xref: /illumos-gate/usr/src/uts/common/contract/device.c (revision ca9327a6de44d69ddab3668cc1e143ce781387a3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/mutex.h>
29 #include <sys/debug.h>
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/thread.h>
34 #include <sys/id_space.h>
35 #include <sys/avl.h>
36 #include <sys/list.h>
37 #include <sys/sysmacros.h>
38 #include <sys/proc.h>
39 #include <sys/contract.h>
40 #include <sys/contract_impl.h>
41 #include <sys/contract/device.h>
42 #include <sys/contract/device_impl.h>
43 #include <sys/cmn_err.h>
44 #include <sys/nvpair.h>
45 #include <sys/policy.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ddi_implfuncs.h>
48 #include <sys/systm.h>
49 #include <sys/stat.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/ddi.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/sunndi.h>
55 #undef ct_lock	/* needed because clnt.h defines ct_lock as a macro */
56 
57 /*
58  * Device Contracts
59  * -----------------
60  * This file contains the core code for the device contracts framework.
61  * A device contract is an agreement or a contract between a process and
62  * the kernel regarding the state of the device. A device contract may be
63  * created when a relationship is formed between a device and a process
64  * i.e. at open(2) time, or it may be created at some point after the device
65  * has been opened. A device contract once formed may be broken by either party.
66  * A device contract can be broken by the process by an explicit abandon of the
67  * contract or by an implicit abandon when the process exits. A device contract
68  * can be broken by the kernel either asynchronously (without negotiation) or
69  * synchronously (with negotiation). Exactly which happens depends on the device
70  * state transition. The following state diagram shows the transitions between
71  * device states. Only device state transitions currently supported by device
72  * contracts is shown.
73  *
74  *                              <-- A -->
75  *                       /-----------------> DEGRADED
76  *                       |                      |
77  *                       |                      |
78  *                       |                      | S
79  *                       |                      | |
80  *                       |                      | v
81  *                       v       S -->          v
82  *                      ONLINE ------------> OFFLINE
83  *
84  *
85  * In the figure above, the arrows indicate the direction of transition. The
86  * letter S refers to transitions which are inherently synchronous i.e.
87  * require negotiation and the letter A indicates transitions which are
88  * asynchronous i.e. are done without contract negotiations. A good example
89  * of a synchronous transition is the ONLINE -> OFFLINE transition. This
90  * transition cannot happen as long as there are consumers which have the
91  * device open. Thus some form of negotiation needs to happen between the
92  * consumers and the kernel to ensure that consumers either close devices
93  * or disallow the move to OFFLINE. Certain other transitions such as
94  * ONLINE --> DEGRADED for example, are inherently asynchronous i.e.
95  * non-negotiable. A device that suffers a fault that degrades its
96  * capabilities will become degraded irrespective of what consumers it has,
97  * so a negotiation in this case is pointless.
98  *
99  * The following device states are currently defined for device contracts:
100  *
101  *      CT_DEV_EV_ONLINE
102  *              The device is online and functioning normally
103  *      CT_DEV_EV_DEGRADED
104  *              The device is online but is functioning in a degraded capacity
105  *      CT_DEV_EV_OFFLINE
106  *              The device is offline and is no longer configured
107  *
108  * A typical consumer of device contracts starts out with a contract
109  * template and adds terms to that template. These include the
110  * "acceptable set" (A-set) term, which is a bitset of device states which
111  * are guaranteed by the contract. If the device moves out of a state in
112  * the A-set, the contract is broken. The breaking of the contract can
113  * be asynchronous in which case a critical contract event is sent to the
114  * contract holder but no negotiations take place. If the breaking of the
115  * contract is synchronous, negotations are opened between the affected
116  * consumer and the kernel. The kernel does this by sending a critical
117  * event to the consumer with the CTE_NEG flag set indicating that this
118  * is a negotiation event. The consumer can accept this change by sending
119  * a ACK message to the kernel. Alternatively, if it has the necessary
120  * privileges, it can send a NACK message to the kernel which will block
121  * the device state change. To NACK a negotiable event, a process must
122  * have the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
123  *
124  * Other terms include the "minor path" term, specified explicitly if the
125  * contract is not being created at open(2) time or specified implicitly
126  * if the contract is being created at open time via an activated template.
127  *
128  * A contract event is sent on any state change to which the contract
129  * owner has subscribed via the informative or critical event sets. Only
130  * critical events are guaranteed to be delivered. Since all device state
131  * changes are controlled by the kernel and cannot be arbitrarily generated
132  * by a non-privileged user, the {PRIV_CONTRACT_EVENT} privilege does not
133  * need to be asserted in a process's effective set to designate an event as
134  * critical. To ensure privacy, a process must either have the same effective
135  * userid as the contract holder or have the {PRIV_CONTRACT_OBSERVER} privilege
136  * asserted in its effective set in order to observe device contract events
137  * off the device contract type specific endpoint.
138  *
139  * Yet another term available with device contracts is the "non-negotiable"
140  * term. This term is used to pre-specify a NACK to any contract negotiation.
141  * This term is ignored for asynchronous state changes. For example, a
142  * provcess may have the A-set {ONLINE|DEGRADED} and make the contract
143  * non-negotiable. In this case, the device contract framework assumes a
144  * NACK for any transition to OFFLINE and blocks the offline. If the A-set
145  * is {ONLINE} and the non-negotiable term is set, transitions to OFFLINE
146  * are NACKed but transitions to DEGRADE succeed.
147  *
148  * The OFFLINE negotiation (if OFFLINE state is not in the A-set for a contract)
149  * happens just before the I/O framework attempts to offline a device
150  * (i.e. detach a device and set the offline flag so that it cannot be
151  * reattached). A device contract holder is expected to either NACK the offline
152  * (if privileged) or release the device and allow the offline to proceed.
153  *
154  * The DEGRADE contract event (if DEGRADE is not in the A-set for a contract)
155  * is generated just before the I/O framework transitions the device state
156  * to "degraded" (i.e. DEVI_DEVICE_DEGRADED in I/O framework terminology).
157  *
158  * The contract holder is expected to ACK or NACK a negotiation event
159  * within a certain period of time. If the ACK/NACK is not received
160  * within the timeout period, the device contract framework will behave
161  * as if the contract does not exist and will proceed with the event.
162  *
163  * Unlike a process contract a device contract does not need to exist
164  * once it is abandoned, since it does not define a fault boundary. It
165  * merely represents an agreement between a process and the kernel
166  * regarding the state of the device. Once the process has abandoned
167  * the contract (either implicitly via a process exit or explicitly)
168  * the kernel has no reason to retain the contract. As a result
169  * device contracts are neither inheritable nor need to exist in an
170  * orphan state.
171  *
172  * A device unlike a process may exist in multiple contracts and has
173  * a "life" outside a device contract. A device unlike a process
174  * may exist without an associated contract. Unlike a process contract
175  * a device contract may be formed after a binding relationship is
176  * formed between a process and a device.
177  *
178  *	IMPLEMENTATION NOTES
179  *	====================
180  * DATA STRUCTURES
181  * ----------------
182  * 	The heart of the device contracts implementation is the device contract
183  * 	private cont_device_t (or ctd for short) data structure. It encapsulates
184  * 	the generic contract_t data structure and has a number of private
185  *	fields.
186  * 	These include:
187  *		cond_minor: The minor device that is the subject of the contract
188  *		cond_aset:  The bitset of states which are guaranteed by the
189  *			   contract
190  *		cond_noneg: If set, indicates that the result of negotiation has
191  *			    been predefined to be a NACK
192  * 	In addition, there are other device identifiers such the devinfo node,
193  * 	dev_t and spec_type of the minor node. There are also a few fields that
194  * 	are used during negotiation to maintain state. See
195  *		uts/common/sys/contract/device_impl.h
196  * 	for details.
197  * 	The ctd structure represents the device private part of a contract of
198  * 	type "device"
199  *
200  * 	Another data structure used by device contracts is ctmpl_device. It is
201  * 	the device contracts private part of the contract template structure. It
202  *	encapsulates the generic template structure "ct_template_t" and includes
203  *	the following device contract specific fields
204  *		ctd_aset:   The bitset of states that should be guaranteed by a
205  *			    contract
206  *		ctd_noneg:  If set, indicates that contract should NACK a
207  *			    negotiation
208  *		ctd_minor:  The devfs_path (without the /devices prefix) of the
209  *			    minor node that is the subject of the contract.
210  *
211  * ALGORITHMS
212  * ---------
213  * There are three sets of routines in this file
214  * 	Template related routines
215  * 	-------------------------
216  *	These routines provide support for template related operations initated
217  *	via the generic template operations. These include routines that dup
218  *	a template, free it, and set various terms in the template
219  *	(such as the minor node path, the acceptable state set (or A-set)
220  *	and the non-negotiable term) as well as a routine to query the
221  *	device specific portion of the template for the abovementioned terms.
222  *	There is also a routine to create (ctmpl_device_create) that is used to
223  *	create a contract from a template. This routine calls (after initial
224  *	setup) the common function used to create a device contract
225  *	(contract_device_create).
226  *
227  *	core device contract implementation
228  *	----------------------------------
229  *	These routines support the generic contract framework to provide
230  *	functionality that allows contracts to be created, managed and
231  *	destroyed. The contract_device_create() routine is a routine used
232  *	to create a contract from a template (either via an explicit create
233  *	operation on a template or implicitly via an open with an
234  *	activated template.). The contract_device_free() routine assists
235  *	in freeing the device contract specific parts. There are routines
236  *	used to abandon (contract_device_abandon) a device contract as well
237  *	as a routine to destroy (which despite its name does not destroy,
238  *	it only moves a contract to a dead state) a contract.
239  *	There is also a routine to return status information about a
240  *	contract - the level of detail depends on what is requested by the
241  *	user. A value of CTD_FIXED only returns fixed length fields such
242  *	as the A-set, state of device and value of the "noneg" term. If
243  *	CTD_ALL is specified, the minor node path is returned as well.
244  *
245  *	In addition there are interfaces (contract_device_ack/nack) which
246  *	are used to support negotiation between userland processes and
247  *	device contracts. These interfaces record the acknowledgement
248  *	or lack thereof for negotiation events and help determine if the
249  *	negotiated event should occur.
250  *
251  *	"backend routines"
252  *	-----------------
253  *	The backend routines form the interface between the I/O framework
254  *	and the device contract subsystem. These routines, allow the I/O
255  *	framework to call into the device contract subsystem to notify it of
256  *	impending changes to a device state as well as to inform of the
257  *	final disposition of such attempted state changes. Routines in this
258  *	class include contract_device_offline() that indicates an attempt to
259  *	offline a device, contract_device_degrade() that indicates that
260  *	a device is moving to the degraded state and contract_device_negend()
261  *	that is used by the I/O framework to inform the contracts subsystem of
262  *	the final disposition of an attempted operation.
