xref: /illumos-gate/usr/src/uts/common/disp/cmt.c (revision b025faee7670ae718ed421b9eeb6650fd219e5e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/cpupart.h>
32 #include <sys/kmem.h>
33 #include <sys/cmn_err.h>
34 #include <sys/kstat.h>
35 #include <sys/processor.h>
36 #include <sys/disp.h>
37 #include <sys/group.h>
38 #include <sys/pghw.h>
39 #include <sys/bitset.h>
40 #include <sys/lgrp.h>
41 #include <sys/cmt.h>
42 #include <sys/cpu_pm.h>
43 
44 /*
45  * CMT scheduler / dispatcher support
46  *
47  * This file implements CMT scheduler support using Processor Groups.
48  * The CMT processor group class creates and maintains the CMT class
49  * specific processor group pg_cmt_t.
50  *
51  * ---------------------------- <-- pg_cmt_t *
52  * | pghw_t                   |
53  * ----------------------------
54  * | CMT class specific data  |
55  * | - hierarchy linkage      |
56  * | - CMT load balancing data|
57  * | - active CPU group/bitset|
58  * ----------------------------
59  *
60  * The scheduler/dispatcher leverages knowledge of the performance
61  * relevant CMT sharing relationships existing between cpus to implement
62  * optimized affinity, load balancing, and coalescence policies.
63  *
64  * Load balancing policy seeks to improve performance by minimizing
65  * contention over shared processor resources / facilities, Affinity
66  * policies seek to improve cache and TLB utilization. Coalescence
67  * policies improve resource utilization and ultimately power efficiency.
68  *
69  * The CMT PGs created by this class are already arranged into a
70  * hierarchy (which is done in the pghw layer). To implement the top-down
71  * CMT load balancing algorithm, the CMT PGs additionally maintain
72  * parent, child and sibling hierarchy relationships.
73  * Parent PGs always contain a superset of their children(s) resources,
74  * each PG can have at most one parent, and siblings are the group of PGs
75  * sharing the same parent.
76  *
77  * On UMA based systems, the CMT load balancing algorithm begins by balancing
78  * load across the group of top level PGs in the system hierarchy.
79  * On NUMA systems, the CMT load balancing algorithm balances load across the
80  * group of top level PGs in each leaf lgroup...but for root homed threads,
81  * is willing to balance against all the top level PGs in the system.
82  *
83  * Groups of top level PGs are maintained to implement the above, one for each
84  * leaf lgroup (containing the top level PGs in that lgroup), and one (for the
85  * root lgroup) that contains all the top level PGs in the system.
86  */
87 static cmt_lgrp_t	*cmt_lgrps = NULL;	/* cmt_lgrps list head */
88 static cmt_lgrp_t	*cpu0_lgrp = NULL;	/* boot CPU's initial lgrp */
89 						/* used for null_proc_lpa */
90 cmt_lgrp_t		*cmt_root = NULL;	/* Reference to root cmt pg */
91 
92 static int		is_cpu0 = 1; /* true if this is boot CPU context */
93 
94 /*
95  * Array of hardware sharing relationships that are blacklisted.
96  * CMT scheduling optimizations won't be performed for blacklisted sharing
97  * relationships.
98  */
99 static int		cmt_hw_blacklisted[PGHW_NUM_COMPONENTS];
100 
101 /*
102  * Set this to non-zero to disable CMT scheduling
103  * This must be done via kmdb -d, as /etc/system will be too late
104  */
105 int			cmt_sched_disabled = 0;
106 
107 /*
108  * Status codes for CMT lineage validation
109  * See pg_cmt_lineage_validate() below
110  */
111 typedef enum cmt_lineage_validation {
112 	CMT_LINEAGE_VALID,
113 	CMT_LINEAGE_NON_CONCENTRIC,
114 	CMT_LINEAGE_PG_SPANS_LGRPS,
115 	CMT_LINEAGE_NON_PROMOTABLE,
116 	CMT_LINEAGE_REPAIRED,
117 	CMT_LINEAGE_UNRECOVERABLE
118 } cmt_lineage_validation_t;
119 
120 /*
121  * Status of the current lineage under construction.
122  * One must be holding cpu_lock to change this.
123  */
124 cmt_lineage_validation_t	cmt_lineage_status = CMT_LINEAGE_VALID;
125 
126 /*
127  * Power domain definitions (on x86) are defined by ACPI, and
128  * therefore may be subject to BIOS bugs.
129  */
130 #define	PG_CMT_HW_SUSPECT(hw)	PGHW_IS_PM_DOMAIN(hw)
131 
132 /*
133  * Macro to test if PG is managed by the CMT PG class
134  */
135 #define	IS_CMT_PG(pg)	(((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id)
136 
137 static pg_cid_t		pg_cmt_class_id;		/* PG class id */
138 
139 static pg_t		*pg_cmt_alloc();
140 static void		pg_cmt_free(pg_t *);
141 static void		pg_cmt_cpu_init(cpu_t *, cpu_pg_t *);
142 static void		pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *);
143 static void		pg_cmt_cpu_active(cpu_t *);
144 static void		pg_cmt_cpu_inactive(cpu_t *);
145 static void		pg_cmt_cpupart_in(cpu_t *, cpupart_t *);
146 static void		pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *);
147 static char		*pg_cmt_policy_name(pg_t *);
148 static void		pg_cmt_hier_sort(pg_cmt_t **, int);
149 static pg_cmt_t		*pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *);
150 static int		pg_cmt_cpu_belongs(pg_t *, cpu_t *);
151 static int		pg_cmt_hw(pghw_type_t);
152 static cmt_lgrp_t	*pg_cmt_find_lgrp(lgrp_handle_t);
153 static cmt_lgrp_t	*pg_cmt_lgrp_create(lgrp_handle_t);
154 static void		cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t,
155 			    kthread_t *, kthread_t *);
156 static void		cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t,
157 			    kthread_t *, kthread_t *);
158 static void		cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *);
159 static cmt_lineage_validation_t	pg_cmt_lineage_validate(pg_cmt_t **, int *,
160 			    cpu_pg_t *);
161 
162 
163 /*
164  * CMT PG ops
165  */
166 struct pg_ops pg_ops_cmt = {
167 	pg_cmt_alloc,
168 	pg_cmt_free,
169 	pg_cmt_cpu_init,
170 	pg_cmt_cpu_fini,
171 	pg_cmt_cpu_active,
172 	pg_cmt_cpu_inactive,
173 	pg_cmt_cpupart_in,
174 	NULL,			/* cpupart_out */
175 	pg_cmt_cpupart_move,
176 	pg_cmt_cpu_belongs,
177 	pg_cmt_policy_name,
178 };
179 
180 /*
181  * Initialize the CMT PG class
182  */
183 void
184 pg_cmt_class_init(void)
185 {
186 	if (cmt_sched_disabled)
187 		return;
188 
189 	pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL);
190 }
191 
192 /*
193  * Called to indicate a new CPU has started up so
194  * that either t0 or the slave startup thread can
195  * be accounted for.
196  */
197 void
198 pg_cmt_cpu_startup(cpu_t *cp)
199 {
200 	pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread,
201 	    cp->cpu_thread);
202 }
203 
204 /*
205  * Return non-zero if thread can migrate between "from" and "to"
206  * without a performance penalty
207  */
208 int
209 pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
210 {
211 	if (from->cpu_physid->cpu_cacheid ==
212 	    to->cpu_physid->cpu_cacheid)
213 		return (1);
214 	return (0);
215 }
216 
217 /*
218  * CMT class specific PG allocation
219  */
220 static pg_t *
221 pg_cmt_alloc(void)
222 {
223 	return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP));
224 }
225 
226 /*
227  * Class specific PG de-allocation
228  */
229 static void
230 pg_cmt_free(pg_t *pg)
231 {
232 	ASSERT(pg != NULL);
233 	ASSERT(IS_CMT_PG(pg));
234 
235 	kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t));
236 }
237 
238 /*
239  * Given a hardware sharing relationship, return which dispatcher
240  * policies should be implemented to optimize performance and efficiency
241  */
242 static pg_cmt_policy_t
243 pg_cmt_policy(pghw_type_t hw)
244 {
245 	pg_cmt_policy_t p;
246 
247 	/*
248 	 * Give the platform a chance to override the default
249 	 */
250 	if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY)
251 		return (p);
252 
253 	switch (hw) {
254 	case PGHW_IPIPE:
255 	case PGHW_FPU:
256 	case PGHW_PROCNODE:
257 	case PGHW_CHIP:
258 		return (CMT_BALANCE);
259 	case PGHW_CACHE:
260 		return (CMT_AFFINITY);
261 	case PGHW_POW_ACTIVE:
262 	case PGHW_POW_IDLE:
263 		return (CMT_BALANCE);
264 	default:
265 		return (CMT_NO_POLICY);
266 	}
267 }
268 
269 /*
270  * Rank the importance of optimizing for the pg1 relationship vs.
