xref: /illumos-gate/usr/src/uts/common/disp/cmt.c (revision aedf2b3bb56b025fcaf87b49ec6c8aeea07f16d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/cpupart.h>
32 #include <sys/kmem.h>
33 #include <sys/cmn_err.h>
34 #include <sys/kstat.h>
35 #include <sys/processor.h>
36 #include <sys/disp.h>
37 #include <sys/group.h>
38 #include <sys/pghw.h>
39 #include <sys/bitset.h>
40 #include <sys/lgrp.h>
41 #include <sys/cmt.h>
42 #include <sys/cpu_pm.h>
43 
44 /*
45  * CMT scheduler / dispatcher support
46  *
47  * This file implements CMT scheduler support using Processor Groups.
48  * The CMT processor group class creates and maintains the CMT class
49  * specific processor group pg_cmt_t.
50  *
51  * ---------------------------- <-- pg_cmt_t *
52  * | pghw_t                   |
53  * ----------------------------
54  * | CMT class specific data  |
55  * | - hierarchy linkage      |
56  * | - CMT load balancing data|
57  * | - active CPU group/bitset|
58  * ----------------------------
59  *
60  * The scheduler/dispatcher leverages knowledge of the performance
61  * relevant CMT sharing relationships existing between cpus to implement
62  * optimized affinity, load balancing, and coalescence policies.
63  *
64  * Load balancing policy seeks to improve performance by minimizing
65  * contention over shared processor resources / facilities, Affinity
66  * policies seek to improve cache and TLB utilization. Coalescence
67  * policies improve resource utilization and ultimately power efficiency.
68  *
69  * The CMT PGs created by this class are already arranged into a
70  * hierarchy (which is done in the pghw layer). To implement the top-down
71  * CMT load balancing algorithm, the CMT PGs additionally maintain
72  * parent, child and sibling hierarchy relationships.
73  * Parent PGs always contain a superset of their children(s) resources,
74  * each PG can have at most one parent, and siblings are the group of PGs
75  * sharing the same parent.
76  *
77  * On UMA based systems, the CMT load balancing algorithm begins by balancing
78  * load across the group of top level PGs in the system hierarchy.
79  * On NUMA systems, the CMT load balancing algorithm balances load across the
80  * group of top level PGs in each leaf lgroup...but for root homed threads,
81  * is willing to balance against all the top level PGs in the system.
82  *
83  * Groups of top level PGs are maintained to implement the above, one for each
84  * leaf lgroup (containing the top level PGs in that lgroup), and one (for the
85  * root lgroup) that contains all the top level PGs in the system.
86  */
87 static cmt_lgrp_t	*cmt_lgrps = NULL;	/* cmt_lgrps list head */
88 static cmt_lgrp_t	*cpu0_lgrp = NULL;	/* boot CPU's initial lgrp */
89 						/* used for null_proc_lpa */
90 cmt_lgrp_t		*cmt_root = NULL;	/* Reference to root cmt pg */
91 
92 static int		is_cpu0 = 1; /* true if this is boot CPU context */
93 
94 /*
95  * Array of hardware sharing relationships that are blacklisted.
96  * CMT scheduling optimizations won't be performed for blacklisted sharing
97  * relationships.
98  */
99 static int		cmt_hw_blacklisted[PGHW_NUM_COMPONENTS];
100 
101 /*
102  * Set this to non-zero to disable CMT scheduling
103  * This must be done via kmdb -d, as /etc/system will be too late
104  */
105 int			cmt_sched_disabled = 0;
106 
107 /*
108  * Status codes for CMT lineage validation
109  * See pg_cmt_lineage_validate() below
110  */
111 typedef enum cmt_lineage_validation {
112 	CMT_LINEAGE_VALID,
113 	CMT_LINEAGE_NON_CONCENTRIC,
114 	CMT_LINEAGE_PG_SPANS_LGRPS,
115 	CMT_LINEAGE_NON_PROMOTABLE,
116 	CMT_LINEAGE_REPAIRED,
117 	CMT_LINEAGE_UNRECOVERABLE
118 } cmt_lineage_validation_t;
119 
120 /*
121  * Status of the current lineage under construction.
122  * One must be holding cpu_lock to change this.
123  */
124 cmt_lineage_validation_t	cmt_lineage_status = CMT_LINEAGE_VALID;
125 
126 /*
127  * Power domain definitions (on x86) are defined by ACPI, and
128  * therefore may be subject to BIOS bugs.
129  */
130 #define	PG_CMT_HW_SUSPECT(hw)	PGHW_IS_PM_DOMAIN(hw)
131 
132 /*
133  * Macro to test if PG is managed by the CMT PG class
134  */
135 #define	IS_CMT_PG(pg)	(((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id)
136 
137 static pg_cid_t		pg_cmt_class_id;		/* PG class id */
138 
139 static pg_t		*pg_cmt_alloc();
140 static void		pg_cmt_free(pg_t *);
141 static void		pg_cmt_cpu_init(cpu_t *, cpu_pg_t *);
142 static void		pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *);
143 static void		pg_cmt_cpu_active(cpu_t *);
144 static void		pg_cmt_cpu_inactive(cpu_t *);
145 static void		pg_cmt_cpupart_in(cpu_t *, cpupart_t *);
146 static void		pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *);
147 static char		*pg_cmt_policy_name(pg_t *);
148 static void		pg_cmt_hier_sort(pg_cmt_t **, int);
149 static pg_cmt_t		*pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *);
150 static int		pg_cmt_cpu_belongs(pg_t *, cpu_t *);
151 static int		pg_cmt_hw(pghw_type_t);
152 static cmt_lgrp_t	*pg_cmt_find_lgrp(lgrp_handle_t);
153 static cmt_lgrp_t	*pg_cmt_lgrp_create(lgrp_handle_t);
154 static void		cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t,
155 			    kthread_t *, kthread_t *);
156 static void		cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t,
157 			    kthread_t *, kthread_t *);
158 static void		cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *);
159 static cmt_lineage_validation_t	pg_cmt_lineage_validate(pg_cmt_t **, int *,
160 			    cpu_pg_t *);
161 
162 
163 /*
164  * CMT PG ops
165  */
166 struct pg_ops pg_ops_cmt = {
167 	pg_cmt_alloc,
168 	pg_cmt_free,
169 	pg_cmt_cpu_init,
170 	pg_cmt_cpu_fini,
171 	pg_cmt_cpu_active,
172 	pg_cmt_cpu_inactive,
173 	pg_cmt_cpupart_in,
174 	NULL,			/* cpupart_out */
175 	pg_cmt_cpupart_move,
176 	pg_cmt_cpu_belongs,
177 	pg_cmt_policy_name,
178 };
179 
180 /*
181  * Initialize the CMT PG class
182  */
183 void
184 pg_cmt_class_init(void)
185 {
186 	if (cmt_sched_disabled)
187 		return;
188 
189 	pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL);
190 }
191 
192 /*
193  * Called to indicate a new CPU has started up so
194  * that either t0 or the slave startup thread can
195  * be accounted for.
196  */
197 void
198 pg_cmt_cpu_startup(cpu_t *cp)
199 {
200 	pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread,
201 	    cp->cpu_thread);
202 }
203 
204 /*
205  * Return non-zero if thread can migrate between "from" and "to"
206  * without a performance penalty
207  */
208 int
209 pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
210 {
211 	if (from->cpu_physid->cpu_cacheid ==
212 	    to->cpu_physid->cpu_cacheid)
213 		return (1);
214 	return (0);
215 }
216 
217 /*
218  * CMT class specific PG allocation
219  */
220 static pg_t *
221 pg_cmt_alloc(void)
222 {
223 	return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP));
224 }
225 
226 /*
227  * Class specific PG de-allocation
228  */
229 static void
230 pg_cmt_free(pg_t *pg)
231 {
232 	ASSERT(pg != NULL);
233 	ASSERT(IS_CMT_PG(pg));
234 
235 	kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t));
236 }
237 
238 /*
239  * Given a hardware sharing relationship, return which dispatcher
240  * policies should be implemented to optimize performance and efficiency
241  */
242 static pg_cmt_policy_t
243 pg_cmt_policy(pghw_type_t hw)
244 {
245 	pg_cmt_policy_t p;
246 
247 	/*
248 	 * Give the platform a chance to override the default
249 	 */
250 	if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY)
251 		return (p);
252 
253 	switch (hw) {
254 	case PGHW_IPIPE:
255 	case PGHW_FPU:
256 	case PGHW_PROCNODE:
257 	case PGHW_CHIP:
258 		return (CMT_BALANCE);
259 	case PGHW_CACHE:
260 		return (CMT_AFFINITY);
261 	case PGHW_POW_ACTIVE:
262 	case PGHW_POW_IDLE:
263 		return (CMT_BALANCE);
264 	default:
265 		return (CMT_NO_POLICY);
266 	}
267 }
268 
269 /*
270  * Rank the importance of optimizing for the pg1 relationship vs.