263  *
264  *	SUMMARY
265  *	-------
266  *      A contract starts its life as a template. A process allocates a device
267  *	contract template and sets various terms:
268  *		The A-set
269  *		The device minor node
270  *		Critical and informative events
271  *		The noneg i.e. no negotition term
272  *	Setting of these terms in the template is done via the
273  *	ctmpl_device_set() entry point in this file. A process can query a
274  *	template to determine the terms already set in the template - this is
275  *	facilitated by the ctmpl_device_get() routine.
276  *
277  *	Once all the appropriate terms are set, the contract is instantiated via
278  *	one of two methods
279  *	- via an explicit create operation - this is facilitated by the
280  *	  ctmpl_device_create() entry point
281  *	- synchronously with the open(2) system call - this is achieved via the
282  *	  contract_device_open() routine.
283  *	The core work for both these above functions is done by
284  *	contract_device_create()
285  *
286  *	A contract once created can be queried for its status. Support for
287  *	status info is provided by both the common contracts framework and by
288  *	the "device" contract type. If the level of detail requested is
289  *	CTD_COMMON, only the common contract framework data is used. Higher
290  *	levels of detail result in calls to contract_device_status() to supply
291  *	device contract type specific status information.
292  *
293  *	A contract once created may be abandoned either explicitly or implictly.
294  *	In either case, the contract_device_abandon() function is invoked. This
295  * 	function merely calls contract_destroy() which moves the contract to
296  *	the DEAD state. The device contract portion of destroy processing is
297  *	provided by contract_device_destroy() which merely disassociates the
298  *	contract from its device devinfo node. A contract in the DEAD state is
299  *	not freed. It hanbgs around until all references to the contract are
300  *	gone. When that happens, the contract is finally deallocated. The
301  *	device contract specific portion of the free is done by
302  *	contract_device_free() which finally frees the device contract specific
303  *	data structure (cont_device_t).
304  *
305  *	When a device undergoes a state change, the I/O framework calls the
306  *	corresponding device contract entry point. For example, when a device
307  *	is about to go OFFLINE, the routine contract_device_offline() is
308  *	invoked. Similarly if a device moves to DEGRADED state, the routine
309  *	contract_device_degrade() function is called. These functions call the
310  *	core routine contract_device_publish(). This function determines via
311  *	the function is_sync_neg() whether an event is a synchronous (i.e.
312  *	negotiable) event or not. In the former case contract_device_publish()
313  *	publishes a CTE_NEG event and then waits in wait_for_acks() for ACKs
314  *	and/or NACKs from contract holders. In the latter case, it simply
315  *	publishes the event and does not wait. In the negotiation case, ACKs or
316  *	NACKs from userland consumers results in contract_device_ack_nack()
317  *	being called where the result of the negotiation is recorded in the
318  *	contract data structure. Once all outstanding contract owners have
319  *	responded, the device contract code in wait_for_acks() determines the
320  *	final result of the negotiation. A single NACK overrides all other ACKs
321  *	If there is no NACK, then a single ACK will result in an overall ACK
322  *	result. If there are no ACKs or NACKs, then the result CT_NONE is
323  *	returned back to the I/O framework. Once the event is permitted or
324  *	blocked, the I/O framework proceeds or aborts the state change. The
325  *	I/O framework then calls contract_device_negend() with a result code
326  *	indicating final disposition of the event. This call releases the
327  *	barrier and other state associated with the previous negotiation,
328  *	which permits the next event (if any) to come into the device contract
329  *	framework.
330  *
331  *	Finally, a device that has outstanding contracts may be removed from
332  *	the system which results in its devinfo node being freed. The devinfo
333  *	free routine in the I/O framework, calls into the device contract
334  *	function - contract_device_remove_dip(). This routine, disassociates
335  *	the dip from all contracts associated with the contract being freed,
336  *	allowing the devinfo node to be freed.
337  *
338  * LOCKING
339  * ---------
340  * 	There are four sets of data that need to be protected by locks
341  *
342  *	i) device contract specific portion of the contract template - This data
343  *	is protected by the template lock ctmpl_lock.
344  *
345  *	ii) device contract specific portion of the contract - This data is
346  *	protected by the contract lock ct_lock
347  *
348  *	iii) The linked list of contracts hanging off a devinfo node - This
349  *	list is protected by the per-devinfo node lock devi_ct_lock
350  *
351  *	iv) Finally there is a barrier, controlled by devi_ct_lock, devi_ct_cv
352  *	and devi_ct_count that controls state changes to a dip
353  *
354  *	The template lock is independent in that none of the other locks in this
355  *	file may be taken while holding the template lock (and vice versa).
356  *
357  *	The remaining three locks have the following lock order
358  *
359  *	devi_ct_lock  -> ct_count barrier ->  ct_lock
360  *
361  */
362 
363 static cont_device_t *contract_device_create(ctmpl_device_t *dtmpl, dev_t dev,
364     int spec_type, proc_t *owner, int *errorp);
365 
366 /* barrier routines */
367 static void ct_barrier_acquire(dev_info_t *dip);
368 static void ct_barrier_release(dev_info_t *dip);
369 static int ct_barrier_held(dev_info_t *dip);
370 static int ct_barrier_empty(dev_info_t *dip);
371 static void ct_barrier_wait_for_release(dev_info_t *dip);
372 static int ct_barrier_wait_for_empty(dev_info_t *dip, int secs);
373 static void ct_barrier_decr(dev_info_t *dip);
374 static void ct_barrier_incr(dev_info_t *dip);
375 
376 ct_type_t *device_type;
377 
378 /*
379  * Macro predicates for determining when events should be sent and how.
380  */
381 #define	EVSENDP(ctd, flag) \
382 	((ctd->cond_contract.ct_ev_info | ctd->cond_contract.ct_ev_crit) & flag)
383 
384 #define	EVINFOP(ctd, flag) \
385 	((ctd->cond_contract.ct_ev_crit & flag) == 0)
386 
387 /*
388  * State transition table showing which transitions are synchronous and which
389  * are not.
390  */
391 struct ct_dev_negtable {
392 	uint_t	st_old;
393 	uint_t	st_new;
394 	uint_t	st_neg;
395 } ct_dev_negtable[] = {
396 	{CT_DEV_EV_ONLINE, CT_DEV_EV_OFFLINE,	1},
397 	{CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED,	0},
398 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_ONLINE,	0},
399 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_OFFLINE,	1},
400 	{0}
401 };
402 
403 /*
404  * Device contract template implementation
405  */
406 
407 /*
408  * ctmpl_device_dup
409  *
410  * The device contract template dup entry point.
411  * This simply copies all the fields (generic as well as device contract
412  * specific) fields of the original.
413  */
414 static struct ct_template *
415 ctmpl_device_dup(struct ct_template *template)
416 {
417 	ctmpl_device_t *new;
418 	ctmpl_device_t *old = template->ctmpl_data;
419 	char *buf;
420 	char *minor;
421 
422 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
423 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
424 
425 	/*
426 	 * copy generic fields.
427 	 * ctmpl_copy returns with old template lock held
428 	 */
429 	ctmpl_copy(&new->ctd_ctmpl, template);
430 
431 	new->ctd_ctmpl.ctmpl_data = new;
432 	new->ctd_aset = old->ctd_aset;
433 	new->ctd_minor = NULL;
434 	new->ctd_noneg = old->ctd_noneg;
435 
436 	if (old->ctd_minor) {
437 		ASSERT(strlen(old->ctd_minor) + 1 <= MAXPATHLEN);
438 		bcopy(old->ctd_minor, buf, strlen(old->ctd_minor) + 1);
439 	} else {
440 		kmem_free(buf, MAXPATHLEN);
441 		buf = NULL;
442 	}
443 
444 	mutex_exit(&template->ctmpl_lock);
445 	if (buf) {
446 		minor = i_ddi_strdup(buf, KM_SLEEP);
447 		kmem_free(buf, MAXPATHLEN);
448 		buf = NULL;
449 	} else {
450 		minor = NULL;
451 	}
452 	mutex_enter(&template->ctmpl_lock);
453 
454 	if (minor) {
455 		new->ctd_minor = minor;
456 	}
457 
458 	ASSERT(buf == NULL);
459 	return (&new->ctd_ctmpl);
460 }
461 
462 /*
463  * ctmpl_device_free
464  *
465  * The device contract template free entry point.  Just
466  * frees the template.
467  */
468 static void
469 ctmpl_device_free(struct ct_template *template)
470 {
471 	ctmpl_device_t *dtmpl = template->ctmpl_data;
472 
473 	if (dtmpl->ctd_minor)
474 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
475 
476 	kmem_free(dtmpl, sizeof (ctmpl_device_t));
477 }
478 
479 /*
480  * SAFE_EV is the set of events which a non-privileged process is
481  * allowed to make critical. An unprivileged device contract owner has
482  * no control over when a device changes state, so all device events
483  * can be in the critical set.
484  *
485  * EXCESS tells us if "value", a critical event set, requires
486  * additional privilege. For device contracts EXCESS currently
487  * evaluates to 0.
488  */
489 #define	SAFE_EV		(CT_DEV_ALLEVENT)
490 #define	EXCESS(value)	((value) & ~SAFE_EV)
491 
492 
493 /*
494  * ctmpl_device_set
495  *
496  * The device contract template set entry point. Sets various terms in the
497  * template. The non-negotiable  term can only be set if the process has
498  * the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
499  */
500 static int
501 ctmpl_device_set(struct ct_template *tmpl, ct_param_t *param, const cred_t *cr)
502 {
503 	ctmpl_device_t *dtmpl = tmpl->ctmpl_data;
504 	int error;
505 	dev_info_t *dip;
506 	int spec_type;
507 	uint64_t param_value;
508 	char *str_value;
509 
510 	ASSERT(MUTEX_HELD(&tmpl->ctmpl_lock));
511 
512 	if (param->ctpm_id == CTDP_MINOR) {
513 		str_value = (char *)param->ctpm_value;
514 		str_value[param->ctpm_size - 1] = '\0';
515 	} else {
516 		if (param->ctpm_size < sizeof (uint64_t))
517 			return (EINVAL);
518 		param_value = *(uint64_t *)param->ctpm_value;
519 	}
520 
521 	switch (param->ctpm_id) {
522 	case CTDP_ACCEPT:
523 		if (param_value & ~CT_DEV_ALLEVENT)
524 			return (EINVAL);
525 		if (param_value == 0)
526 			return (EINVAL);
527 		if (param_value == CT_DEV_ALLEVENT)
528 			return (EINVAL);
529 
530 		dtmpl->ctd_aset = param_value;
531 		break;
532 	case CTDP_NONEG:
533 		if (param_value != CTDP_NONEG_SET &&
534 		    param_value != CTDP_NONEG_CLEAR)
535 			return (EINVAL);
536 
537 		/*
538 		 * only privileged processes can designate a contract
539 		 * non-negotiatble.
