xref: /illumos-gate/usr/src/uts/common/crypto/io/aes.c (revision 17a5fa85fe0c34b1146222e40a80b42f2aae8500)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright 2018, Joyent, Inc.
25  */
26 
27 /*
28  * AES provider for the Kernel Cryptographic Framework (KCF)
29  */
30 
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/modctl.h>
34 #include <sys/cmn_err.h>
35 #include <sys/ddi.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/impl.h>
38 #include <sys/crypto/spi.h>
39 #include <sys/sysmacros.h>
40 #include <sys/strsun.h>
41 #include <modes/modes.h>
42 #define	_AES_IMPL
43 #include <aes/aes_impl.h>
44 
45 extern struct mod_ops mod_cryptoops;
46 
47 /*
48  * Module linkage information for the kernel.
49  */
50 static struct modlcrypto modlcrypto = {
51 	&mod_cryptoops,
52 	"AES Kernel SW Provider"
53 };
54 
55 static struct modlinkage modlinkage = {
56 	MODREV_1,
57 	(void *)&modlcrypto,
58 	NULL
59 };
60 
61 /*
62  * Mechanism info structure passed to KCF during registration.
63  */
64 static crypto_mech_info_t aes_mech_info_tab[] = {
65 	/* AES_ECB */
66 	{SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE,
67 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
68 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
69 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
70 	/* AES_CBC */
71 	{SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE,
72 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
73 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
74 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
75 	/* AES_CMAC */
76 	{SUN_CKM_AES_CMAC, AES_CMAC_MECH_INFO_TYPE,
77 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
78 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC |
79 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
80 	/* AES_CTR */
81 	{SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE,
82 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
83 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
84 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
85 	/* AES_CCM */
86 	{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
87 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
88 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
89 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
90 	/* AES_GCM */
91 	{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
92 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
93 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
94 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
95 	/* AES_GMAC */
96 	{SUN_CKM_AES_GMAC, AES_GMAC_MECH_INFO_TYPE,
97 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
98 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC |
99 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC |
100 	    CRYPTO_FG_SIGN | CRYPTO_FG_SIGN_ATOMIC |
101 	    CRYPTO_FG_VERIFY | CRYPTO_FG_VERIFY_ATOMIC,
102 	    AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES}
103 };
104 
105 /* operations are in-place if the output buffer is NULL */
106 #define	AES_ARG_INPLACE(input, output)				\
107 	if ((output) == NULL)					\
108 		(output) = (input);
109 
110 static void aes_provider_status(crypto_provider_handle_t, uint_t *);
111 
112 static crypto_control_ops_t aes_control_ops = {
113 	aes_provider_status
114 };
115 
116 static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
117     crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
118 static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
119     crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
120 static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
121     crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t, boolean_t);
122 static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
123     crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
124 static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *,
125     crypto_req_handle_t);
126 static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *,
127     crypto_req_handle_t);
128 
129 static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
130     crypto_req_handle_t);
131 static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
132     crypto_data_t *, crypto_req_handle_t);
133 static int aes_encrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
134     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
135     crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
136 
137 static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
138     crypto_req_handle_t);
139 static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
140     crypto_data_t *, crypto_req_handle_t);
141 static int aes_decrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
142     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
143     crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
144 
145 static crypto_cipher_ops_t aes_cipher_ops = {
146 	aes_encrypt_init,
147 	aes_encrypt,
148 	aes_encrypt_update,
149 	aes_encrypt_final,
150 	aes_encrypt_atomic,
151 	aes_decrypt_init,
152 	aes_decrypt,
153 	aes_decrypt_update,
154 	aes_decrypt_final,
155 	aes_decrypt_atomic
156 };
157 
158 static int aes_mac_init(crypto_ctx_t *, crypto_mechanism_t *,
159     crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
160 static int aes_mac(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
161     crypto_req_handle_t);
162 static int aes_mac_update(crypto_ctx_t *, crypto_data_t *,
163     crypto_req_handle_t);
164 static int aes_mac_final(crypto_ctx_t *, crypto_data_t *,
165     crypto_req_handle_t);
166 static int aes_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
167     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
168     crypto_spi_ctx_template_t, crypto_req_handle_t);
169 static int aes_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
170     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
171     crypto_spi_ctx_template_t, crypto_req_handle_t);
172 
173 static crypto_mac_ops_t aes_mac_ops = {
174 	aes_mac_init,
175 	aes_mac,
176 	aes_mac_update,
177 	aes_mac_final,
178 	aes_mac_atomic,
179 	aes_mac_verify_atomic
180 };
181 
182 static int aes_create_ctx_template(crypto_provider_handle_t,
183     crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
184     size_t *, crypto_req_handle_t);
185 static int aes_free_context(crypto_ctx_t *);
186 
187 static crypto_ctx_ops_t aes_ctx_ops = {
188 	aes_create_ctx_template,
189 	aes_free_context
190 };
191 
192 static crypto_ops_t aes_crypto_ops = {
193 	&aes_control_ops,
194 	NULL,
195 	&aes_cipher_ops,
196 	&aes_mac_ops,
197 	NULL,
198 	NULL,
199 	NULL,
200 	NULL,
201 	NULL,
202 	NULL,
203 	NULL,
204 	NULL,
205 	NULL,
206 	&aes_ctx_ops,
207 	NULL,
208 	NULL,
209 	NULL,
210 };
211 
212 static crypto_provider_info_t aes_prov_info = {
213 	CRYPTO_SPI_VERSION_4,
