xref: /illumos-gate/usr/src/uts/common/crypto/api/kcf_random.c (revision 0dee7919e2f2a6479d16b370af93747b9416b242)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file implements the interfaces that the /dev/random
31  * driver uses for read(2), write(2) and poll(2) on /dev/random or
32  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
33  * random_get_pseudo_bytes() and random_get_bytes().
34  *
35  * We periodically collect random bits from providers which are registered
36  * with the Kernel Cryptographic Framework (kCF) as capable of random
37  * number generation. The random bits are maintained in a cache and
38  * it is used for high quality random numbers (/dev/random) requests.
39  * We pick a provider and call its SPI routine, if the cache does not have
40  * enough bytes to satisfy a request.
41  *
42  * /dev/urandom requests use a software-based generator algorithm that uses the
43  * random bits in the cache as a seed. We create one pseudo-random generator
44  * (for /dev/urandom) per possible CPU on the system, and use it,
45  * kmem-magazine-style, to avoid cache line contention.
46  *
47  * LOCKING HIERARCHY:
48  *	1) rmp->rm_lock protects the per-cpu pseudo-random generators.
49  * 	2) rndpool_lock protects the high-quality randomness pool.
50  *		It may be locked while a rmp->rm_lock is held.
51  *
52  * A history note: The kernel API and the software-based algorithms in this
53  * file used to be part of the /dev/random driver.
54  */
55 
56 #include <sys/types.h>
57 #include <sys/conf.h>
58 #include <sys/sunddi.h>
59 #include <sys/disp.h>
60 #include <sys/modctl.h>
61 #include <sys/ddi.h>
62 #include <sys/crypto/common.h>
63 #include <sys/crypto/api.h>
64 #include <sys/crypto/impl.h>
65 #include <sys/crypto/sched_impl.h>
66 #include <sys/random.h>
67 #include <sys/sha1.h>
68 #include <sys/time.h>
69 #include <sys/sysmacros.h>
70 #include <sys/cpuvar.h>
71 #include <sys/taskq.h>
72 
73 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
74 #define	MINEXTRACTBYTES		20
75 #define	MAXEXTRACTBYTES		1024
76 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
77 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
78 
79 typedef enum    extract_type {
80 	NONBLOCK_EXTRACT,
81 	BLOCKING_EXTRACT,
82 	ALWAYS_EXTRACT
83 } extract_type_t;
84 
85 /*
86  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
87  * routines directly instead of using k-API because we can't return any
88  * error code in /dev/urandom case and we can get an error using k-API
89  * if a mechanism is disabled.
90  */
91 #define	HASHSIZE		20
92 #define	HASH_CTX		SHA1_CTX
93 #define	HashInit(ctx)		SHA1Init((ctx))
94 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
95 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
96 
97 /* HMAC-SHA1 */
98 #define	HMAC_KEYSIZE			20
99 #define	HMAC_BLOCK_SIZE			64
100 #define	HMAC_KEYSCHED			sha1keysched_t
101 #define	SET_ENCRYPT_KEY(k, s, ks)	hmac_key((k), (s), (ks))
102 #define	HMAC_ENCRYPT(ks, p, s, d)	hmac_encr((ks), (uint8_t *)(p), s, d)
103 
104 /* HMAC-SHA1 "keyschedule" */
105 typedef struct sha1keysched_s {
106 	SHA1_CTX ictx;
107 	SHA1_CTX octx;
108 } sha1keysched_t;
109 
110 /*
111  * Cache of random bytes implemented as a circular buffer. findex and rindex
112  * track the front and back of the circular buffer.
113  */
114 uint8_t rndpool[RNDPOOLSIZE];
115 static int findex, rindex;
116 static int rnbyte_cnt;		/* Number of bytes in the cache */
117 
118 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
119 				/* and the global variables */
120 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
121 static int num_waiters;		/* #threads waiting to read from /dev/random */
122 
123 static struct pollhead rnd_pollhead;
124 static timeout_id_t kcf_rndtimeout_id;
125 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
126 rnd_stats_t rnd_stats;
127 
128 static void rndc_addbytes(uint8_t *, size_t);
129 static void rndc_getbytes(uint8_t *ptr, size_t len);
130 static void rnd_handler(void *);
131 static void rnd_alloc_magazines();
132 static void hmac_key(uint8_t *, size_t, void *);
133 static void hmac_encr(void *, uint8_t *, size_t, uint8_t *);
134 
135 
136 void
137 kcf_rnd_init()
138 {
139 	hrtime_t ts;
140 	time_t now;
141 
142 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
143 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
144 
145 	/*
146 	 * Add bytes to the cache using
147 	 * . 2 unpredictable times: high resolution time since the boot-time,
148 	 *   and the current time-of-the day.