540 		 */
541 		if (param_value == CTDP_NONEG_SET &&
542 		    (error = secpolicy_sys_devices(cr)) != 0) {
543 			return (error);
544 		}
545 
546 		dtmpl->ctd_noneg = param_value;
547 		break;
548 
549 	case CTDP_MINOR:
550 		if (*str_value != '/' ||
551 		    strncmp(str_value, "/devices/",
552 		    strlen("/devices/")) == 0 ||
553 		    strstr(str_value, "../devices/") != NULL ||
554 		    strchr(str_value, ':') == NULL) {
555 			return (EINVAL);
556 		}
557 
558 		spec_type = 0;
559 		dip = NULL;
560 		if (resolve_pathname(str_value, &dip, NULL, &spec_type) != 0) {
561 			return (ERANGE);
562 		}
563 		ddi_release_devi(dip);
564 
565 		if (spec_type != S_IFCHR && spec_type != S_IFBLK) {
566 			return (EINVAL);
567 		}
568 
569 		if (dtmpl->ctd_minor != NULL) {
570 			kmem_free(dtmpl->ctd_minor,
571 			    strlen(dtmpl->ctd_minor) + 1);
572 		}
573 		dtmpl->ctd_minor = i_ddi_strdup(str_value, KM_SLEEP);
574 		break;
575 	case CTP_EV_CRITICAL:
576 		/*
577 		 * Currently for device contracts, any event
578 		 * may be added to the critical set. We retain the
579 		 * following code however for future enhancements.
580 		 */
581 		if (EXCESS(param_value) &&
582 		    (error = secpolicy_contract_event(cr)) != 0)
583 			return (error);
584 		tmpl->ctmpl_ev_crit = param_value;
585 		break;
586 	default:
587 		return (EINVAL);
588 	}
589 
590 	return (0);
591 }
592 
593 /*
594  * ctmpl_device_get
595  *
596  * The device contract template get entry point.  Simply fetches and
597  * returns the value of the requested term.
598  */
599 static int
600 ctmpl_device_get(struct ct_template *template, ct_param_t *param)
601 {
602 	ctmpl_device_t *dtmpl = template->ctmpl_data;
603 	uint64_t *param_value = param->ctpm_value;
604 
605 	ASSERT(MUTEX_HELD(&template->ctmpl_lock));
606 
607 	if (param->ctpm_id == CTDP_ACCEPT ||
608 	    param->ctpm_id == CTDP_NONEG) {
609 		if (param->ctpm_size < sizeof (uint64_t))
610 			return (EINVAL);
611 		param->ctpm_size = sizeof (uint64_t);
612 	}
613 
614 	switch (param->ctpm_id) {
615 	case CTDP_ACCEPT:
616 		*param_value = dtmpl->ctd_aset;
617 		break;
618 	case CTDP_NONEG:
619 		*param_value = dtmpl->ctd_noneg;
620 		break;
621 	case CTDP_MINOR:
622 		if (dtmpl->ctd_minor) {
623 			param->ctpm_size = strlcpy((char *)param->ctpm_value,
624 			    dtmpl->ctd_minor, param->ctpm_size);
625 			param->ctpm_size++;
626 		} else {
627 			return (ENOENT);
628 		}
629 		break;
630 	default:
631 		return (EINVAL);
632 	}
633 
634 	return (0);
635 }
636 
637 /*
638  * Device contract type specific portion of creating a contract using
639  * a specified template
640  */
641 /*ARGSUSED*/
642 int
643 ctmpl_device_create(ct_template_t *template, ctid_t *ctidp)
644 {
645 	ctmpl_device_t *dtmpl;
646 	char *buf;
647 	dev_t dev;
648 	int spec_type;
649 	int error;
650 	cont_device_t *ctd;
651 
652 	if (ctidp == NULL)
653 		return (EINVAL);
654 
655 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
656 
657 	dtmpl = template->ctmpl_data;
658 
659 	mutex_enter(&template->ctmpl_lock);
660 	if (dtmpl->ctd_minor == NULL) {
661 		/* incomplete template */
662 		mutex_exit(&template->ctmpl_lock);
663 		kmem_free(buf, MAXPATHLEN);
664 		return (EINVAL);
665 	} else {
666 		ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
667 		bcopy(dtmpl->ctd_minor, buf, strlen(dtmpl->ctd_minor) + 1);
668 	}
669 	mutex_exit(&template->ctmpl_lock);
670 
671 	spec_type = 0;
672 	dev = NODEV;
673 	if (resolve_pathname(buf, NULL, &dev, &spec_type) != 0 ||
674 	    dev == NODEV || dev == DDI_DEV_T_ANY || dev == DDI_DEV_T_NONE ||
675 	    (spec_type != S_IFCHR && spec_type != S_IFBLK)) {
676 		CT_DEBUG((CE_WARN,
677 		    "tmpl_create: failed to find device: %s", buf));
678 		kmem_free(buf, MAXPATHLEN);
679 		return (ERANGE);
680 	}
681 	kmem_free(buf, MAXPATHLEN);
682 
683 	ctd = contract_device_create(template->ctmpl_data,
684 	    dev, spec_type, curproc, &error);
685 
686 	if (ctd == NULL) {
687 		CT_DEBUG((CE_WARN, "Failed to create device contract for "
688 		    "process (%d) with device (devt = %lu, spec_type = %s)",
689 		    curproc->p_pid, dev,
690 		    spec_type == S_IFCHR ? "S_IFCHR" : "S_IFBLK"));
691 		return (error);
692 	}
693 
694 	mutex_enter(&ctd->cond_contract.ct_lock);
695 	*ctidp = ctd->cond_contract.ct_id;
696 	mutex_exit(&ctd->cond_contract.ct_lock);
697 
698 	return (0);
699 }
700 
701 /*
702  * Device contract specific template entry points
703  */
704 static ctmplops_t ctmpl_device_ops = {
705 	ctmpl_device_dup,		/* ctop_dup */
706 	ctmpl_device_free,		/* ctop_free */
707 	ctmpl_device_set,		/* ctop_set */
708 	ctmpl_device_get,		/* ctop_get */
709 	ctmpl_device_create,		/* ctop_create */
710 	CT_DEV_ALLEVENT			/* all device events bitmask */
711 };
712 
713 
714 /*
715  * Device contract implementation
716  */
717 
718 /*
719  * contract_device_default
720  *
721  * The device contract default template entry point.  Creates a
722  * device contract template with a default A-set and no "noneg" ,
723  * with informative degrade events and critical offline events.
724  * There is no default minor path.
725  */
726 static ct_template_t *
727 contract_device_default(void)
728 {
729 	ctmpl_device_t *new;
730 
731 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
732 	ctmpl_init(&new->ctd_ctmpl, &ctmpl_device_ops, device_type, new);
733 
734 	new->ctd_aset = CT_DEV_EV_ONLINE | CT_DEV_EV_DEGRADED;
735 	new->ctd_noneg = 0;
736 	new->ctd_ctmpl.ctmpl_ev_info = CT_DEV_EV_DEGRADED;
737 	new->ctd_ctmpl.ctmpl_ev_crit = CT_DEV_EV_OFFLINE;
738 
739 	return (&new->ctd_ctmpl);
740 }
741 
742 /*
743  * contract_device_free
744  *
745  * Destroys the device contract specific portion of a contract and
746  * frees the contract.
747  */
748 static void
749 contract_device_free(contract_t *ct)
750 {
751 	cont_device_t *ctd = ct->ct_data;
752 
753 	ASSERT(ctd->cond_minor);
754 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
755 	kmem_free(ctd->cond_minor, strlen(ctd->cond_minor) + 1);
756 
757 	ASSERT(ctd->cond_devt != DDI_DEV_T_ANY &&
758 	    ctd->cond_devt != DDI_DEV_T_NONE && ctd->cond_devt != NODEV);
759 
760 	ASSERT(ctd->cond_spec == S_IFBLK || ctd->cond_spec == S_IFCHR);
761 
762 	ASSERT(!(ctd->cond_aset & ~CT_DEV_ALLEVENT));
763 	ASSERT(ctd->cond_noneg == 0 || ctd->cond_noneg == 1);
764 
765 	ASSERT(!(ctd->cond_currev_type & ~CT_DEV_ALLEVENT));
766 	ASSERT(!(ctd->cond_currev_ack & ~(CT_ACK | CT_NACK)));
767 
768 	ASSERT((ctd->cond_currev_id > 0) ^ (ctd->cond_currev_type == 0));
769 	ASSERT((ctd->cond_currev_id > 0) || (ctd->cond_currev_ack == 0));
770 
771 	ASSERT(!list_link_active(&ctd->cond_next));
772 
773 	kmem_free(ctd, sizeof (cont_device_t));
774 }
775 
776 /*
777  * contract_device_abandon
778  *
779  * The device contract abandon entry point.
780  */
781 static void
782 contract_device_abandon(contract_t *ct)
783 {
784 	ASSERT(MUTEX_HELD(&ct->ct_lock));
785 
786 	/*
787 	 * device contracts cannot be inherited or orphaned.
788 	 * Move the contract to the DEAD_STATE. It will be freed
789 	 * once all references to it are gone.
790 	 */
791 	contract_destroy(ct);
792 }
793 
794 /*
795  * contract_device_destroy
796  *
797  * The device contract destroy entry point.
798  * Called from contract_destroy() to do any type specific destroy. Note
799  * that destroy is a misnomer - this does not free the contract, it only
800  * moves it to the dead state. A contract is actually freed via
801  * 	contract_rele() -> contract_dtor(), contop_free()
802  */
803 static void
804 contract_device_destroy(contract_t *ct)
805 {
806 	cont_device_t	*ctd = ct->ct_data;
807 	dev_info_t	*dip = ctd->cond_dip;
808 
809 	ASSERT(MUTEX_HELD(&ct->ct_lock));
810 
811 	if (dip == NULL) {
812 		/*
813 		 * The dip has been removed, this is a dangling contract
814 		 * Check that dip linkages are NULL
815 		 */
816 		ASSERT(!list_link_active(&ctd->cond_next));
817 		CT_DEBUG((CE_NOTE, "contract_device_destroy: contract has no "
818 		    "devinfo node. contract ctid : %d", ct->ct_id));
819 		return;
820 	}
821 
822 	/*
823 	 * Need to have lock order: devi_ct_lock -> ct_count barrier -> ct_lock
824 	 */
825 	mutex_exit(&ct->ct_lock);
826 
827 	/*
828 	 * Waiting for the barrier to be released is strictly speaking not
829 	 * necessary. But it simplifies the implementation of
830 	 * contract_device_publish() by establishing the invariant that
831 	 * device contracts cannot go away during negotiation.