214 	"AES Software Provider",
215 	CRYPTO_SW_PROVIDER,
216 	{&modlinkage},
217 	NULL,
218 	&aes_crypto_ops,
219 	sizeof (aes_mech_info_tab)/sizeof (crypto_mech_info_t),
220 	aes_mech_info_tab
221 };
222 
223 static crypto_kcf_provider_handle_t aes_prov_handle = 0;
224 static crypto_data_t null_crypto_data = { CRYPTO_DATA_RAW };
225 
226 int
227 _init(void)
228 {
229 	int ret;
230 
231 	if ((ret = mod_install(&modlinkage)) != 0)
232 		return (ret);
233 
234 	/* Register with KCF.  If the registration fails, remove the module. */
235 	if (crypto_register_provider(&aes_prov_info, &aes_prov_handle)) {
236 		(void) mod_remove(&modlinkage);
237 		return (EACCES);
238 	}
239 
240 	return (0);
241 }
242 
243 int
244 _fini(void)
245 {
246 	/* Unregister from KCF if module is registered */
247 	if (aes_prov_handle != 0) {
248 		if (crypto_unregister_provider(aes_prov_handle))
249 			return (EBUSY);
250 
251 		aes_prov_handle = 0;
252 	}
253 
254 	return (mod_remove(&modlinkage));
255 }
256 
257 int
258 _info(struct modinfo *modinfop)
259 {
260 	return (mod_info(&modlinkage, modinfop));
261 }
262 
263 
264 static int
265 aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx, int kmflag)
266 {
267 	void *p = NULL;
268 	boolean_t param_required = B_TRUE;
269 	size_t param_len;
270 	void *(*alloc_fun)(int);
271 	int rv = CRYPTO_SUCCESS;
272 
273 	switch (mechanism->cm_type) {
274 	case AES_ECB_MECH_INFO_TYPE:
275 		param_required = B_FALSE;
276 		alloc_fun = ecb_alloc_ctx;
277 		break;
278 	case AES_CBC_MECH_INFO_TYPE:
279 		param_len = AES_BLOCK_LEN;
280 		alloc_fun = cbc_alloc_ctx;
281 		break;
282 	case AES_CMAC_MECH_INFO_TYPE:
283 		param_required = B_FALSE;
284 		alloc_fun = cmac_alloc_ctx;
285 		break;
286 	case AES_CTR_MECH_INFO_TYPE:
287 		param_len = sizeof (CK_AES_CTR_PARAMS);
288 		alloc_fun = ctr_alloc_ctx;
289 		break;
290 	case AES_CCM_MECH_INFO_TYPE:
291 		param_len = sizeof (CK_AES_CCM_PARAMS);
292 		alloc_fun = ccm_alloc_ctx;
293 		break;
294 	case AES_GCM_MECH_INFO_TYPE:
295 		param_len = sizeof (CK_AES_GCM_PARAMS);
296 		alloc_fun = gcm_alloc_ctx;
297 		break;
298 	case AES_GMAC_MECH_INFO_TYPE:
299 		param_len = sizeof (CK_AES_GMAC_PARAMS);
300 		alloc_fun = gmac_alloc_ctx;
301 		break;
302 	default:
303 		rv = CRYPTO_MECHANISM_INVALID;
304 		return (rv);
305 	}
306 	if (param_required && mechanism->cm_param != NULL &&
307 	    mechanism->cm_param_len != param_len) {
308 		rv = CRYPTO_MECHANISM_PARAM_INVALID;
309 	}
310 	if (ctx != NULL) {
311 		p = (alloc_fun)(kmflag);
312 		*ctx = p;
313 	}
314 	return (rv);
315 }
316 
317 /*
318  * Initialize key schedules for AES
319  */
320 static int
321 init_keysched(crypto_key_t *key, void *newbie)
322 {
323 	/*
324 	 * Only keys by value are supported by this module.
325 	 */
326 	switch (key->ck_format) {
327 	case CRYPTO_KEY_RAW:
328 		if (key->ck_length < AES_MINBITS ||
329 		    key->ck_length > AES_MAXBITS) {
330 			return (CRYPTO_KEY_SIZE_RANGE);
331 		}
332 
333 		/* key length must be either 128, 192, or 256 */
334 		if ((key->ck_length & 63) != 0)
335 			return (CRYPTO_KEY_SIZE_RANGE);
336 		break;
337 	default:
338 		return (CRYPTO_KEY_TYPE_INCONSISTENT);
339 	}
340 
341 	aes_init_keysched(key->ck_data, key->ck_length, newbie);
342 	return (CRYPTO_SUCCESS);
343 }
344 
345 /*
346  * KCF software provider control entry points.
347  */
348 /* ARGSUSED */
349 static void
350 aes_provider_status(crypto_provider_handle_t provider, uint_t *status)
351 {
352 	*status = CRYPTO_PROVIDER_READY;
353 }
354 
355 static int
356 aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
357     crypto_key_t *key, crypto_spi_ctx_template_t template,
358     crypto_req_handle_t req)
359 {
360 	return (aes_common_init(ctx, mechanism, key, template, req, B_TRUE));
361 }
362 
363 static int
364 aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
365     crypto_key_t *key, crypto_spi_ctx_template_t template,
366     crypto_req_handle_t req)
367 {
368 	return (aes_common_init(ctx, mechanism, key, template, req, B_FALSE));
369 }
370 
371 
372 
373 /*
374  * KCF software provider encrypt entry points.
375  */
376 static int
377 aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
378     crypto_key_t *key, crypto_spi_ctx_template_t template,
379     crypto_req_handle_t req, boolean_t is_encrypt_init)
380 {
381 	aes_ctx_t *aes_ctx;
382 	int rv;
383 	int kmflag;
384 
385 	/*
386 	 * Only keys by value are supported by this module.
387 	 */
388 	if (key->ck_format != CRYPTO_KEY_RAW) {
389 		return (CRYPTO_KEY_TYPE_INCONSISTENT);
390 	}
391 
392 	kmflag = crypto_kmflag(req);
393 	if ((rv = aes_check_mech_param(mechanism, &aes_ctx, kmflag))
394 	    != CRYPTO_SUCCESS)
395 		return (rv);
396 
397 	rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, kmflag,
398 	    is_encrypt_init);
399 	if (rv != CRYPTO_SUCCESS) {
400 		crypto_free_mode_ctx(aes_ctx);
401 		return (rv);
402 	}
403 
404 	ctx->cc_provider_private = aes_ctx;
405 
406 	return (CRYPTO_SUCCESS);
407 }
408 
409 static int
410 aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
411     crypto_data_t *ciphertext, crypto_req_handle_t req)
412 {
413 	int ret = CRYPTO_FAILED;
414 
415 	aes_ctx_t *aes_ctx;
416 	size_t saved_length, saved_offset, length_needed;
417 
418 	ASSERT(ctx->cc_provider_private != NULL);
419 	aes_ctx = ctx->cc_provider_private;
420 
421 	/*
422 	 * For block ciphers, plaintext must be a multiple of AES block size.
423 	 * This test is only valid for ciphers whose blocksize is a power of 2.
424 	 */
425 	if (((aes_ctx->ac_flags & (CMAC_MODE|CTR_MODE|CCM_MODE|
426 	    GCM_MODE|GMAC_MODE)) == 0) &&
427 	    (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
428 		return (CRYPTO_DATA_LEN_RANGE);
429 
430 	AES_ARG_INPLACE(plaintext, ciphertext);
431 
432 	/*
433 	 * We need to just return the length needed to store the output.
434 	 * We should not destroy the context for the following case.
435 	 */
436 	switch (aes_ctx->ac_flags & (CMAC_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) {
437 	case CCM_MODE:
438 		length_needed = plaintext->cd_length + aes_ctx->ac_mac_len;
439 		break;
440 	case GCM_MODE:
441 		length_needed = plaintext->cd_length + aes_ctx->ac_tag_len;
442 		break;
443 	case CMAC_MODE:
444 		length_needed = AES_BLOCK_LEN;
445 		break;
446 	case GMAC_MODE:
447 		if (plaintext->cd_length != 0)
448 			return (CRYPTO_ARGUMENTS_BAD);
449 
450 		length_needed = aes_ctx->ac_tag_len;
451 		break;
452 	default:
453 		length_needed = plaintext->cd_length;
454 	}
455 
456 	if (ciphertext->cd_length < length_needed) {
457 		ciphertext->cd_length = length_needed;
458 		return (CRYPTO_BUFFER_TOO_SMALL);
459 	}
460 
461 	saved_length = ciphertext->cd_length;
462 	saved_offset = ciphertext->cd_offset;
463 
464 	/*
465 	 * Do an update on the specified input data.