271  * the pg2 relationship.
272  */
273 static pg_cmt_t *
274 pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2)
275 {
276 	pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw;
277 	pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw;
278 
279 	/*
280 	 * A power domain is only important if CPUPM is enabled.
281 	 */
282 	if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) {
283 		if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2))
284 			return (pg2);
285 		if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1))
286 			return (pg1);
287 	}
288 
289 	/*
290 	 * Otherwise, ask the platform
291 	 */
292 	if (pg_plat_hw_rank(hw1, hw2) == hw1)
293 		return (pg1);
294 	else
295 		return (pg2);
296 }
297 
298 /*
299  * Initialize CMT callbacks for the given PG
300  */
301 static void
302 cmt_callback_init(pg_t *pg)
303 {
304 	/*
305 	 * Stick with the default callbacks if there isn't going to be
306 	 * any CMT thread placement optimizations implemented.
307 	 */
308 	if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY)
309 		return;
310 
311 	switch (((pghw_t *)pg)->pghw_hw) {
312 	case PGHW_POW_ACTIVE:
313 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr;
314 		pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr;
315 		break;
316 	default:
317 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch;
318 
319 	}
320 }
321 
322 /*
323  * Promote PG above it's current parent.
324  * This is only legal if PG has an equal or greater number of CPUs than its
325  * parent.
326  *
327  * This routine operates on the CPU specific processor group data (for the CPUs
328  * in the PG being promoted), and may be invoked from a context where one CPU's
329  * PG data is under construction. In this case the argument "pgdata", if not
330  * NULL, is a reference to the CPU's under-construction PG data.
331  */
332 static void
333 cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata)
334 {
335 	pg_cmt_t	*parent;
336 	group_t		*children;
337 	cpu_t		*cpu;
338 	group_iter_t	iter;
339 	pg_cpu_itr_t	cpu_iter;
340 	int		r;
341 	int		err;
342 
343 	ASSERT(MUTEX_HELD(&cpu_lock));
344 
345 	parent = pg->cmt_parent;
346 	if (parent == NULL) {
347 		/*
348 		 * Nothing to do
349 		 */
350 		return;
351 	}
352 
353 	ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent));
354 
355 	/*
356 	 * We're changing around the hierarchy, which is actively traversed
357 	 * by the dispatcher. Pause CPUS to ensure exclusivity.
358 	 */
359 	pause_cpus(NULL);
360 
361 	/*
362 	 * If necessary, update the parent's sibling set, replacing parent
363 	 * with PG.
364 	 */
365 	if (parent->cmt_siblings) {
366 		if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE)
367 		    != -1) {
368 			r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE);
369 			ASSERT(r != -1);
370 		}
371 	}
372 
373 	/*
374 	 * If the parent is at the top of the hierarchy, replace it's entry
375 	 * in the root lgroup's group of top level PGs.
376 	 */
377 	if (parent->cmt_parent == NULL &&
378 	    parent->cmt_siblings != &cmt_root->cl_pgs) {
379 		if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE)
380 		    != -1) {
381 			r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE);
382 			ASSERT(r != -1);
383 		}
384 	}
385 
386 	/*
387 	 * We assume (and therefore assert) that the PG being promoted is an
388 	 * only child of it's parent. Update the parent's children set
389 	 * replacing PG's entry with the parent (since the parent is becoming
390 	 * the child). Then have PG and the parent swap children sets.
391 	 */
392 	ASSERT(GROUP_SIZE(parent->cmt_children) <= 1);
393 	if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) {
394 		r = group_add(parent->cmt_children, parent, GRP_NORESIZE);
395 		ASSERT(r != -1);
396 	}
397 
398 	children = pg->cmt_children;
399 	pg->cmt_children = parent->cmt_children;
400 	parent->cmt_children = children;
401 
402 	/*
403 	 * Update the sibling references for PG and it's parent
404 	 */
405 	pg->cmt_siblings = parent->cmt_siblings;
406 	parent->cmt_siblings = pg->cmt_children;
407 
408 	/*
409 	 * Update any cached lineages in the per CPU pg data.
410 	 */
411 	PG_CPU_ITR_INIT(pg, cpu_iter);
412 	while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
413 		int		idx;
414 		pg_cmt_t	*cpu_pg;
415 		cpu_pg_t	*pgd;	/* CPU's PG data */
416 
417 		/*
418 		 * The CPU's whose lineage is under construction still
419 		 * references the bootstrap CPU PG data structure.
420 		 */
421 		if (pg_cpu_is_bootstrapped(cpu))
422 			pgd = pgdata;
423 		else
424 			pgd = cpu->cpu_pg;
425 
426 		/*
427 		 * Iterate over the CPU's PGs updating the children
428 		 * of the PG being promoted, since they have a new parent.
429 		 */
430 		group_iter_init(&iter);
431 		while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) {
432 			if (cpu_pg->cmt_parent == pg) {
433 				cpu_pg->cmt_parent = parent;
434 			}
435 		}
436 
437 		/*
438 		 * Update the CMT load balancing lineage
439 		 */
440 		if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) {
441 			/*
442 			 * Unless this is the CPU who's lineage is being
443 			 * constructed, the PG being promoted should be
444 			 * in the lineage.
445 			 */
446 			ASSERT(pg_cpu_is_bootstrapped(cpu));
447 			continue;
448 		}
449 
450 		ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent);
451 		ASSERT(idx > 0);
452 
453 		/*
454 		 * Have the child and the parent swap places in the CPU's
455 		 * lineage
456 		 */
457 		group_remove_at(&pgd->cmt_pgs, idx);
458 		group_remove_at(&pgd->cmt_pgs, idx - 1);
459 		err = group_add_at(&pgd->cmt_pgs, parent, idx);
460 		ASSERT(err == 0);
461 		err = group_add_at(&pgd->cmt_pgs, pg, idx - 1);
462 		ASSERT(err == 0);
463 	}
464 
465 	/*
466 	 * Update the parent references for PG and it's parent
467 	 */
468 	pg->cmt_parent = parent->cmt_parent;
469 	parent->cmt_parent = pg;
470 
471 	start_cpus();
472 }
473 
474 /*
475  * CMT class callback for a new CPU entering the system
476  *
477  * This routine operates on the CPU specific processor group data (for the CPU
478  * being initialized). The argument "pgdata" is a reference to the CPU's PG
479  * data to be constructed.
480  *
481  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
482  * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it
483  * calls must be careful to operate only on the "pgdata" argument, and not
484  * cp->cpu_pg.
485  */
486 static void
487 pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata)
488 {
489 	pg_cmt_t	*pg;
490 	group_t		*cmt_pgs;
491 	int		levels, level;
492 	pghw_type_t	hw;
493 	pg_t		*pg_cache = NULL;
494 	pg_cmt_t	*cpu_cmt_hier[PGHW_NUM_COMPONENTS];
495 	lgrp_handle_t	lgrp_handle;
496 	cmt_lgrp_t	*lgrp;
497 	cmt_lineage_validation_t	lineage_status;
498 
499 	ASSERT(MUTEX_HELD(&cpu_lock));
500 	ASSERT(pg_cpu_is_bootstrapped(cp));
501 
502 	if (cmt_sched_disabled)
503 		return;
504 
505 	/*
506 	 * A new CPU is coming into the system.
