1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/isa_defs.h> 28 #include <sys/systeminfo.h> 29 #include <sys/scsi/generic/smp_frames.h> 30 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <stddef.h> 34 #include <string.h> 35 #include <strings.h> 36 #include <dlfcn.h> 37 #include <limits.h> 38 #include <pthread.h> 39 #include <synch.h> 40 41 #include <scsi/libsmp.h> 42 #include "smp_impl.h" 43 44 static pthread_mutex_t _libsmp_lock = PTHREAD_MUTEX_INITIALIZER; 45 static smp_engine_t *_libsmp_engines; 46 static int _libsmp_refcnt; 47 48 static boolean_t _libsmp_engine_dlclose; 49 50 static void 51 smp_engine_free(smp_engine_t *ep) 52 { 53 if (ep == NULL) 54 return; 55 56 smp_free(ep->se_name); 57 smp_free(ep); 58 } 59 60 static void 61 smp_engine_destroy(smp_engine_t *ep) 62 { 63 smp_engine_t **pp; 64 65 ASSERT(MUTEX_HELD(&_libsmp_lock)); 66 67 if (ep->se_fini != NULL) 68 ep->se_fini(ep); 69 70 if (_libsmp_engine_dlclose) 71 (void) dlclose(ep->se_object); 72 73 ASSERT(ep->se_refcnt == 0); 74 for (pp = &_libsmp_engines; *pp != NULL; pp = &((*pp)->se_next)) 75 if (*pp == ep) 76 break; 77 78 if (*pp != NULL) 79 *pp = (*pp)->se_next; 80 81 smp_engine_free(ep); 82 } 83 84 void 85 smp_engine_init(void) 86 { 87 (void) pthread_mutex_lock(&_libsmp_lock); 88 ++_libsmp_refcnt; 89 (void) pthread_mutex_unlock(&_libsmp_lock); 90 } 91 92 void 93 smp_engine_fini(void) 94 { 95 smp_engine_t *ep; 96 97 (void) pthread_mutex_lock(&_libsmp_lock); 98 ASSERT(_libsmp_refcnt > 0); 99 if (--_libsmp_refcnt == 0) { 100 while (_libsmp_engines != NULL) { 101 ep = _libsmp_engines; 102 _libsmp_engines = ep->se_next; 103 smp_engine_destroy(ep); 104 } 105 } 106 (void) pthread_mutex_unlock(&_libsmp_lock); 107 } 108 109 static int 110 smp_engine_loadone(const char *path) 111 { 112 smp_engine_t *ep; 113 void *obj; 114 115 ASSERT(MUTEX_HELD(&_libsmp_lock)); 116 117 if ((obj = dlopen(path, RTLD_PARENT | RTLD_LOCAL | RTLD_LAZY)) == NULL) 118 return (smp_set_errno(ESMP_NOENGINE)); 119 120 if ((ep = smp_zalloc(sizeof (smp_engine_t))) == NULL) { 121 (void) dlclose(obj); 122 return (-1); 123 } 124 125 ep->se_object = obj; 126 ep->se_init = (int (*)())dlsym(obj, "_smp_init"); 127 ep->se_fini = (void (*)())dlsym(obj, "_smp_fini"); 128 129 if (ep->se_init == NULL) { 130 smp_engine_free(ep); 131 return (smp_set_errno(ESMP_BADENGINE)); 132 } 133 134 if (ep->se_init(ep) != 0) { 135 smp_engine_free(ep); 136 return (-1); 137 } 138 139 return (0); 140 } 141 142 int 143 smp_engine_register(smp_engine_t *ep, int version, 144 const smp_engine_config_t *ecp) 145 { 146 ASSERT(MUTEX_HELD(&_libsmp_lock)); 147 148 if (version != LIBSMP_ENGINE_VERSION) 149 return (smp_set_errno(ESMP_VERSION)); 150 151 ep->se_ops = ecp->sec_ops; 152 ep->se_name = smp_strdup(ecp->sec_name); 153 154 if (ep->se_name == NULL) 155 return (-1); 156 157 ep->se_next = _libsmp_engines; 158 _libsmp_engines = ep; 159 160 return (0); 161 } 162 163 static smp_engine_t * 164 smp_engine_hold_cached(const char *name) 165 { 166 smp_engine_t *ep; 167 168 ASSERT(MUTEX_HELD(&_libsmp_lock)); 169 170 for (ep = _libsmp_engines; ep != NULL; ep = ep->se_next) { 171 if (strcmp(ep->se_name, name) == 0) { 172 ++ep->se_refcnt; 173 return (ep); 174 } 175 } 176 177 (void) smp_set_errno(ESMP_NOENGINE); 178 return (NULL); 179 } 180 181 static smp_engine_t * 182 smp_engine_hold(const char *name) 183 { 184 smp_engine_t *ep; 185 const char *pluginpath, *p, *q; 186 char pluginroot[PATH_MAX]; 