466 	 */
467 	ret = aes_encrypt_update(ctx, plaintext, ciphertext, req);
468 	if (ret != CRYPTO_SUCCESS) {
469 		return (ret);
470 	}
471 
472 	/*
473 	 * For CCM mode, aes_ccm_encrypt_final() will take care of any
474 	 * left-over unprocessed data, and compute the MAC
475 	 */
476 	if (aes_ctx->ac_flags & CCM_MODE) {
477 		/*
478 		 * ccm_encrypt_final() will compute the MAC and append
479 		 * it to existing ciphertext. So, need to adjust the left over
480 		 * length value accordingly
481 		 */
482 
483 		/* order of following 2 lines MUST not be reversed */
484 		ciphertext->cd_offset = ciphertext->cd_length;
485 		ciphertext->cd_length = saved_length - ciphertext->cd_length;
486 		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext,
487 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
488 		if (ret != CRYPTO_SUCCESS) {
489 			return (ret);
490 		}
491 
492 		if (plaintext != ciphertext) {
493 			ciphertext->cd_length =
494 			    ciphertext->cd_offset - saved_offset;
495 		}
496 		ciphertext->cd_offset = saved_offset;
497 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
498 		/*
499 		 * gcm_encrypt_final() will compute the MAC and append
500 		 * it to existing ciphertext. So, need to adjust the left over
501 		 * length value accordingly
502 		 */
503 
504 		/* order of following 2 lines MUST not be reversed */
505 		ciphertext->cd_offset = ciphertext->cd_length;
506 		ciphertext->cd_length = saved_length - ciphertext->cd_length;
507 		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext,
508 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
509 		    aes_xor_block);
510 		if (ret != CRYPTO_SUCCESS) {
511 			return (ret);
512 		}
513 
514 		if (plaintext != ciphertext) {
515 			ciphertext->cd_length =
516 			    ciphertext->cd_offset - saved_offset;
517 		}
518 		ciphertext->cd_offset = saved_offset;
519 	} else if (aes_ctx->ac_flags & CMAC_MODE) {
520 		/* cmac_update doesn't store data */
521 		ciphertext->cd_length = saved_length;
522 		ret = cmac_mode_final((cbc_ctx_t *)aes_ctx, ciphertext,
523 		    aes_encrypt_block, aes_xor_block);
524 		aes_ctx->ac_remainder_len = 0;
525 	}
526 
527 	ASSERT(aes_ctx->ac_remainder_len == 0);
528 	(void) aes_free_context(ctx);
529 
530 	return (ret);
531 }
532 
533 
534 static int
535 aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
536     crypto_data_t *plaintext, crypto_req_handle_t req)
537 {
538 	int ret = CRYPTO_FAILED;
539 
540 	aes_ctx_t *aes_ctx;
541 	off_t saved_offset;
542 	size_t saved_length, length_needed;
543 
544 	ASSERT(ctx->cc_provider_private != NULL);
545 	aes_ctx = ctx->cc_provider_private;
546 
547 	/*
548 	 * For block ciphers, plaintext must be a multiple of AES block size.
549 	 * This test is only valid for ciphers whose blocksize is a power of 2.
550 	 */
551 	if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
552 	    == 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) {
553 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
554 	}
555 
556 	AES_ARG_INPLACE(ciphertext, plaintext);
557 
558 	/*
559 	 * Return length needed to store the output.
560 	 * Do not destroy context when plaintext buffer is too small.
561 	 *
562 	 * CCM:  plaintext is MAC len smaller than cipher text
563 	 * GCM:  plaintext is TAG len smaller than cipher text
564 	 * GMAC: plaintext length must be zero
565 	 */
566 	switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
567 	case CCM_MODE:
568 		length_needed = aes_ctx->ac_processed_data_len;
569 		break;
570 	case GCM_MODE:
571 		length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len;
572 		break;
573 	case GMAC_MODE:
574 		if (plaintext->cd_length != 0)
575 			return (CRYPTO_ARGUMENTS_BAD);
576 
577 		length_needed = 0;
578 		break;
579 	default:
580 		length_needed = ciphertext->cd_length;
581 	}
582 
583 	if (plaintext->cd_length < length_needed) {
584 		plaintext->cd_length = length_needed;
585 		return (CRYPTO_BUFFER_TOO_SMALL);
586 	}
587 
588 	saved_offset = plaintext->cd_offset;
589 	saved_length = plaintext->cd_length;
590 
591 	/*
592 	 * Do an update on the specified input data.
593 	 */
594 	ret = aes_decrypt_update(ctx, ciphertext, plaintext, req);
595 	if (ret != CRYPTO_SUCCESS) {
596 		goto cleanup;
597 	}
598 
599 	if (aes_ctx->ac_flags & CCM_MODE) {
600 		ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len);
601 		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
602 
603 		/* order of following 2 lines MUST not be reversed */
604 		plaintext->cd_offset = plaintext->cd_length;
605 		plaintext->cd_length = saved_length - plaintext->cd_length;
606 
607 		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext,
608 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
609 		    aes_xor_block);
610 		if (ret == CRYPTO_SUCCESS) {
611 			if (plaintext != ciphertext) {
612 				plaintext->cd_length =
613 				    plaintext->cd_offset - saved_offset;
614 			}
615 		} else {
616 			plaintext->cd_length = saved_length;
617 		}
618 
619 		plaintext->cd_offset = saved_offset;
620 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
621 		/* order of following 2 lines MUST not be reversed */
622 		plaintext->cd_offset = plaintext->cd_length;
623 		plaintext->cd_length = saved_length - plaintext->cd_length;
624 
625 		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext,
626 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
627 		if (ret == CRYPTO_SUCCESS) {
628 			if (plaintext != ciphertext) {
629 				plaintext->cd_length =
630 				    plaintext->cd_offset - saved_offset;
631 			}
632 		} else {
633 			plaintext->cd_length = saved_length;
634 		}
635 
636 		plaintext->cd_offset = saved_offset;
637 	}
638 
639 	ASSERT(aes_ctx->ac_remainder_len == 0);
640 
641 cleanup:
642 	(void) aes_free_context(ctx);
643 
644 	return (ret);
645 }
646 
647 
648 /* ARGSUSED */
649 static int
650 aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
651     crypto_data_t *ciphertext, crypto_req_handle_t req)
652 {
653 	off_t saved_offset;
654 	size_t saved_length, out_len;
655 	int ret = CRYPTO_SUCCESS;
656 	aes_ctx_t *aes_ctx;
657 
658 	ASSERT(ctx->cc_provider_private != NULL);
659 	aes_ctx = ctx->cc_provider_private;
660 
661 	AES_ARG_INPLACE(plaintext, ciphertext);
662 
663 	/* compute number of bytes that will hold the ciphertext */
664 	out_len = aes_ctx->ac_remainder_len;
665 	out_len += plaintext->cd_length;
666 	out_len &= ~(AES_BLOCK_LEN - 1);
667 
668 	/*
669 	 * return length needed to store the output.
