xref: /illumos-gate/usr/src/lib/scsi/libsmp/common/smp_engine.c (revision a38ee58261c5aa81028a4329e73da4016006aa99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/isa_defs.h>
28 #include <sys/systeminfo.h>
29 #include <sys/scsi/generic/smp_frames.h>
30 
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <stddef.h>
34 #include <string.h>
35 #include <strings.h>
36 #include <dlfcn.h>
37 #include <limits.h>
38 #include <pthread.h>
39 #include <synch.h>
40 
41 #include <scsi/libsmp.h>
42 #include "smp_impl.h"
43 
44 static pthread_mutex_t _libsmp_lock = PTHREAD_MUTEX_INITIALIZER;
45 static smp_engine_t *_libsmp_engines;
46 static int _libsmp_refcnt;
47 
48 static boolean_t _libsmp_engine_dlclose;
49 
50 static void
51 smp_engine_free(smp_engine_t *ep)
52 {
53 	if (ep == NULL)
54 		return;
55 
56 	smp_free(ep->se_name);
57 	smp_free(ep);
58 }
59 
60 static void
61 smp_engine_destroy(smp_engine_t *ep)
62 {
63 	smp_engine_t **pp;
64 
65 	ASSERT(MUTEX_HELD(&_libsmp_lock));
66 
67 	if (ep->se_fini != NULL)
68 		ep->se_fini(ep);
69 
70 	if (_libsmp_engine_dlclose)
71 		(void) dlclose(ep->se_object);
72 
73 	ASSERT(ep->se_refcnt == 0);
74 	for (pp = &_libsmp_engines; *pp != NULL; pp = &((*pp)->se_next))
75 		if (*pp == ep)
76 			break;
77 
78 	if (*pp != NULL)
79 		*pp = (*pp)->se_next;
80 
81 	smp_engine_free(ep);
82 }
83 
84 void
85 smp_engine_init(void)
86 {
87 	(void) pthread_mutex_lock(&_libsmp_lock);
88 	++_libsmp_refcnt;
89 	(void) pthread_mutex_unlock(&_libsmp_lock);
90 }
91 
92 void
93 smp_engine_fini(void)
94 {
95 	smp_engine_t *ep;
96 
97 	(void) pthread_mutex_lock(&_libsmp_lock);
98 	ASSERT(_libsmp_refcnt > 0);
99 	if (--_libsmp_refcnt == 0) {
100 		while (_libsmp_engines != NULL) {
101 			ep = _libsmp_engines;
102 			_libsmp_engines = ep->se_next;
103 			smp_engine_destroy(ep);
104 		}
105 	}
106 	(void) pthread_mutex_unlock(&_libsmp_lock);
107 }
108 
109 static int
110 smp_engine_loadone(const char *path)
111 {
112 	smp_engine_t *ep;
113 	void *obj;
114 
115 	ASSERT(MUTEX_HELD(&_libsmp_lock));
116 
117 	if ((obj = dlopen(path, RTLD_PARENT | RTLD_LOCAL | RTLD_LAZY)) == NULL)
118 		return (smp_set_errno(ESMP_NOENGINE));
119 
120 	if ((ep = smp_zalloc(sizeof (smp_engine_t))) == NULL) {
121 		(void) dlclose(obj);
122 		return (-1);
123 	}
124 
125 	ep->se_object = obj;
126 	ep->se_init = (int (*)())dlsym(obj, "_smp_init");
127 	ep->se_fini = (void (*)())dlsym(obj, "_smp_fini");
128 
129 	if (ep->se_init == NULL) {
130 		smp_engine_free(ep);
131 		return (smp_set_errno(ESMP_BADENGINE));
132 	}
133 
134 	if (ep->se_init(ep) != 0) {
135 		smp_engine_free(ep);
136 		return (-1);
137 	}
138 
139 	return (0);
140 }
141 
142 int
143 smp_engine_register(smp_engine_t *ep, int version,
144     const smp_engine_config_t *ecp)
145 {
146 	ASSERT(MUTEX_HELD(&_libsmp_lock));
147 
148 	if (version != LIBSMP_ENGINE_VERSION)
149 		return (smp_set_errno(ESMP_VERSION));
150 
151 	ep->se_ops = ecp->sec_ops;
152 	ep->se_name = smp_strdup(ecp->sec_name);
153 
154 	if (ep->se_name == NULL)
