset_shares^2 zone_int_shares^2 908 * usage * ------------- * ------------------ 909 * kpj_shares^2 zone_ext_shares^2 910 * 911 * Where zone_int_shares is the sum of shares 912 * of all active projects within the zone (and 913 * the pset), and zone_ext_shares is the number 914 * of zone shares (ie, zone.cpu-shares). 915 * 916 * If there is only one zone active on the pset 917 * the above reduces to: 918 * 919 * zone_int_shares^2 920 * shusage = usage * --------------------- 921 * kpj_shares^2 922 * 923 * If there's only one project active in the 924 * zone this formula reduces to: 925 * 926 * pset_shares^2 927 * shusage = usage * ---------------------- 928 * zone_ext_shares^2 929 */ 930 fssproj->fssp_shusage = fssproj->fssp_usage * 931 pset_shares * zone_int_shares; 932 fssproj->fssp_shusage /= 933 kpj_shares * zone_ext_shares; 934 fssproj->fssp_shusage *= 935 pset_shares * zone_int_shares; 936 fssproj->fssp_shusage /= 937 kpj_shares * zone_ext_shares; 938 } 939 fssproj = fssproj->fssp_next; 940 } while (fssproj != fsspset->fssps_list); 941 942 disp_lock_exit(&fsspset->fssps_displock); 943 mutex_exit(&fsspset->fssps_lock); 944 } 945 mutex_exit(&fsspsets_lock); 946 } 947 948 static void 949 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 950 { 951 pri_t new_pri; 952 953 ASSERT(THREAD_LOCK_HELD(t)); 954 new_pri = fssproc->fss_umdpri; 955 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 956 957 fssproc->fss_flags &= ~FSSRESTORE; 958 if (t == curthread || t->t_state == TS_ONPROC) { 959 /* 960 * curthread is always onproc 961 */ 962 cpu_t *cp = t->t_disp_queue->disp_cpu; 963 THREAD_CHANGE_PRI(t, new_pri); 964 if (t == cp->cpu_dispthread) 965 cp->cpu_dispatch_pri = DISP_PRIO(t); 966 if (DISP_MUST_SURRENDER(t)) { 967 fssproc->fss_flags |= FSSBACKQ; 968 cpu_surrender(t); 969 } else { 970 fssproc->fss_timeleft = fss_quantum; 971 } 972 } else { 973 /* 974 * When the priority of a thread is changed, it may be 975 * necessary to adjust its position on a sleep queue or 976 * dispatch queue. The function thread_change_pri accomplishes 977 * this. 978 */ 979 if (thread_change_pri(t, new_pri, 0)) { 980 /* 981 * The thread was on a run queue. 982 */ 983 fssproc->fss_timeleft = fss_quantum; 984 } else { 985 fssproc->fss_flags |= FSSBACKQ; 986 } 987 } 988 } 989 990 /* 991 * Update priorities of all fair-sharing threads that are currently runnable 992 * at a user mode priority based on the number of shares and current usage. 993 * Called once per second via timeout which we reset here. 994 * 995 * There are several lists of fair-sharing threads broken up by a hash on the 996 * thread pointer. Each list has its own lock. This avoids blocking all 997 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 998 * fss_update traverses each list in turn. 999 */ 1000 static void 1001 fss_update(void *arg) 1002 { 1003 int i; 1004 int new_marker = -1; 1005 static int fss_update_marker; 1006 1007 /* 1008 * Decay and update usages for all projects. 1009 */ 1010 fss_decay_usage(); 1011 1012 /* 1013 * Start with the fss_update_marker list, then do the rest. 1014 */ 1015 i = fss_update_marker; 1016 1017 /* 1018 * Go around all threads, set new priorities and decay 1019 * per-thread CPU usages. 1020 */ 1021 do { 1022 /* 1023 * If this is the first list after the current marker to have 1024 * threads with priorities updates, advance the marker to this 1025 * list for the next time fss_update runs. 1026 */ 1027 if (fss_update_list(i) && 1028 new_marker == -1 && i != fss_update_marker) 1029 new_marker = i; 1030 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1031 1032 /* 1033 * Advance marker for the next fss_update call 1034 */ 1035 if (new_marker != -1) 1036 fss_update_marker = new_marker; 1037 1038 (void) timeout(fss_update, arg, hz); 1039 } 1040 1041 /* 1042 * Updates priority for a list of threads. Returns 1 if the priority of one 1043 * of the threads was actually updated, 0 if none were for various reasons 1044 * (thread is no longer in the FSS class, is not runnable, has the preemption 1045 * control no-preempt bit set, etc.) 1046 */ 1047 static int 1048 fss_update_list(int i) 1049 { 1050 fssproc_t *fssproc; 1051 fssproj_t *fssproj; 1052 fsspri_t fsspri; 1053 kthread_t *t; 1054 int updated = 0; 1055 1056 mutex_enter(&fss_listlock[i]); 1057 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1058 fssproc = fssproc->fss_next) { 1059 t = fssproc->fss_tp; 1060 /* 1061 * Lock the thread and verify the state. 1062 */ 1063 thread_lock(t); 1064 /* 1065 * Skip the thread if it is no longer in the FSS class or 1066 * is running with kernel mode priority. 1067 */ 1068 if (t->t_cid != fss_cid) 1069 goto next; 1070 if ((fssproc->fss_flags & FSSKPRI) != 0) 1071 goto next; 1072 1073 fssproj = FSSPROC2FSSPROJ(fssproc); 1074 if (fssproj == NULL) 1075 goto next; 1076 if (fssproj->fssp_shares != 0) { 1077 /* 1078 * Decay fsspri value. 1079 */ 1080 fsspri = fssproc->fss_fsspri; 1081 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1082 FSS_DECAY_BASE; 1083 fssproc->fss_fsspri = fsspri; 1084 } 1085 1086 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1087 goto next; 1088 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) { 1089 /* 1090 * Make next syscall/trap call fss_trapret 1091 */ 1092 t->t_trapret = 1; 1093 aston(t); 1094 goto next; 1095 } 1096 fss_newpri(fssproc); 1097 updated = 1; 1098 1099 /* 1100 * Only dequeue the thread if it needs to be moved; otherwise 1101 * it should just round-robin here. 1102 */ 1103 if (t->t_pri != fssproc->fss_umdpri) 1104 fss_change_priority(t, fssproc); 1105 next: 1106 thread_unlock(t); 1107 } 1108 mutex_exit(&fss_listlock[i]); 1109 return (updated); 1110 } 1111 1112 /*ARGSUSED*/ 1113 static int 1114 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1115 { 1116 fssadmin_t fssadmin; 1117 1118 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1119 return (EFAULT); 1120 1121 switch (fssadmin.fss_cmd) { 1122 case FSS_SETADMIN: 1123 if (secpolicy_dispadm(reqpcredp) != 0) 1124 return (EPERM); 1125 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1126 return (EINVAL); 1127 fss_quantum = fssadmin.fss_quantum; 1128 break; 1129 case FSS_GETADMIN: 1130 fssadmin.fss_quantum = fss_quantum; 1131 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1132 return (EFAULT); 1133 break; 1134 default: 1135 return (EINVAL); 1136 } 1137 return (0); 1138 } 1139 1140 static int 1141 fss_getclinfo(void *infop) 1142 { 1143 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1144 fssinfo->fss_maxupri = fss_maxupri; 1145 return (0); 1146 } 1147 1148 static int 1149 fss_parmsin(void *parmsp) 1150 { 1151 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1152 1153 /* 1154 * Check validity of parameters. 