Copyright (c) 2004, Sun Microsystems, Inc.
Copyright 2025 Oxide Computer Company
The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License.
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License.
When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
cputrack -c eventspec [-c eventspec]... [-efntvD] [-N count] [-o pathname] [-T interval] command [args]
cputrack -c eventspec [-c eventspec]... -p pid [-efntvD] [-N count] [-o pathname] [-T interval]
cputrack -h
Because cputrack is an unprivileged program, it is subject to the same restrictions that apply to truss(1). For example, setuid(2) executables cannot be tracked.
Specifies a set of events for the CPU performance counters to monitor. The syntax of these event specifications is:
[picn=]eventn[,attr[n][=val]][,[picn=]eventn [,attr[n][=val]],...,]You can use the -h option to obtain a list of available events and attributes. This causes generation of the usage message. You can omit an explicit counter assignment, in which case cpustat attempts to choose a capable counter automatically. Attribute values can be expressed in hexadecimal, octal, or decimal notation, in a format suitable for strtoll(3C). An attribute present in the event specification without an explicit value receives a default value of 1. An attribute without a corresponding counter number is applied to all counters in the specification. The semantics of these event specifications can be determined by reading the CPU manufacturer's documentation for the events. Multiple -c options can be specified, in which case cputrack cycles between the different event settings on each sample.
Enables debug mode.
Follows all exec(2), or execve(2) system calls.
Follows all children created by fork(2), fork1(2), or vfork(2) system calls.
Prints an extended help message on how to use the utility, how to program the processor-dependent counters, and where to look for more detailed information.
Omits all header output (useful if cputrack is the beginning of a pipeline).
Specifies the maximum number of CPU performance counter samples to take before exiting.
Specifies file to be used for the cputrack output.
Interprets the argument as the process ID of an existing process to which process counter context should be attached and monitored.
Prints an additional column of processor cycle counts, if available on the current architecture.
Specifies the interval between CPU performance counter samples in seconds. Very small intervals may cause some samples to be skipped. See WARNINGS.
Enables more verbose output.
The system may run out of per-user process slots when the -f option is used, since cputrack runs one controlling process for each process being tracked.
The times printed by cputrack correspond to the wallclock time when the hardware counters were actually sample. The time is derived from the same timebase as gethrtime(3C).
The cputrack utility attaches performance counter context to each process that it examines. The presence of this context allows the performance counters to be multiplexed between different processes on the system, but it cannot be used at the same time as the cpustat(8) utility.
Once an instance of the cpustat utility is running, further attempts to run cputrack will fail until all instances of cpustat terminate.
Sometimes cputrack provides sufficient flexibility and prints sufficient statistics to make adding the observation code to an application unnecessary. However, more control is occasionally desired. Because the same performance counter context is used by both the application itself and by the agent LWP injected into the application by cputrack, it is possible for an application to interact with the counter context to achieve some interesting capabilities. See cpc_enable(3CPC).
The processor cycle counts enabled by the -t option always apply to both user and system modes, regardless of the settings applied to the performance counter registers.
The output of cputrack is designed to be readily parsable by nawk(1) and perl(1), thereby allowing performance tools to be composed by embedding cputrack in scripts. Alternatively, tools may be constructed directly using the same APIs that cputrack is built upon, using the facilities of libcpc(3LIB) and libpctx(3LIB). See cpc(3CPC).
Although cputrack uses performance counter context to maintain separate performance counter values for each LWP, some of the events that can be counted will inevitably be impacted by other activities occurring on the system, particularly for limited resources that are shared between processes (for example, cache miss rates). For such events, it may also be interesting to observe overall system behavior with cpustat(8).
For the -T interval option, if interval is specified as zero, no periodic sampling is performed. The performance counters are only sampled when the process creates or destroys an LWP, or it invokes fork(2), exec(2), or exit(2).
In this example, the utility is being used on a machine containing an UltraSPARC-III+ processor. The counters are set to count processor clock cycles and instructions dispatched in user mode while running the sleep(1) command.
example% cputrack -c pic0=Cycle_cnt,pic1=Instr_cnt sleep 10
time lwp event pic0 pic1
1.007 1 tick 765308 219233
2.007 1 tick 0 0
4.017 1 tick 0 0
6.007 1 tick 0 0
8.007 1 tick 0 0
10.007 1 tick 0 0
10.017 1 exit 844703 228058
Example 2 Counting External Cache References and Misses
This example shows more verbose output while following the fork() and exec() of a simple shell script on an UltraSPARC machine. The counters are measuring the number of external cache references and external cache misses. Notice that the explicit pic0 and pic1 names can be omitted where there are no ambiguities.
example% cputrack -fev -c EC_ref,EC_hit /bin/ulimit -c time pid lwp event pic0 pic1 0.007 101142 1 init_lwp 805286 20023 0.023 101142 1 fork # 101143 0.026 101143 1 init_lwp 1015382 24461 0.029 101143 1 fini_lwp 1025546 25074 0.029 101143 1 exec 1025546 25074 0.000 101143 1 exec \e # '/usr/bin/sh /usr/bin/basename \e /bin/ulimit' 0.039 101143 1 init_lwp 1025546 25074 0.050 101143 1 fini_lwp 1140482 27806 0.050 101143 1 exec 1140482 27806 0.000 101143 1 exec # '/usr/bin/expr \e //bin/ulimit : \e(.*[^/]\e)/*$ : .*/ \e(..*\e) : \e(.*\e)$ | //bin/ulimi' 0.059 101143 1 init_lwp 1140482 27806 0.075 101143 1 fini_lwp 1237647 30207 0.075 101143 1 exit 1237647 30207 unlimited 0.081 101142 1 fini_lwp 953383 23814 0.081 101142 1 exit 953383 23814
This example shows how many instructions were executed in the application and in the kernel to print the date on a Pentium III machine:
example% cputrack -c inst_retired,inst_retired,nouser1,sys1 date
time lwp event pic0 pic1
Fri Aug 20 20:03:08 PDT 1999
0.072 1 exit 246725 339666
Example 4 Counting TLB Hits
This example shows how to use processor-specific attributes to count TLB hits on a Pentium 4 machine:
example% cputrack -c ITLB_reference,emask=1 date
time lwp event pic0
Fri Aug 20 20:03:08 PDT 1999
0.072 1 exit 246725
If cpustat is invoked on a system that has CPU performance counters which are not supported by Solaris, the following message appears:
cputrack: cannot access performance counters - Operation not applicable
This error message implies that cpc_open() has failed and is documented in cpc_open(3CPC). Review this documentation for more information about the problem and possible solutions.
If a short interval is requested, cputrack may not be able to keep up with the desired sample rate. In this case, some samples may be dropped.
ATTRIBUTE TYPE ATTRIBUTE VALUE |
Interface Stability Evolving |