155 		return (-1);
156 
157 	ep->se_next = _libsmp_engines;
158 	_libsmp_engines = ep;
159 
160 	return (0);
161 }
162 
163 static smp_engine_t *
164 smp_engine_hold_cached(const char *name)
165 {
166 	smp_engine_t *ep;
167 
168 	ASSERT(MUTEX_HELD(&_libsmp_lock));
169 
170 	for (ep = _libsmp_engines; ep != NULL; ep = ep->se_next) {
171 		if (strcmp(ep->se_name, name) == 0) {
172 			++ep->se_refcnt;
173 			return (ep);
174 		}
175 	}
176 
177 	(void) smp_set_errno(ESMP_NOENGINE);
178 	return (NULL);
179 }
180 
181 static smp_engine_t *
182 smp_engine_hold(const char *name)
183 {
184 	smp_engine_t *ep;
185 	const char *pluginpath, *p, *q;
186 	char pluginroot[PATH_MAX];
187 	char path[PATH_MAX];
188 	char isa[257];
189 
190 	(void) pthread_mutex_lock(&_libsmp_lock);
191 	ep = smp_engine_hold_cached(name);
192 	if (ep != NULL) {
193 		(void) pthread_mutex_unlock(&_libsmp_lock);
194 		return (ep);
195 	}
196 
197 #if defined(_LP64)
198 	if (sysinfo(SI_ARCHITECTURE_64, isa, sizeof (isa)) < 0)
199 		isa[0] = '\0';
200 #else
201 	isa[0] = '\0';
202 #endif
203 
204 	if ((pluginpath = getenv("SMP_PLUGINPATH")) == NULL)
205 		pluginpath = LIBSMP_DEFAULT_PLUGINDIR;
206 
207 	_libsmp_engine_dlclose = (getenv("SMP_NODLCLOSE") == NULL);
208 
209 	for (p = pluginpath; p != NULL; p = q) {
210 		if ((q = strchr(p, ':')) != NULL) {
211 			ptrdiff_t len = q - p;
212 			(void) strncpy(pluginroot, p, len);
213 			pluginroot[len] = '\0';
214 			while (*q == ':')
215 				++q;
216 			if (*q == '\0')
217 				q = NULL;
218 			if (len == 0)
219 				continue;
220 		} else {
221 			(void) strcpy(pluginroot, p);
222 		}
223 
224 		if (pluginroot[0] != '/')
225 			continue;
226 
227 		(void) snprintf(path, PATH_MAX, "%s/%s/%s/%s%s",
228 		    pluginroot, LIBSMP_PLUGIN_ENGINE,
229 		    isa, name, LIBSMP_PLUGIN_EXT);
230 
231 		if (smp_engine_loadone(path) == 0) {
232 			ep = smp_engine_hold_cached(name);
233 			(void) pthread_mutex_unlock(&_libsmp_lock);
234 			return (ep);
235 		}
236 	}
237 
238 	return (NULL);
239 }
240 
241 static void
242 smp_engine_rele(smp_engine_t *ep)
243 {
244 	(void) pthread_mutex_lock(&_libsmp_lock);
245 	ASSERT(ep->se_refcnt > 0);
246 	--ep->se_refcnt;
247 	(void) pthread_mutex_unlock(&_libsmp_lock);
248 }
249 
250 static void
251 smp_parse_mtbf(const char *envvar, uint_t *intp)
252 {
253 	const char *strval;
254 	int intval;
255 
256 	if ((strval = getenv(envvar)) != NULL &&
257 	    (intval = atoi(strval)) > 0) {
258 		srand48(gethrtime());
259 		*intp = intval;
260 	}
261 }
262 
263 smp_target_t *
264 smp_open(const smp_target_def_t *tdp)
265 {
266 	smp_engine_t *ep;
267 	smp_target_t *tp;
268 	void *private;
269 	const char *engine;
270 
271 	if ((engine = tdp->std_engine) == NULL) {
272 		if ((engine = getenv("LIBSMP_DEFAULT_ENGINE")) == NULL)
273 			engine = LIBSMP_DEFAULT_ENGINE;
274 	}
275 
276 	if ((ep = smp_engine_hold(engine)) == NULL)
277 		return (NULL);
278 
279 	if ((tp = smp_zalloc(sizeof (smp_target_t))) == NULL) {
280 		smp_engine_rele(ep);