149 	 * This is used only to make the timeout value in the timer
150 	 * unpredictable.
151 	 */
152 	ts = gethrtime();
153 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
154 
155 	(void) drv_getparm(TIME, &now);
156 	rndc_addbytes((uint8_t *)&now, sizeof (now));
157 
158 	rnbyte_cnt = 0;
159 	findex = rindex = 0;
160 	num_waiters = 0;
161 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
162 
163 	rnd_alloc_magazines();
164 }
165 
166 /*
167  * Return TRUE if at least one provider exists that can
168  * supply random numbers.
169  */
170 boolean_t
171 kcf_rngprov_check(void)
172 {
173 	int rv;
174 	kcf_provider_desc_t *pd;
175 
176 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
177 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
178 		KCF_PROV_REFRELE(pd);
179 		return (B_TRUE);
180 	} else
181 		return (B_FALSE);
182 }
183 
184 /*
185  * Pick a software-based provider and submit a request to seed
186  * its random number generator.
187  */
188 static void
189 rngprov_seed(uint8_t *buf, int len)
190 {
191 	kcf_provider_desc_t *pd = NULL;
192 	kcf_req_params_t params;
193 
194 	if (kcf_get_sw_prov(rngmech_type, &pd, B_FALSE) == CRYPTO_SUCCESS) {
195 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_SEED,
196 		    pd->pd_sid, buf, len);
197 		(void) kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
198 		KCF_PROV_REFRELE(pd);
199 	}
200 }
201 
202 /* Boot-time tunable for experimentation. */
203 int kcf_limit_hwrng = 1;
204 
205 
206 /*
207  * This routine is called for blocking reads.
208  *
209  * The argument from_user_api indicates whether the caller is
210  * from userland coming via the /dev/random driver.
211  *
212  * The argument is_taskq_thr indicates whether the caller is
213  * the taskq thread dispatched by the timeout handler routine.
214  * In this case, we cycle through all the providers
215  * submitting a request to each provider to generate random numbers.
216  *
217  * For other cases, we pick a provider and submit a request to generate
218  * random numbers. We retry using another provider if we get an error.
219  *
220  * Returns the number of bytes that are written to 'ptr'. Returns -1
221  * if no provider is found. ptr and need are unchanged.
222  */
223 static int
224 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t from_user_api,
225     boolean_t is_taskq_thr)
226 {
227 	int rv;
228 	int prov_cnt = 0;
229 	int total_bytes = 0;
230 	kcf_provider_desc_t *pd;
231 	kcf_req_params_t params;
232 	kcf_prov_tried_t *list = NULL;
233 
234 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
235 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
236 
237 		prov_cnt++;
238 		/*
239 		 * Typically a hardware RNG is a multi-purpose
240 		 * crypto card and hence we do not want to overload the card
241 		 * just for random numbers. The following check is to prevent
242 		 * a user process from hogging the hardware RNG. Note that we
243 		 * still use the hardware RNG from the periodically run
244 		 * taskq thread.