832 	 */
833 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
834 	ct_barrier_wait_for_release(dip);
835 	mutex_enter(&ct->ct_lock);
836 
837 	list_remove(&(DEVI(dip)->devi_ct), ctd);
838 	ctd->cond_dip = NULL; /* no longer linked to dip */
839 	contract_rele(ct);	/* remove hold for dip linkage */
840 
841 	mutex_exit(&ct->ct_lock);
842 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
843 	mutex_enter(&ct->ct_lock);
844 }
845 
846 /*
847  * contract_device_status
848  *
849  * The device contract status entry point. Called when level of "detail"
850  * is either CTD_FIXED or CTD_ALL
851  *
852  */
853 static void
854 contract_device_status(contract_t *ct, zone_t *zone, int detail, nvlist_t *nvl,
855     void *status, model_t model)
856 {
857 	cont_device_t *ctd = ct->ct_data;
858 
859 	ASSERT(detail == CTD_FIXED || detail == CTD_ALL);
860 
861 	mutex_enter(&ct->ct_lock);
862 	contract_status_common(ct, zone, status, model);
863 
864 	/*
865 	 * There's no need to hold the contract lock while accessing static
866 	 * data like aset or noneg. But since we need the lock to access other
867 	 * data like state, we hold it anyway.
868 	 */
869 	VERIFY(nvlist_add_uint32(nvl, CTDS_STATE, ctd->cond_state) == 0);
870 	VERIFY(nvlist_add_uint32(nvl, CTDS_ASET, ctd->cond_aset) == 0);
871 	VERIFY(nvlist_add_uint32(nvl, CTDS_NONEG, ctd->cond_noneg) == 0);
872 
873 	if (detail == CTD_FIXED) {
874 		mutex_exit(&ct->ct_lock);
875 		return;
876 	}
877 
878 	ASSERT(ctd->cond_minor);
879 	VERIFY(nvlist_add_string(nvl, CTDS_MINOR, ctd->cond_minor) == 0);
880 
881 	mutex_exit(&ct->ct_lock);
882 }
883 
884 /*
885  * Converts a result integer into the corresponding string. Used for printing
886  * messages
887  */
888 static char *
889 result_str(uint_t result)
890 {
891 	switch (result) {
892 	case CT_ACK:
893 		return ("CT_ACK");
894 	case CT_NACK:
895 		return ("CT_NACK");
896 	case CT_NONE:
897 		return ("CT_NONE");
898 	default:
899 		return ("UNKNOWN");
900 	}
901 }
902 
903 /*
904  * Converts a device state integer constant into the corresponding string.
905  * Used to print messages.
906  */
907 static char *
908 state_str(uint_t state)
909 {
910 	switch (state) {
911 	case CT_DEV_EV_ONLINE:
912 		return ("ONLINE");
913 	case CT_DEV_EV_DEGRADED:
914 		return ("DEGRADED");
915 	case CT_DEV_EV_OFFLINE:
916 		return ("OFFLINE");
917 	default:
918 		return ("UNKNOWN");
919 	}
920 }
921 
922 /*
923  * Routine that determines if a particular CT_DEV_EV_? event corresponds to a
924  * synchronous state change or not.
925  */
926 static int
927 is_sync_neg(uint_t old, uint_t new)
928 {
929 	int	i;
930 
931 	ASSERT(old & CT_DEV_ALLEVENT);
932 	ASSERT(new & CT_DEV_ALLEVENT);
933 
934 	if (old == new) {
935 		CT_DEBUG((CE_WARN, "is_sync_neg: transition to same state: %s",
936 		    state_str(new)));
937 		return (-2);
938 	}
939 
940 	for (i = 0; ct_dev_negtable[i].st_new != 0; i++) {
941 		if (old == ct_dev_negtable[i].st_old &&
942 		    new == ct_dev_negtable[i].st_new) {
943 			return (ct_dev_negtable[i].st_neg);
944 		}
945 	}
946 
947 	CT_DEBUG((CE_WARN, "is_sync_neg: Unsupported state transition: "
948 	    "old = %s -> new = %s", state_str(old), state_str(new)));
949 
950 	return (-1);
951 }
952 
953 /*
954  * Used to cleanup cached dv_nodes so that when a device is released by
955  * a contract holder, its devinfo node can be successfully detached.
956  */
957 static int
958 contract_device_dvclean(dev_info_t *dip)
959 {
960 	char		*devnm;
961 	dev_info_t	*pdip;
962 	int		error;
963 
964 	ASSERT(dip);
965 
966 	/* pdip can be NULL if we have contracts against the root dip */
967 	pdip = ddi_get_parent(dip);
968 
969 	if (pdip && DEVI_BUSY_OWNED(pdip) || !pdip && DEVI_BUSY_OWNED(dip)) {
970 		char		*path;
971 
972 		path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
973 		(void) ddi_pathname(dip, path);
974 		CT_DEBUG((CE_WARN, "ct_dv_clean: Parent node is busy owned, "
975 		    "device=%s", path));
976 		kmem_free(path, MAXPATHLEN);
977 		return (EDEADLOCK);
978 	}
979 
980 	if (pdip) {
981 		devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
982 		(void) ddi_deviname(dip, devnm);
983 		error = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
984 		kmem_free(devnm, MAXNAMELEN + 1);
985 	} else {
986 		error = devfs_clean(dip, NULL, DV_CLEAN_FORCE);
987 	}
988 
989 	return (error);
990 }
991 
992 /*
993  * Endpoint of a ct_ctl_ack() or ct_ctl_nack() call from userland.
994  * Results in the ACK or NACK being recorded on the dip for one particular
995  * contract. The device contracts framework evaluates the ACK/NACKs for all
996  * contracts against a device to determine if a particular device state change
997  * should be allowed.
998  */
999 static int
1000 contract_device_ack_nack(contract_t *ct, uint_t evtype, uint64_t evid,
1001     uint_t cmd)
1002 {
1003 	cont_device_t *ctd = ct->ct_data;
1004 	dev_info_t *dip;
1005 	ctid_t	ctid;
1006 	int error;
1007 
1008 	ctid = ct->ct_id;
1009 
1010 	CT_DEBUG((CE_NOTE, "ack_nack: entered: ctid %d", ctid));
1011 
1012 	mutex_enter(&ct->ct_lock);
1013 	CT_DEBUG((CE_NOTE, "ack_nack: contract lock acquired: %d", ctid));
1014 
1015 	dip = ctd->cond_dip;
1016 
1017 	ASSERT(ctd->cond_minor);
1018 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
1019 
1020 	/*
1021 	 * Negotiation only if new state is not in A-set
1022 	 */
1023 	ASSERT(!(ctd->cond_aset & evtype));
1024 
1025 	/*
1026 	 * Negotiation only if transition is synchronous
1027 	 */
1028 	ASSERT(is_sync_neg(ctd->cond_state, evtype));
1029 
1030 	/*
1031 	 * We shouldn't be negotiating if the "noneg" flag is set
1032 	 */
1033 	ASSERT(!ctd->cond_noneg);
1034 
1035 	if (dip)
1036 		ndi_hold_devi(dip);
1037 
1038 	mutex_exit(&ct->ct_lock);
1039 
1040 	/*
1041 	 * dv_clean only if !NACK and offline state change
1042 	 */
1043 	if (cmd != CT_NACK && evtype == CT_DEV_EV_OFFLINE && dip) {
1044 		CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: %d", ctid));
1045 		error = contract_device_dvclean(dip);
1046 		if (error != 0) {
1047 			CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: failed: %d",
1048 			    ctid));
1049 			ddi_release_devi(dip);
1050 		}
1051 	}
1052 
1053 	mutex_enter(&ct->ct_lock);
1054 
1055 	if (dip)
1056 		ddi_release_devi(dip);
1057 
1058 	if (dip == NULL) {
1059 		if (ctd->cond_currev_id != evid) {
1060 			CT_DEBUG((CE_WARN, "%sACK for non-current event "
1061 			    "(type=%s, id=%llu) on removed device",
1062 			    cmd == CT_NACK ? "N" : "",
1063 			    state_str(evtype), (unsigned long long)evid));
1064 			CT_DEBUG((CE_NOTE, "ack_nack: error: ESRCH, ctid: %d",
1065 			    ctid));
1066 		} else {
1067 			ASSERT(ctd->cond_currev_type == evtype);
1068 			CT_DEBUG((CE_WARN, "contract_ack: no such device: "
1069 			    "ctid: %d", ctid));
1070 		}
1071 		error = (ct->ct_state == CTS_DEAD) ? ESRCH :
1072 		    ((cmd == CT_NACK) ? ETIMEDOUT : 0);
1073 		mutex_exit(&ct->ct_lock);
1074 		return (error);
1075 	}
1076 
1077 	/*
1078 	 * Must follow lock order: devi_ct_lock -> ct_count barrier - >ct_lock
1079 	 */
1080 	mutex_exit(&ct->ct_lock);
1081 
1082 	mutex_enter(&DEVI(dip)->devi_ct_lock);
1083 	mutex_enter(&ct->ct_lock);
1084 	if (ctd->cond_currev_id != evid) {
1085 		char *buf;
1086 		mutex_exit(&ct->ct_lock);
1087 		mutex_exit(&DEVI(dip)->devi_ct_lock);
1088 		ndi_hold_devi(dip);
1089 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1090 		(void) ddi_pathname(dip, buf);
1091 		ddi_release_devi(dip);
1092 		CT_DEBUG((CE_WARN, "%sACK for non-current event"
1093 		    "(type=%s, id=%llu) on device %s",
1094 		    cmd == CT_NACK ? "N" : "",
1095 		    state_str(evtype), (unsigned long long)evid, buf));
1096 		kmem_free(buf, MAXPATHLEN);
1097 		CT_DEBUG((CE_NOTE, "ack_nack: error: %d, ctid: %d",
1098 		    cmd == CT_NACK ? ETIMEDOUT : 0, ctid));
1099 		return (cmd == CT_ACK ? 0 : ETIMEDOUT);
1100 	}
1101 
1102 	ASSERT(ctd->cond_currev_type == evtype);
1103 	ASSERT(cmd == CT_ACK || cmd == CT_NACK);
1104 
1105 	CT_DEBUG((CE_NOTE, "ack_nack: setting %sACK for ctid: %d",
1106 	    cmd == CT_NACK ? "N" : "", ctid));
1107 
1108 	ctd->cond_currev_ack = cmd;
1109 	mutex_exit(&ct->ct_lock);
1110 
1111 	ct_barrier_decr(dip);
1112 	mutex_exit(&DEVI(dip)->devi_ct_lock);
1113 
1114 	CT_DEBUG((CE_NOTE, "ack_nack: normal exit: ctid: %d", ctid));
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Invoked when a userland contract holder approves (i.e. ACKs) a state change
1121  */
1122 static int
1123 contract_device_ack(contract_t *ct, uint_t evtype, uint64_t evid)
1124 {
1125 	return (contract_device_ack_nack(ct, evtype, evid, CT_ACK));
1126 }
1127 
1128 /*
1129  * Invoked when a userland contract holder blocks (i.e. NACKs) a state change
1130  */
1131 static int
1132 contract_device_nack(contract_t *ct, uint_t evtype, uint64_t evid)
1133 {
1134 	return (contract_device_ack_nack(ct, evtype, evid, CT_NACK));
1135 }
1136 
1137 /*
1138  * Creates a new contract synchronously with the breaking of an existing
1139  * contract. Currently not supported.