281 		return (NULL);
282 	}
283 
284 	if ((private = ep->se_ops->seo_open(tdp->std_def)) == NULL) {
285 		smp_engine_rele(ep);
286 		smp_free(tp);
287 		return (NULL);
288 	}
289 
290 	smp_parse_mtbf("LIBSMP_MTBF_REQUEST", &tp->st_mtbf_request);
291 	smp_parse_mtbf("LIBSMP_MTBF_RESPONSE", &tp->st_mtbf_response);
292 
293 	tp->st_engine = ep;
294 	tp->st_priv = private;
295 
296 	if (smp_plugin_load(tp) != 0) {
297 		smp_close(tp);
298 		return (NULL);
299 	}
300 
301 	return (tp);
302 }
303 
304 void
305 smp_target_name(const smp_target_t *tp, char *buf, size_t len)
306 {
307 	tp->st_engine->se_ops->seo_target_name(tp->st_priv, buf, len);
308 }
309 
310 uint64_t
311 smp_target_addr(const smp_target_t *tp)
312 {
313 	return (tp->st_engine->se_ops->seo_target_addr(tp->st_priv));
314 }
315 
316 const char *
317 smp_target_vendor(const smp_target_t *tp)
318 {
319 	return (tp->st_vendor);
320 }
321 
322 const char *
323 smp_target_product(const smp_target_t *tp)
324 {
325 	return (tp->st_product);
326 }
327 
328 const char *
329 smp_target_revision(const smp_target_t *tp)
330 {
331 	return (tp->st_revision);
332 }
333 
334 const char *
335 smp_target_component_vendor(const smp_target_t *tp)
336 {
337 	return (tp->st_component_vendor);
338 }
339 
340 uint16_t
341 smp_target_component_id(const smp_target_t *tp)
342 {
343 	return (tp->st_component_id);
344 }
345 
346 uint8_t
347 smp_target_component_revision(const smp_target_t *tp)
348 {
349 	return (tp->st_component_revision);
350 }
351 
352 uint_t
353 smp_target_getcap(const smp_target_t *tp)
354 {
355 	uint_t cap = 0;
356 
357 	if (tp->st_repgen.srgr_long_response)
358 		cap |= SMP_TARGET_C_LONG_RESP;
359 
360 	if (tp->st_repgen.srgr_zoning_supported)
361 		cap |= SMP_TARGET_C_ZONING;
362 
363 	if (tp->st_repgen.srgr_number_of_zone_grps == SMP_ZONE_GROUPS_256)
364 		cap |= SMP_TARGET_C_ZG_256;
365 
366 	return (cap);
367 }
368 
369 void
370 smp_target_set_change_count(smp_target_t *tp, uint16_t cc)
371 {
372 	tp->st_change_count = cc;
373 }
374 
375 uint16_t
376 smp_target_get_change_count(const smp_target_t *tp)
377 {
378 	return (tp->st_change_count);
379 }
380 
381 uint8_t
382 smp_target_get_number_of_phys(const smp_target_t *tp)
383 {
384 	return (tp->st_repgen.srgr_number_of_phys);
385 }
386 
387 uint16_t
388 smp_target_get_exp_route_indexes(const smp_target_t *tp)
389 {
390 	return (tp->st_repgen.srgr_exp_route_indexes);
391 }
392 
393 void
394 smp_close(smp_target_t *tp)
395 {
396 	smp_free(tp->st_vendor);
397 	smp_free(tp->st_product);
398 	smp_free(tp->st_revision);
399 	smp_free(tp->st_component_vendor);
400 
401 	smp_plugin_unload(tp);
402 
403 	tp->st_engine->se_ops->seo_close(tp->st_priv);
404 	smp_engine_rele(tp->st_engine);
405 
406 	smp_free(tp);
407 }
408 
409 /*
410  * Set the timeout in seconds for this action.  If no timeout is specified
411  * or if the timeout is set to 0, an implementation-specific timeout will be
412  * used (which may vary based on the target, command or other variables).