1155 */ 1156 if ((fssparmsp->fss_uprilim > fss_maxupri || 1157 fssparmsp->fss_uprilim < -fss_maxupri) && 1158 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1159 return (EINVAL); 1160 1161 if ((fssparmsp->fss_upri > fss_maxupri || 1162 fssparmsp->fss_upri < -fss_maxupri) && 1163 fssparmsp->fss_upri != FSS_NOCHANGE) 1164 return (EINVAL); 1165 1166 return (0); 1167 } 1168 1169 /*ARGSUSED*/ 1170 static int 1171 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1172 { 1173 return (0); 1174 } 1175 1176 static int 1177 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1178 { 1179 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1180 int priflag = 0; 1181 int limflag = 0; 1182 uint_t cnt; 1183 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1184 1185 /* 1186 * FSS_NOCHANGE (-32768) is outside of the range of values for 1187 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1188 * FSS_NOCHANGE should be replaced by a flag word. 1189 */ 1190 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1191 fssparmsp->fss_upri = FSS_NOCHANGE; 1192 1193 /* 1194 * Get the varargs parameter and check validity of parameters. 1195 */ 1196 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1197 return (EINVAL); 1198 1199 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1200 switch (vpp->pc_key) { 1201 case FSS_KY_UPRILIM: 1202 if (limflag++) 1203 return (EINVAL); 1204 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1205 if (fssparmsp->fss_uprilim > fss_maxupri || 1206 fssparmsp->fss_uprilim < -fss_maxupri) 1207 return (EINVAL); 1208 break; 1209 case FSS_KY_UPRI: 1210 if (priflag++) 1211 return (EINVAL); 1212 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1213 if (fssparmsp->fss_upri > fss_maxupri || 1214 fssparmsp->fss_upri < -fss_maxupri) 1215 return (EINVAL); 1216 break; 1217 default: 1218 return (EINVAL); 1219 } 1220 } 1221 1222 if (vaparmsp->pc_vaparmscnt == 0) { 1223 /* 1224 * Use default parameters. 1225 */ 1226 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1227 } 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * Copy all selected fair-sharing class parameters to the user. The parameters 1234 * are specified by a key. 1235 */ 1236 static int 1237 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1238 { 1239 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1240 int priflag = 0; 1241 int limflag = 0; 1242 uint_t cnt; 1243 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1244 1245 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1246 1247 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1248 return (EINVAL); 1249 1250 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1251 switch (vpp->pc_key) { 1252 case FSS_KY_UPRILIM: 1253 if (limflag++) 1254 return (EINVAL); 1255 if (copyout(&fssparmsp->fss_uprilim, 1256 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1257 return (EFAULT); 1258 break; 1259 case FSS_KY_UPRI: 1260 if (priflag++) 1261 return (EINVAL); 1262 if (copyout(&fssparmsp->fss_upri, 1263 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1264 return (EFAULT); 1265 break; 1266 default: 1267 return (EINVAL); 1268 } 1269 } 1270 1271 return (0); 1272 } 1273 1274 static int 1275 fss_getclpri(pcpri_t *pcprip) 1276 { 1277 pcprip->pc_clpmax = fss_maxumdpri; 1278 pcprip->pc_clpmin = 0; 1279 return (0); 1280 } 1281 1282 static int 1283 fss_alloc(void **p, int flag) 1284 { 1285 void *bufp; 1286 1287 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1288 return (ENOMEM); 1289 } else { 1290 *p = bufp; 1291 return (0); 1292 } 1293 } 1294 1295 static void 1296 fss_free(void *bufp) 1297 { 1298 if (bufp) 1299 kmem_free(bufp, sizeof (fssproc_t)); 1300 } 1301 1302 /* 1303 * Thread functions 1304 */ 1305 static int 1306 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1307 void *bufp) 1308 { 1309 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1310 fssproc_t *fssproc; 1311 pri_t reqfssuprilim; 1312 pri_t reqfssupri; 1313 static uint32_t fssexists = 0; 1314 fsspset_t *fsspset; 1315 fssproj_t *fssproj; 1316 fsszone_t *fsszone; 1317 kproject_t *kpj; 1318 zone_t *zone; 1319 int fsszone_allocated = 0; 1320 1321 fssproc = (fssproc_t *)bufp; 1322 ASSERT(fssproc != NULL); 1323 1324 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1325 1326 /* 1327 * Only root can move threads to FSS class. 1328 */ 1329 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1330 return (EPERM); 1331 /* 1332 * Initialize the fssproc structure. 1333 */ 1334 fssproc->fss_umdpri = fss_maxumdpri / 2; 1335 1336 if (fssparmsp == NULL) { 1337 /* 1338 * Use default values. 1339 */ 1340 fssproc->fss_nice = NZERO; 1341 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1342 } else { 1343 /* 1344 * Use supplied values. 1345 */ 1346 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1347 reqfssuprilim = 0; 1348 } else { 1349 if (fssparmsp->fss_uprilim > 0 && 1350 secpolicy_setpriority(reqpcredp) != 0) 1351 return (EPERM); 1352 reqfssuprilim = fssparmsp->fss_uprilim; 1353 } 1354 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1355 reqfssupri = reqfssuprilim; 1356 } else { 1357 if (fssparmsp->fss_upri > 0 && 1358 secpolicy_setpriority(reqpcredp) != 0) 1359 return (EPERM); 1360 /* 1361 * Set the user priority to the requested value or 1362 * the upri limit, whichever is lower. 1363 */ 1364 reqfssupri = fssparmsp->fss_upri; 1365 if (reqfssupri > reqfssuprilim) 1366 reqfssupri = reqfssuprilim; 1367 } 1368 fssproc->fss_uprilim = reqfssuprilim; 1369 fssproc->fss_upri = reqfssupri; 1370 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1371 if (fssproc->fss_nice > FSS_NICE_MAX) 1372 fssproc->fss_nice = FSS_NICE_MAX; 1373 } 1374 1375 fssproc->fss_timeleft = fss_quantum; 1376 fssproc->fss_tp = t; 1377 cpucaps_sc_init(&fssproc->fss_caps); 1378 1379 /* 1380 * Put a lock on our fsspset structure. 