670 	 * CMAC stores its output in a local buffer until *_final.
671 	 */
672 	if ((aes_ctx->ac_flags & CMAC_MODE) == 0 &&
673 	    ciphertext->cd_length < out_len) {
674 		ciphertext->cd_length = out_len;
675 		return (CRYPTO_BUFFER_TOO_SMALL);
676 	}
677 
678 	saved_offset = ciphertext->cd_offset;
679 	saved_length = ciphertext->cd_length;
680 
681 	/*
682 	 * Do the AES update on the specified input data.
683 	 */
684 	switch (plaintext->cd_format) {
685 	case CRYPTO_DATA_RAW:
686 		ret = crypto_update_iov(ctx->cc_provider_private,
687 		    plaintext, ciphertext, aes_encrypt_contiguous_blocks,
688 		    aes_copy_block64);
689 		break;
690 	case CRYPTO_DATA_UIO:
691 		ret = crypto_update_uio(ctx->cc_provider_private,
692 		    plaintext, ciphertext, aes_encrypt_contiguous_blocks,
693 		    aes_copy_block64);
694 		break;
695 	case CRYPTO_DATA_MBLK:
696 		ret = crypto_update_mp(ctx->cc_provider_private,
697 		    plaintext, ciphertext, aes_encrypt_contiguous_blocks,
698 		    aes_copy_block64);
699 		break;
700 	default:
701 		ret = CRYPTO_ARGUMENTS_BAD;
702 	}
703 
704 	/*
705 	 * Since AES counter mode is a stream cipher, we call
706 	 * ctr_mode_final() to pick up any remaining bytes.
707 	 * It is an internal function that does not destroy
708 	 * the context like *normal* final routines.
709 	 */
710 	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
711 		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx,
712 		    ciphertext, aes_encrypt_block);
713 	}
714 
715 	if (ret == CRYPTO_SUCCESS) {
716 		if (plaintext != ciphertext)
717 			ciphertext->cd_length =
718 			    ciphertext->cd_offset - saved_offset;
719 	} else {
720 		ciphertext->cd_length = saved_length;
721 	}
722 	ciphertext->cd_offset = saved_offset;
723 
724 	return (ret);
725 }
726 
727 
728 static int
729 aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
730     crypto_data_t *plaintext, crypto_req_handle_t req)
731 {
732 	off_t saved_offset;
733 	size_t saved_length, out_len;
734 	int ret = CRYPTO_SUCCESS;
735 	aes_ctx_t *aes_ctx;
736 
737 	ASSERT(ctx->cc_provider_private != NULL);
738 	aes_ctx = ctx->cc_provider_private;
739 
740 	AES_ARG_INPLACE(ciphertext, plaintext);
741 
742 	/*
743 	 * Compute number of bytes that will hold the plaintext.
744 	 * This is not necessary for CCM, GCM, and GMAC since these
745 	 * mechanisms never return plaintext for update operations.
746 	 */
747 	if ((aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
748 		out_len = aes_ctx->ac_remainder_len;
749 		out_len += ciphertext->cd_length;
750 		out_len &= ~(AES_BLOCK_LEN - 1);
751 
752 		/* return length needed to store the output */
753 		if (plaintext->cd_length < out_len) {
754 			plaintext->cd_length = out_len;
755 			return (CRYPTO_BUFFER_TOO_SMALL);
756 		}
757 	}
758 
759 	saved_offset = plaintext->cd_offset;
760 	saved_length = plaintext->cd_length;
761 
762 	if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE))
763 		gcm_set_kmflag((gcm_ctx_t *)aes_ctx, crypto_kmflag(req));
764 
765 	/*
766 	 * Do the AES update on the specified input data.
767 	 */
768 	switch (ciphertext->cd_format) {
769 	case CRYPTO_DATA_RAW:
770 		ret = crypto_update_iov(ctx->cc_provider_private,
771 		    ciphertext, plaintext, aes_decrypt_contiguous_blocks,
772 		    aes_copy_block64);
773 		break;
774 	case CRYPTO_DATA_UIO:
775 		ret = crypto_update_uio(ctx->cc_provider_private,
776 		    ciphertext, plaintext, aes_decrypt_contiguous_blocks,
777 		    aes_copy_block64);
778 		break;
779 	case CRYPTO_DATA_MBLK:
780 		ret = crypto_update_mp(ctx->cc_provider_private,
781 		    ciphertext, plaintext, aes_decrypt_contiguous_blocks,
782 		    aes_copy_block64);
783 		break;
784 	default:
785 		ret = CRYPTO_ARGUMENTS_BAD;
786 	}
787 
788 	/*
789 	 * Since AES counter mode is a stream cipher, we call
790 	 * ctr_mode_final() to pick up any remaining bytes.
791 	 * It is an internal function that does not destroy
792 	 * the context like *normal* final routines.
793 	 */
794 	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
795 		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, plaintext,
796 		    aes_encrypt_block);
797 		if (ret == CRYPTO_DATA_LEN_RANGE)
798 			ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
799 	}
800 
801 	if (ret == CRYPTO_SUCCESS) {
802 		if (ciphertext != plaintext)
803 			plaintext->cd_length =
804 			    plaintext->cd_offset - saved_offset;
805 	} else {
806 		plaintext->cd_length = saved_length;
807 	}
808 	plaintext->cd_offset = saved_offset;
809 
810 
811 	return (ret);
812 }
813 
814 /* ARGSUSED */
815 static int
816 aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
817     crypto_req_handle_t req)
818 {
819 	aes_ctx_t *aes_ctx;
820 	int ret;
821 
822 	ASSERT(ctx->cc_provider_private != NULL);
823 	aes_ctx = ctx->cc_provider_private;
824 
825 	if (data->cd_format != CRYPTO_DATA_RAW &&
826 	    data->cd_format != CRYPTO_DATA_UIO &&
827 	    data->cd_format != CRYPTO_DATA_MBLK) {
828 		return (CRYPTO_ARGUMENTS_BAD);
829 	}
830 
831 	if (aes_ctx->ac_flags & CTR_MODE) {
832 		if (aes_ctx->ac_remainder_len > 0) {
833 			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
834 			    aes_encrypt_block);
835 			if (ret != CRYPTO_SUCCESS)
836 				return (ret);
837 		}
838 	} else if (aes_ctx->ac_flags & CCM_MODE) {
839 		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data,
840 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
841 		if (ret != CRYPTO_SUCCESS) {
842 			return (ret);
843 		}
844 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
845 		size_t saved_offset = data->cd_offset;
846 
847 		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data,
848 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
849 		    aes_xor_block);
850 		if (ret != CRYPTO_SUCCESS) {
851 			return (ret);
852 		}
853 		data->cd_length = data->cd_offset - saved_offset;
854 		data->cd_offset = saved_offset;
855 	} else if (aes_ctx->ac_flags & CMAC_MODE) {
856 		ret = cmac_mode_final((cbc_ctx_t *)aes_ctx, data,
857 		    aes_encrypt_block, aes_xor_block);
858 		if (ret != CRYPTO_SUCCESS)
859 			return (ret);
860 		data->cd_length = AES_BLOCK_LEN;
861 	} else {
862 		/*
863 		 * There must be no unprocessed plaintext.