1140  */
1141 /*ARGSUSED*/
1142 static int
1143 contract_device_newct(contract_t *ct)
1144 {
1145 	return (ENOTSUP);
1146 }
1147 
1148 /*
1149  * Core device contract implementation entry points
1150  */
1151 static contops_t contract_device_ops = {
1152 	contract_device_free,		/* contop_free */
1153 	contract_device_abandon,	/* contop_abandon */
1154 	contract_device_destroy,	/* contop_destroy */
1155 	contract_device_status,		/* contop_status */
1156 	contract_device_ack,		/* contop_ack */
1157 	contract_device_nack,		/* contop_nack */
1158 	contract_qack_notsup,		/* contop_qack */
1159 	contract_device_newct		/* contop_newct */
1160 };
1161 
1162 /*
1163  * contract_device_init
1164  *
1165  * Initializes the device contract type.
1166  */
1167 void
1168 contract_device_init(void)
1169 {
1170 	device_type = contract_type_init(CTT_DEVICE, "device",
1171 	    &contract_device_ops, contract_device_default);
1172 }
1173 
1174 /*
1175  * contract_device_create
1176  *
1177  * create a device contract given template "tmpl" and the "owner" process.
1178  * May fail and return NULL if project.max-contracts would have been exceeded.
1179  *
1180  * Common device contract creation routine called for both open-time and
1181  * non-open time device contract creation
1182  */
1183 static cont_device_t *
1184 contract_device_create(ctmpl_device_t *dtmpl, dev_t dev, int spec_type,
1185     proc_t *owner, int *errorp)
1186 {
1187 	cont_device_t *ctd;
1188 	char *minor;
1189 	char *path;
1190 	dev_info_t *dip;
1191 
1192 	ASSERT(dtmpl != NULL);
1193 	ASSERT(dev != NODEV && dev != DDI_DEV_T_ANY && dev != DDI_DEV_T_NONE);
1194 	ASSERT(spec_type == S_IFCHR || spec_type == S_IFBLK);
1195 	ASSERT(errorp);
1196 
1197 	*errorp = 0;
1198 
1199 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1200 
1201 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1202 	ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
1203 	bcopy(dtmpl->ctd_minor, path, strlen(dtmpl->ctd_minor) + 1);
1204 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1205 
1206 	dip = e_ddi_hold_devi_by_path(path, 0);
1207 	if (dip == NULL) {
1208 		cmn_err(CE_WARN, "contract_create: Cannot find devinfo node "
1209 		    "for device path (%s)", path);
1210 		kmem_free(path, MAXPATHLEN);
1211 		*errorp = ERANGE;
1212 		return (NULL);
1213 	}
1214 
1215 	/*
1216 	 * Lock out any parallel contract negotiations
1217 	 */
1218 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1219 	ct_barrier_acquire(dip);
1220 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1221 
1222 	minor = i_ddi_strdup(path, KM_SLEEP);
1223 	kmem_free(path, MAXPATHLEN);
1224 
1225 	(void) contract_type_pbundle(device_type, owner);
1226 
1227 	ctd = kmem_zalloc(sizeof (cont_device_t), KM_SLEEP);
1228 
1229 	/*
1230 	 * Only we hold a refernce to this contract. Safe to access
1231 	 * the fields without a ct_lock
1232 	 */
1233 	ctd->cond_minor = minor;
1234 	/*
1235 	 * It is safe to set the dip pointer in the contract
1236 	 * as the contract will always be destroyed before the dip
1237 	 * is released
1238 	 */
1239 	ctd->cond_dip = dip;
1240 	ctd->cond_devt = dev;
1241 	ctd->cond_spec = spec_type;
1242 
1243 	/*
1244 	 * Since we are able to lookup the device, it is either
1245 	 * online or degraded
1246 	 */
1247 	ctd->cond_state = DEVI_IS_DEVICE_DEGRADED(dip) ?
1248 	    CT_DEV_EV_DEGRADED : CT_DEV_EV_ONLINE;
1249 
1250 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1251 	ctd->cond_aset = dtmpl->ctd_aset;
1252 	ctd->cond_noneg = dtmpl->ctd_noneg;
1253 
1254 	/*
1255 	 * contract_ctor() initailizes the common portion of a contract
1256 	 * contract_dtor() destroys the common portion of a contract
1257 	 */
1258 	if (contract_ctor(&ctd->cond_contract, device_type, &dtmpl->ctd_ctmpl,
1259 	    ctd, 0, owner, B_TRUE)) {
1260 		mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1261 		/*
1262 		 * contract_device_free() destroys the type specific
1263 		 * portion of a contract and frees the contract.
1264 		 * The "minor" path and "cred" is a part of the type specific
1265 		 * portion of the contract and will be freed by
1266 		 * contract_device_free()
1267 		 */
1268 		contract_device_free(&ctd->cond_contract);
1269 
1270 		/* release barrier */
1271 		mutex_enter(&(DEVI(dip)->devi_ct_lock));
1272 		ct_barrier_release(dip);
1273 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1274 
1275 		ddi_release_devi(dip);
1276 		*errorp = EAGAIN;
1277 		return (NULL);
1278 	}
1279 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1280 
1281 	mutex_enter(&ctd->cond_contract.ct_lock);
1282 	ctd->cond_contract.ct_ntime.ctm_total = CT_DEV_ACKTIME;
1283 	ctd->cond_contract.ct_qtime.ctm_total = CT_DEV_ACKTIME;
1284 	ctd->cond_contract.ct_ntime.ctm_start = -1;
1285 	ctd->cond_contract.ct_qtime.ctm_start = -1;
1286 	mutex_exit(&ctd->cond_contract.ct_lock);
1287 
1288 	/*
1289 	 * Insert device contract into list hanging off the dip
1290 	 * Bump up the ref-count on the contract to reflect this
1291 	 */
1292 	contract_hold(&ctd->cond_contract);
1293 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1294 	list_insert_tail(&(DEVI(dip)->devi_ct), ctd);
1295 
1296 	/* release barrier */
1297 	ct_barrier_release(dip);
1298 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1299 
1300 	ddi_release_devi(dip);
1301 
1302 	return (ctd);
1303 }
1304 
1305 /*
1306  * Called when a device is successfully opened to create an open-time contract
1307  * i.e. synchronously with a device open.
1308  */
1309 int
1310 contract_device_open(dev_t dev, int spec_type, contract_t **ctpp)
1311 {
1312 	ctmpl_device_t *dtmpl;
1313 	ct_template_t  *tmpl;
1314 	cont_device_t *ctd;
1315 	char *path;
1316 	klwp_t *lwp;
1317 	int error;
1318 
1319 	if (ctpp)
1320 		*ctpp = NULL;
1321 
1322 	/*
1323 	 * Check if we are in user-context i.e. if we have an lwp
1324 	 */
1325 	lwp = ttolwp(curthread);
1326 	if (lwp == NULL) {
1327 		CT_DEBUG((CE_NOTE, "contract_open: Not user-context"));
1328 		return (0);
1329 	}
1330 
1331 	tmpl = ctmpl_dup(lwp->lwp_ct_active[device_type->ct_type_index]);
1332 	if (tmpl == NULL) {
1333 		return (0);
1334 	}
1335 	dtmpl = tmpl->ctmpl_data;
1336 
1337 	/*
1338 	 * If the user set a minor path in the template before an open,
1339 	 * ignore it. We use the minor path of the actual minor opened.
1340 	 */
1341 	mutex_enter(&tmpl->ctmpl_lock);
1342 	if (dtmpl->ctd_minor != NULL) {
1343 		CT_DEBUG((CE_NOTE, "contract_device_open(): Process %d: "
1344 		    "ignoring device minor path in active template: %s",
1345 		    curproc->p_pid, dtmpl->ctd_minor));
1346 		/*
1347 		 * This is a copy of the actual activated template.
1348 		 * Safe to make changes such as freeing the minor
1349 		 * path in the template.
1350 		 */
1351 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
1352 		dtmpl->ctd_minor = NULL;
1353 	}
1354 	mutex_exit(&tmpl->ctmpl_lock);
1355 
1356 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1357 
1358 	if (ddi_dev_pathname(dev, spec_type, path) != DDI_SUCCESS) {
1359 		CT_DEBUG((CE_NOTE, "contract_device_open(): Failed to derive "
1360 		    "minor path from dev_t,spec {%lu, %d} for process (%d)",
1361 		    dev, spec_type, curproc->p_pid));
1362 		ctmpl_free(tmpl);
1363 		kmem_free(path, MAXPATHLEN);
1364 		return (1);
1365 	}
1366 
1367 	mutex_enter(&tmpl->ctmpl_lock);
1368 	ASSERT(dtmpl->ctd_minor == NULL);
1369 	dtmpl->ctd_minor = path;
1370 	mutex_exit(&tmpl->ctmpl_lock);
1371 
1372 	ctd = contract_device_create(dtmpl, dev, spec_type, curproc, &error);
1373 
1374 	mutex_enter(&tmpl->ctmpl_lock);
1375 	ASSERT(dtmpl->ctd_minor);
1376 	dtmpl->ctd_minor = NULL;
1377 	mutex_exit(&tmpl->ctmpl_lock);
1378 	ctmpl_free(tmpl);
1379 	kmem_free(path, MAXPATHLEN);
1380 
1381 	if (ctd == NULL) {
1382 		cmn_err(CE_NOTE, "contract_device_open(): Failed to "
1383 		    "create device contract for process (%d) holding "
1384 		    "device (devt = %lu, spec_type = %d)",
1385 		    curproc->p_pid, dev, spec_type);
1386 		return (1);
1387 	}
1388 
1389 	if (ctpp) {
1390 		mutex_enter(&ctd->cond_contract.ct_lock);
1391 		*ctpp = &ctd->cond_contract;
1392 		mutex_exit(&ctd->cond_contract.ct_lock);
1393 	}
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Called during contract negotiation by the device contract framework to wait
1399  * for ACKs or NACKs from contract holders. If all responses are not received
1400  * before a specified timeout, this routine times out.