1381 */ 1382 mutex_enter(&fsspsets_lock); 1383 fsspset = fss_find_fsspset(t->t_cpupart); 1384 mutex_enter(&fsspset->fssps_lock); 1385 mutex_exit(&fsspsets_lock); 1386 1387 zone = ttoproc(t)->p_zone; 1388 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1389 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1390 == NULL) { 1391 mutex_exit(&fsspset->fssps_lock); 1392 return (ENOMEM); 1393 } else { 1394 fsszone_allocated = 1; 1395 fss_insert_fsszone(fsspset, zone, fsszone); 1396 } 1397 } 1398 kpj = ttoproj(t); 1399 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1400 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1401 == NULL) { 1402 if (fsszone_allocated) { 1403 fss_remove_fsszone(fsspset, fsszone); 1404 kmem_free(fsszone, sizeof (fsszone_t)); 1405 } 1406 mutex_exit(&fsspset->fssps_lock); 1407 return (ENOMEM); 1408 } else { 1409 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1410 } 1411 } 1412 fssproj->fssp_threads++; 1413 fssproc->fss_proj = fssproj; 1414 1415 /* 1416 * Reset priority. Process goes to a "user mode" priority here 1417 * regardless of whether or not it has slept since entering the kernel. 1418 */ 1419 thread_lock(t); 1420 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1421 t->t_cid = cid; 1422 t->t_cldata = (void *)fssproc; 1423 t->t_schedflag |= TS_RUNQMATCH; 1424 fss_change_priority(t, fssproc); 1425 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 1426 t->t_state == TS_WAIT) 1427 fss_active(t); 1428 thread_unlock(t); 1429 1430 mutex_exit(&fsspset->fssps_lock); 1431 1432 /* 1433 * Link new structure into fssproc list. 1434 */ 1435 FSS_LIST_INSERT(fssproc); 1436 1437 /* 1438 * If this is the first fair-sharing thread to occur since boot, 1439 * we set up the initial call to fss_update() here. Use an atomic 1440 * compare-and-swap since that's easier and faster than a mutex 1441 * (but check with an ordinary load first since most of the time 1442 * this will already be done). 1443 */ 1444 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1445 (void) timeout(fss_update, NULL, hz); 1446 1447 return (0); 1448 } 1449 1450 /* 1451 * Remove fssproc_t from the list. 1452 */ 1453 static void 1454 fss_exitclass(void *procp) 1455 { 1456 fssproc_t *fssproc = (fssproc_t *)procp; 1457 fssproj_t *fssproj; 1458 fsspset_t *fsspset; 1459 fsszone_t *fsszone; 1460 kthread_t *t = fssproc->fss_tp; 1461 1462 /* 1463 * We should be either getting this thread off the deathrow or 1464 * this thread has already moved to another scheduling class and 1465 * we're being called with its old cldata buffer pointer. In both 1466 * cases, the content of this buffer can not be changed while we're 1467 * here. 1468 */ 1469 mutex_enter(&fsspsets_lock); 1470 thread_lock(t); 1471 if (t->t_cid != fss_cid) { 1472 /* 1473 * We're being called as a result of the priocntl() system 1474 * call -- someone is trying to move our thread to another 1475 * scheduling class. We can't call fss_inactive() here 1476 * because our thread's t_cldata pointer already points 1477 * to another scheduling class specific data. 1478 */ 1479 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1480 1481 fssproj = FSSPROC2FSSPROJ(fssproc); 1482 fsspset = FSSPROJ2FSSPSET(fssproj); 1483 fsszone = fssproj->fssp_fsszone; 1484 1485 if (fssproc->fss_runnable) { 1486 disp_lock_enter_high(&fsspset->fssps_displock); 1487 if (--fssproj->fssp_runnable == 0) { 1488 fsszone->fssz_shares -= fssproj->fssp_shares; 1489 if (--fsszone->fssz_runnable == 0) 1490 fsspset->fssps_shares -= 1491 fsszone->fssz_rshares; 1492 } 1493 disp_lock_exit_high(&fsspset->fssps_displock); 1494 } 1495 thread_unlock(t); 1496 1497 mutex_enter(&fsspset->fssps_lock); 1498 if (--fssproj->fssp_threads == 0) { 1499 fss_remove_fssproj(fsspset, fssproj); 1500 if (fsszone->fssz_nproj == 0) 1501 kmem_free(fsszone, sizeof (fsszone_t)); 1502 kmem_free(fssproj, sizeof (fssproj_t)); 1503 } 1504 mutex_exit(&fsspset->fssps_lock); 1505 1506 } else { 1507 ASSERT(t->t_state == TS_FREE); 1508 /* 1509 * We're being called from thread_free() when our thread 1510 * is removed from the deathrow. There is nothing we need 1511 * do here since everything should've been done earlier 1512 * in fss_exit(). 1513 */ 1514 thread_unlock(t); 1515 } 1516 mutex_exit(&fsspsets_lock); 1517 1518 FSS_LIST_DELETE(fssproc); 1519 fss_free(fssproc); 1520 } 1521 1522 /*ARGSUSED*/ 1523 static int 1524 fss_canexit(kthread_t *t, cred_t *credp) 1525 { 1526 /* 1527 * A thread is allowed to exit FSS only if we have sufficient 1528 * privileges. 1529 */ 1530 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1531 return (EPERM); 1532 else 1533 return (0); 1534 } 1535 1536 /* 1537 * Initialize fair-share class specific proc structure for a child. 1538 */ 1539 static int 1540 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1541 { 1542 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1543 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1544 fssproj_t *fssproj; 1545 fsspset_t *fsspset; 1546 1547 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1548 ASSERT(ct->t_state == TS_STOPPED); 1549 1550 cfssproc = (fssproc_t *)bufp; 1551 ASSERT(cfssproc != NULL); 1552 bzero(cfssproc, sizeof (fssproc_t)); 1553 1554 thread_lock(pt); 1555 pfssproc = FSSPROC(pt); 1556 fssproj = FSSPROC2FSSPROJ(pfssproc); 1557 fsspset = FSSPROJ2FSSPSET(fssproj); 1558 thread_unlock(pt); 1559 1560 mutex_enter(&fsspset->fssps_lock); 1561 /* 1562 * Initialize child's fssproc structure. 1563 */ 1564 thread_lock(pt); 1565 ASSERT(FSSPROJ(pt) == fssproj); 1566 cfssproc->fss_proj = fssproj; 1567 cfssproc->fss_timeleft = fss_quantum; 1568 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1569 cfssproc->fss_fsspri = 0; 1570 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1571 cfssproc->fss_upri = pfssproc->fss_upri; 1572 cfssproc->fss_tp = ct; 1573 cfssproc->fss_nice = pfssproc->fss_nice; 1574 cpucaps_sc_init(&cfssproc->fss_caps); 1575 1576 cfssproc->fss_flags = 1577 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE); 1578 ct->t_cldata = (void *)cfssproc; 1579 ct->t_schedflag |= TS_RUNQMATCH; 1580 thread_unlock(pt); 1581 1582 fssproj->fssp_threads++; 1583 mutex_exit(&fsspset->fssps_lock); 1584 1585 /* 1586 * Link new structure into fssproc hash table. 