271  * the pg2 relationship.
272  */
273 static pg_cmt_t *
274 pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2)
275 {
276 	pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw;
277 	pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw;
278 
279 	/*
280 	 * A power domain is only important if CPUPM is enabled.
281 	 */
282 	if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) {
283 		if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2))
284 			return (pg2);
285 		if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1))
286 			return (pg1);
287 	}
288 
289 	/*
290 	 * Otherwise, ask the platform
291 	 */
292 	if (pg_plat_hw_rank(hw1, hw2) == hw1)
293 		return (pg1);
294 	else
295 		return (pg2);
296 }
297 
298 /*
299  * Initialize CMT callbacks for the given PG
300  */
301 static void
302 cmt_callback_init(pg_t *pg)
303 {
304 	/*
305 	 * Stick with the default callbacks if there isn't going to be
306 	 * any CMT thread placement optimizations implemented.
307 	 */
308 	if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY)
309 		return;
310 
311 	switch (((pghw_t *)pg)->pghw_hw) {
312 	case PGHW_POW_ACTIVE:
313 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr;
314 		pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr;
315 		break;
316 	default:
317 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch;
318 
319 	}
320 }
321 
322 /*
323  * Promote PG above it's current parent.
324  * This is only legal if PG has an equal or greater number of CPUs than its
325  * parent.
326  *
327  * This routine operates on the CPU specific processor group data (for the CPUs
328  * in the PG being promoted), and may be invoked from a context where one CPU's
329  * PG data is under construction. In this case the argument "pgdata", if not
330  * NULL, is a reference to the CPU's under-construction PG data.
331  */
332 static void
333 cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata)
334 {
335 	pg_cmt_t	*parent;
336 	group_t		*children;
337 	cpu_t		*cpu;
338 	group_iter_t	iter;
339 	pg_cpu_itr_t	cpu_iter;
340 	int		r;
341 	int		err;
342 	int		nchildren;
343 
344 	ASSERT(MUTEX_HELD(&cpu_lock));
345 
346 	parent = pg->cmt_parent;
347 	if (parent == NULL) {
348 		/*
349 		 * Nothing to do
350 		 */
351 		return;
352 	}
353 
354 	ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent));
355 
356 	/*
357 	 * We're changing around the hierarchy, which is actively traversed
358 	 * by the dispatcher. Pause CPUS to ensure exclusivity.
359 	 */
360 	pause_cpus(NULL);
361 
362 	/*
363 	 * If necessary, update the parent's sibling set, replacing parent
364 	 * with PG.
365 	 */
366 	if (parent->cmt_siblings) {
367 		if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE)
368 		    != -1) {
369 			r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE);
370 			ASSERT(r != -1);
371 		}
372 	}
373 
374 	/*
375 	 * If the parent is at the top of the hierarchy, replace it's entry
376 	 * in the root lgroup's group of top level PGs.
377 	 */
378 	if (parent->cmt_parent == NULL &&
379 	    parent->cmt_siblings != &cmt_root->cl_pgs) {
380 		if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE)
381 		    != -1) {
382 			r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE);
383 			ASSERT(r != -1);
384 		}
385 	}
386 
387 	/*
388 	 * We assume (and therefore assert) that the PG being promoted is an
389 	 * only child of it's parent. Update the parent's children set
390 	 * replacing PG's entry with the parent (since the parent is becoming
391 	 * the child). Then have PG and the parent swap children sets and
392 	 * children counts.
393 	 */
394 	ASSERT(GROUP_SIZE(parent->cmt_children) <= 1);
395 	if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) {
396 		r = group_add(parent->cmt_children, parent, GRP_NORESIZE);
397 		ASSERT(r != -1);
398 	}
399 
400 	children = pg->cmt_children;
401 	pg->cmt_children = parent->cmt_children;
402 	parent->cmt_children = children;
403 
404 	nchildren = pg->cmt_nchildren;
405 	pg->cmt_nchildren = parent->cmt_nchildren;
406 	parent->cmt_nchildren = nchildren;
407 
408 	/*
409 	 * Update the sibling references for PG and it's parent
410 	 */
411 	pg->cmt_siblings = parent->cmt_siblings;
412 	parent->cmt_siblings = pg->cmt_children;
413 
414 	/*
415 	 * Update any cached lineages in the per CPU pg data.
416 	 */
417 	PG_CPU_ITR_INIT(pg, cpu_iter);
418 	while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
419 		int		idx;
420 		int		sz;
421 		pg_cmt_t	*cpu_pg;
422 		cpu_pg_t	*pgd;	/* CPU's PG data */
423 
424 		/*
425 		 * The CPU's whose lineage is under construction still
426 		 * references the bootstrap CPU PG data structure.
427 		 */
428 		if (pg_cpu_is_bootstrapped(cpu))
429 			pgd = pgdata;
430 		else
431 			pgd = cpu->cpu_pg;
432 
433 		/*
434 		 * Iterate over the CPU's PGs updating the children
435 		 * of the PG being promoted, since they have a new parent.
436 		 */
437 		group_iter_init(&iter);
438 		while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) {
439 			if (cpu_pg->cmt_parent == pg) {
440 				cpu_pg->cmt_parent = parent;
441 			}
442 		}
443 
444 		/*
445 		 * Update the CMT load balancing lineage
446 		 */
447 		if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) {
448 			/*
449 			 * Unless this is the CPU who's lineage is being
450 			 * constructed, the PG being promoted should be
451 			 * in the lineage.
452 			 */
453 			ASSERT(pg_cpu_is_bootstrapped(cpu));
454 			continue;
455 		}
456 
457 		ASSERT(idx > 0);
458 		ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent);
459 
460 		/*
461 		 * Have the child and the parent swap places in the CPU's
462 		 * lineage
463 		 */
464 		group_remove_at(&pgd->cmt_pgs, idx);
465 		group_remove_at(&pgd->cmt_pgs, idx - 1);
466 		err = group_add_at(&pgd->cmt_pgs, parent, idx);
467 		ASSERT(err == 0);
468 		err = group_add_at(&pgd->cmt_pgs, pg, idx - 1);
469 		ASSERT(err == 0);
470 
471 		/*
472 		 * Ensure cmt_lineage references CPU's leaf PG.
473 		 * Since cmt_pgs is top-down ordered, the bottom is the last
474 		 * element.
475 		 */
476 		if ((sz = GROUP_SIZE(&pgd->cmt_pgs)) > 0)
477 			pgd->cmt_lineage = GROUP_ACCESS(&pgd->cmt_pgs, sz - 1);
478 	}
479 
480 	/*
481 	 * Update the parent references for PG and it's parent
482 	 */
483 	pg->cmt_parent = parent->cmt_parent;
484 	parent->cmt_parent = pg;
485 
486 	start_cpus();
487 }
488 
489 /*
490  * CMT class callback for a new CPU entering the system
491  *
492  * This routine operates on the CPU specific processor group data (for the CPU
493  * being initialized). The argument "pgdata" is a reference to the CPU's PG
494  * data to be constructed.
495  *
496  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
497  * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it
498  * calls must be careful to operate only on the "pgdata" argument, and not
499  * cp->cpu_pg.
500  */
501 static void
502 pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata)
503 {
504 	pg_cmt_t	*pg;
505 	group_t		*cmt_pgs;
506 	int		levels, level;
507 	pghw_type_t	hw;
508 	pg_t		*pg_cache = NULL;
509 	pg_cmt_t	*cpu_cmt_hier[PGHW_NUM_COMPONENTS];
510 	lgrp_handle_t	lgrp_handle;
511 	cmt_lgrp_t	*lgrp;
512 	cmt_lineage_validation_t	lineage_status;
513 
514 	ASSERT(MUTEX_HELD(&cpu_lock));
515 	ASSERT(pg_cpu_is_bootstrapped(cp));
516 
517 	if (cmt_sched_disabled)
518 		return;
519 
520 	/*
521 	 * A new CPU is coming into the system.