1401  */
1402 static uint_t
1403 wait_for_acks(dev_info_t *dip, dev_t dev, int spec_type, uint_t evtype)
1404 {
1405 	cont_device_t *ctd;
1406 	int timed_out = 0;
1407 	int result = CT_NONE;
1408 	int ack;
1409 	char *f = "wait_for_acks";
1410 
1411 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
1412 	ASSERT(dip);
1413 	ASSERT(evtype & CT_DEV_ALLEVENT);
1414 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1415 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1416 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1417 
1418 	CT_DEBUG((CE_NOTE, "%s: entered: dip: %p", f, (void *)dip));
1419 
1420 	if (ct_barrier_wait_for_empty(dip, CT_DEV_ACKTIME) == -1) {
1421 		/*
1422 		 * some contract owner(s) didn't respond in time
1423 		 */
1424 		CT_DEBUG((CE_NOTE, "%s: timed out: %p", f, (void *)dip));
1425 		timed_out = 1;
1426 	}
1427 
1428 	ack = 0;
1429 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1430 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1431 
1432 		mutex_enter(&ctd->cond_contract.ct_lock);
1433 
1434 		ASSERT(ctd->cond_dip == dip);
1435 
1436 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1437 			mutex_exit(&ctd->cond_contract.ct_lock);
1438 			continue;
1439 		}
1440 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1441 			mutex_exit(&ctd->cond_contract.ct_lock);
1442 			continue;
1443 		}
1444 
1445 		/* skip if non-negotiable contract */
1446 		if (ctd->cond_noneg) {
1447 			mutex_exit(&ctd->cond_contract.ct_lock);
1448 			continue;
1449 		}
1450 
1451 		ASSERT(ctd->cond_currev_type == evtype);
1452 		if (ctd->cond_currev_ack == CT_NACK) {
1453 			CT_DEBUG((CE_NOTE, "%s: found a NACK,result = NACK: %p",
1454 			    f, (void *)dip));
1455 			mutex_exit(&ctd->cond_contract.ct_lock);
1456 			return (CT_NACK);
1457 		} else if (ctd->cond_currev_ack == CT_ACK) {
1458 			ack = 1;
1459 			CT_DEBUG((CE_NOTE, "%s: found a ACK: %p",
1460 			    f, (void *)dip));
1461 		}
1462 		mutex_exit(&ctd->cond_contract.ct_lock);
1463 	}
1464 
1465 	if (ack) {
1466 		result = CT_ACK;
1467 		CT_DEBUG((CE_NOTE, "%s: result = ACK, dip=%p", f, (void *)dip));
1468 	} else if (timed_out) {
1469 		result = CT_NONE;
1470 		CT_DEBUG((CE_NOTE, "%s: result = NONE (timed-out), dip=%p",
1471 		    f, (void *)dip));
1472 	} else {
1473 		CT_DEBUG((CE_NOTE, "%s: result = NONE, dip=%p",
1474 		    f, (void *)dip));
1475 	}
1476 
1477 
1478 	return (result);
1479 }
1480 
1481 /*
1482  * Determines the current state of a device (i.e a devinfo node
1483  */
1484 static int
1485 get_state(dev_info_t *dip)
1486 {
1487 	if (DEVI_IS_DEVICE_OFFLINE(dip) || DEVI_IS_DEVICE_DOWN(dip))
1488 		return (CT_DEV_EV_OFFLINE);
1489 	else if (DEVI_IS_DEVICE_DEGRADED(dip))
1490 		return (CT_DEV_EV_DEGRADED);
1491 	else
1492 		return (CT_DEV_EV_ONLINE);
1493 }
1494 
1495 /*
1496  * Sets the current state of a device in a device contract
1497  */
1498 static void
1499 set_cond_state(dev_info_t *dip)
1500 {
1501 	uint_t state = get_state(dip);
1502 	cont_device_t *ctd;
1503 
1504 	/* verify that barrier is held */
1505 	ASSERT(ct_barrier_held(dip));
1506 
1507 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1508 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1509 		mutex_enter(&ctd->cond_contract.ct_lock);
1510 		ASSERT(ctd->cond_dip == dip);
1511 		ctd->cond_state = state;
1512 		mutex_exit(&ctd->cond_contract.ct_lock);
1513 	}
1514 }
1515 
1516 /*
1517  * Core routine called by event-specific routines when an event occurs.
1518  * Determines if an event should be be published, and if it is to be
1519  * published, whether a negotiation should take place. Also implements
1520  * NEGEND events which publish the final disposition of an event after
1521  * negotiations are complete.
1522  *
1523  * When an event occurs on a minor node, this routine walks the list of
1524  * contracts hanging off a devinfo node and for each contract on the affected
1525  * dip, evaluates the following cases
1526  *
1527  *	a. an event that is synchronous, breaks the contract and NONEG not set
1528  *		- bumps up the outstanding negotiation counts on the dip
1529  *		- marks the dip as undergoing negotiation (devi_ct_neg)
1530  *		- event of type CTE_NEG is published
1531  *	b. an event that is synchronous, breaks the contract and NONEG is set
1532  *		- sets the final result to CT_NACK, event is blocked
1533  *		- does not publish an event
1534  *	c. event is asynchronous and breaks the contract
1535  *		- publishes a critical event irrespect of whether the NONEG
1536  *		  flag is set, since the contract will be broken and contract
1537  *		  owner needs to be informed.
1538  *	d. No contract breakage but the owner has subscribed to the event
1539  *		- publishes the event irrespective of the NONEG event as the
1540  *		  owner has explicitly subscribed to the event.
1541  *	e. NEGEND event
1542  *		- publishes a critical event. Should only be doing this if
1543  *		  if NONEG is not set.
1544  *	f. all other events
1545  *		- Since a contract is not broken and this event has not been
1546  *		  subscribed to, this event does not need to be published for
1547  *		  for this contract.
1548  *
1549  *	Once an event is published, what happens next depends on the type of
1550  *	event:
1551  *
1552  *	a. NEGEND event
1553  *		- cleanup all state associated with the preceding negotiation
1554  *		  and return CT_ACK to the caller of contract_device_publish()
1555  *	b. NACKed event
1556  *		- One or more contracts had the NONEG term, so the event was
1557  *		  blocked. Return CT_NACK to the caller.
1558  *	c. Negotiated event
1559  *		- Call wait_for_acks() to wait for responses from contract
1560  *		holders. The end result is either CT_ACK (event is permitted),
1561  *		CT_NACK (event is blocked) or CT_NONE (no contract owner)
1562  *		responded. This result is returned back to the caller.
1563  *	d. All other events
1564  *		- If the event was asynchronous (i.e. not negotiated) or
1565  *		a contract was not broken return CT_ACK to the caller.
1566  */
1567 static uint_t
1568 contract_device_publish(dev_info_t *dip, dev_t dev, int spec_type,
1569     uint_t evtype, nvlist_t *tnvl)
1570 {
1571 	cont_device_t *ctd;
1572 	uint_t result = CT_NONE;
1573 	uint64_t evid = 0;
1574 	uint64_t nevid = 0;
1575 	char *path = NULL;
1576 	int negend;
1577 	int match;
1578 	int sync = 0;
1579 	contract_t *ct;
1580 	ct_kevent_t *event;
1581 	nvlist_t *nvl;
1582 	int broken = 0;
1583 
1584 	ASSERT(dip);
1585 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1586 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1587 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1588 	ASSERT(evtype == 0 || (evtype & CT_DEV_ALLEVENT));
1589 
1590 	/* Is this a synchronous state change ? */
1591 	if (evtype != CT_EV_NEGEND) {
1592 		sync = is_sync_neg(get_state(dip), evtype);
1593 		/* NOP if unsupported transition */
1594 		if (sync == -2 || sync == -1) {
1595 			DEVI(dip)->devi_flags |= DEVI_CT_NOP;
1596 			result = (sync == -2) ? CT_ACK : CT_NONE;
1597 			goto out;
1598 		}
1599 		CT_DEBUG((CE_NOTE, "publish: is%s sync state change",
1600 		    sync ? "" : " not"));
1601 	} else if (DEVI(dip)->devi_flags & DEVI_CT_NOP) {
1602 		DEVI(dip)->devi_flags &= ~DEVI_CT_NOP;
1603 		result = CT_ACK;
1604 		goto out;
1605 	}
1606 
1607 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1608 	(void) ddi_pathname(dip, path);
1609 
1610 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1611 
1612 	/*
1613 	 * Negotiation end - set the state of the device in the contract
1614 	 */
1615 	if (evtype == CT_EV_NEGEND) {
1616 		CT_DEBUG((CE_NOTE, "publish: negend: setting cond state"));
1617 		set_cond_state(dip);
1618 	}
1619 
1620 	/*
1621 	 * If this device didn't go through negotiation, don't publish
1622 	 * a NEGEND event - simply release the barrier to allow other
1623 	 * device events in.
1624 	 */
1625 	negend = 0;
1626 	if (evtype == CT_EV_NEGEND && !DEVI(dip)->devi_ct_neg) {
1627 		CT_DEBUG((CE_NOTE, "publish: no negend reqd. release barrier"));
1628 		ct_barrier_release(dip);
1629 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1630 		result = CT_ACK;
1631 		goto out;
1632 	} else if (evtype == CT_EV_NEGEND) {
1633 		/*
1634 		 * There are negotiated contract breakages that
1635 		 * need a NEGEND event
1636 		 */
1637 		ASSERT(ct_barrier_held(dip));
1638 		negend = 1;
1639 		CT_DEBUG((CE_NOTE, "publish: setting negend flag"));
1640 	} else {
1641 		/*
1642 		 * This is a new event, not a NEGEND event. Wait for previous
1643 		 * contract events to complete.
1644 		 */
1645 		ct_barrier_acquire(dip);
1646 	}
1647 
1648 
1649 	match = 0;
1650 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1651 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1652 
1653 		ctid_t ctid;
1654 		size_t len = strlen(path);
1655 
1656 		mutex_enter(&ctd->cond_contract.ct_lock);
1657 
1658 		ASSERT(ctd->cond_dip == dip);
1659 		ASSERT(ctd->cond_minor);
1660 		ASSERT(strncmp(ctd->cond_minor, path, len) == 0 &&
1661 		    ctd->cond_minor[len] == ':');
1662 
1663 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1664 			mutex_exit(&ctd->cond_contract.ct_lock);
1665 			continue;
1666 		}
1667 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1668 			mutex_exit(&ctd->cond_contract.ct_lock);
1669 			continue;
1670 		}
1671 
1672 		/* We have a matching contract */
1673 		match = 1;
1674 		ctid = ctd->cond_contract.ct_id;
1675 		CT_DEBUG((CE_NOTE, "publish: found matching contract: %d",
1676 		    ctid));
1677 
1678 		/*
1679 		 * There are 4 possible cases
1680 		 * 1. A contract is broken (dev not in acceptable state) and
1681 		 *    the state change is synchronous - start negotiation
1682 		 *    by sending a CTE_NEG critical event.