1587 */ 1588 FSS_LIST_INSERT(cfssproc); 1589 return (0); 1590 } 1591 1592 /* 1593 * Child is placed at back of dispatcher queue and parent gives up processor 1594 * so that the child runs first after the fork. This allows the child 1595 * immediately execing to break the multiple use of copy on write pages with no 1596 * disk home. The parent will get to steal them back rather than uselessly 1597 * copying them. 1598 */ 1599 static void 1600 fss_forkret(kthread_t *t, kthread_t *ct) 1601 { 1602 proc_t *pp = ttoproc(t); 1603 proc_t *cp = ttoproc(ct); 1604 fssproc_t *fssproc; 1605 1606 ASSERT(t == curthread); 1607 ASSERT(MUTEX_HELD(&pidlock)); 1608 1609 /* 1610 * Grab the child's p_lock before dropping pidlock to ensure the 1611 * process does not disappear before we set it running. 1612 */ 1613 mutex_enter(&cp->p_lock); 1614 mutex_exit(&pidlock); 1615 continuelwps(cp); 1616 mutex_exit(&cp->p_lock); 1617 1618 mutex_enter(&pp->p_lock); 1619 continuelwps(pp); 1620 mutex_exit(&pp->p_lock); 1621 1622 thread_lock(t); 1623 1624 fssproc = FSSPROC(t); 1625 fss_newpri(fssproc); 1626 fssproc->fss_timeleft = fss_quantum; 1627 t->t_pri = fssproc->fss_umdpri; 1628 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1629 fssproc->fss_flags &= ~FSSKPRI; 1630 THREAD_TRANSITION(t); 1631 1632 /* 1633 * We don't want to call fss_setrun(t) here because it may call 1634 * fss_active, which we don't need. 1635 */ 1636 fssproc->fss_flags &= ~FSSBACKQ; 1637 1638 if (t->t_disp_time != lbolt) 1639 setbackdq(t); 1640 else 1641 setfrontdq(t); 1642 1643 thread_unlock(t); 1644 1645 swtch(); 1646 } 1647 1648 /* 1649 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1650 * the buffer pointed by fssparmsp. 1651 */ 1652 static void 1653 fss_parmsget(kthread_t *t, void *parmsp) 1654 { 1655 fssproc_t *fssproc = FSSPROC(t); 1656 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1657 1658 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1659 fssparmsp->fss_upri = fssproc->fss_upri; 1660 } 1661 1662 /*ARGSUSED*/ 1663 static int 1664 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1665 { 1666 char nice; 1667 pri_t reqfssuprilim; 1668 pri_t reqfssupri; 1669 fssproc_t *fssproc = FSSPROC(t); 1670 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1671 1672 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1673 1674 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1675 reqfssuprilim = fssproc->fss_uprilim; 1676 else 1677 reqfssuprilim = fssparmsp->fss_uprilim; 1678 1679 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1680 reqfssupri = fssproc->fss_upri; 1681 else 1682 reqfssupri = fssparmsp->fss_upri; 1683 1684 /* 1685 * Make sure the user priority doesn't exceed the upri limit. 1686 */ 1687 if (reqfssupri > reqfssuprilim) 1688 reqfssupri = reqfssuprilim; 1689 1690 /* 1691 * Basic permissions enforced by generic kernel code for all classes 1692 * require that a thread attempting to change the scheduling parameters 1693 * of a target thread be privileged or have a real or effective UID 1694 * matching that of the target thread. We are not called unless these 1695 * basic permission checks have already passed. The fair-sharing class 1696 * requires in addition that the calling thread be privileged if it 1697 * is attempting to raise the upri limit above its current value. 1698 * This may have been checked previously but if our caller passed us 1699 * a non-NULL credential pointer we assume it hasn't and we check it 1700 * here. 1701 */ 1702 if ((reqpcredp != NULL) && 1703 (reqfssuprilim > fssproc->fss_uprilim) && 1704 secpolicy_setpriority(reqpcredp) != 0) 1705 return (EPERM); 1706 1707 /* 1708 * Set fss_nice to the nice value corresponding to the user priority we 1709 * are setting. Note that setting the nice field of the parameter 1710 * struct won't affect upri or nice. 1711 */ 1712 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1713 if (nice > FSS_NICE_MAX) 1714 nice = FSS_NICE_MAX; 1715 1716 thread_lock(t); 1717 1718 fssproc->fss_uprilim = reqfssuprilim; 1719 fssproc->fss_upri = reqfssupri; 1720 fssproc->fss_nice = nice; 1721 fss_newpri(fssproc); 1722 1723 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1724 thread_unlock(t); 1725 return (0); 1726 } 1727 1728 fss_change_priority(t, fssproc); 1729 thread_unlock(t); 1730 return (0); 1731 1732 } 1733 1734 /* 1735 * The thread is being stopped. 1736 */ 1737 /*ARGSUSED*/ 1738 static void 1739 fss_stop(kthread_t *t, int why, int what) 1740 { 1741 ASSERT(THREAD_LOCK_HELD(t)); 1742 ASSERT(t == curthread); 1743 1744 fss_inactive(t); 1745 } 1746 1747 /* 1748 * The current thread is exiting, do necessary adjustments to its project 1749 */ 1750 static void 1751 fss_exit(kthread_t *t) 1752 { 1753 fsspset_t *fsspset; 1754 fssproj_t *fssproj; 1755 fssproc_t *fssproc; 1756 fsszone_t *fsszone; 1757 int free = 0; 1758 1759 /* 1760 * Thread t here is either a current thread (in which case we hold 1761 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1762 * in which case we hold pidlock and thread is no longer on the 1763 * thread list. 1764 */ 1765 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1766 1767 fssproc = FSSPROC(t); 1768 fssproj = FSSPROC2FSSPROJ(fssproc); 1769 fsspset = FSSPROJ2FSSPSET(fssproj); 1770 fsszone = fssproj->fssp_fsszone; 1771 1772 mutex_enter(&fsspsets_lock); 1773 mutex_enter(&fsspset->fssps_lock); 1774 1775 thread_lock(t); 1776 disp_lock_enter_high(&fsspset->fssps_displock); 1777 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1778 if (--fssproj->fssp_runnable == 0) { 1779 fsszone->fssz_shares -= fssproj->fssp_shares; 1780 if (--fsszone->fssz_runnable == 0) 1781 fsspset->fssps_shares -= fsszone->fssz_rshares; 1782 } 1783 ASSERT(fssproc->fss_runnable == 1); 1784 fssproc->fss_runnable = 0; 1785 } 1786 if (--fssproj->fssp_threads == 0) { 1787 fss_remove_fssproj(fsspset, fssproj); 1788 free = 1; 1789 } 1790 disp_lock_exit_high(&fsspset->fssps_displock); 1791 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1792 thread_unlock(t); 1793 1794 if (free) { 1795 if (fsszone->fssz_nproj == 0) 1796 kmem_free(fsszone, sizeof (fsszone_t)); 1797 kmem_free(fssproj, sizeof (fssproj_t)); 1798 } 1799 mutex_exit(&fsspset->fssps_lock); 1800 mutex_exit(&fsspsets_lock); 1801 1802 /* 1803 * A thread could be exiting in between clock ticks, so we need to 1804 * calculate how much CPU time it used since it was charged last time. 1805 * 1806 * CPU caps are not enforced on exiting processes - it is usually 1807 * desirable to exit as soon as possible to free resources. 