245 		 */
246 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER && from_user_api &&
247 		    kcf_limit_hwrng == 1) {
248 			ASSERT(is_taskq_thr == B_FALSE);
249 			goto try_next;
250 		}
251 
252 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
253 		    pd->pd_sid, ptr, need);
254 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
255 		ASSERT(rv != CRYPTO_QUEUED);
256 
257 		if (rv == CRYPTO_SUCCESS) {
258 			total_bytes += need;
259 			if (is_taskq_thr)
260 				rndc_addbytes(ptr, need);
261 			else {
262 				KCF_PROV_REFRELE(pd);
263 				break;
264 			}
265 		}
266 
267 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
268 try_next:
269 			/* Add pd to the linked list of providers tried. */
270 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
271 				KCF_PROV_REFRELE(pd);
272 				break;
273 			}
274 		}
275 
276 	}
277 
278 	if (list != NULL)
279 		kcf_free_triedlist(list);
280 
281 	if (prov_cnt == 0) { /* no provider could be found. */
282 		return (-1);
283 	}
284 
285 	return (total_bytes);
286 }
287 
288 static void
289 notify_done(void *arg, int rv)
290 {
291 	uchar_t *rndbuf = arg;
292 
293 	if (rv == CRYPTO_SUCCESS)
294 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
295 
296 	bzero(rndbuf, MINEXTRACTBYTES);
297 	kmem_free(rndbuf, MINEXTRACTBYTES);
298 }
299 
300 /*
301  * Cycle through all the providers submitting a request to each provider
302  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
303  * and ALWAYS_EXTRACT.
304  *
305  * Returns the number of bytes that are written to 'ptr'. Returns -1
306  * if no provider is found. ptr and len are unchanged.
307  */
308 static int
309 rngprov_getbytes_nblk(uint8_t *ptr, size_t len, boolean_t from_user_api)
310 {
311 	int rv, blen, total_bytes;
312 	uchar_t *rndbuf;
313 	kcf_provider_desc_t *pd;
314 	kcf_req_params_t params;
315 	crypto_call_req_t req;
316 	kcf_prov_tried_t *list = NULL;
317 	int prov_cnt = 0;
318 
319 	blen = 0;
320 	total_bytes = 0;
321 	req.cr_flag = CRYPTO_SKIP_REQID;
322 	req.cr_callback_func = notify_done;
323 
324 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
325 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
326 
327 		prov_cnt ++;
328 		switch (pd->pd_prov_type) {
329 		case CRYPTO_HW_PROVIDER:
330 			/* See comments in rngprov_getbytes() */
331 			if (from_user_api && kcf_limit_hwrng == 1)
332 				goto try_next;
333 
334 			/*
335 			 * We have to allocate a buffer here as we can not
336 			 * assume that the input buffer will remain valid
337 			 * when the callback comes. We use a fixed size buffer
338 			 * to simplify the book keeping.
339 			 */
340 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
341 			if (rndbuf == NULL) {
342 				KCF_PROV_REFRELE(pd);
343 				if (list != NULL)
344 					kcf_free_triedlist(list);
345 				return (total_bytes);
346 			}
347 			req.cr_callback_arg = rndbuf;
348 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
349 			    KCF_OP_RANDOM_GENERATE,
350 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES);
351 			break;
352 
353 		case CRYPTO_SW_PROVIDER:
354 			/*
355 			 * We do not need to allocate a buffer in the software
356 			 * provider case as there is no callback involved. We
357 			 * avoid any extra data copy by directly passing 'ptr'.
358 			 */
359 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
360 			    KCF_OP_RANDOM_GENERATE,
361 			    pd->pd_sid, ptr, len);
362 			break;
363 		}
364 
365 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
366 		if (rv == CRYPTO_SUCCESS) {
367 			switch (pd->pd_prov_type) {
368 			case CRYPTO_HW_PROVIDER:
369 				/*
370 				 * Since we have the input buffer handy,
371 				 * we directly copy to it rather than
372 				 * adding to the pool.
373 				 */
374 				blen = min(MINEXTRACTBYTES, len);
375 				bcopy(rndbuf, ptr, blen);
376 				if (len < MINEXTRACTBYTES)
377 					rndc_addbytes(rndbuf + len,
378 					    MINEXTRACTBYTES - len);
379 				ptr += blen;
380 				len -= blen;
381 				total_bytes += blen;
382 				break;
383 
384 			case CRYPTO_SW_PROVIDER:
385 				total_bytes += len;
386 				len = 0;
387 				break;
388 			}
389 		}
390 
391 		/*
392 		 * We free the buffer in the callback routine
393 		 * for the CRYPTO_QUEUED case.