507 	 * Interrogate the platform to see if the CPU
508 	 * has any performance or efficiency relevant
509 	 * sharing relationships
510 	 */
511 	cmt_pgs = &pgdata->cmt_pgs;
512 	pgdata->cmt_lineage = NULL;
513 
514 	bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier));
515 	levels = 0;
516 	for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) {
517 
518 		pg_cmt_policy_t	policy;
519 
520 		/*
521 		 * We're only interested in the hw sharing relationships
522 		 * for which we know how to optimize.
523 		 */
524 		policy = pg_cmt_policy(hw);
525 		if (policy == CMT_NO_POLICY ||
526 		    pg_plat_hw_shared(cp, hw) == 0)
527 			continue;
528 
529 		/*
530 		 * We will still create the PGs for hardware sharing
531 		 * relationships that have been blacklisted, but won't
532 		 * implement CMT thread placement optimizations against them.
533 		 */
534 		if (cmt_hw_blacklisted[hw] == 1)
535 			policy = CMT_NO_POLICY;
536 
537 		/*
538 		 * Find (or create) the PG associated with
539 		 * the hw sharing relationship in which cp
540 		 * belongs.
541 		 *
542 		 * Determine if a suitable PG already
543 		 * exists, or if one needs to be created.
544 		 */
545 		pg = (pg_cmt_t *)pghw_place_cpu(cp, hw);
546 		if (pg == NULL) {
547 			/*
548 			 * Create a new one.
549 			 * Initialize the common...
550 			 */
551 			pg = (pg_cmt_t *)pg_create(pg_cmt_class_id);
552 
553 			/* ... physical ... */
554 			pghw_init((pghw_t *)pg, cp, hw);
555 
556 			/*
557 			 * ... and CMT specific portions of the
558 			 * structure.
559 			 */
560 			pg->cmt_policy = policy;
561 
562 			/* CMT event callbacks */
563 			cmt_callback_init((pg_t *)pg);
564 
565 			bitset_init(&pg->cmt_cpus_actv_set);
566 			group_create(&pg->cmt_cpus_actv);
567 		} else {
568 			ASSERT(IS_CMT_PG(pg));
569 		}
570 
571 		/* Add the CPU to the PG */
572 		pg_cpu_add((pg_t *)pg, cp, pgdata);
573 
574 		/*
575 		 * Ensure capacity of the active CPU group/bitset
576 		 */
577 		group_expand(&pg->cmt_cpus_actv,
578 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
579 
580 		if (cp->cpu_seqid >=
581 		    bitset_capacity(&pg->cmt_cpus_actv_set)) {
582 			bitset_resize(&pg->cmt_cpus_actv_set,
583 			    cp->cpu_seqid + 1);
584 		}
585 
586 		/*
587 		 * Build a lineage of CMT PGs for load balancing / coalescence
588 		 */
589 		if (policy & (CMT_BALANCE | CMT_COALESCE)) {
590 			cpu_cmt_hier[levels++] = pg;
591 		}
592 
593 		/* Cache this for later */
594 		if (hw == PGHW_CACHE)
595 			pg_cache = (pg_t *)pg;
596 	}
597 
598 	group_expand(cmt_pgs, levels);
599 
600 	if (cmt_root == NULL)
601 		cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand());
602 
603 	/*
604 	 * Find the lgrp that encapsulates this CPU's CMT hierarchy
605 	 */
606 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
607 	if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL)
608 		lgrp = pg_cmt_lgrp_create(lgrp_handle);
609 
610 	/*
611 	 * Ascendingly sort the PGs in the lineage by number of CPUs
612 	 */
613 	pg_cmt_hier_sort(cpu_cmt_hier, levels);
614 
615 	/*
616 	 * Examine the lineage and validate it.
617 	 * This routine will also try to fix the lineage along with the
618 	 * rest of the PG hierarchy should it detect an issue.
619 	 *
620 	 * If it returns anything other than VALID or REPAIRED, an
621 	 * unrecoverable error has occurred, and we cannot proceed.
622 	 */
623 	lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata);
624 	if ((lineage_status != CMT_LINEAGE_VALID) &&
625 	    (lineage_status != CMT_LINEAGE_REPAIRED)) {
626 		/*
627 		 * In the case of an unrecoverable error where CMT scheduling
628 		 * has been disabled, assert that the under construction CPU's
629 		 * PG data has an empty CMT load balancing lineage.
630 		 */
631 		ASSERT((cmt_sched_disabled == 0) ||
632 		    (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0));
633 		return;
634 	}
635 
636 	/*
637 	 * For existing PGs in the lineage, verify that the parent is
638 	 * correct, as the generation in the lineage may have changed
639 	 * as a result of the sorting. Start the traversal at the top
640 	 * of the lineage, moving down.
641 	 */
642 	for (level = levels - 1; level >= 0; ) {
643 		int reorg;
644 
645 		reorg = 0;
646 		pg = cpu_cmt_hier[level];
647 
648 		/*
649 		 * Promote PGs at an incorrect generation into place.
650 		 */
651 		while (pg->cmt_parent &&
652 		    pg->cmt_parent != cpu_cmt_hier[level + 1]) {
653 			cmt_hier_promote(pg, pgdata);
654 			reorg++;
655 		}
656 		if (reorg > 0)
657 			level = levels - 1;
658 		else
659 			level--;
660 	}
661 
662 	/*
663 	 * For each of the PGs in the CPU's lineage:
664 	 *	- Add an entry in the CPU sorted CMT PG group
665 	 *	  which is used for top down CMT load balancing
666 	 *	- Tie the PG into the CMT hierarchy by connecting
667 	 *	  it to it's parent and siblings.
668 	 */
669 	for (level = 0; level < levels; level++) {
670 		uint_t		children;
671 		int		err;
672 
673 		pg = cpu_cmt_hier[level];
674 		err = group_add_at(cmt_pgs, pg, levels - level - 1);
675 		ASSERT(err == 0);
676 
677 		if (level == 0)
678 			pgdata->cmt_lineage = (pg_t *)pg;
679 
680 		if (pg->cmt_siblings != NULL) {
681 			/* Already initialized */
682 			ASSERT(pg->cmt_parent == NULL ||
683 			    pg->cmt_parent == cpu_cmt_hier[level + 1]);
684 			ASSERT(pg->cmt_siblings == &lgrp->cl_pgs ||
685 			    ((pg->cmt_parent != NULL) &&
686 			    pg->cmt_siblings == pg->cmt_parent->cmt_children));
687 			continue;
688 		}
689 
690 		if ((level + 1) == levels) {
691 			pg->cmt_parent = NULL;
692 
693 			pg->cmt_siblings = &lgrp->cl_pgs;
694 			children = ++lgrp->cl_npgs;
695 			if (cmt_root != lgrp)
696 				cmt_root->cl_npgs++;
697 		} else {
698 			pg->cmt_parent = cpu_cmt_hier[level + 1];
699 
700 			/*
701 			 * A good parent keeps track of their children.
702 			 * The parent's children group is also the PG's
703 			 * siblings.
704 			 */
705 			if (pg->cmt_parent->cmt_children == NULL) {
706 				pg->cmt_parent->cmt_children =
707 				    kmem_zalloc(sizeof (group_t), KM_SLEEP);
708 				group_create(pg->cmt_parent->cmt_children);
709 			}
710 			pg->cmt_siblings = pg->cmt_parent->cmt_children;
711 			children = ++pg->cmt_parent->cmt_nchildren;
712 		}
713 
714 		group_expand(pg->cmt_siblings, children);
715 		group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs);
716 	}
717 
718 	/*
719 	 * Cache the chip and core IDs in the cpu_t->cpu_physid structure
720 	 * for fast lookups later.
721 	 */
722 	if (cp->cpu_physid) {
723 		cp->cpu_physid->cpu_chipid =
724 		    pg_plat_hw_instance_id(cp, PGHW_CHIP);
725 		cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp);
726 
727 		/*
728 		 * If this cpu has a PG representing shared cache, then set
729 		 * cpu_cacheid to that PG's logical id
730 		 */
731 		if (pg_cache)
732 			cp->cpu_physid->cpu_cacheid = pg_cache->pg_id;
733 	}
734 
735 	/* CPU0 only initialization */
736 	if (is_cpu0) {
737 		is_cpu0 = 0;
738 		cpu0_lgrp = lgrp;
739 	}
740 
741 }
742 
743 /*
744  * Class callback when a CPU is leaving the system (deletion)
745  *
746  * "pgdata" is a reference to the CPU's PG data to be deconstructed.