1808 */ 1809 if (CPUCAPS_ON()) { 1810 thread_lock(t); 1811 fssproc = FSSPROC(t); 1812 (void) cpucaps_charge(t, &fssproc->fss_caps, 1813 CPUCAPS_CHARGE_ONLY); 1814 thread_unlock(t); 1815 } 1816 } 1817 1818 static void 1819 fss_nullsys() 1820 { 1821 } 1822 1823 /* 1824 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1825 * swapped in. Otherwise, it returns the thread's effective priority based 1826 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1827 */ 1828 /*ARGSUSED*/ 1829 static pri_t 1830 fss_swapin(kthread_t *t, int flags) 1831 { 1832 fssproc_t *fssproc = FSSPROC(t); 1833 long epri = -1; 1834 proc_t *pp = ttoproc(t); 1835 1836 ASSERT(THREAD_LOCK_HELD(t)); 1837 1838 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1839 time_t swapout_time; 1840 1841 swapout_time = (lbolt - t->t_stime) / hz; 1842 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1843 epri = (long)DISP_PRIO(t) + swapout_time; 1844 } else { 1845 /* 1846 * Threads which have been out for a long time, 1847 * have high user mode priority and are associated 1848 * with a small address space are more deserving. 1849 */ 1850 epri = fssproc->fss_umdpri; 1851 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1852 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1853 } 1854 /* 1855 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1856 */ 1857 epri += SHRT_MAX / 2; 1858 if (epri < 0) 1859 epri = 0; 1860 else if (epri > SHRT_MAX) 1861 epri = SHRT_MAX; 1862 } 1863 return ((pri_t)epri); 1864 } 1865 1866 /* 1867 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1868 * be swapped out. Otherwise, it returns the thread's effective priority 1869 * based on if the swapper is in softswap or hardswap mode. 1870 */ 1871 static pri_t 1872 fss_swapout(kthread_t *t, int flags) 1873 { 1874 fssproc_t *fssproc = FSSPROC(t); 1875 long epri = -1; 1876 proc_t *pp = ttoproc(t); 1877 time_t swapin_time; 1878 1879 ASSERT(THREAD_LOCK_HELD(t)); 1880 1881 if (INHERITED(t) || 1882 (fssproc->fss_flags & FSSKPRI) || 1883 (t->t_proc_flag & TP_LWPEXIT) || 1884 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1885 TS_ONPROC | TS_WAIT)) || 1886 !(t->t_schedflag & TS_LOAD) || 1887 !(SWAP_OK(t))) 1888 return (-1); 1889 1890 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1891 1892 swapin_time = (lbolt - t->t_stime) / hz; 1893 1894 if (flags == SOFTSWAP) { 1895 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1896 epri = 0; 1897 } else { 1898 return ((pri_t)epri); 1899 } 1900 } else { 1901 pri_t pri; 1902 1903 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1904 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1905 pri = fss_maxumdpri; 1906 epri = swapin_time - 1907 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1908 } else { 1909 return ((pri_t)epri); 1910 } 1911 } 1912 1913 /* 1914 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1915 */ 1916 epri += SHRT_MAX / 2; 1917 if (epri < 0) 1918 epri = 0; 1919 else if (epri > SHRT_MAX) 1920 epri = SHRT_MAX; 1921 1922 return ((pri_t)epri); 1923 } 1924 1925 /* 1926 * If thread is currently at a kernel mode priority (has slept) and is 1927 * returning to the userland we assign it the appropriate user mode priority 1928 * and time quantum here. If we're lowering the thread's priority below that 1929 * of other runnable threads then we will set runrun via cpu_surrender() to 1930 * cause preemption. 1931 */ 1932 static void 1933 fss_trapret(kthread_t *t) 1934 { 1935 fssproc_t *fssproc = FSSPROC(t); 1936 cpu_t *cp = CPU; 1937 1938 ASSERT(THREAD_LOCK_HELD(t)); 1939 ASSERT(t == curthread); 1940 ASSERT(cp->cpu_dispthread == t); 1941 ASSERT(t->t_state == TS_ONPROC); 1942 1943 t->t_kpri_req = 0; 1944 if (fssproc->fss_flags & FSSKPRI) { 1945 /* 1946 * If thread has blocked in the kernel 1947 */ 1948 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1949 cp->cpu_dispatch_pri = DISP_PRIO(t); 1950 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1951 fssproc->fss_flags &= ~FSSKPRI; 1952 1953 if (DISP_MUST_SURRENDER(t)) 1954 cpu_surrender(t); 1955 } 1956 1957 /* 1958 * Swapout lwp if the swapper is waiting for this thread to reach 1959 * a safe point. 1960 */ 1961 if (t->t_schedflag & TS_SWAPENQ) { 1962 thread_unlock(t); 1963 swapout_lwp(ttolwp(t)); 1964 thread_lock(t); 1965 } 1966 } 1967 1968 /* 1969 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1970 * This is called with the current thread in TS_ONPROC and locked. 1971 */ 1972 static void 1973 fss_preempt(kthread_t *t) 1974 { 1975 fssproc_t *fssproc = FSSPROC(t); 1976 klwp_t *lwp; 1977 uint_t flags; 1978 1979 ASSERT(t == curthread); 1980 ASSERT(THREAD_LOCK_HELD(curthread)); 1981 ASSERT(t->t_state == TS_ONPROC); 1982 1983 /* 1984 * If preempted in the kernel, make sure the thread has a kernel 1985 * priority if needed. 1986 */ 1987 lwp = curthread->t_lwp; 1988 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1989 fssproc->fss_flags |= FSSKPRI; 1990 THREAD_CHANGE_PRI(t, minclsyspri); 1991 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1992 t->t_trapret = 1; /* so that fss_trapret will run */ 1993 aston(t); 1994 } 1995 1996 /* 1997 * This thread may be placed on wait queue by CPU Caps. In this case we 1998 * do not need to do anything until it is removed from the wait queue. 1999 * Do not enforce CPU caps on threads running at a kernel priority 2000 */ 2001 if (CPUCAPS_ON()) { 2002 (void) cpucaps_charge(t, &fssproc->fss_caps, 2003 CPUCAPS_CHARGE_ENFORCE); 2004 2005 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t)) 2006 return; 2007 } 2008 2009 /* 2010 * If preempted in user-land mark the thread as swappable because it 2011 * cannot be holding any kernel locks. 