394 		 */
395 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
396 		    rv != CRYPTO_QUEUED) {
397 			bzero(rndbuf, MINEXTRACTBYTES);
398 			kmem_free(rndbuf, MINEXTRACTBYTES);
399 		}
400 
401 		if (len == 0) {
402 			KCF_PROV_REFRELE(pd);
403 			break;
404 		}
405 
406 		if (rv != CRYPTO_SUCCESS) {
407 try_next:
408 			/* Add pd to the linked list of providers tried. */
409 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
410 			    NULL) {
411 				KCF_PROV_REFRELE(pd);
412 				break;
413 			}
414 		}
415 	}
416 
417 	if (list != NULL) {
418 		kcf_free_triedlist(list);
419 	}
420 
421 	if (prov_cnt == 0) { /* no provider could be found. */
422 		return (-1);
423 	}
424 
425 	return (total_bytes);
426 }
427 
428 static void
429 rngprov_task(void *arg)
430 {
431 	int len = (int)(uintptr_t)arg;
432 	uchar_t tbuf[MAXEXTRACTBYTES];
433 
434 	ASSERT(len <= MAXEXTRACTBYTES);
435 	if (rngprov_getbytes(tbuf, len, B_FALSE, B_TRUE) == -1) {
436 		cmn_err(CE_WARN, "No randomness provider enabled for "
437 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
438 	}
439 }
440 
441 /*
442  * Returns "len" random or pseudo-random bytes in *ptr.
443  * Will block if not enough random bytes are available and the
444  * call is blocking.
445  *
446  * Called with rndpool_lock held (allowing caller to do optimistic locking;
447  * releases the lock before return).
448  */
449 static int
450 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how,
451     boolean_t from_user_api)
452 {
453 	int bytes;
454 	size_t got;
455 
456 	ASSERT(mutex_owned(&rndpool_lock));
457 	/*
458 	 * Check if the request can be satisfied from the cache
459 	 * of random bytes.
460 	 */
461 	if (len <= rnbyte_cnt) {
462 		rndc_getbytes(ptr, len);
463 		mutex_exit(&rndpool_lock);
464 		return (0);
465 	}
466 	mutex_exit(&rndpool_lock);
467 
468 	switch (how) {
469 	case BLOCKING_EXTRACT:
470 		if ((got = rngprov_getbytes(ptr, len, from_user_api,
471 		    B_FALSE)) == -1)
472 			break;	/* No provider found */
473 
474 		if (got == len)
475 			return (0);
476 		len -= got;
477 		ptr += got;
478 		break;
479 
480 	case NONBLOCK_EXTRACT:
481 	case ALWAYS_EXTRACT:
482 		if ((got = rngprov_getbytes_nblk(ptr, len,
483 		    from_user_api)) == -1) {
484 			/* No provider found */
485 			if (how == NONBLOCK_EXTRACT) {
486 				return (EAGAIN);
487 			}
488 		} else {
489 			if (got == len)
490 				return (0);
491 			len -= got;
492 			ptr += got;
493 		}
494 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
495 			return (EAGAIN);
496 		break;
497 	}
498 
499 	mutex_enter(&rndpool_lock);
500 	while (len > 0) {
501 		if (how == BLOCKING_EXTRACT) {
502 			/* Check if there is enough */
503 			while (rnbyte_cnt < MINEXTRACTBYTES) {
504 				num_waiters++;
505 				if (cv_wait_sig(&rndpool_read_cv,
506 				    &rndpool_lock) == 0) {
507 					num_waiters--;
508 					mutex_exit(&rndpool_lock);
509 					return (EINTR);
510 				}
511 				num_waiters--;
512 			}
513 		}
514 
515 		/* Figure out how many bytes to extract */
516 		bytes = min(len, rnbyte_cnt);
517 		rndc_getbytes(ptr, bytes);
518 
519 		len -= bytes;
520 		ptr += bytes;
521 
522 		if (len > 0 && how == ALWAYS_EXTRACT) {
523 			/*
524 			 * There are not enough bytes, but we can not block.
525 			 * This only happens in the case of /dev/urandom which
526 			 * runs an additional generation algorithm. So, there
527 			 * is no problem.