522 	 * Interrogate the platform to see if the CPU
523 	 * has any performance or efficiency relevant
524 	 * sharing relationships
525 	 */
526 	cmt_pgs = &pgdata->cmt_pgs;
527 	pgdata->cmt_lineage = NULL;
528 
529 	bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier));
530 	levels = 0;
531 	for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) {
532 
533 		pg_cmt_policy_t	policy;
534 
535 		/*
536 		 * We're only interested in the hw sharing relationships
537 		 * for which we know how to optimize.
538 		 */
539 		policy = pg_cmt_policy(hw);
540 		if (policy == CMT_NO_POLICY ||
541 		    pg_plat_hw_shared(cp, hw) == 0)
542 			continue;
543 
544 		/*
545 		 * We will still create the PGs for hardware sharing
546 		 * relationships that have been blacklisted, but won't
547 		 * implement CMT thread placement optimizations against them.
548 		 */
549 		if (cmt_hw_blacklisted[hw] == 1)
550 			policy = CMT_NO_POLICY;
551 
552 		/*
553 		 * Find (or create) the PG associated with
554 		 * the hw sharing relationship in which cp
555 		 * belongs.
556 		 *
557 		 * Determine if a suitable PG already
558 		 * exists, or if one needs to be created.
559 		 */
560 		pg = (pg_cmt_t *)pghw_place_cpu(cp, hw);
561 		if (pg == NULL) {
562 			/*
563 			 * Create a new one.
564 			 * Initialize the common...
565 			 */
566 			pg = (pg_cmt_t *)pg_create(pg_cmt_class_id);
567 
568 			/* ... physical ... */
569 			pghw_init((pghw_t *)pg, cp, hw);
570 
571 			/*
572 			 * ... and CMT specific portions of the
573 			 * structure.
574 			 */
575 			pg->cmt_policy = policy;
576 
577 			/* CMT event callbacks */
578 			cmt_callback_init((pg_t *)pg);
579 
580 			bitset_init(&pg->cmt_cpus_actv_set);
581 			group_create(&pg->cmt_cpus_actv);
582 		} else {
583 			ASSERT(IS_CMT_PG(pg));
584 		}
585 
586 		/* Add the CPU to the PG */
587 		pg_cpu_add((pg_t *)pg, cp, pgdata);
588 
589 		/*
590 		 * Ensure capacity of the active CPU group/bitset
591 		 */
592 		group_expand(&pg->cmt_cpus_actv,
593 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
594 
595 		if (cp->cpu_seqid >=
596 		    bitset_capacity(&pg->cmt_cpus_actv_set)) {
597 			bitset_resize(&pg->cmt_cpus_actv_set,
598 			    cp->cpu_seqid + 1);
599 		}
600 
601 		/*
602 		 * Build a lineage of CMT PGs for load balancing / coalescence
603 		 */
604 		if (policy & (CMT_BALANCE | CMT_COALESCE)) {
605 			cpu_cmt_hier[levels++] = pg;
606 		}
607 
608 		/* Cache this for later */
609 		if (hw == PGHW_CACHE)
610 			pg_cache = (pg_t *)pg;
611 	}
612 
613 	group_expand(cmt_pgs, levels);
614 
615 	if (cmt_root == NULL)
616 		cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand());
617 
618 	/*
619 	 * Find the lgrp that encapsulates this CPU's CMT hierarchy
620 	 */
621 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
622 	if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL)
623 		lgrp = pg_cmt_lgrp_create(lgrp_handle);
624 
625 	/*
626 	 * Ascendingly sort the PGs in the lineage by number of CPUs
627 	 */
628 	pg_cmt_hier_sort(cpu_cmt_hier, levels);
629 
630 	/*
631 	 * Examine the lineage and validate it.
632 	 * This routine will also try to fix the lineage along with the
633 	 * rest of the PG hierarchy should it detect an issue.
634 	 *
635 	 * If it returns anything other than VALID or REPAIRED, an
636 	 * unrecoverable error has occurred, and we cannot proceed.
637 	 */
638 	lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata);
639 	if ((lineage_status != CMT_LINEAGE_VALID) &&
640 	    (lineage_status != CMT_LINEAGE_REPAIRED)) {
641 		/*
642 		 * In the case of an unrecoverable error where CMT scheduling
643 		 * has been disabled, assert that the under construction CPU's
644 		 * PG data has an empty CMT load balancing lineage.
645 		 */
646 		ASSERT((cmt_sched_disabled == 0) ||
647 		    (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0));
648 		return;
649 	}
650 
651 	/*
652 	 * For existing PGs in the lineage, verify that the parent is
653 	 * correct, as the generation in the lineage may have changed
654 	 * as a result of the sorting. Start the traversal at the top
655 	 * of the lineage, moving down.
656 	 */
657 	for (level = levels - 1; level >= 0; ) {
658 		int reorg;
659 
660 		reorg = 0;
661 		pg = cpu_cmt_hier[level];
662 
663 		/*
664 		 * Promote PGs at an incorrect generation into place.
665 		 */
666 		while (pg->cmt_parent &&
667 		    pg->cmt_parent != cpu_cmt_hier[level + 1]) {
668 			cmt_hier_promote(pg, pgdata);
669 			reorg++;
670 		}
671 		if (reorg > 0)
672 			level = levels - 1;
673 		else
674 			level--;
675 	}
676 
677 	/*
678 	 * For each of the PGs in the CPU's lineage:
679 	 *	- Add an entry in the CPU sorted CMT PG group
680 	 *	  which is used for top down CMT load balancing
681 	 *	- Tie the PG into the CMT hierarchy by connecting
682 	 *	  it to it's parent and siblings.
683 	 */
684 	for (level = 0; level < levels; level++) {
685 		uint_t		children;
686 		int		err;
687 
688 		pg = cpu_cmt_hier[level];
689 		err = group_add_at(cmt_pgs, pg, levels - level - 1);
690 		ASSERT(err == 0);
691 
692 		if (level == 0)
693 			pgdata->cmt_lineage = (pg_t *)pg;
694 
695 		if (pg->cmt_siblings != NULL) {
696 			/* Already initialized */
697 			ASSERT(pg->cmt_parent == NULL ||
698 			    pg->cmt_parent == cpu_cmt_hier[level + 1]);
699 			ASSERT(pg->cmt_siblings == &lgrp->cl_pgs ||
700 			    ((pg->cmt_parent != NULL) &&
701 			    pg->cmt_siblings == pg->cmt_parent->cmt_children));
702 			continue;
703 		}
704 
705 		if ((level + 1) == levels) {
706 			pg->cmt_parent = NULL;
707 
708 			pg->cmt_siblings = &lgrp->cl_pgs;
709 			children = ++lgrp->cl_npgs;
710 			if (cmt_root != lgrp)
711 				cmt_root->cl_npgs++;
712 		} else {
713 			pg->cmt_parent = cpu_cmt_hier[level + 1];
714 
715 			/*
716 			 * A good parent keeps track of their children.
717 			 * The parent's children group is also the PG's
718 			 * siblings.
719 			 */
720 			if (pg->cmt_parent->cmt_children == NULL) {
721 				pg->cmt_parent->cmt_children =
722 				    kmem_zalloc(sizeof (group_t), KM_SLEEP);
723 				group_create(pg->cmt_parent->cmt_children);
724 			}
725 			pg->cmt_siblings = pg->cmt_parent->cmt_children;
726 			children = ++pg->cmt_parent->cmt_nchildren;
727 		}
728 
729 		group_expand(pg->cmt_siblings, children);
730 		group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs);
731 	}
732 
733 	/*
734 	 * Cache the chip and core IDs in the cpu_t->cpu_physid structure
735 	 * for fast lookups later.
736 	 */
737 	if (cp->cpu_physid) {
738 		cp->cpu_physid->cpu_chipid =
739 		    pg_plat_hw_instance_id(cp, PGHW_CHIP);
740 		cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp);
741 
742 		/*
743 		 * If this cpu has a PG representing shared cache, then set
744 		 * cpu_cacheid to that PG's logical id
745 		 */
746 		if (pg_cache)
747 			cp->cpu_physid->cpu_cacheid = pg_cache->pg_id;
748 	}
749 
750 	/* CPU0 only initialization */
751 	if (is_cpu0) {
752 		is_cpu0 = 0;
753 		cpu0_lgrp = lgrp;
754 	}
755 
756 }
757 
758 /*
759  * Class callback when a CPU is leaving the system (deletion)
760  *
761  * "pgdata" is a reference to the CPU's PG data to be deconstructed.