2012 */ 2013 ASSERT(t->t_schedflag & TS_DONT_SWAP); 2014 if (lwp != NULL && lwp->lwp_state == LWP_USER) 2015 t->t_schedflag &= ~TS_DONT_SWAP; 2016 2017 /* 2018 * Check to see if we're doing "preemption control" here. If 2019 * we are, and if the user has requested that this thread not 2020 * be preempted, and if preemptions haven't been put off for 2021 * too long, let the preemption happen here but try to make 2022 * sure the thread is rescheduled as soon as possible. We do 2023 * this by putting it on the front of the highest priority run 2024 * queue in the FSS class. If the preemption has been put off 2025 * for too long, clear the "nopreempt" bit and let the thread 2026 * be preempted. 2027 */ 2028 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2029 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2030 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 2031 if (!(fssproc->fss_flags & FSSKPRI)) { 2032 /* 2033 * If not already remembered, remember current 2034 * priority for restoration in fss_yield(). 2035 */ 2036 if (!(fssproc->fss_flags & FSSRESTORE)) { 2037 fssproc->fss_scpri = t->t_pri; 2038 fssproc->fss_flags |= FSSRESTORE; 2039 } 2040 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2041 t->t_schedflag |= TS_DONT_SWAP; 2042 } 2043 schedctl_set_yield(t, 1); 2044 setfrontdq(t); 2045 return; 2046 } else { 2047 if (fssproc->fss_flags & FSSRESTORE) { 2048 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2049 fssproc->fss_flags &= ~FSSRESTORE; 2050 } 2051 schedctl_set_nopreempt(t, 0); 2052 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2053 /* 2054 * Fall through and be preempted below. 2055 */ 2056 } 2057 } 2058 2059 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2060 2061 if (flags == FSSBACKQ) { 2062 fssproc->fss_timeleft = fss_quantum; 2063 fssproc->fss_flags &= ~FSSBACKQ; 2064 setbackdq(t); 2065 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2066 fssproc->fss_flags &= ~FSSBACKQ; 2067 setbackdq(t); 2068 } else { 2069 setfrontdq(t); 2070 } 2071 } 2072 2073 /* 2074 * Called when a thread is waking up and is to be placed on the run queue. 2075 */ 2076 static void 2077 fss_setrun(kthread_t *t) 2078 { 2079 fssproc_t *fssproc = FSSPROC(t); 2080 2081 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2082 2083 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2084 fss_active(t); 2085 2086 fssproc->fss_timeleft = fss_quantum; 2087 2088 fssproc->fss_flags &= ~FSSBACKQ; 2089 /* 2090 * If previously were running at the kernel priority then keep that 2091 * priority and the fss_timeleft doesn't matter. 2092 */ 2093 if ((fssproc->fss_flags & FSSKPRI) == 0) 2094 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2095 2096 if (t->t_disp_time != lbolt) 2097 setbackdq(t); 2098 else 2099 setfrontdq(t); 2100 } 2101 2102 /* 2103 * Prepare thread for sleep. We reset the thread priority so it will run at the 2104 * kernel priority level when it wakes up. 2105 */ 2106 static void 2107 fss_sleep(kthread_t *t) 2108 { 2109 fssproc_t *fssproc = FSSPROC(t); 2110 2111 ASSERT(t == curthread); 2112 ASSERT(THREAD_LOCK_HELD(t)); 2113 2114 ASSERT(t->t_state == TS_ONPROC); 2115 2116 /* 2117 * Account for time spent on CPU before going to sleep. 2118 */ 2119 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2120 2121 fss_inactive(t); 2122 2123 /* 2124 * Assign a system priority to the thread and arrange for it to be 2125 * retained when the thread is next placed on the run queue (i.e., 2126 * when it wakes up) instead of being given a new pri. Also arrange 2127 * for trapret processing as the thread leaves the system call so it 2128 * will drop back to normal priority range. 2129 */ 2130 if (t->t_kpri_req) { 2131 THREAD_CHANGE_PRI(t, minclsyspri); 2132 fssproc->fss_flags |= FSSKPRI; 2133 t->t_trapret = 1; /* so that fss_trapret will run */ 2134 aston(t); 2135 } else if (fssproc->fss_flags & FSSKPRI) { 2136 /* 2137 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2138 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2139 * then slept again all without finishing the current system 2140 * call so trapret won't have cleared FSSKPRI 2141 */ 2142 fssproc->fss_flags &= ~FSSKPRI; 2143 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2144 if (DISP_MUST_SURRENDER(curthread)) 2145 cpu_surrender(t); 2146 } 2147 t->t_stime = lbolt; /* time stamp for the swapper */ 2148 } 2149 2150 /* 2151 * A tick interrupt has ocurrend on a running thread. Check to see if our 2152 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2153 * t_schedflag if the thread is eligible to be swapped out. 2154 */ 2155 static void 2156 fss_tick(kthread_t *t) 2157 { 2158 fssproc_t *fssproc; 2159 fssproj_t *fssproj; 2160 klwp_t *lwp; 2161 boolean_t call_cpu_surrender = B_FALSE; 2162 boolean_t cpucaps_enforce = B_FALSE; 2163 2164 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2165 2166 /* 2167 * It's safe to access fsspset and fssproj structures because we're 2168 * holding our p_lock here. 2169 */ 2170 thread_lock(t); 2171 fssproc = FSSPROC(t); 2172 fssproj = FSSPROC2FSSPROJ(fssproc); 2173 if (fssproj != NULL) { 2174 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2175 disp_lock_enter_high(&fsspset->fssps_displock); 2176 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2177 fssproc->fss_ticks++; 2178 disp_lock_exit_high(&fsspset->fssps_displock); 2179 } 2180 2181 /* 2182 * Keep track of thread's project CPU usage. Note that projects 2183 * get charged even when threads are running in the kernel. 2184 * Do not surrender CPU if running in the SYS class. 2185 */ 2186 if (CPUCAPS_ON()) { 2187 cpucaps_enforce = cpucaps_charge(t, 2188 &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) && 2189 !(fssproc->fss_flags & FSSKPRI); 2190 } 2191 2192 /* 2193 * A thread's execution time for threads running in the SYS class 2194 * is not tracked. 2195 */ 2196 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2197 /* 2198 * If thread is not in kernel mode, decrement its fss_timeleft 2199 */ 2200 if (--fssproc->fss_timeleft <= 0) { 2201 pri_t new_pri; 2202 2203 /* 2204 * If we're doing preemption control and trying to 2205 * avoid preempting this thread, just note that the 2206 * thread should yield soon and let it keep running 2207 * (unless it's been a while). 