747  *
748  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
749  * references a "bootstrap" structure across this function's invocation.
750  * pg_cmt_cpu_init() and the routines it calls must be careful to operate only
751  * on the "pgdata" argument, and not cp->cpu_pg.
752  */
753 static void
754 pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata)
755 {
756 	group_iter_t	i;
757 	pg_cmt_t	*pg;
758 	group_t		*pgs, *cmt_pgs;
759 	lgrp_handle_t	lgrp_handle;
760 	cmt_lgrp_t	*lgrp;
761 
762 	if (cmt_sched_disabled)
763 		return;
764 
765 	ASSERT(pg_cpu_is_bootstrapped(cp));
766 
767 	pgs = &pgdata->pgs;
768 	cmt_pgs = &pgdata->cmt_pgs;
769 
770 	/*
771 	 * Find the lgroup that encapsulates this CPU's CMT hierarchy
772 	 */
773 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
774 
775 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
776 	if (ncpus == 1 && lgrp != cpu0_lgrp) {
777 		/*
778 		 * One might wonder how we could be deconfiguring the
779 		 * only CPU in the system.
780 		 *
781 		 * On Starcat systems when null_proc_lpa is detected,
782 		 * the boot CPU (which is already configured into a leaf
783 		 * lgroup), is moved into the root lgroup. This is done by
784 		 * deconfiguring it from both lgroups and processor
785 		 * groups), and then later reconfiguring it back in.  This
786 		 * call to pg_cmt_cpu_fini() is part of that deconfiguration.
787 		 *
788 		 * This special case is detected by noting that the platform
789 		 * has changed the CPU's lgrp affiliation (since it now
790 		 * belongs in the root). In this case, use the cmt_lgrp_t
791 		 * cached for the boot CPU, since this is what needs to be
792 		 * torn down.
793 		 */
794 		lgrp = cpu0_lgrp;
795 	}
796 
797 	ASSERT(lgrp != NULL);
798 
799 	/*
800 	 * First, clean up anything load balancing specific for each of
801 	 * the CPU's PGs that participated in CMT load balancing
802 	 */
803 	pg = (pg_cmt_t *)pgdata->cmt_lineage;
804 	while (pg != NULL) {
805 
806 		/*
807 		 * Remove the PG from the CPU's load balancing lineage
808 		 */
809 		(void) group_remove(cmt_pgs, pg, GRP_RESIZE);
810 
811 		/*
812 		 * If it's about to become empty, destroy it's children
813 		 * group, and remove it's reference from it's siblings.
814 		 * This is done here (rather than below) to avoid removing
815 		 * our reference from a PG that we just eliminated.
816 		 */
817 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) {
818 			if (pg->cmt_children != NULL)
819 				group_destroy(pg->cmt_children);
820 			if (pg->cmt_siblings != NULL) {
821 				if (pg->cmt_siblings == &lgrp->cl_pgs)
822 					lgrp->cl_npgs--;
823 				else
824 					pg->cmt_parent->cmt_nchildren--;
825 			}
826 		}
827 		pg = pg->cmt_parent;
828 	}
829 	ASSERT(GROUP_SIZE(cmt_pgs) == 0);
830 
831 	/*
832 	 * Now that the load balancing lineage updates have happened,
833 	 * remove the CPU from all it's PGs (destroying any that become
834 	 * empty).
835 	 */
836 	group_iter_init(&i);
837 	while ((pg = group_iterate(pgs, &i)) != NULL) {
838 		if (IS_CMT_PG(pg) == 0)
839 			continue;
840 
841 		pg_cpu_delete((pg_t *)pg, cp, pgdata);
842 		/*
843 		 * Deleting the CPU from the PG changes the CPU's
844 		 * PG group over which we are actively iterating
845 		 * Re-initialize the iteration
846 		 */
847 		group_iter_init(&i);
848 
849 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) {
850 
851 			/*
852 			 * The PG has become zero sized, so destroy it.
853 			 */
854 			group_destroy(&pg->cmt_cpus_actv);
855 			bitset_fini(&pg->cmt_cpus_actv_set);
856 			pghw_fini((pghw_t *)pg);
857 
858 			pg_destroy((pg_t *)pg);
859 		}
860 	}
861 }
862 
863 /*
864  * Class callback when a CPU is entering a cpu partition
865  */
866 static void
867 pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp)
868 {
869 	group_t		*pgs;
870 	pg_t		*pg;
871 	group_iter_t	i;
872 
873 	ASSERT(MUTEX_HELD(&cpu_lock));
874 
875 	if (cmt_sched_disabled)
876 		return;
877 
878 	pgs = &cp->cpu_pg->pgs;
879 
880 	/*
881 	 * Ensure that the new partition's PG bitset
882 	 * is large enough for all CMT PG's to which cp
883 	 * belongs
884 	 */
885 	group_iter_init(&i);
886 	while ((pg = group_iterate(pgs, &i)) != NULL) {
887 		if (IS_CMT_PG(pg) == 0)
888 			continue;
889 
890 		if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id)
891 			bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1);
892 	}
893 }
894 
895 /*
896  * Class callback when a CPU is actually moving partitions
897  */
898 static void
899 pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
900 {
901 	cpu_t		*cpp;
902 	group_t		*pgs;
903 	pg_t		*pg;
904 	group_iter_t	pg_iter;
905 	pg_cpu_itr_t	cpu_iter;
906 	boolean_t	found;
907 
908 	ASSERT(MUTEX_HELD(&cpu_lock));
909 
910 	if (cmt_sched_disabled)
911 		return;
912 
913 	pgs = &cp->cpu_pg->pgs;
914 	group_iter_init(&pg_iter);
915 
916 	/*
917 	 * Iterate over the CPUs CMT PGs
918 	 */
919 	while ((pg = group_iterate(pgs, &pg_iter)) != NULL) {
920 
921 		if (IS_CMT_PG(pg) == 0)
922 			continue;
923 
924 		/*
925 		 * Add the PG to the bitset in the new partition.
926 		 */
927 		bitset_add(&newpp->cp_cmt_pgs, pg->pg_id);
928 
929 		/*
930 		 * Remove the PG from the bitset in the old partition
931 		 * if the last of the PG's CPUs have left.
932 		 */
933 		found = B_FALSE;
934 		PG_CPU_ITR_INIT(pg, cpu_iter);
935 		while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) {
936 			if (cpp == cp)
937 				continue;
938 			if (CPU_ACTIVE(cpp) &&
939 			    cpp->cpu_part->cp_id == oldpp->cp_id) {
940 				found = B_TRUE;
941 				break;
942 			}
943 		}
944 		if (!found)
945 			bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id);
946 	}
947 }
948 
949 /*
950  * Class callback when a CPU becomes active (online)
951  *
952  * This is called in a context where CPUs are paused
953  */
954 static void
955 pg_cmt_cpu_active(cpu_t *cp)
956 {
957 	int		err;
958 	group_iter_t	i;
959 	pg_cmt_t	*pg;
960 	group_t		*pgs;
961 
962 	ASSERT(MUTEX_HELD(&cpu_lock));
963 
964 	if (cmt_sched_disabled)
965 		return;
966 
967 	pgs = &cp->cpu_pg->pgs;
968 	group_iter_init(&i);
969 
970 	/*
971 	 * Iterate over the CPU's PGs
972 	 */
973 	while ((pg = group_iterate(pgs, &i)) != NULL) {
974 
975 		if (IS_CMT_PG(pg) == 0)
976 			continue;
977 
978 		err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
979 		ASSERT(err == 0);
980 
981 		/*
982 		 * If this is the first active CPU in the PG, and it
983 		 * represents a hardware sharing relationship over which
984 		 * CMT load balancing is performed, add it as a candidate
985 		 * for balancing with it's siblings.
986 		 */
987 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 &&
988 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
989 			err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE);
990 			ASSERT(err == 0);
991 
992 			/*
993 			 * If this is a top level PG, add it as a balancing
994 			 * candidate when balancing within the root lgroup.