762  *
763  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
764  * references a "bootstrap" structure across this function's invocation.
765  * pg_cmt_cpu_init() and the routines it calls must be careful to operate only
766  * on the "pgdata" argument, and not cp->cpu_pg.
767  */
768 static void
769 pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata)
770 {
771 	group_iter_t	i;
772 	pg_cmt_t	*pg;
773 	group_t		*pgs, *cmt_pgs;
774 	lgrp_handle_t	lgrp_handle;
775 	cmt_lgrp_t	*lgrp;
776 
777 	if (cmt_sched_disabled)
778 		return;
779 
780 	ASSERT(pg_cpu_is_bootstrapped(cp));
781 
782 	pgs = &pgdata->pgs;
783 	cmt_pgs = &pgdata->cmt_pgs;
784 
785 	/*
786 	 * Find the lgroup that encapsulates this CPU's CMT hierarchy
787 	 */
788 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
789 
790 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
791 	if (ncpus == 1 && lgrp != cpu0_lgrp) {
792 		/*
793 		 * One might wonder how we could be deconfiguring the
794 		 * only CPU in the system.
795 		 *
796 		 * On Starcat systems when null_proc_lpa is detected,
797 		 * the boot CPU (which is already configured into a leaf
798 		 * lgroup), is moved into the root lgroup. This is done by
799 		 * deconfiguring it from both lgroups and processor
800 		 * groups), and then later reconfiguring it back in.  This
801 		 * call to pg_cmt_cpu_fini() is part of that deconfiguration.
802 		 *
803 		 * This special case is detected by noting that the platform
804 		 * has changed the CPU's lgrp affiliation (since it now
805 		 * belongs in the root). In this case, use the cmt_lgrp_t
806 		 * cached for the boot CPU, since this is what needs to be
807 		 * torn down.
808 		 */
809 		lgrp = cpu0_lgrp;
810 	}
811 
812 	ASSERT(lgrp != NULL);
813 
814 	/*
815 	 * First, clean up anything load balancing specific for each of
816 	 * the CPU's PGs that participated in CMT load balancing
817 	 */
818 	pg = (pg_cmt_t *)pgdata->cmt_lineage;
819 	while (pg != NULL) {
820 
821 		/*
822 		 * Remove the PG from the CPU's load balancing lineage
823 		 */
824 		(void) group_remove(cmt_pgs, pg, GRP_RESIZE);
825 
826 		/*
827 		 * If it's about to become empty, destroy it's children
828 		 * group, and remove it's reference from it's siblings.
829 		 * This is done here (rather than below) to avoid removing
830 		 * our reference from a PG that we just eliminated.
831 		 */
832 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) {
833 			if (pg->cmt_children != NULL)
834 				group_destroy(pg->cmt_children);
835 			if (pg->cmt_siblings != NULL) {
836 				if (pg->cmt_siblings == &lgrp->cl_pgs)
837 					lgrp->cl_npgs--;
838 				else
839 					pg->cmt_parent->cmt_nchildren--;
840 			}
841 		}
842 		pg = pg->cmt_parent;
843 	}
844 	ASSERT(GROUP_SIZE(cmt_pgs) == 0);
845 
846 	/*
847 	 * Now that the load balancing lineage updates have happened,
848 	 * remove the CPU from all it's PGs (destroying any that become
849 	 * empty).
850 	 */
851 	group_iter_init(&i);
852 	while ((pg = group_iterate(pgs, &i)) != NULL) {
853 		if (IS_CMT_PG(pg) == 0)
854 			continue;
855 
856 		pg_cpu_delete((pg_t *)pg, cp, pgdata);
857 		/*
858 		 * Deleting the CPU from the PG changes the CPU's
859 		 * PG group over which we are actively iterating
860 		 * Re-initialize the iteration
861 		 */
862 		group_iter_init(&i);
863 
864 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) {
865 
866 			/*
867 			 * The PG has become zero sized, so destroy it.
868 			 */
869 			group_destroy(&pg->cmt_cpus_actv);
870 			bitset_fini(&pg->cmt_cpus_actv_set);
871 			pghw_fini((pghw_t *)pg);
872 
873 			pg_destroy((pg_t *)pg);
874 		}
875 	}
876 }
877 
878 /*
879  * Class callback when a CPU is entering a cpu partition
880  */
881 static void
882 pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp)
883 {
884 	group_t		*pgs;
885 	pg_t		*pg;
886 	group_iter_t	i;
887 
888 	ASSERT(MUTEX_HELD(&cpu_lock));
889 
890 	if (cmt_sched_disabled)
891 		return;
892 
893 	pgs = &cp->cpu_pg->pgs;
894 
895 	/*
896 	 * Ensure that the new partition's PG bitset
897 	 * is large enough for all CMT PG's to which cp
898 	 * belongs
899 	 */
900 	group_iter_init(&i);
901 	while ((pg = group_iterate(pgs, &i)) != NULL) {
902 		if (IS_CMT_PG(pg) == 0)
903 			continue;
904 
905 		if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id)
906 			bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1);
907 	}
908 }
909 
910 /*
911  * Class callback when a CPU is actually moving partitions
912  */
913 static void
914 pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
915 {
916 	cpu_t		*cpp;
917 	group_t		*pgs;
918 	pg_t		*pg;
919 	group_iter_t	pg_iter;
920 	pg_cpu_itr_t	cpu_iter;
921 	boolean_t	found;
922 
923 	ASSERT(MUTEX_HELD(&cpu_lock));
924 
925 	if (cmt_sched_disabled)
926 		return;
927 
928 	pgs = &cp->cpu_pg->pgs;
929 	group_iter_init(&pg_iter);
930 
931 	/*
932 	 * Iterate over the CPUs CMT PGs
933 	 */
934 	while ((pg = group_iterate(pgs, &pg_iter)) != NULL) {
935 
936 		if (IS_CMT_PG(pg) == 0)
937 			continue;
938 
939 		/*
940 		 * Add the PG to the bitset in the new partition.
941 		 */
942 		bitset_add(&newpp->cp_cmt_pgs, pg->pg_id);
943 
944 		/*
945 		 * Remove the PG from the bitset in the old partition
946 		 * if the last of the PG's CPUs have left.
947 		 */
948 		found = B_FALSE;
949 		PG_CPU_ITR_INIT(pg, cpu_iter);
950 		while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) {
951 			if (cpp == cp)
952 				continue;
953 			if (CPU_ACTIVE(cpp) &&
954 			    cpp->cpu_part->cp_id == oldpp->cp_id) {
955 				found = B_TRUE;
956 				break;
957 			}
958 		}
959 		if (!found)
960 			bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id);
961 	}
962 }
963 
964 /*
965  * Class callback when a CPU becomes active (online)
966  *
967  * This is called in a context where CPUs are paused
968  */
969 static void
970 pg_cmt_cpu_active(cpu_t *cp)
971 {
972 	int		err;
973 	group_iter_t	i;
974 	pg_cmt_t	*pg;
975 	group_t		*pgs;
976 
977 	ASSERT(MUTEX_HELD(&cpu_lock));
978 
979 	if (cmt_sched_disabled)
980 		return;
981 
982 	pgs = &cp->cpu_pg->pgs;
983 	group_iter_init(&i);
984 
985 	/*
986 	 * Iterate over the CPU's PGs
987 	 */
988 	while ((pg = group_iterate(pgs, &i)) != NULL) {
989 
990 		if (IS_CMT_PG(pg) == 0)
991 			continue;
992 
993 		err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
994 		ASSERT(err == 0);
995 
996 		/*
997 		 * If this is the first active CPU in the PG, and it
998 		 * represents a hardware sharing relationship over which
999 		 * CMT load balancing is performed, add it as a candidate
1000 		 * for balancing with it's siblings.
1001 		 */
1002 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 &&
1003 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
1004 			err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE);
1005 			ASSERT(err == 0);
1006 
1007 			/*
1008 			 * If this is a top level PG, add it as a balancing
1009 			 * candidate when balancing within the root lgroup.