2208 */ 2209 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2210 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2211 DTRACE_SCHED1(schedctl__nopreempt, 2212 kthread_t *, t); 2213 schedctl_set_yield(t, 1); 2214 thread_unlock_nopreempt(t); 2215 return; 2216 } 2217 } 2218 fssproc->fss_flags &= ~FSSRESTORE; 2219 2220 fss_newpri(fssproc); 2221 new_pri = fssproc->fss_umdpri; 2222 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2223 2224 /* 2225 * When the priority of a thread is changed, it may 2226 * be necessary to adjust its position on a sleep queue 2227 * or dispatch queue. The function thread_change_pri 2228 * accomplishes this. 2229 */ 2230 if (thread_change_pri(t, new_pri, 0)) { 2231 if ((t->t_schedflag & TS_LOAD) && 2232 (lwp = t->t_lwp) && 2233 lwp->lwp_state == LWP_USER) 2234 t->t_schedflag &= ~TS_DONT_SWAP; 2235 fssproc->fss_timeleft = fss_quantum; 2236 } else { 2237 call_cpu_surrender = B_TRUE; 2238 } 2239 } else if (t->t_state == TS_ONPROC && 2240 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2241 /* 2242 * If there is a higher-priority thread which is 2243 * waiting for a processor, then thread surrenders 2244 * the processor. 2245 */ 2246 call_cpu_surrender = B_TRUE; 2247 } 2248 } 2249 2250 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) { 2251 /* 2252 * The thread used more than half of its quantum, so assume that 2253 * it used the whole quantum. 2254 * 2255 * Update thread's priority just before putting it on the wait 2256 * queue so that it gets charged for the CPU time from its 2257 * quantum even before that quantum expires. 2258 */ 2259 fss_newpri(fssproc); 2260 if (t->t_pri != fssproc->fss_umdpri) 2261 fss_change_priority(t, fssproc); 2262 2263 /* 2264 * We need to call cpu_surrender for this thread due to cpucaps 2265 * enforcement, but fss_change_priority may have already done 2266 * so. In this case FSSBACKQ is set and there is no need to call 2267 * cpu-surrender again. 2268 */ 2269 if (!(fssproc->fss_flags & FSSBACKQ)) 2270 call_cpu_surrender = B_TRUE; 2271 } 2272 2273 if (call_cpu_surrender) { 2274 fssproc->fss_flags |= FSSBACKQ; 2275 cpu_surrender(t); 2276 } 2277 2278 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2279 } 2280 2281 /* 2282 * Processes waking up go to the back of their queue. We don't need to assign 2283 * a time quantum here because thread is still at a kernel mode priority and 2284 * the time slicing is not done for threads running in the kernel after 2285 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2286 * thread returns to user mode. 2287 */ 2288 static void 2289 fss_wakeup(kthread_t *t) 2290 { 2291 fssproc_t *fssproc; 2292 2293 ASSERT(THREAD_LOCK_HELD(t)); 2294 ASSERT(t->t_state == TS_SLEEP); 2295 2296 fss_active(t); 2297 2298 t->t_stime = lbolt; /* time stamp for the swapper */ 2299 fssproc = FSSPROC(t); 2300 fssproc->fss_flags &= ~FSSBACKQ; 2301 2302 if (fssproc->fss_flags & FSSKPRI) { 2303 /* 2304 * If we already have a kernel priority assigned, then we 2305 * just use it. 2306 */ 2307 setbackdq(t); 2308 } else if (t->t_kpri_req) { 2309 /* 2310 * Give thread a priority boost if we were asked. 2311 */ 2312 fssproc->fss_flags |= FSSKPRI; 2313 THREAD_CHANGE_PRI(t, minclsyspri); 2314 setbackdq(t); 2315 t->t_trapret = 1; /* so that fss_trapret will run */ 2316 aston(t); 2317 } else { 2318 /* 2319 * Otherwise, we recalculate the priority. 2320 */ 2321 if (t->t_disp_time == lbolt) { 2322 setfrontdq(t); 2323 } else { 2324 fssproc->fss_timeleft = fss_quantum; 2325 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2326 setbackdq(t); 2327 } 2328 } 2329 } 2330 2331 /* 2332 * fss_donice() is called when a nice(1) command is issued on the thread to 2333 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2334 * Thread priority adjustments should be done via priocntl(1). 2335 */ 2336 static int 2337 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2338 { 2339 int newnice; 2340 fssproc_t *fssproc = FSSPROC(t); 2341 fssparms_t fssparms; 2342 2343 /* 2344 * If there is no change to priority, just return current setting. 2345 */ 2346 if (incr == 0) { 2347 if (retvalp) 2348 *retvalp = fssproc->fss_nice - NZERO; 2349 return (0); 2350 } 2351 2352 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2353 return (EPERM); 2354 2355 /* 2356 * Specifying a nice increment greater than the upper limit of 2357 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2358 * value being set to the upper limit. We check for this before 2359 * computing the new value because otherwise we could get overflow 2360 * if a privileged user specified some ridiculous increment. 2361 */ 2362 if (incr > FSS_NICE_MAX) 2363 incr = FSS_NICE_MAX; 2364 2365 newnice = fssproc->fss_nice + incr; 2366 if (newnice > FSS_NICE_MAX) 2367 newnice = FSS_NICE_MAX; 2368 else if (newnice < FSS_NICE_MIN) 2369 newnice = FSS_NICE_MIN; 2370 2371 fssparms.fss_uprilim = fssparms.fss_upri = 2372 -((newnice - NZERO) * fss_maxupri) / NZERO; 2373 2374 /* 2375 * Reset the uprilim and upri values of the thread. 2376 */ 2377 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2378 2379 /* 2380 * Although fss_parmsset already reset fss_nice it may not have been 2381 * set to precisely the value calculated above because fss_parmsset 2382 * determines the nice value from the user priority and we may have 2383 * truncated during the integer conversion from nice value to user 2384 * priority and back. We reset fss_nice to the value we calculated 2385 * above. 2386 */ 2387 fssproc->fss_nice = (char)newnice; 2388 2389 if (retvalp) 2390 *retvalp = newnice - NZERO; 2391 return (0); 2392 } 2393 2394 /* 2395 * Return the global scheduling priority that would be assigned to a thread 2396 * entering the fair-sharing class with the fss_upri. 2397 */ 2398 /*ARGSUSED*/ 2399 static pri_t 2400 fss_globpri(kthread_t *t) 2401 { 2402 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2403 2404 return (fss_maxumdpri / 2); 2405 } 2406 2407 /* 2408 * Called from the yield(2) system call when a thread is yielding (surrendering) 2409 * the processor. The kernel thread is placed at the back of a dispatch queue. 2410 */ 2411 static void 2412 fss_yield(kthread_t *t) 2413 { 2414 fssproc_t *fssproc = FSSPROC(t); 2415 2416 ASSERT(t == curthread); 2417 ASSERT(THREAD_LOCK_HELD(t)); 2418 2419 /* 2420 * Collect CPU usage spent before yielding 2421 */ 2422 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2423 2424 /* 2425 * Clear the preemption control "yield" bit since the user is 2426 * doing a yield. 