xref: /illumos-gate/usr/src/man/man9f/condvar.9f (revision 5422785d352a2bb398daceab3d1898a8aa64d006)
te
Copyright (c) 2003, Sun Microsystems, Inc. All Rights Reserved
The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License.
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License.
When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
CONDVAR 9F "Dec 15, 2003"
NAME
condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig, cv_timedwait, cv_timedwait_sig - condition variable routines
SYNOPSIS

#include <sys/ksynch.h>



void cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg);

void cv_destroy(kcondvar_t *cvp);

void cv_wait(kcondvar_t *cvp, kmutex_t *mp);

void cv_signal(kcondvar_t *cvp);

void cv_broadcast(kcondvar_t *cvp);

int cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp);

clock_t cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

clock_t cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);
INTERFACE LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
cvp

A pointer to an abstract data type kcondvar_t.

mp

A pointer to a mutual exclusion lock (kmutex_t), initialized by mutex_init(9F) and held by the caller.

name

Descriptive string. This is obsolete and should be NULL. (Non-NULL strings are legal, but they're a waste of kernel memory.)

type

The constant CV_DRIVER.

arg

A type-specific argument, drivers should pass arg as NULL.

timeout

A time, in absolute ticks since boot, when cv_timedwait() or cv_timedwait_sig() should return.

DESCRIPTION

Condition variables are a standard form of thread synchronization. They are designed to be used with mutual exclusion locks (mutexes). The associated mutex is used to ensure that a condition can be checked atomically and that the thread can block on the associated condition variable without missing either a change to the condition or a signal that the condition has changed. Condition variables must be initialized by calling cv_init(), and must be deallocated by calling cv_destroy().

The usual use of condition variables is to check a condition (for example, device state, data structure reference count, etc.) while holding a mutex which keeps other threads from changing the condition. If the condition is such that the thread should block, cv_wait() is called with a related condition variable and the mutex. At some later point in time, another thread would acquire the mutex, set the condition such that the previous thread can be unblocked, unblock the previous thread with cv_signal() or cv_broadcast(), and then release the mutex.

cv_wait() suspends the calling thread and exits the mutex atomically so that another thread which holds the mutex cannot signal on the condition variable until the blocking thread is blocked. Before returning, the mutex is reacquired.

cv_signal() signals the condition and wakes one blocked thread. All blocked threads can be unblocked by calling cv_broadcast(). cv_signal() and cv_broadcast() can be called by a thread even if it does not hold the mutex passed into cv_wait(), though holding the mutex is necessary to ensure predictable scheduling.

The function cv_wait_sig() is similar to cv_wait() but returns 0 if a signal (for example, by kill(2)) is sent to the thread. In any case, the mutex is reacquired before returning.

The function cv_timedwait() is similar to cv_wait(), except that it returns -1 without the condition being signaled after the timeout time has been reached.

The function cv_timedwait_sig() is similar to cv_timedwait() and cv_wait_sig(), except that it returns -1 without the condition being signaled after the timeout time has been reached, or 0 if a signal (for example, by kill(2)) is sent to the thread.

For both cv_timedwait() and cv_timedwait_sig(), time is in absolute clock ticks since the last system reboot. The current time may be found by calling ddi_get_lbolt(9F).

RETURN VALUES
0

For cv_wait_sig() and cv_timedwait_sig() indicates that the condition was not necessarily signaled and the function returned because a signal (as in kill(2)) was pending.

-1

For cv_timedwait() and cv_timedwait_sig() indicates that the condition was not necessarily signaled and the function returned because the timeout time was reached.

>0

For cv_wait_sig(), cv_timedwait() or cv_timedwait_sig() indicates that the condition was met and the function returned due to a call to cv_signal() or cv_broadcast(), or due to a premature wakeup (see NOTES).

CONTEXT

These functions can be called from user, kernel or interrupt context. In most cases, however, cv_wait(), cv_timedwait(), cv_wait_sig(), and cv_timedwait_sig() should not be called from interrupt context, and cannot be called from a high-level interrupt context.

If cv_wait(), cv_timedwait(), cv_wait_sig(), or cv_timedwait_sig() are used from interrupt context, lower-priority interrupts will not be serviced during the wait. This means that if the thread that will eventually perform the wakeup becomes blocked on anything that requires the lower-priority interrupt, the system will hang.

For example, the thread that will perform the wakeup may need to first allocate memory. This memory allocation may require waiting for paging I/O to complete, which may require a lower-priority disk or network interrupt to be serviced. In general, situations like this are hard to predict, so it is advisable to avoid waiting on condition variables or semaphores in an interrupt context.

EXAMPLES

Example 1 Waiting for a Flag Value in a Driver's Unit

Here the condition being waited for is a flag value in a driver's unit structure. The condition variable is also in the unit structure, and the flag word is protected by a mutex in the unit structure.

 mutex_enter(&un->un_lock);
 while (un->un_flag & UNIT_BUSY)
 cv_wait(&un->un_cv, &un->un_lock);
 un->un_flag |= UNIT_BUSY;
 mutex_exit(&un->un_lock);

Example 2 Unblocking Threads Blocked by the Code in Example 1

At some later point in time, another thread would execute the following to unblock any threads blocked by the above code.

 
mutex_enter(&un->un_lock);
un->un_flag &= ~UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);
NOTES

It is possible for cv_wait(), cv_wait_sig(), cv_timedwait(), and cv_timedwait_sig() to return prematurely, that is, not due to a call to cv_signal() or cv_broadcast(). This occurs most commonly in the case of cv_wait_sig() and cv_timedwait_sig() when the thread is stopped and restarted by job control signals or by a debugger, but can happen in other cases as well, even for cv_wait(). Code that calls these functions must always recheck the reason for blocking and call again if the reason for blocking is still true.

If your driver needs to wait on behalf of processes that have real-time constraints, use cv_timedwait() rather than delay(9F). The delay() function calls timeout(9F), which can be subject to priority inversions.

Not all threads can receive signals from user level processes. In cases where such reception is impossible (such as during execution of close(9E) due to exit(2)), cv_wait_sig() behaves as cv_wait(), and cv_timedwait_sig() behaves as cv_timedwait(). To avoid unkillable processes, users of these functions may need to protect against waiting indefinitely for events that might not occur. The ddi_can_receive_sig(9F) function is provided to detect when signal reception is possible.

SEE ALSO

kill(2), ddi_can_receive_sig(9F), ddi_get_lbolt(9F), mutex(9F), mutex_init(9F)

Writing Device Drivers