1683 		 * 2. A contract is broken and the state change is
1684 		 *    asynchronous - just send a critical event and
1685 		 *    break the contract.
1686 		 * 3. Contract is not broken, but consumer has subscribed
1687 		 *    to the event as a critical or informative event
1688 		 *    - just send the appropriate event
1689 		 * 4. contract waiting for negend event - just send the critical
1690 		 *    NEGEND event.
1691 		 */
1692 		broken = 0;
1693 		if (!negend && !(evtype & ctd->cond_aset)) {
1694 			broken = 1;
1695 			CT_DEBUG((CE_NOTE, "publish: Contract broken: %d",
1696 			    ctid));
1697 		}
1698 
1699 		/*
1700 		 * Don't send event if
1701 		 *	- contract is not broken AND
1702 		 *	- contract holder has not subscribed to this event AND
1703 		 *	- contract not waiting for a NEGEND event
1704 		 */
1705 		if (!broken && !EVSENDP(ctd, evtype) &&
1706 		    !ctd->cond_neg) {
1707 			CT_DEBUG((CE_NOTE, "contract_device_publish(): "
1708 			    "contract (%d): no publish reqd: event %d",
1709 			    ctd->cond_contract.ct_id, evtype));
1710 			mutex_exit(&ctd->cond_contract.ct_lock);
1711 			continue;
1712 		}
1713 
1714 		/*
1715 		 * Note: need to kmem_zalloc() the event so mutexes are
1716 		 * initialized automatically
1717 		 */
1718 		ct = &ctd->cond_contract;
1719 		event = kmem_zalloc(sizeof (ct_kevent_t), KM_SLEEP);
1720 		event->cte_type = evtype;
1721 
1722 		if (broken && sync) {
1723 			CT_DEBUG((CE_NOTE, "publish: broken + sync: "
1724 			    "ctid: %d", ctid));
1725 			ASSERT(!negend);
1726 			ASSERT(ctd->cond_currev_id == 0);
1727 			ASSERT(ctd->cond_currev_type == 0);
1728 			ASSERT(ctd->cond_currev_ack == 0);
1729 			ASSERT(ctd->cond_neg == 0);
1730 			if (ctd->cond_noneg) {
1731 				/* Nothing to publish. Event has been blocked */
1732 				CT_DEBUG((CE_NOTE, "publish: sync and noneg:"
1733 				    "not publishing blocked ev: ctid: %d",
1734 				    ctid));
1735 				result = CT_NACK;
1736 				kmem_free(event, sizeof (ct_kevent_t));
1737 				mutex_exit(&ctd->cond_contract.ct_lock);
1738 				continue;
1739 			}
1740 			event->cte_flags = CTE_NEG; /* critical neg. event */
1741 			ctd->cond_currev_type = event->cte_type;
1742 			ct_barrier_incr(dip);
1743 			DEVI(dip)->devi_ct_neg = 1; /* waiting for negend */
1744 			ctd->cond_neg = 1;
1745 		} else if (broken && !sync) {
1746 			CT_DEBUG((CE_NOTE, "publish: broken + async: ctid: %d",
1747 			    ctid));
1748 			ASSERT(!negend);
1749 			ASSERT(ctd->cond_currev_id == 0);
1750 			ASSERT(ctd->cond_currev_type == 0);
1751 			ASSERT(ctd->cond_currev_ack == 0);
1752 			ASSERT(ctd->cond_neg == 0);
1753 			event->cte_flags = 0; /* critical event */
1754 		} else if (EVSENDP(ctd, event->cte_type)) {
1755 			CT_DEBUG((CE_NOTE, "publish: event suscrib: ctid: %d",
1756 			    ctid));
1757 			ASSERT(!negend);
1758 			ASSERT(ctd->cond_currev_id == 0);
1759 			ASSERT(ctd->cond_currev_type == 0);
1760 			ASSERT(ctd->cond_currev_ack == 0);
1761 			ASSERT(ctd->cond_neg == 0);
1762 			event->cte_flags = EVINFOP(ctd, event->cte_type) ?
1763 			    CTE_INFO : 0;
1764 		} else if (ctd->cond_neg) {
1765 			CT_DEBUG((CE_NOTE, "publish: NEGEND: ctid: %d", ctid));
1766 			ASSERT(negend);
1767 			ASSERT(ctd->cond_noneg == 0);
1768 			nevid = ctd->cond_contract.ct_nevent ?
1769 			    ctd->cond_contract.ct_nevent->cte_id : 0;
1770 			ASSERT(ctd->cond_currev_id == nevid);
1771 			event->cte_flags = 0;	/* NEGEND is always critical */
1772 			ctd->cond_currev_id = 0;
1773 			ctd->cond_currev_type = 0;
1774 			ctd->cond_currev_ack = 0;
1775 			ctd->cond_neg = 0;
1776 		} else {
1777 			CT_DEBUG((CE_NOTE, "publish: not publishing event for "
1778 			    "ctid: %d, evtype: %d",
1779 			    ctd->cond_contract.ct_id, event->cte_type));
1780 			ASSERT(!negend);
1781 			ASSERT(ctd->cond_currev_id == 0);
1782 			ASSERT(ctd->cond_currev_type == 0);
1783 			ASSERT(ctd->cond_currev_ack == 0);
1784 			ASSERT(ctd->cond_neg == 0);
1785 			kmem_free(event, sizeof (ct_kevent_t));
1786 			mutex_exit(&ctd->cond_contract.ct_lock);
1787 			continue;
1788 		}
1789 
1790 		nvl = NULL;
1791 		if (tnvl) {
1792 			VERIFY(nvlist_dup(tnvl, &nvl, 0) == 0);
1793 			if (negend) {
1794 				int32_t newct = 0;
1795 				ASSERT(ctd->cond_noneg == 0);
1796 				VERIFY(nvlist_add_uint64(nvl, CTS_NEVID, nevid)
1797 				    == 0);
1798 				VERIFY(nvlist_lookup_int32(nvl, CTS_NEWCT,
1799 				    &newct) == 0);
1800 				VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
1801 				    newct == 1 ? 0 :
1802 				    ctd->cond_contract.ct_id) == 0);
1803 				CT_DEBUG((CE_NOTE, "publish: negend: ctid: %d "
1804 				    "CTS_NEVID: %llu, CTS_NEWCT: %s",
1805 				    ctid, (unsigned long long)nevid,
1806 				    newct ? "success" : "failure"));
1807 
1808 			}
1809 		}
1810 
1811 		if (ctd->cond_neg) {
1812 			ASSERT(ctd->cond_contract.ct_ntime.ctm_start == -1);
1813 			ASSERT(ctd->cond_contract.ct_qtime.ctm_start == -1);
1814 			ctd->cond_contract.ct_ntime.ctm_start = ddi_get_lbolt();
1815 			ctd->cond_contract.ct_qtime.ctm_start =
1816 			    ctd->cond_contract.ct_ntime.ctm_start;
1817 		}
1818 
1819 		/*
1820 		 * by holding the dip's devi_ct_lock we ensure that
1821 		 * all ACK/NACKs are held up until we have finished
1822 		 * publishing to all contracts.
1823 		 */
1824 		mutex_exit(&ctd->cond_contract.ct_lock);
1825 		evid = cte_publish_all(ct, event, nvl, NULL);
1826 		mutex_enter(&ctd->cond_contract.ct_lock);
1827 
1828 		if (ctd->cond_neg) {
1829 			ASSERT(!negend);
1830 			ASSERT(broken);
1831 			ASSERT(sync);
1832 			ASSERT(!ctd->cond_noneg);
1833 			CT_DEBUG((CE_NOTE, "publish: sync break, setting evid"
1834 			    ": %d", ctid));
1835 			ctd->cond_currev_id = evid;
1836 		} else if (negend) {
1837 			ctd->cond_contract.ct_ntime.ctm_start = -1;
1838 			ctd->cond_contract.ct_qtime.ctm_start = -1;
1839 		}
1840 		mutex_exit(&ctd->cond_contract.ct_lock);
1841 	}
1842 
1843 	/*
1844 	 * If "negend" set counter back to initial state (-1) so that
1845 	 * other events can be published. Also clear the negotiation flag
1846 	 * on dip.
1847 	 *
1848 	 * 0 .. n are used for counting.
1849 	 * -1 indicates counter is available for use.
1850 	 */
1851 	if (negend) {
1852 		/*
1853 		 * devi_ct_count not necessarily 0. We may have
1854 		 * timed out in which case, count will be non-zero.
1855 		 */
1856 		ct_barrier_release(dip);
1857 		DEVI(dip)->devi_ct_neg = 0;
1858 		CT_DEBUG((CE_NOTE, "publish: negend: reset dip state: dip=%p",
1859 		    (void *)dip));
1860 	} else if (DEVI(dip)->devi_ct_neg) {
1861 		ASSERT(match);
1862 		ASSERT(!ct_barrier_empty(dip));
1863 		CT_DEBUG((CE_NOTE, "publish: sync count=%d, dip=%p",
1864 		    DEVI(dip)->devi_ct_count, (void *)dip));
1865 	} else {
1866 		/*
1867 		 * for non-negotiated events or subscribed events or no
1868 		 * matching contracts
1869 		 */
1870 		ASSERT(ct_barrier_empty(dip));
1871 		ASSERT(DEVI(dip)->devi_ct_neg == 0);
1872 		CT_DEBUG((CE_NOTE, "publish: async/non-nego/subscrib/no-match: "
1873 		    "dip=%p", (void *)dip));
1874 
1875 		/*
1876 		 * only this function when called from contract_device_negend()
1877 		 * can reset the counter to READY state i.e. -1. This function
1878 		 * is so called for every event whether a NEGEND event is needed
1879 		 * or not, but the negend event is only published if the event
1880 		 * whose end they signal is a negotiated event for the contract.
1881 		 */
1882 	}
1883 
1884 	if (!match) {
1885 		/* No matching contracts */
1886 		CT_DEBUG((CE_NOTE, "publish: No matching contract"));
1887 		result = CT_NONE;
1888 	} else if (result == CT_NACK) {
1889 		/* a non-negotiable contract exists and this is a neg. event */
1890 		CT_DEBUG((CE_NOTE, "publish: found 1 or more NONEG contract"));
1891 		(void) wait_for_acks(dip, dev, spec_type, evtype);
1892 	} else if (DEVI(dip)->devi_ct_neg) {
1893 		/* one or more contracts going through negotations  */
1894 		CT_DEBUG((CE_NOTE, "publish: sync contract: waiting"));
1895 		result = wait_for_acks(dip, dev, spec_type, evtype);
1896 	} else {
1897 		/* no negotiated contracts or no broken contracts or NEGEND */
1898 		CT_DEBUG((CE_NOTE, "publish: async/no-break/negend"));
1899 		result = CT_ACK;
1900 	}
1901 
1902 	/*
1903 	 * Release the lock only now so that the only point where we
1904 	 * drop the lock is in wait_for_acks(). This is so that we don't
1905 	 * miss cv_signal/cv_broadcast from contract holders
1906 	 */
1907 	CT_DEBUG((CE_NOTE, "publish: dropping devi_ct_lock"));
1908 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1909 
1910 out:
1911 	if (tnvl)
1912 		nvlist_free(tnvl);
1913 	if (path)
1914 		kmem_free(path, MAXPATHLEN);
1915 
1916 
1917 	CT_DEBUG((CE_NOTE, "publish: result = %s", result_str(result)));
1918 	return (result);
1919 }
1920 
1921 
1922 /*
1923  * contract_device_offline
1924  *
1925  * Event publishing routine called by I/O framework when a device is offlined.