187 char path[PATH_MAX]; 188 char isa[257]; 189 190 (void) pthread_mutex_lock(&_libsmp_lock); 191 ep = smp_engine_hold_cached(name); 192 if (ep != NULL) { 193 (void) pthread_mutex_unlock(&_libsmp_lock); 194 return (ep); 195 } 196 197 #if defined(_LP64) 198 if (sysinfo(SI_ARCHITECTURE_64, isa, sizeof (isa)) < 0) 199 isa[0] = '\0'; 200 #else 201 isa[0] = '\0'; 202 #endif 203 204 if ((pluginpath = getenv("SMP_PLUGINPATH")) == NULL) 205 pluginpath = LIBSMP_DEFAULT_PLUGINDIR; 206 207 _libsmp_engine_dlclose = (getenv("SMP_NODLCLOSE") == NULL); 208 209 for (p = pluginpath; p != NULL; p = q) { 210 if ((q = strchr(p, ':')) != NULL) { 211 ptrdiff_t len = q - p; 212 (void) strncpy(pluginroot, p, len); 213 pluginroot[len] = '\0'; 214 while (*q == ':') 215 ++q; 216 if (*q == '\0') 217 q = NULL; 218 if (len == 0) 219 continue; 220 } else { 221 (void) strcpy(pluginroot, p); 222 } 223 224 if (pluginroot[0] != '/') 225 continue; 226 227 (void) snprintf(path, PATH_MAX, "%s/%s/%s/%s%s", 228 pluginroot, LIBSMP_PLUGIN_ENGINE, 229 isa, name, LIBSMP_PLUGIN_EXT); 230 231 if (smp_engine_loadone(path) == 0) { 232 ep = smp_engine_hold_cached(name); 233 (void) pthread_mutex_unlock(&_libsmp_lock); 234 return (ep); 235 } 236 } 237 238 return (NULL); 239 } 240 241 static void 242 smp_engine_rele(smp_engine_t *ep) 243 { 244 (void) pthread_mutex_lock(&_libsmp_lock); 245 ASSERT(ep->se_refcnt > 0); 246 --ep->se_refcnt; 247 (void) pthread_mutex_unlock(&_libsmp_lock); 248 } 249 250 static void 251 smp_parse_mtbf(const char *envvar, uint_t *intp) 252 { 253 const char *strval; 254 int intval; 255 256 if ((strval = getenv(envvar)) != NULL && 257 (intval = atoi(strval)) > 0) { 258 srand48(gethrtime()); 259 *intp = intval; 260 } 261 } 262 263 smp_target_t * 264 smp_open(const smp_target_def_t *tdp) 265 { 266 smp_engine_t *ep; 267 smp_target_t *tp; 268 void *private; 269 const char *engine; 270 271 if ((engine = tdp->std_engine) == NULL) { 272 if ((engine = getenv("LIBSMP_DEFAULT_ENGINE")) == NULL) 273 engine = LIBSMP_DEFAULT_ENGINE; 274 } 275 276 if ((ep = smp_engine_hold(engine)) == NULL) 277 return (NULL); 278 279 if ((tp = smp_zalloc(sizeof (smp_target_t))) == NULL) { 280 smp_engine_rele(ep); 281 return (NULL); 282 } 283 284 if ((private = ep->se_ops->seo_open(tdp->std_def)) == NULL) { 285 smp_engine_rele(ep); 286 smp_free(tp); 287 return (NULL); 288 } 289 290 smp_parse_mtbf("LIBSMP_MTBF_REQUEST", &tp->st_mtbf_request); 291 smp_parse_mtbf("LIBSMP_MTBF_RESPONSE", &tp->st_mtbf_response); 292 293 tp->st_engine = ep; 294 tp->st_priv = private; 295 296 if (smp_plugin_load(tp) != 0) { 297 smp_close(tp); 298 return (NULL); 299 } 300 301 return (tp); 302 } 303 304 void 305 smp_target_name(const smp_target_t *tp, char *buf, size_t len) 306 { 307 tp->st_engine->se_ops->seo_target_name(tp->st_priv, buf, len); 308 } 309 310 uint64_t 311 smp_target_addr(const smp_target_t *tp) 312 { 313 return (tp->st_engine->se_ops->seo_target_addr(tp->st_priv)); 314 } 315 316 const char * 317 smp_target_vendor(const smp_target_t *tp) 318 { 319 return (tp->st_vendor); 320 } 321 322 const char * 323 smp_target_product(const smp_target_t *tp) 324 { 325 return (tp->st_product); 326 } 327 328 const char * 329 smp_target_revision(const smp_target_t *tp) 330 { 331 return (tp->st_revision); 332 } 333 334 const char * 335 smp_target_component_vendor(const smp_target_t *tp) 336 { 337 return (tp->st_component_vendor); 338 } 339 340 uint16_t 341 smp_target_component_id(const