995 			 */
996 			if (pg->cmt_parent == NULL &&
997 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
998 				err = group_add(&cmt_root->cl_pgs, pg,
999 				    GRP_NORESIZE);
1000 				ASSERT(err == 0);
1001 			}
1002 		}
1003 
1004 		/*
1005 		 * Notate the CPU in the PGs active CPU bitset.
1006 		 * Also notate the PG as being active in it's associated
1007 		 * partition
1008 		 */
1009 		bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1010 		bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id);
1011 	}
1012 }
1013 
1014 /*
1015  * Class callback when a CPU goes inactive (offline)
1016  *
1017  * This is called in a context where CPUs are paused
1018  */
1019 static void
1020 pg_cmt_cpu_inactive(cpu_t *cp)
1021 {
1022 	int		err;
1023 	group_t		*pgs;
1024 	pg_cmt_t	*pg;
1025 	cpu_t		*cpp;
1026 	group_iter_t	i;
1027 	pg_cpu_itr_t	cpu_itr;
1028 	boolean_t	found;
1029 
1030 	ASSERT(MUTEX_HELD(&cpu_lock));
1031 
1032 	if (cmt_sched_disabled)
1033 		return;
1034 
1035 	pgs = &cp->cpu_pg->pgs;
1036 	group_iter_init(&i);
1037 
1038 	while ((pg = group_iterate(pgs, &i)) != NULL) {
1039 
1040 		if (IS_CMT_PG(pg) == 0)
1041 			continue;
1042 
1043 		/*
1044 		 * Remove the CPU from the CMT PGs active CPU group
1045 		 * bitmap
1046 		 */
1047 		err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
1048 		ASSERT(err == 0);
1049 
1050 		bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1051 
1052 		/*
1053 		 * If there are no more active CPUs in this PG over which
1054 		 * load was balanced, remove it as a balancing candidate.
1055 		 */
1056 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 &&
1057 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
1058 			err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
1059 			ASSERT(err == 0);
1060 
1061 			if (pg->cmt_parent == NULL &&
1062 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
1063 				err = group_remove(&cmt_root->cl_pgs, pg,
1064 				    GRP_NORESIZE);
1065 				ASSERT(err == 0);
1066 			}
1067 		}
1068 
1069 		/*
1070 		 * Assert the number of active CPUs does not exceed
1071 		 * the total number of CPUs in the PG
1072 		 */
1073 		ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <=
1074 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
1075 
1076 		/*
1077 		 * Update the PG bitset in the CPU's old partition
1078 		 */
1079 		found = B_FALSE;
1080 		PG_CPU_ITR_INIT(pg, cpu_itr);
1081 		while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) {
1082 			if (cpp == cp)
1083 				continue;
1084 			if (CPU_ACTIVE(cpp) &&
1085 			    cpp->cpu_part->cp_id == cp->cpu_part->cp_id) {
1086 				found = B_TRUE;
1087 				break;
1088 			}
1089 		}
1090 		if (!found) {
1091 			bitset_del(&cp->cpu_part->cp_cmt_pgs,
1092 			    ((pg_t *)pg)->pg_id);
1093 		}
1094 	}
1095 }
1096 
1097 /*
1098  * Return non-zero if the CPU belongs in the given PG
1099  */
1100 static int
1101 pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp)
1102 {
1103 	cpu_t	*pg_cpu;
1104 
1105 	pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0);
1106 
1107 	ASSERT(pg_cpu != NULL);
1108 
1109 	/*
1110 	 * The CPU belongs if, given the nature of the hardware sharing
1111 	 * relationship represented by the PG, the CPU has that
1112 	 * relationship with some other CPU already in the PG
1113 	 */
1114 	if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw))
1115 		return (1);
1116 
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Sort the CPUs CMT hierarchy, where "size" is the number of levels.
1122  */
1123 static void
1124 pg_cmt_hier_sort(pg_cmt_t **hier, int size)
1125 {
1126 	int		i, j, inc, sz;
1127 	int		start, end;
1128 	pg_t		*tmp;
1129 	pg_t		**h = (pg_t **)hier;
1130 
1131 	/*
1132 	 * First sort by number of CPUs
1133 	 */
1134 	inc = size / 2;
1135 	while (inc > 0) {
1136 		for (i = inc; i < size; i++) {
1137 			j = i;
1138 			tmp = h[i];
1139 			while ((j >= inc) &&
1140 			    (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) {
1141 				h[j] = h[j - inc];
1142 				j = j - inc;
1143 			}
1144 			h[j] = tmp;
1145 		}
1146 		if (inc == 2)
1147 			inc = 1;
1148 		else
1149 			inc = (inc * 5) / 11;
1150 	}
1151 
1152 	/*
1153 	 * Break ties by asking the platform.
1154 	 * Determine if h[i] outranks h[i + 1] and if so, swap them.
1155 	 */
1156 	for (start = 0; start < size; start++) {
1157 
1158 		/*
1159 		 * Find various contiguous sets of elements,
1160 		 * in the array, with the same number of cpus
1161 		 */
1162 		end = start;
1163 		sz = PG_NUM_CPUS(h[start]);
1164 		while ((end < size) && (sz == PG_NUM_CPUS(h[end])))
1165 			end++;
1166 		/*
1167 		 * Sort each such set of the array by rank
1168 		 */
1169 		for (i = start + 1; i < end; i++) {
1170 			j = i - 1;
1171 			tmp = h[i];
1172 			while (j >= start &&
1173 			    pg_cmt_hier_rank(hier[j],
1174 			    (pg_cmt_t *)tmp) == hier[j]) {
1175 				h[j + 1] = h[j];
1176 				j--;
1177 			}
1178 			h[j + 1] = tmp;
1179 		}
1180 	}
1181 }
1182 
1183 /*
1184  * Return a cmt_lgrp_t * given an lgroup handle.
1185  */
1186 static cmt_lgrp_t *
1187 pg_cmt_find_lgrp(lgrp_handle_t hand)
1188 {
1189 	cmt_lgrp_t	*lgrp;
1190 
1191 	ASSERT(MUTEX_HELD(&cpu_lock));
1192 
1193 	lgrp = cmt_lgrps;
1194 	while (lgrp != NULL) {
1195 		if (lgrp->cl_hand == hand)
1196 			break;
1197 		lgrp = lgrp->cl_next;
1198 	}
1199 	return (lgrp);
1200 }
1201 
1202 /*
1203  * Create a cmt_lgrp_t with the specified handle.
1204  */
1205 static cmt_lgrp_t *
1206 pg_cmt_lgrp_create(lgrp_handle_t hand)
1207 {
1208 	cmt_lgrp_t	*lgrp;
1209 
1210 	ASSERT(MUTEX_HELD(&cpu_lock));
1211 
1212 	lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP);
1213 
1214 	lgrp->cl_hand = hand;
1215 	lgrp->cl_npgs = 0;
1216 	lgrp->cl_next = cmt_lgrps;
1217 	cmt_lgrps = lgrp;
1218 	group_create(&lgrp->cl_pgs);
1219 
1220 	return (lgrp);
1221 }
1222 
1223 /*
1224  * Interfaces to enable and disable power aware dispatching
1225  * The caller must be holding cpu_lock.
1226  *
1227  * Return 0 on success and -1 on failure.
1228  */
1229 int
1230 cmt_pad_enable(pghw_type_t type)
1231 {
1232 	group_t		*hwset;
1233 	group_iter_t	iter;
1234 	pg_cmt_t	*pg;
1235 
1236 	ASSERT(PGHW_IS_PM_DOMAIN(type));
1237 	ASSERT(MUTEX_HELD(&cpu_lock));
1238 
1239 	if ((hwset = pghw_set_lookup(type)) == NULL ||
1240 	    cmt_hw_blacklisted[type]) {
1241 		/*
1242 		 * Unable to find any instances of the specified type
1243 		 * of power domain, or the power domains have been blacklisted.
1244 		 */
1245 		return (-1);
1246 	}
1247 
1248 	/*
1249 	 * Iterate over the power domains, setting the default dispatcher
1250 	 * policy for power/performance optimization.
1251 	 *
1252 	 * Simply setting the policy isn't enough in the case where the power
1253 	 * domain is an only child of another PG. Because the dispatcher walks
1254 	 * the PG hierarchy in a top down fashion, the higher up PG's policy
1255 	 * will dominate. So promote the power domain above it's parent if both
1256 	 * PG and it's parent have the same CPUs to ensure it's policy
1257 	 * dominates.