2427 */ 2428 if (t->t_schedctl) 2429 schedctl_set_yield(t, 0); 2430 /* 2431 * If fss_preempt() artifically increased the thread's priority 2432 * to avoid preemption, restore the original priority now. 2433 */ 2434 if (fssproc->fss_flags & FSSRESTORE) { 2435 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2436 fssproc->fss_flags &= ~FSSRESTORE; 2437 } 2438 if (fssproc->fss_timeleft < 0) { 2439 /* 2440 * Time slice was artificially extended to avoid preemption, 2441 * so pretend we're preempting it now. 2442 */ 2443 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2444 fssproc->fss_timeleft = fss_quantum; 2445 } 2446 fssproc->fss_flags &= ~FSSBACKQ; 2447 setbackdq(t); 2448 } 2449 2450 void 2451 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2452 fssbuf_t *zonebuf) 2453 { 2454 kproject_t *kpj_new = kp; 2455 zone_t *zone = zp; 2456 fssproj_t *fssproj_old, *fssproj_new; 2457 fsspset_t *fsspset; 2458 kproject_t *kpj_old; 2459 fssproc_t *fssproc; 2460 fsszone_t *fsszone_old, *fsszone_new; 2461 int free = 0; 2462 int id; 2463 2464 ASSERT(MUTEX_HELD(&cpu_lock)); 2465 ASSERT(MUTEX_HELD(&pidlock)); 2466 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2467 2468 if (t->t_cid != fss_cid) 2469 return; 2470 2471 fssproc = FSSPROC(t); 2472 mutex_enter(&fsspsets_lock); 2473 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2474 if (fssproj_old == NULL) { 2475 mutex_exit(&fsspsets_lock); 2476 return; 2477 } 2478 2479 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2480 mutex_enter(&fsspset->fssps_lock); 2481 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2482 fsszone_old = fssproj_old->fssp_fsszone; 2483 2484 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2485 2486 if (kpj_old == kpj_new) { 2487 mutex_exit(&fsspset->fssps_lock); 2488 mutex_exit(&fsspsets_lock); 2489 return; 2490 } 2491 2492 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2493 /* 2494 * If the zone for the new project is not currently active on 2495 * the cpu partition we're on, get one of the pre-allocated 2496 * buffers and link it in our per-pset zone list. Such buffers 2497 * should already exist. 2498 */ 2499 for (id = 0; id < zonebuf->fssb_size; id++) { 2500 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2501 fss_insert_fsszone(fsspset, zone, fsszone_new); 2502 zonebuf->fssb_list[id] = NULL; 2503 break; 2504 } 2505 } 2506 } 2507 ASSERT(fsszone_new != NULL); 2508 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2509 /* 2510 * If our new project is not currently running 2511 * on the cpu partition we're on, get one of the 2512 * pre-allocated buffers and link it in our new cpu 2513 * partition doubly linked list. Such buffers should already 2514 * exist. 2515 */ 2516 for (id = 0; id < projbuf->fssb_size; id++) { 2517 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2518 fss_insert_fssproj(fsspset, kpj_new, 2519 fsszone_new, fssproj_new); 2520 projbuf->fssb_list[id] = NULL; 2521 break; 2522 } 2523 } 2524 } 2525 ASSERT(fssproj_new != NULL); 2526 2527 thread_lock(t); 2528 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2529 t->t_state == TS_WAIT) 2530 fss_inactive(t); 2531 ASSERT(fssproj_old->fssp_threads > 0); 2532 if (--fssproj_old->fssp_threads == 0) { 2533 fss_remove_fssproj(fsspset, fssproj_old); 2534 free = 1; 2535 } 2536 fssproc->fss_proj = fssproj_new; 2537 fssproc->fss_fsspri = 0; 2538 fssproj_new->fssp_threads++; 2539 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2540 t->t_state == TS_WAIT) 2541 fss_active(t); 2542 thread_unlock(t); 2543 if (free) { 2544 if (fsszone_old->fssz_nproj == 0) 2545 kmem_free(fsszone_old, sizeof (fsszone_t)); 2546 kmem_free(fssproj_old, sizeof (fssproj_t)); 2547 } 2548 2549 mutex_exit(&fsspset->fssps_lock); 2550 mutex_exit(&fsspsets_lock); 2551 } 2552 2553 void 2554 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2555 fssbuf_t *zonebuf) 2556 { 2557 fsspset_t *fsspset_old, *fsspset_new; 2558 fssproj_t *fssproj_old, *fssproj_new; 2559 fsszone_t *fsszone_old, *fsszone_new; 2560 fssproc_t *fssproc; 2561 kproject_t *kpj; 2562 zone_t *zone; 2563 int id; 2564 2565 ASSERT(MUTEX_HELD(&cpu_lock)); 2566 ASSERT(MUTEX_HELD(&pidlock)); 2567 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2568 2569 if (t->t_cid != fss_cid) 2570 return; 2571 2572 fssproc = FSSPROC(t); 2573 zone = ttoproc(t)->p_zone; 2574 mutex_enter(&fsspsets_lock); 2575 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2576 if (fssproj_old == NULL) { 2577 mutex_exit(&fsspsets_lock); 2578 return; 2579 } 2580 fsszone_old = fssproj_old->fssp_fsszone; 2581 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2582 kpj = FSSPROJ2KPROJ(fssproj_old); 2583 2584 if (fsspset_old->fssps_cpupart == newcp) { 2585 mutex_exit(&fsspsets_lock); 2586 return; 2587 } 2588 2589 ASSERT(ttoproj(t) == kpj); 2590 2591 fsspset_new = fss_find_fsspset(newcp); 2592 2593 mutex_enter(&fsspset_new->fssps_lock); 2594 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2595 for (id = 0; id < zonebuf->fssb_size; id++) { 2596 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2597 fss_insert_fsszone(fsspset_new, zone, 2598 fsszone_new); 2599 zonebuf->fssb_list[id] = NULL; 2600 break; 2601 } 2602 } 2603 } 2604 ASSERT(fsszone_new != NULL); 2605 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2606 for (id = 0; id < projbuf->fssb_size; id++) { 2607 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2608 fss_insert_fssproj(fsspset_new, kpj, 2609 fsszone_new, fssproj_new); 2610 projbuf->fssb_list[id] = NULL; 2611 break; 2612 } 2613 } 2614 } 2615 ASSERT(fssproj_new != NULL); 2616 2617 fssproj_new->fssp_threads++; 2618 thread_lock(t); 2619 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2620 t->t_state == TS_WAIT) 2621 fss_inactive(t); 2622 fssproc->fss_proj = fssproj_new; 2623 fssproc->fss_fsspri = 0; 2624 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2625 t->t_state == TS_WAIT) 2626 fss_active(t); 2627 thread_unlock(t); 2628 mutex_exit(&fsspset_new->fssps_lock); 2629 2630 mutex_enter(&fsspset_old->fssps_lock); 2631 if (--fssproj_old->fssp_threads == 0) { 2632 fss_remove_fssproj(fsspset_old, fssproj_old); 2633 if (fsszone_old->fssz_nproj == 0) 2634 kmem_free(fsszone_old, sizeof (fsszone_t)); 2635 kmem_free(fssproj_old, sizeof (fssproj_t)); 2636 } 2637 mutex_exit(&fsspset_old->fssps_lock); 2638 2639 mutex_exit(&fsspsets_lock); 2640 } 2641