413  * Not all engines support all timeout values.  Setting the timeout to a value
414  * not supported by the engine will cause engine-defined behavior when the
415  * action is executed.
416  */
417 void
418 smp_action_set_timeout(smp_action_t *ap, uint32_t timeout)
419 {
420 	ap->sa_timeout = timeout;
421 }
422 
423 /*
424  * Obtain the timeout setting for this action.
425  */
426 uint32_t
427 smp_action_get_timeout(const smp_action_t *ap)
428 {
429 	return (ap->sa_timeout);
430 }
431 
432 const smp_function_def_t *
433 smp_action_get_function_def(const smp_action_t *ap)
434 {
435 	return (ap->sa_def);
436 }
437 
438 /*
439  * Obtain the user-requested request allocation size.  Note that the
440  * interpretation of this is function-dependent.
441  */
442 size_t
443 smp_action_get_rqsd(const smp_action_t *ap)
444 {
445 	return (ap->sa_request_rqsd);
446 }
447 
448 /*
449  * Obtains the address and amount of space allocated for the portion of the
450  * request data that lies between the header (if any) and the CRC.
451  */
452 void
453 smp_action_get_request(const smp_action_t *ap, void **reqp, size_t *dlenp)
454 {
455 	if (reqp != NULL) {
456 		if (ap->sa_request_data_off >= 0) {
457 			*reqp = ap->sa_request + ap->sa_request_data_off;
458 		} else {
459 			*reqp = NULL;
460 		}
461 	}
462 
463 	if (dlenp != NULL)
464 		*dlenp = ap->sa_request_alloc_len -
465 		    (ap->sa_request_data_off + sizeof (smp_crc_t));
466 }
467 
468 /*
469  * Obtains the address and amount of valid response data (that part of the
470  * response frame, if any, that lies between the header and the CRC).  The
471  * result, if any, is also returned in the location pointed to by result.
472  */
473 void
474 smp_action_get_response(const smp_action_t *ap, smp_result_t *resultp,
475     void **respp, size_t *dlenp)
476 {
477 	if (resultp != NULL)
478 		*resultp = ap->sa_result;
479 
480 	if (respp != NULL)
481 		*respp = (ap->sa_response_data_len > 0) ?
482 		    (ap->sa_response + ap->sa_response_data_off) : NULL;
483 
484 	if (dlenp != NULL)
485 		*dlenp = ap->sa_response_data_len;
486 }
487 
488 /*
489  * Obtains the entire request frame and the amount of space allocated for it.
490  * This is intended only for use by plugins; front-end consumers should use
491  * smp_action_get_request() instead.
492  */
493 void
494 smp_action_get_request_frame(const smp_action_t *ap, void **reqp, size_t *alenp)
495 {
496 	if (reqp != NULL)
497 		*reqp = ap->sa_request;
498 
499 	if (alenp != NULL)
500 		*alenp = ap->sa_request_alloc_len;
501 }
502 
503 /*
504  * Obtains the entire response frame and the amount of space allocated for it.
505  * This is intended only for use by plugins; front-end consumers should use
506  * smp_action_get_response() instead.