smp_target_t *tp) 342 { 343 return (tp->st_component_id); 344 } 345 346 uint8_t 347 smp_target_component_revision(const smp_target_t *tp) 348 { 349 return (tp->st_component_revision); 350 } 351 352 uint_t 353 smp_target_getcap(const smp_target_t *tp) 354 { 355 uint_t cap = 0; 356 357 if (tp->st_repgen.srgr_long_response) 358 cap |= SMP_TARGET_C_LONG_RESP; 359 360 if (tp->st_repgen.srgr_zoning_supported) 361 cap |= SMP_TARGET_C_ZONING; 362 363 if (tp->st_repgen.srgr_number_of_zone_grps == SMP_ZONE_GROUPS_256) 364 cap |= SMP_TARGET_C_ZG_256; 365 366 return (cap); 367 } 368 369 void 370 smp_target_set_change_count(smp_target_t *tp, uint16_t cc) 371 { 372 tp->st_change_count = cc; 373 } 374 375 uint16_t 376 smp_target_get_change_count(const smp_target_t *tp) 377 { 378 return (tp->st_change_count); 379 } 380 381 void 382 smp_close(smp_target_t *tp) 383 { 384 smp_free(tp->st_vendor); 385 smp_free(tp->st_product); 386 smp_free(tp->st_revision); 387 smp_free(tp->st_component_vendor); 388 389 smp_plugin_unload(tp); 390 391 tp->st_engine->se_ops->seo_close(tp->st_priv); 392 smp_engine_rele(tp->st_engine); 393 394 smp_free(tp); 395 } 396 397 /* 398 * Set the timeout in seconds for this action. If no timeout is specified 399 * or if the timeout is set to 0, an implementation-specific timeout will be 400 * used (which may vary based on the target, command or other variables). 401 * Not all engines support all timeout values. Setting the timeout to a value 402 * not supported by the engine will cause engine-defined behavior when the 403 * action is executed. 404 */ 405 void 406 smp_action_set_timeout(smp_action_t *ap, uint32_t timeout) 407 { 408 ap->sa_timeout = timeout; 409 } 410 411 /* 412 * Obtain the timeout setting for this action. 413 */ 414 uint32_t 415 smp_action_get_timeout(const smp_action_t *ap) 416 { 417 return (ap->sa_timeout); 418 } 419 420 const smp_function_def_t * 421 smp_action_get_function_def(const smp_action_t *ap) 422 { 423 return (ap->sa_def); 424 } 425 426 /* 427 * Obtain the user-requested request allocation size. Note that the 428 * interpretation of this is function-dependent. 429 */ 430 size_t 431 smp_action_get_rqsd(const smp_action_t *ap) 432 { 433 return (ap->sa_request_rqsd); 434 } 435 436 /* 437 * Obtains the address and amount of space allocated for the portion of the 438 * request data that lies between the header (if any) and the CRC. 439 */ 440 void 441 smp_action_get_request(const smp_action_t *ap, void **reqp, size_t *dlenp) 442 { 443 if (reqp != NULL) { 444 if (ap->sa_request_data_off >= 0) { 445 *reqp = ap->sa_request + ap->sa_request_data_off; 446 } else { 447 *reqp = NULL; 448 } 449 } 450 451 if (dlenp != NULL) 452 *dlenp = ap->sa_request_alloc_len - 453 (ap->sa_request_data_off + sizeof (smp_crc_t)); 454 } 455 456 /* 457 * Obtains the address and amount of valid response data (that part of the 458 * response frame, if any, that lies between the header and the CRC). The 459 * result, if any, is also returned in the location pointed to by result. 460 */ 461 void 462 smp_action_get_response(const smp_action_t *ap, smp_result_t *resultp, 463 void **respp, size_t *dlenp) 464 { 465 if (resultp != NULL) 466 *resultp = ap->sa_result; 467 468 if (respp != NULL) 469 *respp = (ap->sa_response_data_len > 0) ? 