528 			 */
529 			while (len > 0) {
530 				*ptr = rndpool[findex];
531 				ptr++; len--;
532 				rindex = findex = (findex + 1) &
533 				    (RNDPOOLSIZE - 1);
534 			}
535 			break;
536 		}
537 	}
538 
539 	mutex_exit(&rndpool_lock);
540 	return (0);
541 }
542 
543 int
544 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock,
545     boolean_t from_user_api)
546 {
547 	extract_type_t how;
548 	int error;
549 
550 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
551 	mutex_enter(&rndpool_lock);
552 	if ((error = rnd_get_bytes(ptr, len, how, from_user_api)) != 0)
553 		return (error);
554 
555 	BUMP_RND_STATS(rs_rndOut, len);
556 	return (0);
557 }
558 
559 /*
560  * Revisit this if the structs grow or we come up with a better way
561  * of cache-line-padding structures.
562  */
563 #define	RND_CPU_CACHE_SIZE	64
564 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*5
565 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
566 	(sizeof (kmutex_t) + 3*sizeof (uint8_t *) + sizeof (HMAC_KEYSCHED) + \
567 	sizeof (uint64_t) + 3*sizeof (uint32_t) + sizeof (rnd_stats_t)))
568 
569 /*
570  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
571  * a per-CPU instance of the pseudo-random generator.  We have it much easier
572  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
573  *
574  * Note that this usage is preemption-safe; a thread
575  * entering a critical section remembers which generator it locked
576  * and unlocks the same one; should it be preempted and wind up running on
577  * a different CPU, there will be a brief period of increased contention
578  * before it exits the critical section but nothing will melt.
579  */
580 typedef struct rndmag_s
581 {
582 	kmutex_t	rm_lock;
583 	uint8_t 	*rm_buffer;	/* Start of buffer */
584 	uint8_t		*rm_eptr;	/* End of buffer */
585 	uint8_t		*rm_rptr;	/* Current read pointer */
586 	HMAC_KEYSCHED 	rm_ks;		/* seed */
587 	uint64_t 	rm_counter;	/* rotating counter for extracting */
588 	uint32_t	rm_oblocks;	/* time to rekey? */
589 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
590 	uint32_t	rm_olimit;	/* Hard rekey limit */
591 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
592 	uint8_t		rm_pad[RND_CPU_PAD];
593 } rndmag_t;
594 
595 /*
596  * Generate random bytes for /dev/urandom by encrypting a
597  * rotating counter with a key created from bytes extracted
598  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
599  * is generated before a new key is obtained.
600  *
601  * Note that callers to this routine are likely to assume it can't fail.
602  *
603  * Called with rmp locked; releases lock.
604  */
605 static int
606 rnd_generate_pseudo_bytes(rndmag_t *rmp, uint8_t *ptr, size_t len)
607 {
608 	size_t bytes = len;
609 	int nblock, size;
610 	uint32_t oblocks;
611 	uint8_t digest[HASHSIZE];
612 
613 	ASSERT(mutex_owned(&rmp->rm_lock));
614 
615 	/* Nothing is being asked */
616 	if (len == 0) {
617 		mutex_exit(&rmp->rm_lock);
618 		return (0);
619 	}
620 
621 	nblock = howmany(len, HASHSIZE);
622 
623 	rmp->rm_oblocks += nblock;
624 	oblocks = rmp->rm_oblocks;
625 
626 	do {
627 		if (oblocks >= rmp->rm_olimit) {
628 			hrtime_t timestamp;
629 			uint8_t key[HMAC_KEYSIZE];
630 
631 			/*
632 			 * Contention-avoiding rekey: see if
633 			 * the pool is locked, and if so, wait a bit.
634 			 * Do an 'exponential back-in' to ensure we don't
635 			 * run too long without rekey.
636 			 */
637 			if (rmp->rm_ofuzz) {
638 				/*
639 				 * Decaying exponential back-in for rekey.