1258 	 */
1259 	group_iter_init(&iter);
1260 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
1261 		/*
1262 		 * If the power domain is an only child to a parent
1263 		 * not implementing the same policy, promote the child
1264 		 * above the parent to activate the policy.
1265 		 */
1266 		pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw);
1267 		while ((pg->cmt_parent != NULL) &&
1268 		    (pg->cmt_parent->cmt_policy != pg->cmt_policy) &&
1269 		    (PG_NUM_CPUS((pg_t *)pg) ==
1270 		    PG_NUM_CPUS((pg_t *)pg->cmt_parent))) {
1271 			cmt_hier_promote(pg, NULL);
1272 		}
1273 	}
1274 
1275 	return (0);
1276 }
1277 
1278 int
1279 cmt_pad_disable(pghw_type_t type)
1280 {
1281 	group_t		*hwset;
1282 	group_iter_t	iter;
1283 	pg_cmt_t	*pg;
1284 	pg_cmt_t	*child;
1285 
1286 	ASSERT(PGHW_IS_PM_DOMAIN(type));
1287 	ASSERT(MUTEX_HELD(&cpu_lock));
1288 
1289 	if ((hwset = pghw_set_lookup(type)) == NULL) {
1290 		/*
1291 		 * Unable to find any instances of the specified type of
1292 		 * power domain.
1293 		 */
1294 		return (-1);
1295 	}
1296 	/*
1297 	 * Iterate over the power domains, setting the default dispatcher
1298 	 * policy for performance optimization (load balancing).
1299 	 */
1300 	group_iter_init(&iter);
1301 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
1302 
1303 		/*
1304 		 * If the power domain has an only child that implements
1305 		 * policy other than load balancing, promote the child
1306 		 * above the power domain to ensure it's policy dominates.
1307 		 */
1308 		if (pg->cmt_children != NULL &&
1309 		    GROUP_SIZE(pg->cmt_children) == 1) {
1310 			child = GROUP_ACCESS(pg->cmt_children, 0);
1311 			if ((child->cmt_policy & CMT_BALANCE) == 0) {
1312 				cmt_hier_promote(child, NULL);
1313 			}
1314 		}
1315 		pg->cmt_policy = CMT_BALANCE;
1316 	}
1317 	return (0);
1318 }
1319 
1320 /* ARGSUSED */
1321 static void
1322 cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
1323 		    kthread_t *new)
1324 {
1325 	pg_cmt_t	*cmt_pg = (pg_cmt_t *)pg;
1326 
1327 	if (old == cp->cpu_idle_thread) {
1328 		atomic_add_32(&cmt_pg->cmt_utilization, 1);
1329 	} else if (new == cp->cpu_idle_thread) {
1330 		atomic_add_32(&cmt_pg->cmt_utilization, -1);
1331 	}
1332 }
1333 
1334 /*
1335  * Macro to test whether a thread is currently runnable on a CPU in a PG.
1336  */
1337 #define	THREAD_RUNNABLE_IN_PG(t, pg)					\
1338 	((t)->t_state == TS_RUN &&					\
1339 	    (t)->t_disp_queue->disp_cpu &&				\
1340 	    bitset_in_set(&(pg)->cmt_cpus_actv_set,			\
1341 	    (t)->t_disp_queue->disp_cpu->cpu_seqid))
1342 
1343 static void
1344 cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
1345     kthread_t *new)
1346 {
1347 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
1348 	cpupm_domain_t	*dom;
1349 	uint32_t	u;
1350 
1351 	if (old == cp->cpu_idle_thread) {
1352 		ASSERT(new != cp->cpu_idle_thread);
1353 		u = atomic_add_32_nv(&cmt->cmt_utilization, 1);
1354 		if (u == 1) {
1355 			/*
1356 			 * Notify the CPU power manager that the domain
1357 			 * is non-idle.
1358 			 */
1359 			dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1360 			cpupm_utilization_event(cp, now, dom,
1361 			    CPUPM_DOM_BUSY_FROM_IDLE);
1362 		}
1363 	} else if (new == cp->cpu_idle_thread) {
1364 		ASSERT(old != cp->cpu_idle_thread);
1365 		u = atomic_add_32_nv(&cmt->cmt_utilization, -1);
1366 		if (u == 0) {
1367 			/*
1368 			 * The domain is idle, notify the CPU power
1369 			 * manager.
1370 			 *
1371 			 * Avoid notifying if the thread is simply migrating
1372 			 * between CPUs in the domain.
1373 			 */
1374 			if (!THREAD_RUNNABLE_IN_PG(old, cmt)) {
1375 				dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1376 				cpupm_utilization_event(cp, now, dom,
1377 				    CPUPM_DOM_IDLE_FROM_BUSY);
1378 			}
1379 		}
1380 	}
1381 }
1382 
1383 /* ARGSUSED */
1384 static void
1385 cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t)
1386 {
1387 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
1388 	cpupm_domain_t	*dom;
1389 
1390 	dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
1391 	cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY);
1392 }
1393 
1394 /*
1395  * Return the name of the CMT scheduling policy
1396  * being implemented across this PG
1397  */
1398 static char *
1399 pg_cmt_policy_name(pg_t *pg)
1400 {
1401 	pg_cmt_policy_t policy;
1402 
1403 	policy = ((pg_cmt_t *)pg)->cmt_policy;
1404 
1405 	if (policy & CMT_AFFINITY) {
1406 		if (policy & CMT_BALANCE)
1407 			return ("Load Balancing & Affinity");
1408 		else if (policy & CMT_COALESCE)
1409 			return ("Load Coalescence & Affinity");
1410 		else
1411 			return ("Affinity");
1412 	} else {
1413 		if (policy & CMT_BALANCE)
1414 			return ("Load Balancing");
1415 		else if (policy & CMT_COALESCE)
1416 			return ("Load Coalescence");
1417 		else
1418 			return ("None");
1419 	}
1420 }
1421 
1422 /*
1423  * Prune PG, and all other instances of PG's hardware sharing relationship
1424  * from the CMT PG hierarchy.
1425  *
1426  * This routine operates on the CPU specific processor group data (for the CPUs
1427  * in the PG being pruned), and may be invoked from a context where one CPU's
1428  * PG data is under construction. In this case the argument "pgdata", if not
1429  * NULL, is a reference to the CPU's under-construction PG data.
1430  */
1431 static int
1432 pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
1433 {
1434 	group_t		*hwset, *children;
1435 	int		i, j, r, size = *sz;
1436 	group_iter_t	hw_iter, child_iter;
1437 	pg_cpu_itr_t	cpu_iter;
1438 	pg_cmt_t	*pg, *child;
1439 	cpu_t		*cpu;
1440 	int		cap_needed;
1441 	pghw_type_t	hw;
1442 
1443 	ASSERT(MUTEX_HELD(&cpu_lock));
1444 
1445 	hw = ((pghw_t *)pg_bad)->pghw_hw;
1446 
1447 	if (hw == PGHW_POW_ACTIVE) {
1448 		cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. "
1449 		    "Event Based CPUPM Unavailable");
1450 	} else if (hw == PGHW_POW_IDLE) {
1451 		cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. "
1452 		    "Dispatcher assisted CPUPM disabled.");
1453 	}
1454 
1455 	/*
1456 	 * Find and eliminate the PG from the lineage.
1457 	 */
1458 	for (i = 0; i < size; i++) {
1459 		if (lineage[i] == pg_bad) {
1460 			for (j = i; j < size - 1; j++)
1461 				lineage[j] = lineage[j + 1];
1462 			*sz = size - 1;
1463 			break;
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * We'll prune all instances of the hardware sharing relationship
1469 	 * represented by pg. But before we do that (and pause CPUs) we need
1470 	 * to ensure the hierarchy's groups are properly sized.
1471 	 */
1472 	hwset = pghw_set_lookup(hw);
1473 
1474 	/*
1475 	 * Blacklist the hardware so future processor groups of this type won't
1476 	 * participate in CMT thread placement.