470 (ap->sa_response + ap->sa_response_data_off) : NULL; 471 472 if (dlenp != NULL) 473 *dlenp = ap->sa_response_data_len; 474 } 475 476 /* 477 * Obtains the entire request frame and the amount of space allocated for it. 478 * This is intended only for use by plugins; front-end consumers should use 479 * smp_action_get_request() instead. 480 */ 481 void 482 smp_action_get_request_frame(const smp_action_t *ap, void **reqp, size_t *alenp) 483 { 484 if (reqp != NULL) 485 *reqp = ap->sa_request; 486 487 if (alenp != NULL) 488 *alenp = ap->sa_request_alloc_len; 489 } 490 491 /* 492 * Obtains the entire response frame and the amount of space allocated for it. 493 * This is intended only for use by plugins; front-end consumers should use 494 * smp_action_get_response() instead. 495 */ 496 void 497 smp_action_get_response_frame(const smp_action_t *ap, 498 void **respp, size_t *lenp) 499 { 500 if (respp != NULL) 501 *respp = ap->sa_response; 502 503 if (lenp != NULL) { 504 if (ap->sa_flags & SMP_ACTION_F_EXEC) 505 *lenp = ap->sa_response_engine_len; 506 else 507 *lenp = ap->sa_response_alloc_len; 508 } 509 } 510 511 /* 512 * Set the total response frame length as determined by the engine. This 513 * should never be called by consumers or plugins other than engines. 514 */ 515 void 516 smp_action_set_response_len(smp_action_t *ap, size_t elen) 517 { 518 ap->sa_response_engine_len = elen; 519 } 520 521 void 522 smp_action_set_result(smp_action_t *ap, smp_result_t result) 523 { 524 ap->sa_result = result; 525 } 526 527 /* 528 * Allocate an action object. The object will contain a request buffer 529 * to hold the frame to be transmitted to the target, a response buffer 530 * for the frame to be received from it, and auxiliary private information. 531 * 532 * For the request, callers may specify: 533 * 534 * - An externally-allocated buffer and its size in bytes, or 535 * - NULL and a function-specific size descriptor, or 536 * 537 * Note that for some functions, the size descriptor may be 0, indicating that 538 * a default buffer length will be used. It is the caller's responsibility 539 * to correctly interpret function-specific buffer lengths. See appropriate 540 * plugin documentation for information on buffer sizes and buffer content 541 * interpretation. 542 * 543 * For the response, callers may specify: 544 * 545 * - An externally-allocated buffer and its size in bytes, or 546 * - NULL and 0, to use a guaranteed-sufficient buffer. 547 * 548 * If an invalid request size descriptor is provided, or a preallocated 549 * buffer is provided and it is insufficiently large, this function will 550 * fail with ESMP_RANGE. 551 * 552 * Callers are discouraged from allocating their own buffers and must be 553 * aware of the consequences of specifying non-default lengths. 554 */ 555 smp_action_t * 556 smp_action_xalloc(smp_function_t fn, smp_target_t *tp, 557 void *rq, size_t rqsd, void *rs, size_t rslen) 558 { 559 smp_plugin_t *pp; 560 const smp_function_def_t *dp = NULL; 561 smp_action_t *ap; 562 uint_t cap; 563 size_t rqlen, len; 564 uint8_t *alloc; 565 int i; 566 567 cap = smp_target_getcap(tp); 568 569 for (pp = tp->st_plugin_first; pp != NULL; pp = pp->sp_next) { 570 if (pp->sp_functions == NULL) 571 continue; 572 573 for (i = 0; pp->sp_functions[i].sfd_rq_len != NULL; i++) { 574 dp = &pp->sp_functions[i]; 575 if (dp->sfd_function == fn && 576 ((cap & dp->sfd_capmask) == dp->sfd_capset)) 577 break; 578 } 579 } 580 581 if (dp == NULL) { 582 (void) smp_set_errno(ESMP_BADFUNC); 583 return (NULL); 584 } 585 586 if (rq == NULL) { 587 if ((rqlen = dp->sfd_rq_len(rqsd, tp)) == 0) 588 return (NULL); 589 } else if (rqlen < SMP_REQ_MINLEN) { 590 (void) smp_set_errno(ESMP_RANGE); 591 return (NULL); 592 } 593 594 if (rs == NULL) { 595 rslen = 1020 + SMP_RESP_MINLEN; 596 } else if (rslen < SMP_RESP_MINLEN) { 597 (void) smp_set_errno(ESMP_RANGE); 598 return (NULL); 599 } 600 601 len = offsetof(smp_action_t, sa_buf[0]); 602 if (rq == NULL) 603 len += rqlen; 604 if (rs == NULL) 605 len += rslen; 606 607 if ((ap = smp_zalloc(len)) == NULL) 608 return (NULL); 609 610 ap->sa_def = dp; 611 alloc = ap->sa_buf; 612 613 if (rq == NULL) { 614 ap->sa_request = alloc; 615 alloc += rqlen; 616 } 617 ap->sa_request_alloc_len = rqlen; 618 619 if (rs == NULL) { 620 ap->sa_response = alloc; 621 alloc += rslen; 622 } 623 ap->sa_response_alloc_len = rslen; 624 625 ASSERT(alloc - (uint8_t *)ap == len); 626 627 ap->sa_request_data_off = dp->sfd_rq_dataoff(ap, tp); 628 ap->sa_flags |= SMP_ACTION_F_OFFSET; 629 630 return (ap); 631 } 632 633 /* 634 * Simplified action allocator. All buffers are allocated for the 635 * caller. The request buffer size will be based on the function-specific 636 * interpretation of the rqsize parameter. The response buffer size will be 637 * a function-specific value sufficiently large to capture any response. 638 */ 639 smp_action_t * 640 smp_action_alloc(smp_function_t fn, smp_target_t *tp, size_t rqsd) 641 { 642 return (smp_action_xalloc(fn, tp, NULL, rqsd, NULL, 0)); 643 } 644 645 void 646 smp_action_free(smp_action_t *ap) 647 { 648 if (ap == NULL) 649 return; 650 651 smp_free(ap); 652 } 653 654 /* 655 * For testing purposes, we allow data to be corrupted via an environment 656 * variable setting. This helps ensure that higher level software can cope with 657 * arbitrarily broken targets. The mtbf value represents the number of bytes we 658 * will see, on average, in between each failure. Therefore, for each N bytes, 659 * we would expect to see (N / mtbf) bytes of corruption. 660 */ 661 static void 662 smp_inject_errors(void *data, size_t len, uint_t mtbf) 663 { 664 char *buf = data; 665 double prob; 666 size_t index; 667 668 if (len == 0) 669 return; 670 671 prob = (double)len / mtbf; 672 673 while (prob > 1) { 674 index = lrand48() % len; 675 buf[index] = (lrand48() % 256); 676 prob -= 1; 677 } 678 679 if (drand48() <= prob) { 680 index = lrand48() % len; 681 buf[index] = (lrand48() % 256); 682 } 683 } 684 685 int 686 smp_exec(smp_action_t *ap, smp_target_t *tp) 687 { 688 const smp_function_def_t *dp; 689 int ret; 690 691 dp = ap->sa_def; 692 dp->sfd_rq_setframe(ap, tp); 693 694 if (tp->st_mtbf_request != 0) { 695 smp_inject_errors(ap->sa_request, ap->sa_request_alloc_len, 696 tp->st_mtbf_request); 697 } 698 699 ret = tp->st_engine->se_ops->seo_exec(tp->st_priv, ap); 700 701 if (ret == 0 && tp->st_mtbf_response != 0) { 702 smp_inject_errors(ap->sa_response, ap->sa_response_engine_len, 703 tp->st_mtbf_response); 704 } 705 706 if (ret != 0) 707 return (ret); 708 709 ap->sa_flags |= SMP_ACTION_F_EXEC; 710 711 /* 712 * Obtain the data length and offset from the underlying plugins. 713 * Then offer the plugins the opportunity to set any parameters in the 714 * target to reflect state observed in the response. 715 */ 716 ap->sa_response_data_len = dp->sfd_rs_datalen(ap, tp); 717 ap->sa_response_data_off = dp->sfd_rs_dataoff(ap, tp); 718 dp->sfd_rs_getparams(ap, tp); 719 720 ap->sa_flags |= SMP_ACTION_F_DECODE; 721 722 return (0); 723 } 724