864 		 * This happens if the length of the last data is
865 		 * not a multiple of the AES block length.
866 		 */
867 		if (aes_ctx->ac_remainder_len > 0) {
868 			return (CRYPTO_DATA_LEN_RANGE);
869 		}
870 		data->cd_length = 0;
871 	}
872 
873 	(void) aes_free_context(ctx);
874 
875 	return (CRYPTO_SUCCESS);
876 }
877 
878 /* ARGSUSED */
879 static int
880 aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
881     crypto_req_handle_t req)
882 {
883 	aes_ctx_t *aes_ctx;
884 	int ret;
885 	off_t saved_offset;
886 	size_t saved_length;
887 
888 	ASSERT(ctx->cc_provider_private != NULL);
889 	aes_ctx = ctx->cc_provider_private;
890 
891 	if (data->cd_format != CRYPTO_DATA_RAW &&
892 	    data->cd_format != CRYPTO_DATA_UIO &&
893 	    data->cd_format != CRYPTO_DATA_MBLK) {
894 		return (CRYPTO_ARGUMENTS_BAD);
895 	}
896 
897 	/*
898 	 * There must be no unprocessed ciphertext.
899 	 * This happens if the length of the last ciphertext is
900 	 * not a multiple of the AES block length.
901 	 */
902 	if (aes_ctx->ac_remainder_len > 0) {
903 		if ((aes_ctx->ac_flags & CTR_MODE) == 0)
904 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
905 		else {
906 			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
907 			    aes_encrypt_block);
908 			if (ret == CRYPTO_DATA_LEN_RANGE)
909 				ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
910 			if (ret != CRYPTO_SUCCESS)
911 				return (ret);
912 		}
913 	}
914 
915 	if (aes_ctx->ac_flags & CCM_MODE) {
916 		/*
917 		 * This is where all the plaintext is returned, make sure
918 		 * the plaintext buffer is big enough
919 		 */
920 		size_t pt_len = aes_ctx->ac_data_len;
921 		if (data->cd_length < pt_len) {
922 			data->cd_length = pt_len;
923 			return (CRYPTO_BUFFER_TOO_SMALL);
924 		}
925 
926 		ASSERT(aes_ctx->ac_processed_data_len == pt_len);
927 		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
928 		saved_offset = data->cd_offset;
929 		saved_length = data->cd_length;
930 		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data,
931 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
932 		    aes_xor_block);
933 		if (ret == CRYPTO_SUCCESS) {
934 			data->cd_length = data->cd_offset - saved_offset;
935 		} else {
936 			data->cd_length = saved_length;
937 		}
938 
939 		data->cd_offset = saved_offset;
940 		if (ret != CRYPTO_SUCCESS) {
941 			return (ret);
942 		}
943 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
944 		/*
945 		 * This is where all the plaintext is returned, make sure
946 		 * the plaintext buffer is big enough
947 		 */
948 		gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx;
949 		size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
950 
951 		if (data->cd_length < pt_len) {
952 			data->cd_length = pt_len;
953 			return (CRYPTO_BUFFER_TOO_SMALL);
954 		}
955 
956 		saved_offset = data->cd_offset;
957 		saved_length = data->cd_length;
958 		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data,
959 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
960 		if (ret == CRYPTO_SUCCESS) {
961 			data->cd_length = data->cd_offset - saved_offset;
962 		} else {
963 			data->cd_length = saved_length;
964 		}
965 
966 		data->cd_offset = saved_offset;
967 		if (ret != CRYPTO_SUCCESS) {
968 			return (ret);
969 		}
970 	}
971 
972 
973 	if ((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
974 		data->cd_length = 0;
975 	}
976 
977 	(void) aes_free_context(ctx);
978 
979 	return (CRYPTO_SUCCESS);
980 }
981 
982 /* ARGSUSED */
983 static int
984 aes_encrypt_atomic(crypto_provider_handle_t provider,
985     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
986     crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
987     crypto_spi_ctx_template_t template, crypto_req_handle_t req)
988 {
989 	aes_ctx_t aes_ctx;	/* on the stack */
990 	off_t saved_offset;
991 	size_t saved_length;
992 	size_t length_needed;
993 	int ret;
994 
995 	AES_ARG_INPLACE(plaintext, ciphertext);
996 
997 	/*
998 	 * CTR, CCM, CMAC, GCM, and GMAC modes do not require that plaintext
999 	 * be a multiple of AES block size.
1000 	 */
1001 	switch (mechanism->cm_type) {
1002 	case AES_CTR_MECH_INFO_TYPE:
1003 	case AES_CCM_MECH_INFO_TYPE:
1004 	case AES_GCM_MECH_INFO_TYPE:
1005 	case AES_GMAC_MECH_INFO_TYPE:
1006 	case AES_CMAC_MECH_INFO_TYPE:
1007 		break;
1008 	default:
1009 		if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
1010 			return (CRYPTO_DATA_LEN_RANGE);
1011 	}
1012 
1013 	if ((ret = aes_check_mech_param(mechanism, NULL, 0)) != CRYPTO_SUCCESS)
1014 		return (ret);
1015 
1016 	bzero(&aes_ctx, sizeof (aes_ctx_t));
1017 
1018 	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
1019 	    crypto_kmflag(req), B_TRUE);
1020 	if (ret != CRYPTO_SUCCESS)
1021 		return (ret);
1022 
1023 	switch (mechanism->cm_type) {
1024 	case AES_CCM_MECH_INFO_TYPE:
1025 		length_needed = plaintext->cd_length + aes_ctx.ac_mac_len;
1026 		break;
1027 	case AES_GMAC_MECH_INFO_TYPE:
1028 		if (plaintext->cd_length != 0)
1029 			return (CRYPTO_ARGUMENTS_BAD);
1030 		/* FALLTHRU */
1031 	case AES_GCM_MECH_INFO_TYPE:
1032 		length_needed = plaintext->cd_length + aes_ctx.ac_tag_len;
1033 		break;
1034 	case AES_CMAC_MECH_INFO_TYPE:
1035 		length_needed = AES_BLOCK_LEN;
1036 		break;
1037 	default:
1038 		length_needed = plaintext->cd_length;
1039 	}
1040 
1041 	/* return size of buffer needed to store output */
1042 	if (ciphertext->cd_length < length_needed) {
1043 		ciphertext->cd_length = length_needed;
1044 		ret = CRYPTO_BUFFER_TOO_SMALL;
1045 		goto out;
1046 	}
1047 
1048 	saved_offset = ciphertext->cd_offset;
1049 	saved_length = ciphertext->cd_length;
1050 
1051 	/*
1052 	 * Do an update on the specified input data.