1477 	 *
1478 	 * XXX
1479 	 * For heterogeneous system configurations, this might be overkill.
1480 	 * We may only need to blacklist the illegal PGs, and other instances
1481 	 * of this hardware sharing relationship may be ok.
1482 	 */
1483 	cmt_hw_blacklisted[hw] = 1;
1484 
1485 	/*
1486 	 * For each of the PGs being pruned, ensure sufficient capacity in
1487 	 * the siblings set for the PG's children
1488 	 */
1489 	group_iter_init(&hw_iter);
1490 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
1491 		/*
1492 		 * PG is being pruned, but if it is bringing up more than
1493 		 * one child, ask for more capacity in the siblings group.
1494 		 */
1495 		cap_needed = 0;
1496 		if (pg->cmt_children &&
1497 		    GROUP_SIZE(pg->cmt_children) > 1) {
1498 			cap_needed = GROUP_SIZE(pg->cmt_children) - 1;
1499 
1500 			group_expand(pg->cmt_siblings,
1501 			    GROUP_SIZE(pg->cmt_siblings) + cap_needed);
1502 
1503 			/*
1504 			 * If this is a top level group, also ensure the
1505 			 * capacity in the root lgrp level CMT grouping.
1506 			 */
1507 			if (pg->cmt_parent == NULL &&
1508 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
1509 				group_expand(&cmt_root->cl_pgs,
1510 				    GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed);
1511 				cmt_root->cl_npgs += cap_needed;
1512 			}
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * We're operating on the PG hierarchy. Pause CPUs to ensure
1518 	 * exclusivity with respect to the dispatcher.
1519 	 */
1520 	pause_cpus(NULL);
1521 
1522 	/*
1523 	 * Prune all PG instances of the hardware sharing relationship
1524 	 * represented by pg.
1525 	 */
1526 	group_iter_init(&hw_iter);
1527 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
1528 
1529 		/*
1530 		 * Remove PG from it's group of siblings, if it's there.
1531 		 */
1532 		if (pg->cmt_siblings) {
1533 			(void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
1534 		}
1535 		if (pg->cmt_parent == NULL &&
1536 		    pg->cmt_siblings != &cmt_root->cl_pgs) {
1537 			(void) group_remove(&cmt_root->cl_pgs, pg,
1538 			    GRP_NORESIZE);
1539 		}
1540 
1541 		/*
1542 		 * Indicate that no CMT policy will be implemented across
1543 		 * this PG.
1544 		 */
1545 		pg->cmt_policy = CMT_NO_POLICY;
1546 
1547 		/*
1548 		 * Move PG's children from it's children set to it's parent's
1549 		 * children set. Note that the parent's children set, and PG's
1550 		 * siblings set are the same thing.
1551 		 *
1552 		 * Because we are iterating over the same group that we are
1553 		 * operating on (removing the children), first add all of PG's
1554 		 * children to the parent's children set, and once we are done
1555 		 * iterating, empty PG's children set.
1556 		 */
1557 		if (pg->cmt_children != NULL) {
1558 			children = pg->cmt_children;
1559 
1560 			group_iter_init(&child_iter);
1561 			while ((child = group_iterate(children, &child_iter))
1562 			    != NULL) {
1563 				if (pg->cmt_siblings != NULL) {
1564 					r = group_add(pg->cmt_siblings, child,
1565 					    GRP_NORESIZE);
1566 					ASSERT(r == 0);
1567 
1568 					if (pg->cmt_parent == NULL &&
1569 					    pg->cmt_siblings !=
1570 					    &cmt_root->cl_pgs) {
1571 						r = group_add(&cmt_root->cl_pgs,
1572 						    child, GRP_NORESIZE);
1573 						ASSERT(r == 0);
1574 					}
1575 				}
1576 			}
1577 			group_empty(pg->cmt_children);
1578 		}
1579 
1580 		/*
1581 		 * Reset the callbacks to the defaults
1582 		 */
1583 		pg_callback_set_defaults((pg_t *)pg);
1584 
1585 		/*
1586 		 * Update all the CPU lineages in each of PG's CPUs
1587 		 */
1588 		PG_CPU_ITR_INIT(pg, cpu_iter);
1589 		while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
1590 			pg_cmt_t	*cpu_pg;
1591 			group_iter_t	liter;	/* Iterator for the lineage */
1592 			cpu_pg_t	*cpd;	/* CPU's PG data */
1593 
1594 			/*
1595 			 * The CPU's lineage is under construction still
1596 			 * references the bootstrap CPU PG data structure.
1597 			 */
1598 			if (pg_cpu_is_bootstrapped(cpu))
1599 				cpd = pgdata;
1600 			else
1601 				cpd = cpu->cpu_pg;
1602 
1603 			/*
1604 			 * Iterate over the CPU's PGs updating the children
1605 			 * of the PG being promoted, since they have a new
1606 			 * parent and siblings set.
1607 			 */
1608 			group_iter_init(&liter);
1609 			while ((cpu_pg = group_iterate(&cpd->pgs,
1610 			    &liter)) != NULL) {
1611 				if (cpu_pg->cmt_parent == pg) {
1612 					cpu_pg->cmt_parent = pg->cmt_parent;
1613 					cpu_pg->cmt_siblings = pg->cmt_siblings;
1614 				}
1615 			}
1616 
1617 			/*
1618 			 * Update the CPU's lineages
1619 			 *
1620 			 * Remove the PG from the CPU's group used for CMT
1621 			 * scheduling.
1622 			 */
1623 			(void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE);
1624 		}
1625 	}
1626 	start_cpus();
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Disable CMT scheduling
1632  */
1633 static void
1634 pg_cmt_disable(void)
1635 {
1636 	cpu_t		*cpu;
1637 
1638 	ASSERT(MUTEX_HELD(&cpu_lock));
1639 
1640 	pause_cpus(NULL);
1641 	cpu = cpu_list;
1642 
1643 	do {
1644 		if (cpu->cpu_pg)
1645 			group_empty(&cpu->cpu_pg->cmt_pgs);
1646 	} while ((cpu = cpu->cpu_next) != cpu_list);
1647 
1648 	cmt_sched_disabled = 1;
1649 	start_cpus();
1650 	cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable");
1651 }
1652 
1653 /*
1654  * CMT lineage validation
1655  *
1656  * This routine is invoked by pg_cmt_cpu_init() to validate the integrity
1657  * of the PGs in a CPU's lineage. This is necessary because it's possible that
1658  * some groupings (power domain groupings in particular) may be defined by
1659  * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be
1660  * possible to integrate those groupings into the CMT PG hierarchy, if doing
1661  * so would violate the subset invariant of the hierarchy, which says that
1662  * a PG must be subset of its parent (if it has one).
1663  *
1664  * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that
1665  * would result in a violation of this invariant. If a violation is found,
1666  * and the PG is of a grouping type who's definition is known to originate from
1667  * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the
1668  * PG (and all other instances PG's sharing relationship type) from the
1669  * hierarchy. Further, future instances of that sharing relationship type won't
1670  * be instantiated. If the grouping definition doesn't originate from suspect
1671  * sources, then pg_cmt_disable() will be invoked to log an error, and disable
1672  * CMT scheduling altogether.
1673  *
1674  * This routine is invoked after the CPU has been added to the PGs in which
1675  * it belongs, but before those PGs have been added to (or had their place
1676  * adjusted in) the CMT PG hierarchy.
1677  *
1678  * The first argument is the CPUs PG lineage (essentially an array of PGs in
1679  * which the CPU belongs) that has already been sorted in ascending order
1680  * by CPU count. Some of the PGs in the CPUs lineage may already have other
1681  * CPUs in them, and have already been integrated into the CMT hierarchy.
1682  *
1683  * The addition of this new CPU to these pre-existing PGs means that those
1684  * PGs may need to be promoted up in the hierarchy to satisfy the subset
1685  * invariant. In additon to testing the subset invariant for the lineage,
1686  * this routine also verifies that the addition of the new CPU to the
1687  * existing PGs wouldn't cause the subset invariant to be violated in
1688  * the exiting lineages.
1689  *
1690  * This routine will normally return one of the following:
1691  * CMT_LINEAGE_VALID - There were no problems detected with the lineage.
1692  * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning.