507  */
508 void
509 smp_action_get_response_frame(const smp_action_t *ap,
510     void **respp, size_t *lenp)
511 {
512 	if (respp != NULL)
513 		*respp = ap->sa_response;
514 
515 	if (lenp != NULL) {
516 		if (ap->sa_flags & SMP_ACTION_F_EXEC)
517 			*lenp = ap->sa_response_engine_len;
518 		else
519 			*lenp = ap->sa_response_alloc_len;
520 	}
521 }
522 
523 /*
524  * Set the total response frame length as determined by the engine.  This
525  * should never be called by consumers or plugins other than engines.
526  */
527 void
528 smp_action_set_response_len(smp_action_t *ap, size_t elen)
529 {
530 	ap->sa_response_engine_len = elen;
531 }
532 
533 void
534 smp_action_set_result(smp_action_t *ap, smp_result_t result)
535 {
536 	ap->sa_result = result;
537 }
538 
539 /*
540  * Allocate an action object.  The object will contain a request buffer
541  * to hold the frame to be transmitted to the target, a response buffer
542  * for the frame to be received from it, and auxiliary private information.
543  *
544  * For the request, callers may specify:
545  *
546  * - An externally-allocated buffer and its size in bytes, or
547  * - NULL and a function-specific size descriptor, or
548  *
549  * Note that for some functions, the size descriptor may be 0, indicating that
550  * a default buffer length will be used.  It is the caller's responsibility
551  * to correctly interpret function-specific buffer lengths.  See appropriate
552  * plugin documentation for information on buffer sizes and buffer content
553  * interpretation.
554  *
555  * For the response, callers may specify:
556  *
557  * - An externally-allocated buffer and its size in bytes, or
558  * - NULL and 0, to use a guaranteed-sufficient buffer.
559  *
560  * If an invalid request size descriptor is provided, or a preallocated
561  * buffer is provided and it is insufficiently large, this function will
562  * fail with ESMP_RANGE.
563  *
564  * Callers are discouraged from allocating their own buffers and must be
565  * aware of the consequences of specifying non-default lengths.
566  */
567 smp_action_t *
568 smp_action_xalloc(smp_function_t fn, smp_target_t *tp,
569     void *rq, size_t rqsd, void *rs, size_t rslen)
570 {
571 	smp_plugin_t *pp;
572 	const smp_function_def_t *dp = NULL;
573 	smp_action_t *ap;
574 	uint_t cap;
575 	size_t rqlen, len;
576 	uint8_t *alloc;
577 	int i;
578 
579 	cap = smp_target_getcap(tp);
580 
581 	for (pp = tp->st_plugin_first; pp != NULL; pp = pp->sp_next) {
582 		if (pp->sp_functions == NULL)
583 			continue;
584 
585 		for (i = 0; pp->sp_functions[i].sfd_rq_len != NULL; i++) {
586 			dp = &pp->sp_functions[i];
587 			if (dp->sfd_function == fn &&
588 			    ((cap & dp->sfd_capmask) == dp->sfd_capset))
589 				break;
590 		}
591 	}
592 
593 	if (dp == NULL) {
594 		(void) smp_set_errno(ESMP_BADFUNC);
595 		return (NULL);
596 	}
597 
598 	if (rq == NULL) {
599 		if ((rqlen = dp->sfd_rq_len(rqsd, tp)) == 0)
600 			return (NULL);
601 	} else if (rqlen < SMP_REQ_MINLEN) {
602 		(void) smp_set_errno(ESMP_RANGE);
603 		return (NULL);
604 	}
605 
606 	if (rs == NULL) {
607 		rslen = 1020 + SMP_RESP_MINLEN;
608 	} else if (rslen < SMP_RESP_MINLEN) {
609 		(void) smp_set_errno(ESMP_RANGE);
610 		return (NULL);
611 	}
612 
613 	len = offsetof(smp_action_t, sa_buf[0]);
614 	if (rq == NULL)
615 		len += rqlen;
616 	if (rs == NULL)
617 		len += rslen;
618 
619 	if ((ap = smp_zalloc(len)) == NULL)
620 		return (NULL);
621 
622 	ap->sa_def = dp;
623 	alloc = ap->sa_buf;
624 
625 	if (rq == NULL) {
626 		ap->sa_request = alloc;
627 		alloc += rqlen;
628 	}
629 	ap->sa_request_alloc_len = rqlen;
630 
631 	if (rs == NULL) {
632 		ap->sa_response = alloc;
633 		alloc += rslen;
634 	}
635 	ap->sa_response_alloc_len = rslen;
636 
637 	ASSERT(alloc - (uint8_t *)ap == len);
638 
639 	ap->sa_request_data_off = dp->sfd_rq_dataoff(ap, tp);
640 	ap->sa_flags |= SMP_ACTION_F_OFFSET;
641 
642 	return (ap);
643 }
644 
645 /*
646  * Simplified action allocator.  All buffers are allocated for the
647  * caller.  The request buffer size will be based on the function-specific
648  * interpretation of the rqsize parameter.  The response buffer size will be
649  * a function-specific value sufficiently large to capture any response.