1010 			 */
1011 			if (pg->cmt_parent == NULL &&
1012 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
1013 				err = group_add(&cmt_root->cl_pgs, pg,
1014 				    GRP_NORESIZE);
1015 				ASSERT(err == 0);
1016 			}
1017 		}
1018 
1019 		/*
1020 		 * Notate the CPU in the PGs active CPU bitset.
1021 		 * Also notate the PG as being active in it's associated
1022 		 * partition
1023 		 */
1024 		bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1025 		bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id);
1026 	}
1027 }
1028 
1029 /*
1030  * Class callback when a CPU goes inactive (offline)
1031  *
1032  * This is called in a context where CPUs are paused
1033  */
1034 static void
1035 pg_cmt_cpu_inactive(cpu_t *cp)
1036 {
1037 	int		err;
1038 	group_t		*pgs;
1039 	pg_cmt_t	*pg;
1040 	cpu_t		*cpp;
1041 	group_iter_t	i;
1042 	pg_cpu_itr_t	cpu_itr;
1043 	boolean_t	found;
1044 
1045 	ASSERT(MUTEX_HELD(&cpu_lock));
1046 
1047 	if (cmt_sched_disabled)
1048 		return;
1049 
1050 	pgs = &cp->cpu_pg->pgs;
1051 	group_iter_init(&i);
1052 
1053 	while ((pg = group_iterate(pgs, &i)) != NULL) {
1054 
1055 		if (IS_CMT_PG(pg) == 0)
1056 			continue;
1057 
1058 		/*
1059 		 * Remove the CPU from the CMT PGs active CPU group
1060 		 * bitmap
1061 		 */
1062 		err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
1063 		ASSERT(err == 0);
1064 
1065 		bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1066 
1067 		/*
1068 		 * If there are no more active CPUs in this PG over which
1069 		 * load was balanced, remove it as a balancing candidate.
1070 		 */
1071 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 &&
1072 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
1073 			err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
1074 			ASSERT(err == 0);
1075 
1076 			if (pg->cmt_parent == NULL &&
1077 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
1078 				err = group_remove(&cmt_root->cl_pgs, pg,
1079 				    GRP_NORESIZE);
1080 				ASSERT(err == 0);
1081 			}
1082 		}
1083 
1084 		/*
1085 		 * Assert the number of active CPUs does not exceed
1086 		 * the total number of CPUs in the PG
1087 		 */
1088 		ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <=
1089 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
1090 
1091 		/*
1092 		 * Update the PG bitset in the CPU's old partition
1093 		 */
1094 		found = B_FALSE;
1095 		PG_CPU_ITR_INIT(pg, cpu_itr);
1096 		while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) {
1097 			if (cpp == cp)
1098 				continue;
1099 			if (CPU_ACTIVE(cpp) &&
1100 			    cpp->cpu_part->cp_id == cp->cpu_part->cp_id) {
1101 				found = B_TRUE;
1102 				break;
1103 			}
1104 		}
1105 		if (!found) {
1106 			bitset_del(&cp->cpu_part->cp_cmt_pgs,
1107 			    ((pg_t *)pg)->pg_id);
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  * Return non-zero if the CPU belongs in the given PG
1114  */
1115 static int
1116 pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp)
1117 {
1118 	cpu_t	*pg_cpu;
1119 
1120 	pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0);
1121 
1122 	ASSERT(pg_cpu != NULL);
1123 
1124 	/*
1125 	 * The CPU belongs if, given the nature of the hardware sharing
1126 	 * relationship represented by the PG, the CPU has that
1127 	 * relationship with some other CPU already in the PG
1128 	 */
1129 	if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw))
1130 		return (1);
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * Sort the CPUs CMT hierarchy, where "size" is the number of levels.
1137  */
1138 static void
1139 pg_cmt_hier_sort(pg_cmt_t **hier, int size)
1140 {
1141 	int		i, j, inc, sz;
1142 	int		start, end;
1143 	pg_t		*tmp;
1144 	pg_t		**h = (pg_t **)hier;
1145 
1146 	/*
1147 	 * First sort by number of CPUs
1148 	 */
1149 	inc = size / 2;
1150 	while (inc > 0) {
1151 		for (i = inc; i < size; i++) {
1152 			j = i;
1153 			tmp = h[i];
1154 			while ((j >= inc) &&
1155 			    (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) {
1156 				h[j] = h[j - inc];
1157 				j = j - inc;
1158 			}
1159 			h[j] = tmp;
1160 		}
1161 		if (inc == 2)
1162 			inc = 1;
1163 		else
1164 			inc = (inc * 5) / 11;
1165 	}
1166 
1167 	/*
1168 	 * Break ties by asking the platform.
1169 	 * Determine if h[i] outranks h[i + 1] and if so, swap them.
1170 	 */
1171 	for (start = 0; start < size; start++) {
1172 
1173 		/*
1174 		 * Find various contiguous sets of elements,
1175 		 * in the array, with the same number of cpus
1176 		 */
1177 		end = start;
1178 		sz = PG_NUM_CPUS(h[start]);
1179 		while ((end < size) && (sz == PG_NUM_CPUS(h[end])))
1180 			end++;
1181 		/*
1182 		 * Sort each such set of the array by rank
1183 		 */
1184 		for (i = start + 1; i < end; i++) {
1185 			j = i - 1;
1186 			tmp = h[i];
1187 			while (j >= start &&
1188 			    pg_cmt_hier_rank(hier[j],
1189 			    (pg_cmt_t *)tmp) == hier[j]) {
1190 				h[j + 1] = h[j];
1191 				j--;
1192 			}
1193 			h[j + 1] = tmp;
1194 		}
1195 	}
1196 }
1197 
1198 /*
1199  * Return a cmt_lgrp_t * given an lgroup handle.
1200  */
1201 static cmt_lgrp_t *
1202 pg_cmt_find_lgrp(lgrp_handle_t hand)
1203 {
1204 	cmt_lgrp_t	*lgrp;
1205 
1206 	ASSERT(MUTEX_HELD(&cpu_lock));
1207 
1208 	lgrp = cmt_lgrps;
1209 	while (lgrp != NULL) {
1210 		if (lgrp->cl_hand == hand)
1211 			break;
1212 		lgrp = lgrp->cl_next;
1213 	}
1214 	return (lgrp);
1215 }
1216 
1217 /*
1218  * Create a cmt_lgrp_t with the specified handle.
1219  */
1220 static cmt_lgrp_t *
1221 pg_cmt_lgrp_create(lgrp_handle_t hand)
1222 {
1223 	cmt_lgrp_t	*lgrp;
1224 
1225 	ASSERT(MUTEX_HELD(&cpu_lock));
1226 
1227 	lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP);
1228 
1229 	lgrp->cl_hand = hand;
1230 	lgrp->cl_npgs = 0;
1231 	lgrp->cl_next = cmt_lgrps;
1232 	cmt_lgrps = lgrp;
1233 	group_create(&lgrp->cl_pgs);
1234 
1235 	return (lgrp);
1236 }
1237 
1238 /*
1239  * Interfaces to enable and disable power aware dispatching
1240  * The caller must be holding cpu_lock.
1241  *
1242  * Return 0 on success and -1 on failure.
1243  */
1244 int
1245 cmt_pad_enable(pghw_type_t type)
1246 {
1247 	group_t		*hwset;
1248 	group_iter_t	iter;
1249 	pg_cmt_t	*pg;
1250 
1251 	ASSERT(PGHW_IS_PM_DOMAIN(type));
1252 	ASSERT(MUTEX_HELD(&cpu_lock));
1253 
1254 	if ((hwset = pghw_set_lookup(type)) == NULL ||
1255 	    cmt_hw_blacklisted[type]) {
1256 		/*
1257 		 * Unable to find any instances of the specified type
1258 		 * of power domain, or the power domains have been blacklisted.
1259 		 */
1260 		return (-1);
1261 	}
1262 
1263 	/*
1264 	 * Iterate over the power domains, setting the default dispatcher
1265 	 * policy for power/performance optimization.
1266 	 *
1267 	 * Simply setting the policy isn't enough in the case where the power
1268 	 * domain is an only child of another PG. Because the dispatcher walks
1269 	 * the PG hierarchy in a top down fashion, the higher up PG's policy
1270 	 * will dominate. So promote the power domain above it's parent if both
1271 	 * PG and it's parent have the same CPUs to ensure it's policy
1272 	 * dominates.
