xref: /illumos-gate/usr/src/man/man3lib/libavl.3lib (revision 13b136d3061155363c62c9f6568d25b8b27da8f6)
1.\"
2.\" This file and its contents are supplied under the terms of the
3.\" Common Development and Distribution License ("CDDL"), version 1.0.
4.\" You may only use this file in accordance with the terms of version
5.\" 1.0 of the CDDL.
6.\"
7.\" A full copy of the text of the CDDL should have accompanied this
8.\" source.  A copy of the CDDL is also available via the Internet at
9.\" http://www.illumos.org/license/CDDL.
10.\"
11.\"
12.\" Copyright 2015 Joyent, Inc.
13.\"
14.Dd Dec 04, 2015
15.Dt LIBAVL 3LIB
16.Os
17.Sh NAME
18.Nm libavl
19.Nd generic self-balancing binary search tree library
20.Sh SYNOPSIS
21.Lb libavl
22.In sys/avl.h
23.Sh DESCRIPTION
24The
25.Nm
26library provides a generic implementation of AVL trees, a form of
27self-balancing binary tree.
28The interfaces provided allow for an efficient way of implementing an ordered
29set of data structures and, due to its embeddable nature, allow for a single
30instance of a data structure to belong to multiple AVL trees.
31.Lp
32Each AVL tree contains entries of a single type of data structure.
33Rather than allocating memory for pointers for those data structures,
34the storage for the tree is embedded into the data structures by
35declaring a member of type
36.Vt avl_node_t .
37When an AVL tree is created, through the use of
38.Fn avl_create ,
39it encodes the size of the data structure, the offset of the data
40structure, and a comparator function which is used to compare two
41instances of a data structure.
42A data structure may be a member of multiple AVL trees by creating AVL trees
43which use different offsets (different members) into the data structure.
44.Lp
45AVL trees support both look up of an arbitrary item and ordered
46iteration over the contents of the entire tree.
47In addition, from any node, you can find the previous and next entries in the
48tree, if they exist.
49In addition, AVL trees support arbitrary insertion and deletion.
50.Ss Performance
51AVL trees are often used in place of linked lists.
52Compared to the standard, intrusive, doubly linked list, it has the following
53performance characteristics:
54.Bl -hang -width Ds
55.It Sy Lookup One Node
56.Bd -filled -compact
57Lookup of a single node in a linked list is
58.Sy O(n) ,
59whereas lookup of a single node in an AVL tree is
60.Sy O(log(n)) .
61.Ed
62.It Sy Insert One Node
63.Bd -filled -compact
64Inserting a single node into a linked list is
65.Sy O(1) .
66Inserting a single node into an AVL tree is
67.Sy O(log(n)) .
68.Pp
69Note, insertions into an AVL tree always result in an ordered tree.
70Insertions into a linked list do not guarantee order.
71If order is required, then the time to do the insertion into a linked list will
72depend on the time of the search algorithm being employed to find the place to
73insert at.
74.Ed
75.It Sy Delete One Node
76.Bd -filled -compact
77Deleting a single node from a linked list is
78.Sy O(1),
79whereas deleting a single node from an AVL tree takes
80.Sy O(log(n))
81time.
82.Ed
83.It Sy Delete All Nodes
84.Bd -filled -compact
85Deleting all nodes from a linked list is
86.Sy O(n) .
87With an AVL tree, if using the
88.Xr avl_destroy_nodes 3AVL
89function then deleting all nodes
90is
91.Sy O(n) .
92However, if iterating over each entry in the tree and then removing it using
93a while loop,
94.Xr avl_first 3AVL
95and
96.Xr avl_remove 3AVL
97then the time to remove all nodes is
98.Sy O(n\ *\ log(n)).
99.Ed
100.It Sy Visit the Next or Previous Node
101.Bd -filled -compact
102Visiting the next or previous node in a linked list is
103.Sy O(1) ,
104whereas going from the next to the previous node in an AVL tree will
105take between
106.Sy O(1)
107and
108.Sy O(log(n)) .
109.Ed
110.El
111.Pp
112In general, AVL trees are a good alternative for linked lists when order
113or lookup speed is important and a reasonable number of items will be
114present.
115.Sh INTERFACES
116The shared object
117.Sy libavl.so.1
118provides the public interfaces defined below.
119See
120.Xr Intro 3
121for additional information on shared object interfaces.
122Individual functions are documented in their own manual pages.