640 				 */
641 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
642 				    (!mutex_tryenter(&rndpool_lock))) {
643 					rmp->rm_olimit += rmp->rm_ofuzz;
644 					rmp->rm_ofuzz >>= 1;
645 					goto punt;
646 				}
647 			} else {
648 				mutex_enter(&rndpool_lock);
649 			}
650 
651 			/* Get a new chunk of entropy */
652 			(void) rnd_get_bytes(key, HMAC_KEYSIZE,
653 			    ALWAYS_EXTRACT, B_FALSE);
654 
655 			/* Set up key */
656 			SET_ENCRYPT_KEY(key, HMAC_KEYSIZE, &rmp->rm_ks);
657 
658 			/* Get new counter value by encrypting timestamp */
659 			timestamp = gethrtime();
660 			HMAC_ENCRYPT(&rmp->rm_ks, &timestamp,
661 			    sizeof (timestamp), digest);
662 			rmp->rm_olimit = PRNG_MAXOBLOCKS/2;
663 			rmp->rm_ofuzz = PRNG_MAXOBLOCKS/4;
664 			bcopy(digest, &rmp->rm_counter, sizeof (uint64_t));
665 			oblocks = 0;
666 			rmp->rm_oblocks = nblock;
667 		}
668 punt:
669 		/* Hash counter to produce prn stream */
670 		if (bytes >= HASHSIZE) {
671 			size = HASHSIZE;
672 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
673 			    sizeof (rmp->rm_counter), ptr);
674 		} else {
675 			size = min(bytes, HASHSIZE);
676 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
677 			    sizeof (rmp->rm_counter), digest);
678 			bcopy(digest, ptr, size);
679 		}
680 		ptr += size;
681 		bytes -= size;
682 		rmp->rm_counter++;
683 		oblocks++;
684 		nblock--;
685 	} while (bytes > 0);
686 
687 	mutex_exit(&rmp->rm_lock);
688 	return (0);
689 }
690 
691 /*
692  * Per-CPU Random magazines.
693  */
694 static rndmag_t *rndmag;
695 static uint8_t	*rndbuf;
696 static size_t 	rndmag_total;
697 /*
698  * common/os/cpu.c says that platform support code can shrinkwrap
699  * max_ncpus.  On the off chance that we get loaded very early, we
700  * read it exactly once, to copy it here.
701  */
702 static uint32_t	random_max_ncpus = 0;
703 
704 /*
705  * Boot-time tunables, for experimentation.
706  */
707 size_t	rndmag_threshold = 64;
708 size_t	rndbuf_len = 1280;
709 size_t	rndmag_size = 1280;
710 
711 
712 int
713 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
714 {
715 	rndmag_t *rmp;
716 	uint8_t *cptr, *eptr;
717 
718 	/*
719 	 * Anyone who asks for zero bytes of randomness should get slapped.
720 	 */
721 	ASSERT(len > 0);
722 
723 	/*
724 	 * Fast path.
725 	 */
726 	for (;;) {
727 		rmp = &rndmag[CPU->cpu_seqid];
728 		mutex_enter(&rmp->rm_lock);
729 
730 		/*
731 		 * Big requests bypass buffer and tail-call the
732 		 * generate routine directly.
733 		 */
734 		if (len > rndmag_threshold) {
735 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
736 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
737 		}
738 
739 		cptr = rmp->rm_rptr;
740 		eptr = cptr + len;
741 
742 		if (eptr <= rmp->rm_eptr) {
743 			rmp->rm_rptr = eptr;
744 			bcopy(cptr, ptr, len);
745 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
746 			mutex_exit(&rmp->rm_lock);
747 
748 			return (0);
749 		}
750 		/*
751 		 * End fast path.
752 		 */
753 		rmp->rm_rptr = rmp->rm_buffer;
754 		/*
755 		 * Note:  We assume the generate routine always succeeds
756 		 * in this case (because it does at present..)
757 		 * It also always releases rm_lock.
758 		 */
759 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_buffer,
760 		    rndbuf_len);
761 	}
762 }
763 
764 /*
765  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
766  * little memory on big systems that don't have the full set installed.
767  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
768  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
769  *
770  * TODO: make rndmag_size tunable at run time!