1273 	 */
1274 	group_iter_init(&iter);
1275 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
1276 		/*
1277 		 * If the power domain is an only child to a parent
1278 		 * not implementing the same policy, promote the child
1279 		 * above the parent to activate the policy.
1280 		 */
1281 		pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw);
1282 		while ((pg->cmt_parent != NULL) &&
1283 		    (pg->cmt_parent->cmt_policy != pg->cmt_policy) &&
1284 		    (PG_NUM_CPUS((pg_t *)pg) ==
1285 		    PG_NUM_CPUS((pg_t *)pg->cmt_parent))) {
1286 			cmt_hier_promote(pg, NULL);
1287 		}
1288 	}
1289 
1290 	return (0);
1291 }
1292 
1293 int
1294 cmt_pad_disable(pghw_type_t type)
1295 {
1296 	group_t		*hwset;
1297 	group_iter_t	iter;
1298 	pg_cmt_t	*pg;
1299 	pg_cmt_t	*child;
1300 
1301 	ASSERT(PGHW_IS_PM_DOMAIN(type));
1302 	ASSERT(MUTEX_HELD(&cpu_lock));
1303 
1304 	if ((hwset = pghw_set_lookup(type)) == NULL) {
1305 		/*
1306 		 * Unable to find any instances of the specified type of
1307 		 * power domain.
1308 		 */
1309 		return (-1);
1310 	}
1311 	/*
1312 	 * Iterate over the power domains, setting the default dispatcher
1313 	 * policy for performance optimization (load balancing).
1314 	 */
1315 	group_iter_init(&iter);
1316 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
1317 
1318 		/*
1319 		 * If the power domain has an only child that implements
1320 		 * policy other than load balancing, promote the child
1321 		 * above the power domain to ensure it's policy dominates.
1322 		 */
1323 		if (pg->cmt_children != NULL &&
1324 		    GROUP_SIZE(pg->cmt_children) == 1) {
1325 			child = GROUP_ACCESS(pg->cmt_children, 0);
1326 			if ((child->cmt_policy & CMT_BALANCE) == 0) {
1327 				cmt_hier_promote(child, NULL);
1328 			}
1329 		}
1330 		pg->cmt_policy = CMT_BALANCE;
1331 	}
1332 	return (0);
1333 }
1334 
1335 /* ARGSUSED */
1336 static void
1337 cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
1338 		    kthread_t *new)
1339 {
1340 	pg_cmt_t	*cmt_pg = (pg_cmt_t *)pg;
1341 
1342 	if (old == cp->cpu_idle_thread) {
1343 		atomic_add_32(&cmt_pg->cmt_utilization, 1);
1344 	} else if (new == cp->cpu_idle_thread) {
1345 		atomic_add_32(&cmt_pg->cmt_utilization, -1);
1346 	}
1347 }
1348 
1349 /*
1350  * Macro to test whether a thread is currently runnable on a CPU in a PG.
1351  */
1352 #define	THREAD_RUNNABLE_IN_PG(t, pg)					\
1353 	((t)->t_state == TS_RUN &&					\
1354 	    (t)->t_disp_queue->disp_cpu &&				\
1355 	    bitset_in_set(&(pg)->cmt_cpus_actv_set,			\
1356 	    (t)->t_disp_queue->disp_cpu->cpu_seqid))
1357 
1358 static void
1359 cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
1360     kthread_t *new)
1361 {
1362 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
1363 	cpupm_domain_t	*dom;
1364 	uint32_t	u;
1365 
1366 	if (old == cp->cpu_idle_thread) {
1367 		ASSERT(new != cp->cpu_idle_thread);
1368 		u = atomic_add_32_nv(&cmt->cmt_utilization, 1);
1369 		if (u == 1) {
1370 			/*
1371 			 * Notify the CPU power manager that the domain
1372 			 * is non-idle.
1373 			 */
1374 			dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1375 			cpupm_utilization_event(cp, now, dom,
1376 			    CPUPM_DOM_BUSY_FROM_IDLE);
1377 		}
1378 	} else if (new == cp->cpu_idle_thread) {
1379 		ASSERT(old != cp->cpu_idle_thread);
1380 		u = atomic_add_32_nv(&cmt->cmt_utilization, -1);
1381 		if (u == 0) {
1382 			/*
1383 			 * The domain is idle, notify the CPU power
1384 			 * manager.
1385 			 *
1386 			 * Avoid notifying if the thread is simply migrating
1387 			 * between CPUs in the domain.
1388 			 */
1389 			if (!THREAD_RUNNABLE_IN_PG(old, cmt)) {
1390 				dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1391 				cpupm_utilization_event(cp, now, dom,
1392 				    CPUPM_DOM_IDLE_FROM_BUSY);
1393 			}
1394 		}
1395 	}
1396 }
1397 
1398 /* ARGSUSED */
1399 static void
1400 cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t)
1401 {
1402 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
1403 	cpupm_domain_t	*dom;
1404 
1405 	dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1406 	cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY);
1407 }
1408 
1409 /*
1410  * Return the name of the CMT scheduling policy
1411  * being implemented across this PG
1412  */
1413 static char *
1414 pg_cmt_policy_name(pg_t *pg)
1415 {
1416 	pg_cmt_policy_t policy;
1417 
1418 	policy = ((pg_cmt_t *)pg)->cmt_policy;
1419 
1420 	if (policy & CMT_AFFINITY) {
1421 		if (policy & CMT_BALANCE)
1422 			return ("Load Balancing & Affinity");
1423 		else if (policy & CMT_COALESCE)
1424 			return ("Load Coalescence & Affinity");
1425 		else
1426 			return ("Affinity");
1427 	} else {
1428 		if (policy & CMT_BALANCE)
1429 			return ("Load Balancing");
1430 		else if (policy & CMT_COALESCE)
1431 			return ("Load Coalescence");
1432 		else
1433 			return ("None");
1434 	}
1435 }
1436 
1437 /*
1438  * Prune PG, and all other instances of PG's hardware sharing relationship
1439  * from the CMT PG hierarchy.
1440  *
1441  * This routine operates on the CPU specific processor group data (for the CPUs
1442  * in the PG being pruned), and may be invoked from a context where one CPU's
1443  * PG data is under construction. In this case the argument "pgdata", if not
1444  * NULL, is a reference to the CPU's under-construction PG data.
1445  */
1446 static int
1447 pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
1448 {
1449 	group_t		*hwset, *children;
1450 	int		i, j, r, size = *sz;
1451 	group_iter_t	hw_iter, child_iter;
1452 	pg_cpu_itr_t	cpu_iter;
1453 	pg_cmt_t	*pg, *child;
1454 	cpu_t		*cpu;
1455 	int		cap_needed;
1456 	pghw_type_t	hw;
1457 
1458 	ASSERT(MUTEX_HELD(&cpu_lock));
1459 
1460 	hw = ((pghw_t *)pg_bad)->pghw_hw;
1461 
1462 	if (hw == PGHW_POW_ACTIVE) {
1463 		cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. "
1464 		    "Event Based CPUPM Unavailable");
1465 	} else if (hw == PGHW_POW_IDLE) {
1466 		cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. "
1467 		    "Dispatcher assisted CPUPM disabled.");
1468 	}
1469 
1470 	/*
1471 	 * Find and eliminate the PG from the lineage.
1472 	 */
1473 	for (i = 0; i < size; i++) {
1474 		if (lineage[i] == pg_bad) {
1475 			for (j = i; j < size - 1; j++)
1476 				lineage[j] = lineage[j + 1];
1477 			*sz = size - 1;
1478 			break;
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * We'll prune all instances of the hardware sharing relationship
1484 	 * represented by pg. But before we do that (and pause CPUs) we need
1485 	 * to ensure the hierarchy's groups are properly sized.
1486 	 */
1487 	hwset = pghw_set_lookup(hw);
1488 
1489 	/*
1490 	 * Blacklist the hardware so future processor groups of this type won't
1491 	 * participate in CMT thread placement.
1492 	 *
1493 	 * XXX
1494 	 * For heterogeneous system configurations, this might be overkill.
1495 	 * We may only need to blacklist the illegal PGs, and other instances
1496 	 * of this hardware sharing relationship may be ok.
1497 	 */
1498 	cmt_hw_blacklisted[hw] = 1;
1499 
1500 	/*
1501 	 * For each of the PGs being pruned, ensure sufficient capacity in
1502 	 * the siblings set for the PG's children
1503 	 */
1504 	group_iter_init(&hw_iter);
1505 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
1506 		/*
1507 		 * PG is being pruned, but if it is bringing up more than
1508 		 * one child, ask for more capacity in the siblings group.