1053 	 */
1054 	switch (plaintext->cd_format) {
1055 	case CRYPTO_DATA_RAW:
1056 		ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext,
1057 		    aes_encrypt_contiguous_blocks, aes_copy_block64);
1058 		break;
1059 	case CRYPTO_DATA_UIO:
1060 		ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext,
1061 		    aes_encrypt_contiguous_blocks, aes_copy_block64);
1062 		break;
1063 	case CRYPTO_DATA_MBLK:
1064 		ret = crypto_update_mp(&aes_ctx, plaintext, ciphertext,
1065 		    aes_encrypt_contiguous_blocks, aes_copy_block64);
1066 		break;
1067 	default:
1068 		ret = CRYPTO_ARGUMENTS_BAD;
1069 	}
1070 
1071 	if (ret == CRYPTO_SUCCESS) {
1072 		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
1073 			ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx,
1074 			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
1075 			    aes_xor_block);
1076 			if (ret != CRYPTO_SUCCESS)
1077 				goto out;
1078 			ASSERT(aes_ctx.ac_remainder_len == 0);
1079 		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
1080 		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
1081 			ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx,
1082 			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
1083 			    aes_copy_block, aes_xor_block);
1084 			if (ret != CRYPTO_SUCCESS)
1085 				goto out;
1086 			ASSERT(aes_ctx.ac_remainder_len == 0);
1087 		} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
1088 			if (aes_ctx.ac_remainder_len > 0) {
1089 				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
1090 				    ciphertext, aes_encrypt_block);
1091 				if (ret != CRYPTO_SUCCESS)
1092 					goto out;
1093 			}
1094 		} else if (mechanism->cm_type == AES_CMAC_MECH_INFO_TYPE) {
1095 			ret = cmac_mode_final((cbc_ctx_t *)&aes_ctx,
1096 			    ciphertext, aes_encrypt_block,
1097 			    aes_xor_block);
1098 			if (ret != CRYPTO_SUCCESS)
1099 				goto out;
1100 		} else {
1101 			ASSERT(aes_ctx.ac_remainder_len == 0);
1102 		}
1103 
1104 		if (plaintext != ciphertext) {
1105 			ciphertext->cd_length =
1106 			    ciphertext->cd_offset - saved_offset;
1107 		}
1108 	} else {
1109 		ciphertext->cd_length = saved_length;
1110 	}
1111 	ciphertext->cd_offset = saved_offset;
1112 
1113 out:
1114 	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1115 		bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
1116 		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
1117 	}
1118 
1119 	return (ret);
1120 }
1121 
1122 /* ARGSUSED */
1123 static int
1124 aes_decrypt_atomic(crypto_provider_handle_t provider,
1125     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1126     crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
1127     crypto_spi_ctx_template_t template, crypto_req_handle_t req)
1128 {
1129 	aes_ctx_t aes_ctx;	/* on the stack */
1130 	off_t saved_offset;
1131 	size_t saved_length;
1132 	size_t length_needed;
1133 	int ret;
1134 
1135 	AES_ARG_INPLACE(ciphertext, plaintext);
1136 
1137 	/*
1138 	 * CCM, GCM, CTR, and GMAC modes do not require that ciphertext
1139 	 * be a multiple of AES block size.
1140 	 */
1141 	switch (mechanism->cm_type) {
1142 	case AES_CTR_MECH_INFO_TYPE:
1143 	case AES_CCM_MECH_INFO_TYPE:
1144 	case AES_GCM_MECH_INFO_TYPE:
1145 	case AES_GMAC_MECH_INFO_TYPE:
1146 		break;
1147 	default:
1148 		if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
1149 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
1150 	}
1151 
1152 	if ((ret = aes_check_mech_param(mechanism, NULL, 0)) != CRYPTO_SUCCESS)
1153 		return (ret);
1154 
1155 	bzero(&aes_ctx, sizeof (aes_ctx_t));
1156 
1157 	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
1158 	    crypto_kmflag(req), B_FALSE);
1159 	if (ret != CRYPTO_SUCCESS)
1160 		return (ret);
1161 
1162 	switch (mechanism->cm_type) {
1163 	case AES_CCM_MECH_INFO_TYPE:
1164 		length_needed = aes_ctx.ac_data_len;
1165 		break;
1166 	case AES_GCM_MECH_INFO_TYPE:
1167 		length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len;
1168 		break;
1169 	case AES_GMAC_MECH_INFO_TYPE:
1170 		if (plaintext->cd_length != 0)
1171 			return (CRYPTO_ARGUMENTS_BAD);
1172 		length_needed = 0;
1173 		break;
1174 	default:
1175 		length_needed = ciphertext->cd_length;
1176 	}
1177 
1178 	/* return size of buffer needed to store output */
1179 	if (plaintext->cd_length < length_needed) {
1180 		plaintext->cd_length = length_needed;
1181 		ret = CRYPTO_BUFFER_TOO_SMALL;
1182 		goto out;
1183 	}
1184 
1185 	saved_offset = plaintext->cd_offset;
1186 	saved_length = plaintext->cd_length;
1187 
1188 	if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
1189 	    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE)
1190 		gcm_set_kmflag((gcm_ctx_t *)&aes_ctx, crypto_kmflag(req));
1191 
1192 	/*
1193 	 * Do an update on the specified input data.