771  */
772 static void
773 rnd_alloc_magazines()
774 {
775 	rndmag_t *rmp;
776 	int i;
777 
778 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
779 	if (rndmag_size < rndbuf_len)
780 		rndmag_size = rndbuf_len;
781 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
782 
783 	random_max_ncpus = max_ncpus;
784 	rndmag_total = rndmag_size * random_max_ncpus;
785 
786 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
787 	rndmag = kmem_zalloc(sizeof (rndmag_t) * random_max_ncpus, KM_SLEEP);
788 
789 	for (i = 0; i < random_max_ncpus; i++) {
790 		uint8_t *buf;
791 
792 		rmp = &rndmag[i];
793 		mutex_init(&rmp->rm_lock, NULL, MUTEX_DRIVER, NULL);
794 
795 		buf = rndbuf + i * rndmag_size;
796 
797 		rmp->rm_buffer = buf;
798 		rmp->rm_eptr = buf + rndbuf_len;
799 		rmp->rm_rptr = buf + rndbuf_len;
800 		rmp->rm_oblocks = 1;
801 	}
802 }
803 
804 void
805 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
806 {
807 	clock_t ut;	/* time in microseconds */
808 
809 	if (do_mech2id)
810 		rngmech_type = crypto_mech2id(SUN_RANDOM);
811 
812 	/*
813 	 * The new timeout value is taken from the buffer of random bytes.
814 	 * We're merely reading the first 32 bits from the buffer here, not
815 	 * consuming any random bytes.
816 	 * The timeout multiplier value is a random value between 0.5 sec and
817 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
818 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
819 	 */
820 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
821 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
822 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
823 }
824 
825 /*
826  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
827  * will block. When enough random bytes are available, later, the timeout
828  * handler routine will issue the pollwakeup() calls.
829  */
830 void
831 kcf_rnd_chpoll(int anyyet, short *reventsp, struct pollhead **phpp)
832 {
833 	/*
834 	 * Sampling of rnbyte_cnt is an atomic
835 	 * operation. Hence we do not need any locking.
836 	 */
837 	if (rnbyte_cnt >= MINEXTRACTBYTES) {
838 		*reventsp |= (POLLIN | POLLRDNORM);
839 	} else {
840 		*reventsp = 0;
841 		if (!anyyet)
842 			*phpp = &rnd_pollhead;
843 	}
844 }
845 
846 /*ARGSUSED*/
847 static void
848 rnd_handler(void *arg)
849 {
850 	int len = 0;
851 
852 	if (num_waiters > 0)
853 		len = MAXEXTRACTBYTES;
854 	else if (rnbyte_cnt < RNDPOOLSIZE)
855 		len = MINEXTRACTBYTES;
856 
857 	if (len > 0) {
858 		(void) taskq_dispatch(system_taskq, rngprov_task,
859 		    (void *)(uintptr_t)len, TQ_NOSLEEP);
860 	} else if (!kcf_rngprov_check()) {
861 		cmn_err(CE_WARN, "No randomness provider enabled for "
862 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
863 	}
864 
865 	mutex_enter(&rndpool_lock);
866 	/*
867 	 * Wake up threads waiting in poll() or for enough accumulated
868 	 * random bytes to read from /dev/random. In case a poll() is
869 	 * concurrent with a read(), the polling process may be woken up
870 	 * indicating that enough randomness is now available for reading,
871 	 * and another process *steals* the bits from the pool, causing the
872 	 * subsequent read() from the first process to block. It is acceptable
873 	 * since the blocking will eventually end, after the timeout
874 	 * has expired enough times to honor the read.
875 	 *
876 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
877 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
878 	 */
879 	if (rnbyte_cnt >= MINEXTRACTBYTES)
880 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
881 
882 	if (num_waiters > 0)
883 		cv_broadcast(&rndpool_read_cv);
884 	mutex_exit(&rndpool_lock);
885 
886 	kcf_rnd_schedule_timeout(B_FALSE);
887 }
888 
889 /* Hashing functions */
890 
891 static void
892 hmac_key(uint8_t *key, size_t keylen, void *buf)
893 {
894 	uint32_t *ip, *op;
895 	uint32_t ipad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
896 	uint32_t opad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
897 	HASH_CTX *icontext, *ocontext;
898 	int i;
899 	int nints;
900 
901 	icontext = buf;
902 	ocontext = (SHA1_CTX *)((uint8_t *)buf + sizeof (HASH_CTX));
903 
904 	bzero((uchar_t *)ipad, HMAC_BLOCK_SIZE);
905 	bzero((uchar_t *)opad, HMAC_BLOCK_SIZE);
906 	bcopy(key, (uchar_t *)ipad, keylen);
907 	bcopy(key, (uchar_t *)opad, keylen);
908 
909 	/*
910 	 * XOR key with ipad (0x36) and opad (0x5c) as defined
911 	 * in RFC 2104.