1509 		 */
1510 		cap_needed = 0;
1511 		if (pg->cmt_children &&
1512 		    GROUP_SIZE(pg->cmt_children) > 1) {
1513 			cap_needed = GROUP_SIZE(pg->cmt_children) - 1;
1514 
1515 			group_expand(pg->cmt_siblings,
1516 			    GROUP_SIZE(pg->cmt_siblings) + cap_needed);
1517 
1518 			/*
1519 			 * If this is a top level group, also ensure the
1520 			 * capacity in the root lgrp level CMT grouping.
1521 			 */
1522 			if (pg->cmt_parent == NULL &&
1523 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
1524 				group_expand(&cmt_root->cl_pgs,
1525 				    GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed);
1526 				cmt_root->cl_npgs += cap_needed;
1527 			}
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * We're operating on the PG hierarchy. Pause CPUs to ensure
1533 	 * exclusivity with respect to the dispatcher.
1534 	 */
1535 	pause_cpus(NULL);
1536 
1537 	/*
1538 	 * Prune all PG instances of the hardware sharing relationship
1539 	 * represented by pg.
1540 	 */
1541 	group_iter_init(&hw_iter);
1542 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
1543 
1544 		/*
1545 		 * Remove PG from it's group of siblings, if it's there.
1546 		 */
1547 		if (pg->cmt_siblings) {
1548 			(void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
1549 		}
1550 		if (pg->cmt_parent == NULL &&
1551 		    pg->cmt_siblings != &cmt_root->cl_pgs) {
1552 			(void) group_remove(&cmt_root->cl_pgs, pg,
1553 			    GRP_NORESIZE);
1554 		}
1555 
1556 		/*
1557 		 * Indicate that no CMT policy will be implemented across
1558 		 * this PG.
1559 		 */
1560 		pg->cmt_policy = CMT_NO_POLICY;
1561 
1562 		/*
1563 		 * Move PG's children from it's children set to it's parent's
1564 		 * children set. Note that the parent's children set, and PG's
1565 		 * siblings set are the same thing.
1566 		 *
1567 		 * Because we are iterating over the same group that we are
1568 		 * operating on (removing the children), first add all of PG's
1569 		 * children to the parent's children set, and once we are done
1570 		 * iterating, empty PG's children set.
1571 		 */
1572 		if (pg->cmt_children != NULL) {
1573 			children = pg->cmt_children;
1574 
1575 			group_iter_init(&child_iter);
1576 			while ((child = group_iterate(children, &child_iter))
1577 			    != NULL) {
1578 				if (pg->cmt_siblings != NULL) {
1579 					r = group_add(pg->cmt_siblings, child,
1580 					    GRP_NORESIZE);
1581 					ASSERT(r == 0);
1582 
1583 					if (pg->cmt_parent == NULL &&
1584 					    pg->cmt_siblings !=
1585 					    &cmt_root->cl_pgs) {
1586 						r = group_add(&cmt_root->cl_pgs,
1587 						    child, GRP_NORESIZE);
1588 						ASSERT(r == 0);
1589 					}
1590 				}
1591 			}
1592 			group_empty(pg->cmt_children);
1593 		}
1594 
1595 		/*
1596 		 * Reset the callbacks to the defaults
1597 		 */
1598 		pg_callback_set_defaults((pg_t *)pg);
1599 
1600 		/*
1601 		 * Update all the CPU lineages in each of PG's CPUs
1602 		 */
1603 		PG_CPU_ITR_INIT(pg, cpu_iter);
1604 		while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
1605 			pg_cmt_t	*cpu_pg;
1606 			group_iter_t	liter;	/* Iterator for the lineage */
1607 			cpu_pg_t	*cpd;	/* CPU's PG data */
1608 
1609 			/*
1610 			 * The CPU's lineage is under construction still
1611 			 * references the bootstrap CPU PG data structure.
1612 			 */
1613 			if (pg_cpu_is_bootstrapped(cpu))
1614 				cpd = pgdata;
1615 			else
1616 				cpd = cpu->cpu_pg;
1617 
1618 			/*
1619 			 * Iterate over the CPU's PGs updating the children
1620 			 * of the PG being promoted, since they have a new
1621 			 * parent and siblings set.
1622 			 */
1623 			group_iter_init(&liter);
1624 			while ((cpu_pg = group_iterate(&cpd->pgs,
1625 			    &liter)) != NULL) {
1626 				if (cpu_pg->cmt_parent == pg) {
1627 					cpu_pg->cmt_parent = pg->cmt_parent;
1628 					cpu_pg->cmt_siblings = pg->cmt_siblings;
1629 				}
1630 			}
1631 
1632 			/*
1633 			 * Update the CPU's lineages
1634 			 *
1635 			 * Remove the PG from the CPU's group used for CMT
1636 			 * scheduling.
1637 			 */
1638 			(void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE);
1639 		}
1640 	}
1641 	start_cpus();
1642 	return (0);
1643 }
1644 
1645 /*
1646  * Disable CMT scheduling
1647  */
1648 static void
1649 pg_cmt_disable(void)
1650 {
1651 	cpu_t		*cpu;
1652 
1653 	ASSERT(MUTEX_HELD(&cpu_lock));
1654 
1655 	pause_cpus(NULL);
1656 	cpu = cpu_list;
1657 
1658 	do {
1659 		if (cpu->cpu_pg)
1660 			group_empty(&cpu->cpu_pg->cmt_pgs);
1661 	} while ((cpu = cpu->cpu_next) != cpu_list);
1662 
1663 	cmt_sched_disabled = 1;
1664 	start_cpus();
1665 	cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable");
1666 }
1667 
1668 /*
1669  * CMT lineage validation
1670  *
1671  * This routine is invoked by pg_cmt_cpu_init() to validate the integrity
1672  * of the PGs in a CPU's lineage. This is necessary because it's possible that
1673  * some groupings (power domain groupings in particular) may be defined by
1674  * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be
1675  * possible to integrate those groupings into the CMT PG hierarchy, if doing
1676  * so would violate the subset invariant of the hierarchy, which says that
1677  * a PG must be subset of its parent (if it has one).
1678  *
1679  * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that
1680  * would result in a violation of this invariant. If a violation is found,
1681  * and the PG is of a grouping type who's definition is known to originate from
1682  * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the
1683  * PG (and all other instances PG's sharing relationship type) from the CMT
1684  * hierarchy. Further, future instances of that sharing relationship type won't
1685  * be added. If the grouping definition doesn't originate from suspect
1686  * sources, then pg_cmt_disable() will be invoked to log an error, and disable
1687  * CMT scheduling altogether.
1688  *
1689  * This routine is invoked after the CPU has been added to the PGs in which
1690  * it belongs, but before those PGs have been added to (or had their place
1691  * adjusted in) the CMT PG hierarchy.
1692  *
1693  * The first argument is the CPUs PG lineage (essentially an array of PGs in
1694  * which the CPU belongs) that has already been sorted in ascending order
1695  * by CPU count. Some of the PGs in the CPUs lineage may already have other
1696  * CPUs in them, and have already been integrated into the CMT hierarchy.
1697  *
1698  * The addition of this new CPU to these pre-existing PGs means that those
1699  * PGs may need to be promoted up in the hierarchy to satisfy the subset
1700  * invariant. In additon to testing the subset invariant for the lineage,
1701  * this routine also verifies that the addition of the new CPU to the
1702  * existing PGs wouldn't cause the subset invariant to be violated in
1703  * the exiting lineages.
1704  *
1705  * This routine will normally return one of the following:
1706  * CMT_LINEAGE_VALID - There were no problems detected with the lineage.
1707  * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning.
1708  *
1709  * Otherwise, this routine will return a value indicating which error it
1710  * was unable to recover from (and set cmt_lineage_status along the way).
1711  *
1712  * This routine operates on the CPU specific processor group data (for the CPU
1713  * whose lineage is being validated), which is under-construction.
1714  * "pgdata" is a reference to the CPU's under-construction PG data.
1715  * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg.