1194 	 */
1195 	switch (ciphertext->cd_format) {
1196 	case CRYPTO_DATA_RAW:
1197 		ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext,
1198 		    aes_decrypt_contiguous_blocks, aes_copy_block64);
1199 		break;
1200 	case CRYPTO_DATA_UIO:
1201 		ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext,
1202 		    aes_decrypt_contiguous_blocks, aes_copy_block64);
1203 		break;
1204 	case CRYPTO_DATA_MBLK:
1205 		ret = crypto_update_mp(&aes_ctx, ciphertext, plaintext,
1206 		    aes_decrypt_contiguous_blocks, aes_copy_block64);
1207 		break;
1208 	default:
1209 		ret = CRYPTO_ARGUMENTS_BAD;
1210 	}
1211 
1212 	if (ret == CRYPTO_SUCCESS) {
1213 		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
1214 			ASSERT(aes_ctx.ac_processed_data_len
1215 			    == aes_ctx.ac_data_len);
1216 			ASSERT(aes_ctx.ac_processed_mac_len
1217 			    == aes_ctx.ac_mac_len);
1218 			ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx,
1219 			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
1220 			    aes_copy_block, aes_xor_block);
1221 			ASSERT(aes_ctx.ac_remainder_len == 0);
1222 			if ((ret == CRYPTO_SUCCESS) &&
1223 			    (ciphertext != plaintext)) {
1224 				plaintext->cd_length =
1225 				    plaintext->cd_offset - saved_offset;
1226 			} else {
1227 				plaintext->cd_length = saved_length;
1228 			}
1229 		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
1230 		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
1231 			ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx,
1232 			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
1233 			    aes_xor_block);
1234 			ASSERT(aes_ctx.ac_remainder_len == 0);
1235 			if ((ret == CRYPTO_SUCCESS) &&
1236 			    (ciphertext != plaintext)) {
1237 				plaintext->cd_length =
1238 				    plaintext->cd_offset - saved_offset;
1239 			} else {
1240 				plaintext->cd_length = saved_length;
1241 			}
1242 		} else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) {
1243 			ASSERT(aes_ctx.ac_remainder_len == 0);
1244 			if (ciphertext != plaintext)
1245 				plaintext->cd_length =
1246 				    plaintext->cd_offset - saved_offset;
1247 		} else {
1248 			if (aes_ctx.ac_remainder_len > 0) {
1249 				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
1250 				    plaintext, aes_encrypt_block);
1251 				if (ret == CRYPTO_DATA_LEN_RANGE)
1252 					ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
1253 				if (ret != CRYPTO_SUCCESS)
1254 					goto out;
1255 			}
1256 			if (ciphertext != plaintext)
1257 				plaintext->cd_length =
1258 				    plaintext->cd_offset - saved_offset;
1259 		}
1260 	} else {
1261 		plaintext->cd_length = saved_length;
1262 	}
1263 	plaintext->cd_offset = saved_offset;
1264 
1265 out:
1266 	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1267 		bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
1268 		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
1269 	}
1270 
1271 	if (aes_ctx.ac_flags & CCM_MODE) {
1272 		if (aes_ctx.ac_pt_buf != NULL) {
1273 			kmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len);
1274 		}
1275 	} else if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
1276 		if (((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf != NULL) {
1277 			kmem_free(((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf,
1278 			    ((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf_len);
1279 		}
1280 	}
1281 
1282 	return (ret);
1283 }
1284 
1285 /*
1286  * KCF software provider context template entry points.
1287  */
1288 /* ARGSUSED */
1289 static int
1290 aes_create_ctx_template(crypto_provider_handle_t provider,
1291     crypto_mechanism_t *mechanism, crypto_key_t *key,
1292     crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size, crypto_req_handle_t req)
1293 {
1294 	void *keysched;
1295 	size_t size;
1296 	int rv;
1297 
1298 	if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE &&
1299 	    mechanism->cm_type != AES_CBC_MECH_INFO_TYPE &&
1300 	    mechanism->cm_type != AES_CMAC_MECH_INFO_TYPE &&
1301 	    mechanism->cm_type != AES_CTR_MECH_INFO_TYPE &&
1302 	    mechanism->cm_type != AES_CCM_MECH_INFO_TYPE &&
1303 	    mechanism->cm_type != AES_GCM_MECH_INFO_TYPE &&
1304 	    mechanism->cm_type != AES_GMAC_MECH_INFO_TYPE)
1305 		return (CRYPTO_MECHANISM_INVALID);
1306 
1307 	if ((keysched = aes_alloc_keysched(&size,
1308 	    crypto_kmflag(req))) == NULL) {
1309 		return (CRYPTO_HOST_MEMORY);
1310 	}
1311 
1312 	/*
1313 	 * Initialize key schedule.  Key length information is stored
1314 	 * in the key.
1315 	 */
1316 	if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
1317 		bzero(keysched, size);
1318 		kmem_free(keysched, size);
1319 		return (rv);
1320 	}
1321 
1322 	*tmpl = keysched;
1323 	*tmpl_size = size;
1324 
1325 	return (CRYPTO_SUCCESS);
1326 }
1327 
1328 
1329 static int
1330 aes_free_context(crypto_ctx_t *ctx)
1331 {
1332 	aes_ctx_t *aes_ctx = ctx->cc_provider_private;
1333 
1334 	if (aes_ctx != NULL) {
1335 		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1336 			ASSERT(aes_ctx->ac_keysched_len != 0);
1337 			bzero(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len);
1338 			kmem_free(aes_ctx->ac_keysched,
1339 			    aes_ctx->ac_keysched_len);
1340 		}
1341 		crypto_free_mode_ctx(aes_ctx);
1342 		ctx->cc_provider_private = NULL;
1343 	}
1344 
1345 	return (CRYPTO_SUCCESS);
1346 }
1347 
1348 
1349 static int
1350 aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
1351     crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
1352     boolean_t is_encrypt_init)
1353 {
1354 	int rv = CRYPTO_SUCCESS;
1355 	void *keysched;
1356 	size_t size;
1357 
1358 	if (template == NULL) {
1359 		if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
1360 			return (CRYPTO_HOST_MEMORY);
1361 		/*
1362 		 * Initialize key schedule.
1363 		 * Key length is stored in the key.