650  */
651 smp_action_t *
652 smp_action_alloc(smp_function_t fn, smp_target_t *tp, size_t rqsd)
653 {
654 	return (smp_action_xalloc(fn, tp, NULL, rqsd, NULL, 0));
655 }
656 
657 void
658 smp_action_free(smp_action_t *ap)
659 {
660 	if (ap == NULL)
661 		return;
662 
663 	smp_free(ap);
664 }
665 
666 /*
667  * For testing purposes, we allow data to be corrupted via an environment
668  * variable setting.  This helps ensure that higher level software can cope with
669  * arbitrarily broken targets.  The mtbf value represents the number of bytes we
670  * will see, on average, in between each failure.  Therefore, for each N bytes,
671  * we would expect to see (N / mtbf) bytes of corruption.
672  */
673 static void
674 smp_inject_errors(void *data, size_t len, uint_t mtbf)
675 {
676 	char *buf = data;
677 	double prob;
678 	size_t index;
679 
680 	if (len == 0)
681 		return;
682 
683 	prob = (double)len / mtbf;
684 
685 	while (prob > 1) {
686 		index = lrand48() % len;
687 		buf[index] = (lrand48() % 256);
688 		prob -= 1;
689 	}
690 
691 	if (drand48() <= prob) {
692 		index = lrand48() % len;
693 		buf[index] = (lrand48() % 256);
694 	}
695 }
696 
697 int
698 smp_exec(smp_action_t *ap, smp_target_t *tp)
699 {
700 	const smp_function_def_t *dp;
701 	int ret;
702 
703 	dp = ap->sa_def;
704 	dp->sfd_rq_setframe(ap, tp);
705 
706 	if (tp->st_mtbf_request != 0) {
707 		smp_inject_errors(ap->sa_request, ap->sa_request_alloc_len,
708 		    tp->st_mtbf_request);
709 	}
710 
711 	ret = tp->st_engine->se_ops->seo_exec(tp->st_priv, ap);
712 
713 	if (ret == 0 && tp->st_mtbf_response != 0) {
714 		smp_inject_errors(ap->sa_response, ap->sa_response_engine_len,
715 		    tp->st_mtbf_response);
716 	}
717 
718 	if (ret != 0)
719 		return (ret);
720 
721 	ap->sa_flags |= SMP_ACTION_F_EXEC;
722 
723 	/*
724 	 * Obtain the data length and offset from the underlying plugins.
725 	 * Then offer the plugins the opportunity to set any parameters in the
726 	 * target to reflect state observed in the response.
727 	 */
728 	ap->sa_response_data_len = dp->sfd_rs_datalen(ap, tp);
729 	ap->sa_response_data_off = dp->sfd_rs_dataoff(ap, tp);
730 	dp->sfd_rs_getparams(ap, tp);
731 
732 	ap->sa_flags |= SMP_ACTION_F_DECODE;
733 
734 	return (0);
735 }
736