1716  */
1717 static cmt_lineage_validation_t
1718 pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
1719 {
1720 	int		i, j, size;
1721 	pg_cmt_t	*pg, *pg_next, *pg_bad, *pg_tmp, *parent;
1722 	cpu_t		*cp;
1723 	pg_cpu_itr_t	cpu_iter;
1724 	lgrp_handle_t	lgrp;
1725 
1726 	ASSERT(MUTEX_HELD(&cpu_lock));
1727 
1728 revalidate:
1729 	size = *sz;
1730 	pg_bad = NULL;
1731 	lgrp = LGRP_NULL_HANDLE;
1732 	for (i = 0; i < size; i++) {
1733 
1734 		pg = lineage[i];
1735 		if (i < size - 1)
1736 			pg_next = lineage[i + 1];
1737 		else
1738 			pg_next = NULL;
1739 
1740 		/*
1741 		 * We assume that the lineage has already been sorted
1742 		 * by the number of CPUs. In fact, we depend on it.
1743 		 */
1744 		ASSERT(pg_next == NULL ||
1745 		    (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next)));
1746 
1747 		/*
1748 		 * The CPUs PG lineage was passed as the first argument to
1749 		 * this routine and contains the sorted list of the CPU's
1750 		 * PGs. Ultimately, the ordering of the PGs in that list, and
1751 		 * the ordering as traversed by the cmt_parent list must be
1752 		 * the same. PG promotion will be used as the mechanism to
1753 		 * achieve this, but first we need to look for cases where
1754 		 * promotion will be necessary, and validate that will be
1755 		 * possible without violating the subset invarient described
1756 		 * above.
1757 		 *
1758 		 * Since the PG topology is in the middle of being changed, we
1759 		 * need to check whether the PG's existing parent (if any) is
1760 		 * part of this CPU's lineage (and therefore should contain
1761 		 * the new CPU). If not, it means that the addition of the
1762 		 * new CPU should have made this PG have more CPUs than its
1763 		 * parent (and other ancestors not in the same lineage) and
1764 		 * will need to be promoted into place.
1765 		 *
1766 		 * We need to verify all of this to defend against a buggy
1767 		 * BIOS giving bad power domain CPU groupings. Sigh.
1768 		 */
1769 		parent = pg->cmt_parent;
1770 		while (parent != NULL) {
1771 			/*
1772 			 * Determine if the parent/ancestor is in this lineage
1773 			 */
1774 			pg_tmp = NULL;
1775 			for (j = 0; (j < size) && (pg_tmp != parent); j++) {
1776 				pg_tmp = lineage[j];
1777 			}
1778 			if (pg_tmp == parent) {
1779 				/*
1780 				 * It's in the lineage. The concentricity
1781 				 * checks will handle the rest.
1782 				 */
1783 				break;
1784 			}
1785 			/*
1786 			 * If it is not in the lineage, PG will eventually
1787 			 * need to be promoted above it. Verify the ancestor
1788 			 * is a proper subset. There is still an error if
1789 			 * the ancestor has the same number of CPUs as PG,
1790 			 * since that would imply it should be in the lineage,
1791 			 * and we already know it isn't.
1792 			 */
1793 			if (PG_NUM_CPUS((pg_t *)parent) >=
1794 			    PG_NUM_CPUS((pg_t *)pg)) {
1795 				/*
1796 				 * Not a proper subset if the parent/ancestor
1797 				 * has the same or more CPUs than PG.
1798 				 */
1799 				cmt_lineage_status = CMT_LINEAGE_NON_PROMOTABLE;
1800 				goto handle_error;
1801 			}
1802 			parent = parent->cmt_parent;
1803 		}
1804 
1805 		/*
1806 		 * Walk each of the CPUs in the PGs group and perform
1807 		 * consistency checks along the way.
1808 		 */
1809 		PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter);
1810 		while ((cp = pg_cpu_next(&cpu_iter)) != NULL) {
1811 			/*
1812 			 * Verify that there aren't any CPUs contained in PG
1813 			 * that the next PG in the lineage (which is larger
1814 			 * or same size) doesn't also contain.
1815 			 */
1816 			if (pg_next != NULL &&
1817 			    pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) {
1818 				cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC;
1819 				goto handle_error;
1820 			}
1821 
1822 			/*
1823 			 * Verify that all the CPUs in the PG are in the same
1824 			 * lgroup.
1825 			 */
1826 			if (lgrp == LGRP_NULL_HANDLE) {
1827 				lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id);
1828 			} else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) {
1829 				cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS;
1830 				goto handle_error;
1831 			}
1832 		}
1833 	}
1834 
1835 handle_error:
1836 	/*
1837 	 * Some of these validation errors can result when the CPU grouping
1838 	 * information is derived from buggy sources (for example, incorrect
1839 	 * ACPI tables on x86 systems).
1840 	 *
1841 	 * We'll try to recover in such cases by pruning out the illegal
1842 	 * groupings from the PG hierarchy, which means that we won't optimize
1843 	 * for those levels, but we will for the remaining ones.
1844 	 */
1845 	switch (cmt_lineage_status) {
1846 	case CMT_LINEAGE_VALID:
1847 	case CMT_LINEAGE_REPAIRED:
1848 		break;
1849 	case CMT_LINEAGE_PG_SPANS_LGRPS:
1850 		/*
1851 		 * We've detected a PG whose CPUs span lgroups.
1852 		 *
1853 		 * This isn't supported, as the dispatcher isn't allowed to
1854 		 * to do CMT thread placement across lgroups, as this would
1855 		 * conflict with policies implementing MPO thread affinity.
1856 		 *
1857 		 * If the PG is of a sharing relationship type known to
1858 		 * legitimately span lgroups, specify that no CMT thread
1859 		 * placement policy should be implemented, and prune the PG
1860 		 * from the existing CMT PG hierarchy.
1861 		 *
1862 		 * Otherwise, fall though to the case below for handling.
1863 		 */
1864 		if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) {
1865 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1866 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1867 				goto revalidate;
1868 			}
1869 		}
1870 		/*LINTED*/
1871 	case CMT_LINEAGE_NON_PROMOTABLE:
1872 		/*
1873 		 * We've detected a PG that already exists in another CPU's
1874 		 * lineage that cannot cannot legally be promoted into place
1875 		 * without breaking the invariants of the hierarchy.
1876 		 */
1877 		if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
1878 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1879 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1880 				goto revalidate;
1881 			}
1882 		}
1883 		/*
1884 		 * Something went wrong trying to prune out the bad level.
1885 		 * Disable CMT scheduling altogether.
1886 		 */
1887 		pg_cmt_disable();
1888 		break;
1889 	case CMT_LINEAGE_NON_CONCENTRIC:
1890 		/*
1891 		 * We've detected a non-concentric PG lineage, which means that
1892 		 * there's a PG in the lineage that has CPUs that the next PG
1893 		 * over in the lineage (which is the same size or larger)
1894 		 * doesn't have.
1895 		 *
1896 		 * In this case, we examine the two PGs to see if either
1897 		 * grouping is defined by potentially buggy sources.
1898 		 *
1899 		 * If one has less CPUs than the other, and contains CPUs
1900 		 * not found in the parent, and it is an untrusted enumeration,
1901 		 * then prune it. If both have the same number of CPUs, then
1902 		 * prune the one that is untrusted.
1903 		 *
1904 		 * This process repeats until we have a concentric lineage,
1905 		 * or we would have to prune out level derived from what we
1906 		 * thought was a reliable source, in which case CMT scheduling
1907 		 * is disabled altogether.
1908 		 */
1909 		if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) &&
1910 		    (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) {
1911 			pg_bad = pg;
1912 		} else if (PG_NUM_CPUS((pg_t *)pg) ==
1913 		    PG_NUM_CPUS((pg_t *)pg_next)) {
1914 			if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) {
1915 				pg_bad = pg_next;
1916 			} else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
1917 				pg_bad = pg;
1918 			}
1919 		}
1920 		if (pg_bad) {
1921 			if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) {
1922 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1923 				goto revalidate;
1924 			}
1925 		}
1926 		/*
1927 		 * Something went wrong trying to identify and/or prune out
1928 		 * the bad level. Disable CMT scheduling altogether.
1929 		 */
1930 		pg_cmt_disable();
1931 		break;
1932 	default:
1933 		/*
1934 		 * If we're here, we've encountered a validation error for
1935 		 * which we don't know how to recover. In this case, disable
1936 		 * CMT scheduling altogether.
1937 		 */
1938 		cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE;
1939 		pg_cmt_disable();
1940 	}
1941 	return (cmt_lineage_status);
1942 }
1943