1693  *
1694  * Otherwise, this routine will return a value indicating which error it
1695  * was unable to recover from (and set cmt_lineage_status along the way).
1696  *
1697  *
1698  * This routine operates on the CPU specific processor group data (for the CPU
1699  * whose lineage is being validated), which is under-construction.
1700  * "pgdata" is a reference to the CPU's under-construction PG data.
1701  * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg.
1702  */
1703 static cmt_lineage_validation_t
1704 pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
1705 {
1706 	int		i, j, size;
1707 	pg_cmt_t	*pg, *pg_next, *pg_bad, *pg_tmp;
1708 	cpu_t		*cp;
1709 	pg_cpu_itr_t	cpu_iter;
1710 	lgrp_handle_t	lgrp;
1711 
1712 	ASSERT(MUTEX_HELD(&cpu_lock));
1713 
1714 revalidate:
1715 	size = *sz;
1716 	pg_bad = NULL;
1717 	lgrp = LGRP_NULL_HANDLE;
1718 	for (i = 0; i < size; i++) {
1719 
1720 		pg = lineage[i];
1721 		if (i < size - 1)
1722 			pg_next = lineage[i + 1];
1723 		else
1724 			pg_next = NULL;
1725 
1726 		/*
1727 		 * We assume that the lineage has already been sorted
1728 		 * by the number of CPUs. In fact, we depend on it.
1729 		 */
1730 		ASSERT(pg_next == NULL ||
1731 		    (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next)));
1732 
1733 		/*
1734 		 * Check to make sure that the existing parent of PG (if any)
1735 		 * is either in the PG's lineage, or the PG has more CPUs than
1736 		 * its existing parent and can and should be promoted above its
1737 		 * parent.
1738 		 *
1739 		 * Since the PG topology is in the middle of being changed, we
1740 		 * need to check whether the PG's existing parent (if any) is
1741 		 * part of its lineage (and therefore should contain the new
1742 		 * CPU). If not, it means that the addition of the new CPU
1743 		 * should have made this PG have more CPUs than its parent, and
1744 		 * this PG should be promoted to be above its existing parent
1745 		 * now. We need to verify all of this to defend against a buggy
1746 		 * BIOS giving bad power domain CPU groupings. Sigh.
1747 		 */
1748 		if (pg->cmt_parent) {
1749 			/*
1750 			 * Determine if cmt_parent is in this lineage
1751 			 */
1752 			for (j = 0; j < size; j++) {
1753 				pg_tmp = lineage[j];
1754 				if (pg_tmp == pg->cmt_parent)
1755 					break;
1756 			}
1757 			if (pg_tmp != pg->cmt_parent) {
1758 				/*
1759 				 * cmt_parent is not in the lineage, verify
1760 				 * it is a proper subset of PG.
1761 				 */
1762 				if (PG_NUM_CPUS((pg_t *)pg->cmt_parent) >=
1763 				    PG_NUM_CPUS((pg_t *)pg)) {
1764 					/*
1765 					 * Not a proper subset if pg has less
1766 					 * CPUs than cmt_parent...
1767 					 */
1768 					cmt_lineage_status =
1769 					    CMT_LINEAGE_NON_PROMOTABLE;
1770 					goto handle_error;
1771 				}
1772 			}
1773 		}
1774 
1775 		/*
1776 		 * Walk each of the CPUs in the PGs group and perform
1777 		 * consistency checks along the way.
1778 		 */
1779 		PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter);
1780 		while ((cp = pg_cpu_next(&cpu_iter)) != NULL) {
1781 			/*
1782 			 * Verify that there aren't any CPUs contained in PG
1783 			 * that the next PG in the lineage (which is larger
1784 			 * or same size) doesn't also contain.
1785 			 */
1786 			if (pg_next != NULL &&
1787 			    pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) {
1788 				cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC;
1789 				goto handle_error;
1790 			}
1791 
1792 			/*
1793 			 * Verify that all the CPUs in the PG are in the same
1794 			 * lgroup.
1795 			 */
1796 			if (lgrp == LGRP_NULL_HANDLE) {
1797 				lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id);
1798 			} else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) {
1799 				cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS;
1800 				goto handle_error;
1801 			}
1802 		}
1803 	}
1804 
1805 handle_error:
1806 	/*
1807 	 * Some of these validation errors can result when the CPU grouping
1808 	 * information is derived from buggy sources (for example, incorrect
1809 	 * ACPI tables on x86 systems).
1810 	 *
1811 	 * We'll try to recover in such cases by pruning out the illegal
1812 	 * groupings from the PG hierarchy, which means that we won't optimize
1813 	 * for those levels, but we will for the remaining ones.
1814 	 */
1815 	switch (cmt_lineage_status) {
1816 	case CMT_LINEAGE_VALID:
1817 	case CMT_LINEAGE_REPAIRED:
1818 		break;
1819 	case CMT_LINEAGE_PG_SPANS_LGRPS:
1820 		/*
1821 		 * We've detected a PG whose CPUs span lgroups.
1822 		 *
1823 		 * This isn't supported, as the dispatcher isn't allowed to
1824 		 * to do CMT thread placement across lgroups, as this would
1825 		 * conflict with policies implementing MPO thread affinity.
1826 		 *
1827 		 * If the PG is of a sharing relationship type known to
1828 		 * legitimately span lgroups, specify that no CMT thread
1829 		 * placement policy should be implemented, and prune the PG
1830 		 * from the existing CMT PG hierarchy.
1831 		 *
1832 		 * Otherwise, fall though to the case below for handling.
1833 		 */
1834 		if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) {
1835 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1836 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1837 				goto revalidate;
1838 			}
1839 		}
1840 		/*LINTED*/
1841 	case CMT_LINEAGE_NON_PROMOTABLE:
1842 		/*
1843 		 * We've detected a PG that already exists in another CPU's
1844 		 * lineage that cannot cannot legally be promoted into place
1845 		 * without breaking the invariants of the hierarchy.
1846 		 */
1847 		if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
1848 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1849 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1850 				goto revalidate;
1851 			}
1852 		}
1853 		/*
1854 		 * Something went wrong trying to prune out the bad level.
1855 		 * Disable CMT scheduling altogether.
1856 		 */
1857 		pg_cmt_disable();
1858 		break;
1859 	case CMT_LINEAGE_NON_CONCENTRIC:
1860 		/*
1861 		 * We've detected a non-concentric PG lineage, which means that
1862 		 * there's a PG in the lineage that has CPUs that the next PG
1863 		 * over in the lineage (which is the same size or larger)
1864 		 * doesn't have.
1865 		 *
1866 		 * In this case, we examine the two PGs to see if either
1867 		 * grouping is defined by potentially buggy sources.
1868 		 *
1869 		 * If one has less CPUs than the other, and contains CPUs
1870 		 * not found in the parent, and it is an untrusted enumeration,
1871 		 * then prune it. If both have the same number of CPUs, then
1872 		 * prune the one that is untrusted.
1873 		 *
1874 		 * This process repeats until we have a concentric lineage,
1875 		 * or we would have to prune out level derived from what we
1876 		 * thought was a reliable source, in which case CMT scheduling
1877 		 * is disabled altogether.
1878 		 */
1879 		if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) &&
1880 		    (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) {
1881 			pg_bad = pg;
1882 		} else if (PG_NUM_CPUS((pg_t *)pg) ==
1883 		    PG_NUM_CPUS((pg_t *)pg_next)) {
1884 			if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) {
1885 				pg_bad = pg_next;
1886 			} else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
1887 				pg_bad = pg;
1888 			}
1889 		}
1890 		if (pg_bad) {
1891 			if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) {
1892 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1893 				goto revalidate;
1894 			}
1895 		}
1896 		/*
1897 		 * Something went wrong trying to identify and/or prune out
1898 		 * the bad level. Disable CMT scheduling altogether.
1899 		 */
1900 		pg_cmt_disable();
1901 		break;
1902 	default:
1903 		/*
1904 		 * If we're here, we've encountered a validation error for
1905 		 * which we don't know how to recover. In this case, disable
1906 		 * CMT scheduling altogether.
1907 		 */
1908 		cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE;
1909 		pg_cmt_disable();
1910 	}
1911 	return (cmt_lineage_status);
1912 }
1913