123.Bl -column -offset indent ".Sy avl_is_empty" ".Sy avl_destroy_nodes"
124.It Sy avl_add Ta Sy avl_create
125.It Sy avl_destroy Ta Sy avl_destroy_nodes
126.It Sy avl_find Ta Sy avl_first
127.It Sy avl_insert Ta Sy avl_insert_here
128.It Sy avl_is_empty Ta Sy avl_last
129.It Sy avl_nearest Ta Sy avl_numnodes
130.It Sy avl_remove Ta Sy avl_swap
131.El
132.Pp
133In addition, the library defines C pre-processor macros which are
134defined below and documented in their own manual pages.
135.\"
136.\" Use the same column widths in both cases where we describe the list
137.\" of interfaces, to allow the manual page to better line up when rendered.
138.\"
139.Bl -column -offset indent ".Sy avl_is_empty" ".Sy avl_destroy_nodes"
140.It Sy AVL_NEXT Ta Sy AVL_PREV
141.El
142.Sh TYPES
143The
144.Nm
145library defines the following types:
146.Lp
147.Sy avl_tree_t
148.Lp
149Type used for the root of the AVL tree.
150Consumers define one of these for each of the different trees that they want to
151have.
152.Lp
153.Sy avl_node_t
154.Lp
155Type used as the data node for an AVL tree.
156One of these is embedded in each data structure that is the member of an AVL
157tree.
158.Lp
159.Sy avl_index_t
160.Lp
161Type used to locate a position in a tree.
162This is used with
163.Xr avl_find 3AVL
164and
165.Xr avl_insert 3AVL .
166.Sh LOCKING
167The
168.Nm
169library provides no locking.
170Callers that are using the same AVL tree from multiple threads need to provide
171their own synchronization.
172If only one thread is ever accessing or modifying the AVL tree, then there are
173no synchronization concerns.
174If multiple AVL trees exist, then they may all be used simultaneously; however,
175they are subject to the same rules around simultaneous access from a single
176thread.
177.Lp
178All routines are both
179.Sy Fork-safe
180and
181.Sy Async-Signal-Safe .
182Callers may call functions in
183.Nm
184from a signal handler and
185.Nm
186calls are all safe in face of
187.Xr fork 2 ;
188however, if callers have their own locks, then they must make sure that
189they are accounted for by the use of routines such as
190.Xr pthread_atfork 3C .
191.Sh EXAMPLES
192The following code shows examples of exercising all of the functionality
193that is present in
194.Nm .
195It can be compiled by using a C compiler and linking
196against
197.Nm .
198For example, given a file named avl.c, with gcc, one would run:
199.Bd -literal
200$ gcc -Wall -o avl avl.c -lavl
201.Ed
202.Bd -literal
203/*
204 * Example of using AVL Trees
205 */
206
207#include <sys/avl.h>
208#include <stddef.h>
209#include <stdlib.h>
210#include <stdio.h>
211
212static avl_tree_t inttree;
213
214/*
215 * The structure that we're storing in an AVL tree.
216 */
217typedef struct intnode {
218	int in_val;
219	avl_node_t in_avl;
220} intnode_t;
221
222static int
223intnode_comparator(const void *l, const void *r)
224{
225	const intnode_t *li = l;
226	const intnode_t *ri = r;
227
228	if (li->in_val > ri->in_val)
229		return (1);
230	if (li->in_val < ri->in_val)
231		return (-1);
232	return (0);
233}
234
235/*
236 * Create an AVL Tree
237 */
238static void
239create_avl(void)
240{
241	avl_create(&inttree, intnode_comparator, sizeof (intnode_t),
242	    offsetof(intnode_t, in_avl));
243}
244
245/*
246 * Add entries to the tree with the avl_add function.
247 */
248static void
249fill_avl(void)
250{
251	int i;
252	intnode_t *inp;
253
254	for (i = 0; i < 20; i++) {
255		inp = malloc(sizeof (intnode_t));
256		assert(inp != NULL);
257		inp->in_val = i;
258		avl_add(&inttree, inp);
259	}
260}
261
262/*
263 * Find entries in the AVL tree. Note, we create an intnode_t on the
264 * stack that we use to look this up.
265 */
266static void
267find_avl(void)
268{
269	int i;
270	intnode_t lookup, *inp;
271
272	for (i = 10; i < 30; i++) {
273		lookup.in_val = i;
274		inp = avl_find(&inttree, &lookup, NULL);
275		if (inp == NULL) {
276			printf("Entry %d is not in the tree\\n", i);
277		} else {
278			printf("Entry %d is in the tree\\n",
279			    inp->in_val);
280		}
281	}
282}
283
284/*
285 * Walk the tree forwards
286 */
287static void
288walk_forwards(void)
289{
290	intnode_t *inp;
291	for (inp = avl_first(&inttree); inp != NULL;
292	    inp = AVL_NEXT(&inttree, inp)) {
293		printf("Found entry %d\\n", inp->in_val);
294	}
295}
296
297/*
298 * Walk the tree backwards.