912 	 */
913 	ip = ipad;
914 	op = opad;
915 	nints = HMAC_BLOCK_SIZE/sizeof (uint32_t);
916 
917 	for (i = 0; i < nints; i++) {
918 		ip[i] ^= 0x36363636;
919 		op[i] ^= 0x5c5c5c5c;
920 	}
921 
922 	/* Perform hash with ipad */
923 	HashInit(icontext);
924 	HashUpdate(icontext, (uchar_t *)ipad, HMAC_BLOCK_SIZE);
925 
926 	/* Perform hash with opad */
927 	HashInit(ocontext);
928 	HashUpdate(ocontext, (uchar_t *)opad, HMAC_BLOCK_SIZE);
929 }
930 
931 static void
932 hmac_encr(void *ctx, uint8_t *ptr, size_t len, uint8_t *digest)
933 {
934 	HASH_CTX *saved_contexts;
935 	HASH_CTX icontext;
936 	HASH_CTX ocontext;
937 
938 	saved_contexts = (HASH_CTX *)ctx;
939 	icontext = saved_contexts[0];
940 	ocontext = saved_contexts[1];
941 
942 	HashUpdate(&icontext, ptr, len);
943 	HashFinal(digest, &icontext);
944 
945 	/*
946 	 * Perform Hash(K XOR OPAD, DIGEST), where DIGEST is the
947 	 * Hash(K XOR IPAD, DATA).
948 	 */
949 	HashUpdate(&ocontext, digest, HASHSIZE);
950 	HashFinal(digest, &ocontext);
951 }
952 
953 
954 static void
955 rndc_addbytes(uint8_t *ptr, size_t len)
956 {
957 	ASSERT(ptr != NULL && len > 0);
958 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
959 
960 	mutex_enter(&rndpool_lock);
961 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
962 		rndpool[rindex] ^= *ptr;
963 		ptr++; len--;
964 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
965 		rnbyte_cnt++;
966 	}
967 
968 	/* Handle buffer full case */
969 	while (len > 0) {
970 		rndpool[rindex] ^= *ptr;
971 		ptr++; len--;
972 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
973 	}
974 	mutex_exit(&rndpool_lock);
975 }
976 
977 /*
978  * Caller should check len <= rnbyte_cnt under the
979  * rndpool_lock before calling.
980  */
981 static void
982 rndc_getbytes(uint8_t *ptr, size_t len)
983 {
984 	ASSERT(MUTEX_HELD(&rndpool_lock));
985 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
986 
987 	BUMP_RND_STATS(rs_rndcOut, len);
988 
989 	while (len > 0) {
990 		*ptr = rndpool[findex];
991 		ptr++; len--;
992 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
993 		rnbyte_cnt--;
994 	}
995 }
996 
997 /* Random number exported entry points */
998 
999 /*
1000  * Mix the supplied bytes into the entropy pool of a kCF
1001  * RNG provider.
1002  */
1003 /* ARGSUSED */
1004 int
1005 random_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
1006 {
1007 	if (len < 1)
1008 		return (-1);
1009 
1010 	rngprov_seed(ptr, len);
1011 
1012 	return (0);
1013 }
1014 
1015 /*
1016  * Get bytes from the /dev/urandom generator. This function
1017  * always succeeds. Returns 0.
1018  */
1019 int
1020 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1021 {
1022 	ASSERT(!mutex_owned(&rndpool_lock));
1023 
1024 	if (len < 1)
1025 		return (0);
1026 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1027 }
1028 
1029 /*
1030  * Get bytes from the /dev/random generator. Returns 0
1031  * on success. Returns EAGAIN if there is insufficient entropy.
1032  */
1033 int
1034 random_get_bytes(uint8_t *ptr, size_t len)
1035 {
1036 	ASSERT(!mutex_owned(&rndpool_lock));
1037 
1038 	if (len < 1)
1039 		return (0);
1040 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE, B_FALSE));
1041 }
1042