1364 		 */
1365 		if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
1366 			kmem_free(keysched, size);
1367 			return (rv);
1368 		}
1369 
1370 		aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE;
1371 		aes_ctx->ac_keysched_len = size;
1372 	} else {
1373 		keysched = template;
1374 	}
1375 	aes_ctx->ac_keysched = keysched;
1376 
1377 	switch (mechanism->cm_type) {
1378 	case AES_CBC_MECH_INFO_TYPE:
1379 		rv = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mechanism->cm_param,
1380 		    mechanism->cm_param_len, AES_BLOCK_LEN, aes_copy_block64);
1381 		break;
1382 	case AES_CMAC_MECH_INFO_TYPE:
1383 		rv = cmac_init_ctx((cbc_ctx_t *)aes_ctx, AES_BLOCK_LEN);
1384 		break;
1385 	case AES_CTR_MECH_INFO_TYPE: {
1386 		CK_AES_CTR_PARAMS *pp;
1387 
1388 		if (mechanism->cm_param == NULL ||
1389 		    mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) {
1390 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1391 		}
1392 		pp = (CK_AES_CTR_PARAMS *)(void *)mechanism->cm_param;
1393 		rv = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits,
1394 		    pp->cb, aes_copy_block);
1395 		break;
1396 	}
1397 	case AES_CCM_MECH_INFO_TYPE:
1398 		if (mechanism->cm_param == NULL ||
1399 		    mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) {
1400 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1401 		}
1402 		rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param,
1403 		    kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block,
1404 		    aes_xor_block);
1405 		break;
1406 	case AES_GCM_MECH_INFO_TYPE:
1407 		if (mechanism->cm_param == NULL ||
1408 		    mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) {
1409 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1410 		}
1411 		rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
1412 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
1413 		    aes_xor_block);
1414 		break;
1415 	case AES_GMAC_MECH_INFO_TYPE:
1416 		if (mechanism->cm_param == NULL ||
1417 		    mechanism->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) {
1418 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1419 		}
1420 		rv = gmac_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
1421 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
1422 		    aes_xor_block);
1423 		break;
1424 	case AES_ECB_MECH_INFO_TYPE:
1425 		aes_ctx->ac_flags |= ECB_MODE;
1426 	}
1427 
1428 	if (rv != CRYPTO_SUCCESS) {
1429 		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1430 			bzero(keysched, size);
1431 			kmem_free(keysched, size);
1432 		}
1433 	}
1434 
1435 	return (rv);
1436 }
1437 
1438 static int
1439 process_gmac_mech(crypto_mechanism_t *mech, crypto_data_t *data,
1440     CK_AES_GCM_PARAMS *gcm_params)
1441 {
1442 	/* LINTED: pointer alignment */
1443 	CK_AES_GMAC_PARAMS *params = (CK_AES_GMAC_PARAMS *)mech->cm_param;
1444 
1445 	if (mech->cm_type != AES_GMAC_MECH_INFO_TYPE)
1446 		return (CRYPTO_MECHANISM_INVALID);
1447 
1448 	if (mech->cm_param_len != sizeof (CK_AES_GMAC_PARAMS))
1449 		return (CRYPTO_MECHANISM_PARAM_INVALID);
1450 
1451 	if (params->pIv == NULL)
1452 		return (CRYPTO_MECHANISM_PARAM_INVALID);
1453 
1454 	gcm_params->pIv = params->pIv;
1455 	gcm_params->ulIvLen = AES_GMAC_IV_LEN;
1456 	gcm_params->ulTagBits = AES_GMAC_TAG_BITS;
1457 
1458 	if (data == NULL)
1459 		return (CRYPTO_SUCCESS);
1460 
1461 	if (data->cd_format != CRYPTO_DATA_RAW)
1462 		return (CRYPTO_ARGUMENTS_BAD);
1463 
1464 	gcm_params->pAAD = (uchar_t *)data->cd_raw.iov_base;
1465 	gcm_params->ulAADLen = data->cd_length;
1466 	return (CRYPTO_SUCCESS);
1467 }
1468 
1469 static int
1470 aes_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
1471     crypto_key_t *key, crypto_spi_ctx_template_t template,
1472     crypto_req_handle_t req)
1473 {
1474 	return (aes_encrypt_init(ctx, mechanism,
1475 	    key, template, req));
1476 }
1477 
1478 static int
1479 aes_mac(crypto_ctx_t *ctx, crypto_data_t *plaintext, crypto_data_t *ciphertext,
1480     crypto_req_handle_t req)
1481 {
1482 	return (aes_encrypt(ctx, plaintext, ciphertext, req));
1483 }
1484 
1485 static int
1486 aes_mac_update(crypto_ctx_t *ctx, crypto_data_t *data,
1487     crypto_req_handle_t req)
1488 {
1489 	crypto_data_t out;
1490 	uint8_t block[AES_BLOCK_LEN];
1491 	out.cd_format = CRYPTO_DATA_RAW;
1492 	out.cd_offset = 0;
1493 	out.cd_length = sizeof (block);
1494 	out.cd_miscdata = NULL;
1495 	out.cd_raw.iov_base = (void *)block;
1496 	out.cd_raw.iov_len = sizeof (block);
1497 
1498 	return (aes_encrypt_update(ctx, data, &out, req));
1499 }
1500 
1501 static int
1502 aes_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
1503 {
1504 	return (aes_encrypt_final(ctx, mac, req));
1505 }
1506 
1507 static int
1508 aes_mac_atomic(crypto_provider_handle_t provider,
1509     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1510     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1511     crypto_spi_ctx_template_t template, crypto_req_handle_t req)
1512 {
1513 	CK_AES_GCM_PARAMS gcm_params;
1514 	crypto_mechanism_t gcm_mech;
1515 	int rv;
1516 
1517 	if (mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
1518 		if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
1519 		    != CRYPTO_SUCCESS)
1520 			return (rv);
1521 
1522 		gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
1523 		gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
1524 		gcm_mech.cm_param = (char *)&gcm_params;
1525 
1526 		return (aes_encrypt_atomic(provider, session_id, &gcm_mech,
1527 		    key, &null_crypto_data, mac, template, req));
1528 	}
1529 	/* CMAC */
1530 	return (aes_encrypt_atomic(provider, session_id, mechanism,
1531 	    key, data, mac, template, req));
1532 }
1533 
1534 static int
1535 aes_mac_verify_atomic(crypto_provider_handle_t provider,
1536     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1537     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1538     crypto_spi_ctx_template_t template, crypto_req_handle_t req)
1539 {
1540 	CK_AES_GCM_PARAMS gcm_params;
1541 	crypto_mechanism_t gcm_mech;
1542 	crypto_data_t data_mac;
1543 	char buf[AES_BLOCK_LEN];
1544 	int rv;
1545 
1546 	if (mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
1547 		if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
1548 		    != CRYPTO_SUCCESS)
1549 			return (rv);
1550 
1551 		gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
1552 		gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
1553 		gcm_mech.cm_param = (char *)&gcm_params;
1554 
1555 		return (aes_decrypt_atomic(provider, session_id, &gcm_mech,
1556 		    key, mac, &null_crypto_data, template, req));
1557 	}
1558 
1559 	/* CMAC */
1560 
1561 	data_mac.cd_format = CRYPTO_DATA_RAW;
1562 	data_mac.cd_offset = 0;
1563 	data_mac.cd_length = AES_BLOCK_LEN;
1564 	data_mac.cd_miscdata = NULL;
1565 	data_mac.cd_raw.iov_base = (void *) buf;
1566 	data_mac.cd_raw.iov_len = AES_BLOCK_LEN;
1567 
1568 	rv = aes_encrypt_atomic(provider, session_id, &gcm_mech,
1569 	    key, data, &data_mac, template, req);
1570 
1571 	if (rv != CRYPTO_SUCCESS)
1572 		return (rv);
1573 
1574 	/* should use get_input_data for mac? */
1575 	if (bcmp(buf, mac->cd_raw.iov_base + mac->cd_offset,
1576 	    AES_BLOCK_LEN) != 0)
1577 		return (CRYPTO_INVALID_MAC);
1578 
1579 	return (CRYPTO_SUCCESS);
1580 }
1581