299 */
300static void
301walk_backwards(void)
302{
303	intnode_t *inp;
304	for (inp = avl_last(&inttree); inp != NULL;
305	    inp = AVL_PREV(&inttree, inp)) {
306		printf("Found entry %d\\n", inp->in_val);
307	}
308}
309
310/*
311 * Determine the number of nodes in the tree and if it is empty or
312 * not.
313 */
314static void
315inttree_inspect(void)
316{
317	printf("The tree is %s, there are %ld nodes in it\\n",
318	    avl_is_empty(&inttree) == B_TRUE ? "empty" : "not empty",
319	    avl_numnodes(&inttree));
320}
321
322/*
323 * Use avl_remove to remove entries from the tree.
324 */
325static void
326remove_nodes(void)
327{
328	int i;
329	intnode_t lookup, *inp;
330
331	for (i = 0; i < 20; i+= 4) {
332		lookup.in_val = i;
333		inp = avl_find(&inttree, &lookup, NULL);
334		if (inp != NULL)
335			avl_remove(&inttree, inp);
336	}
337}
338
339/*
340 * Find the nearest nodes in the tree.
341 */
342static void
343nearest_nodes(void)
344{
345	intnode_t lookup, *inp;
346	avl_index_t where;
347
348	lookup.in_val = 12;
349	if (avl_find(&inttree, &lookup, &where) != NULL)
350		abort();
351	inp = avl_nearest(&inttree, where, AVL_BEFORE);
352	assert(inp != NULL);
353	printf("closest node before 12 is: %d\\n", inp->in_val);
354	inp = avl_nearest(&inttree, where, AVL_AFTER);
355	assert(inp != NULL);
356	printf("closest node after 12 is: %d\\n", inp->in_val);
357}
358
359static void
360insert_avl(void)
361{
362	intnode_t lookup, *inp;
363	avl_index_t where;
364
365	lookup.in_val = 12;
366	if (avl_find(&inttree, &lookup, &where) != NULL)
367		abort();
368	inp = malloc(sizeof (intnode_t));
369	assert(inp != NULL);
370	avl_insert(&inttree, inp, where);
371}
372
373static void
374swap_avl(void)
375{
376	avl_tree_t swap;
377
378	avl_create(&swap, intnode_comparator, sizeof (intnode_t),
379	    offsetof(intnode_t, in_avl));
380	avl_swap(&inttree, &swap);
381	inttree_inspect();
382	avl_swap(&inttree, &swap);
383	inttree_inspect();
384}
385
386/*
387 * Remove all remaining nodes in the tree. We first use
388 * avl_destroy_nodes to empty the tree, then avl_destroy to finish.
389 */
390static void
391cleanup(void)
392{
393	intnode_t *inp;
394	void *c = NULL;
395
396	while ((inp = avl_destroy_nodes(&inttree, &c)) != NULL) {
397		free(inp);
398	}
399	avl_destroy(&inttree);
400}
401
402int
403main(void)
404{
405	create_avl();
406	inttree_inspect();
407	fill_avl();
408	find_avl();
409	walk_forwards();
410	walk_backwards();
411	inttree_inspect();
412	remove_nodes();
413	inttree_inspect();
414	nearest_nodes();
415	insert_avl();
416	inttree_inspect();
417	swap_avl();
418	cleanup();
419	return (0);
420}
421.Ed
422.Sh INTERFACE STABILITY
423.Sy Committed
424.Sh MT-Level
425See
426.Sx Locking.
427.Sh SEE ALSO
428.Xr Intro 3 ,
429.Xr pthread_atfork 3C
430.Lp
431.Xr avl_add 3AVL ,
432.Xr avl_create 3AVL ,
433.Xr avl_destroy 3AVL ,
434.Xr avl_destroy_nodes 3AVL ,
435.Xr avl_find 3AVL ,
436.Xr avl_first 3AVL ,
437.Xr avl_insert 3AVL ,
438.Xr avl_insert_here 3AVL ,
439.Xr avl_is_empty 3AVL ,
440.Xr avl_last 3AVL ,
441.Xr avl_nearest 3AVL ,
442.Xr avl_numnodes 3AVL ,
443.Xr avl_remove 3AVL ,
444.Xr avl_swap 3AVL ,
445.Rs
446.%A Adel'son-Vel'skiy, G. M.
447.%A Landis, Ye. M.
448.%T "An Algorithm for the Organization of Information"
449.%Q Deklady Akademii Nauk
450.%C USSR, Moscow
451.%P 263-266
452.%V Vol. 16
453.%N No. 2
454.%D 1962
455.Re
456