1926  */
1927 ct_ack_t
1928 contract_device_offline(dev_info_t *dip, dev_t dev, int spec_type)
1929 {
1930 	nvlist_t *nvl;
1931 	uint_t result;
1932 	uint_t evtype;
1933 
1934 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1935 
1936 	evtype = CT_DEV_EV_OFFLINE;
1937 	result = contract_device_publish(dip, dev, spec_type, evtype, nvl);
1938 
1939 	/*
1940 	 * If a contract offline is NACKED, the framework expects us to call
1941 	 * NEGEND ourselves, since we know the final result
1942 	 */
1943 	if (result == CT_NACK) {
1944 		contract_device_negend(dip, dev, spec_type, CT_EV_FAILURE);
1945 	}
1946 
1947 	return (result);
1948 }
1949 
1950 /*
1951  * contract_device_degrade
1952  *
1953  * Event publishing routine called by I/O framework when a device
1954  * moves to degrade state.
1955  */
1956 /*ARGSUSED*/
1957 void
1958 contract_device_degrade(dev_info_t *dip, dev_t dev, int spec_type)
1959 {
1960 	nvlist_t *nvl;
1961 	uint_t evtype;
1962 
1963 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1964 
1965 	evtype = CT_DEV_EV_DEGRADED;
1966 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1967 }
1968 
1969 /*
1970  * contract_device_undegrade
1971  *
1972  * Event publishing routine called by I/O framework when a device
1973  * moves from degraded state to online state.
1974  */
1975 /*ARGSUSED*/
1976 void
1977 contract_device_undegrade(dev_info_t *dip, dev_t dev, int spec_type)
1978 {
1979 	nvlist_t *nvl;
1980 	uint_t evtype;
1981 
1982 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1983 
1984 	evtype = CT_DEV_EV_ONLINE;
1985 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1986 }
1987 
1988 /*
1989  * For all contracts which have undergone a negotiation (because the device
1990  * moved out of the acceptable state for that contract and the state
1991  * change is synchronous i.e. requires negotiation) this routine publishes
1992  * a CT_EV_NEGEND event with the final disposition of the event.
1993  *
1994  * This event is always a critical event.
1995  */
1996 void
1997 contract_device_negend(dev_info_t *dip, dev_t dev, int spec_type, int result)
1998 {
1999 	nvlist_t *nvl;
2000 	uint_t evtype;
2001 
2002 	ASSERT(result == CT_EV_SUCCESS || result == CT_EV_FAILURE);
2003 
2004 	CT_DEBUG((CE_NOTE, "contract_device_negend(): entered: result: %d, "
2005 	    "dip: %p", result, (void *)dip));
2006 
2007 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2008 	VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
2009 	    result == CT_EV_SUCCESS ? 1 : 0) == 0);
2010 
2011 	evtype = CT_EV_NEGEND;
2012 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
2013 
2014 	CT_DEBUG((CE_NOTE, "contract_device_negend(): exit dip: %p",
2015 	    (void *)dip));
2016 }
2017 
2018 /*
2019  * Wrapper routine called by other subsystems (such as LDI) to start
2020  * negotiations when a synchronous device state change occurs.
2021  * Returns CT_ACK or CT_NACK.
2022  */
2023 ct_ack_t
2024 contract_device_negotiate(dev_info_t *dip, dev_t dev, int spec_type,
2025     uint_t evtype)
2026 {
2027 	int	result;
2028 
2029 	ASSERT(dip);
2030 	ASSERT(dev != NODEV);
2031 	ASSERT(dev != DDI_DEV_T_ANY);
2032 	ASSERT(dev != DDI_DEV_T_NONE);
2033 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2034 
2035 	switch (evtype) {
2036 	case CT_DEV_EV_OFFLINE:
2037 		result = contract_device_offline(dip, dev, spec_type);
2038 		break;
2039 	default:
2040 		cmn_err(CE_PANIC, "contract_device_negotiate(): Negotiation "
2041 		    "not supported: event (%d) for dev_t (%lu) and spec (%d), "
2042 		    "dip (%p)", evtype, dev, spec_type, (void *)dip);
2043 		result = CT_NACK;
2044 		break;
2045 	}
2046 
2047 	return (result);
2048 }
2049 
2050 /*
2051  * A wrapper routine called by other subsystems (such as the LDI) to
2052  * finalize event processing for a state change event. For synchronous
2053  * state changes, this publishes NEGEND events. For asynchronous i.e.
2054  * non-negotiable events this publishes the event.
2055  */
2056 void
2057 contract_device_finalize(dev_info_t *dip, dev_t dev, int spec_type,
2058     uint_t evtype, int ct_result)
2059 {
2060 	ASSERT(dip);
2061 	ASSERT(dev != NODEV);
2062 	ASSERT(dev != DDI_DEV_T_ANY);
2063 	ASSERT(dev != DDI_DEV_T_NONE);
2064 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2065 
2066 	switch (evtype) {
2067 	case CT_DEV_EV_OFFLINE:
2068 		contract_device_negend(dip, dev, spec_type, ct_result);
2069 		break;
2070 	case CT_DEV_EV_DEGRADED:
2071 		contract_device_degrade(dip, dev, spec_type);
2072 		contract_device_negend(dip, dev, spec_type, ct_result);
2073 		break;
2074 	case CT_DEV_EV_ONLINE:
2075 		contract_device_undegrade(dip, dev, spec_type);
2076 		contract_device_negend(dip, dev, spec_type, ct_result);
2077 		break;
2078 	default:
2079 		cmn_err(CE_PANIC, "contract_device_finalize(): Unsupported "
2080 		    "event (%d) for dev_t (%lu) and spec (%d), dip (%p)",
2081 		    evtype, dev, spec_type, (void *)dip);
2082 		break;
2083 	}
2084 }
2085 
2086 /*
2087  * Called by I/O framework when a devinfo node is freed to remove the
2088  * association between a devinfo node and its contracts.
2089  */
2090 void
2091 contract_device_remove_dip(dev_info_t *dip)
2092 {
2093 	cont_device_t *ctd;
2094 	cont_device_t *next;
2095 	contract_t *ct;
2096 
2097 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
2098 	ct_barrier_wait_for_release(dip);
2099 
2100 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL; ctd = next) {
2101 		next = list_next(&(DEVI(dip)->devi_ct), ctd);
2102 		list_remove(&(DEVI(dip)->devi_ct), ctd);
2103 		ct = &ctd->cond_contract;
2104 		/*
2105 		 * Unlink the dip associated with this contract
2106 		 */
2107 		mutex_enter(&ct->ct_lock);
2108 		ASSERT(ctd->cond_dip == dip);
2109 		ctd->cond_dip = NULL; /* no longer linked to dip */
2110 		contract_rele(ct);	/* remove hold for dip linkage */
2111 		CT_DEBUG((CE_NOTE, "ct: remove_dip: removed dip from contract: "
2112 		    "ctid: %d", ct->ct_id));
2113 		mutex_exit(&ct->ct_lock);
2114 	}
2115 	ASSERT(list_is_empty(&(DEVI(dip)->devi_ct)));
2116 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
2117 }
2118 
2119 /*
2120  * Barrier related routines
2121  */
2122 static void
2123 ct_barrier_acquire(dev_info_t *dip)
2124 {
2125 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2126 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: waiting for barrier"));
2127 	while (DEVI(dip)->devi_ct_count != -1)
2128 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2129 	DEVI(dip)->devi_ct_count = 0;
2130 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: thread owns barrier"));
2131 }
2132 
2133 static void
2134 ct_barrier_release(dev_info_t *dip)
2135 {
2136 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2137 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2138 	DEVI(dip)->devi_ct_count = -1;
2139 	cv_broadcast(&(DEVI(dip)->devi_ct_cv));
2140 	CT_DEBUG((CE_NOTE, "ct_barrier_release: Released barrier"));
2141 }
2142 
2143 static int
2144 ct_barrier_held(dev_info_t *dip)
2145 {
2146 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2147 	return (DEVI(dip)->devi_ct_count != -1);
2148 }
2149 
2150 static int
2151 ct_barrier_empty(dev_info_t *dip)
2152 {
2153 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2154 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2155 	return (DEVI(dip)->devi_ct_count == 0);
2156 }
2157 
2158 static void
2159 ct_barrier_wait_for_release(dev_info_t *dip)
2160 {
2161 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2162 	while (DEVI(dip)->devi_ct_count != -1)
2163 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2164 }
2165 
2166 static void
2167 ct_barrier_decr(dev_info_t *dip)
2168 {
2169 	CT_DEBUG((CE_NOTE, "barrier_decr:  ct_count before decr: %d",
2170 	    DEVI(dip)->devi_ct_count));
2171 
2172 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2173 	ASSERT(DEVI(dip)->devi_ct_count > 0);
2174 
2175 	DEVI(dip)->devi_ct_count--;
2176 	if (DEVI(dip)->devi_ct_count == 0) {
2177 		cv_broadcast(&DEVI(dip)->devi_ct_cv);
2178 		CT_DEBUG((CE_NOTE, "barrier_decr: cv_broadcast"));
2179 	}
2180 }
2181 
2182 static void
2183 ct_barrier_incr(dev_info_t *dip)
2184 {
2185 	ASSERT(ct_barrier_held(dip));
2186 	DEVI(dip)->devi_ct_count++;
2187 }
2188 
2189 static int
2190 ct_barrier_wait_for_empty(dev_info_t *dip, int secs)
2191 {
2192 	clock_t abstime;
2193 
2194 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2195 
2196 	abstime = ddi_get_lbolt() + drv_usectohz(secs*1000000);
2197 	while (DEVI(dip)->devi_ct_count) {
2198 		if (cv_timedwait(&(DEVI(dip)->devi_ct_cv),
2199 		    &(DEVI(dip)->devi_ct_lock), abstime) == -1) {
2200 			return (-1);
2201 		}
2202 	}
2203 	return (0);
2204 }
2205