xref: /illumos-gate/usr/src/lib/pkcs11/pkcs11_kernel/common/kernelUtil.c (revision 9a411307f0d1eedbc81618ec290e0685284d8a2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <stdlib.h>
29 #include <string.h>
30 #include <strings.h>
31 #include <cryptoutil.h>
32 #include <errno.h>
33 #include <security/cryptoki.h>
34 #include <sys/crypto/common.h>
35 #include <sys/crypto/ioctl.h>
36 #include "kernelGlobal.h"
37 #include "kernelObject.h"
38 #include "kernelSlot.h"
39 
40 #define	ENCODE_ATTR(type, value, len) {		\
41 	cur_attr->oa_type = type;		\
42 	(void) memcpy(ptr, value, len);		\
43 	cur_attr->oa_value = ptr;		\
44 	cur_attr->oa_value_len = len;		\
45 	cur_attr++;				\
46 }
47 
48 #define	CRYPTO_LAST_ERROR	(CRYPTO_WEAK_KEY + 1)
49 
50 /*
51  * In order to fit everything on one line, the 'CRYPTO_' prefix
52  * has been dropped from the KCF #defines, e.g.
53  * CRYPTO_SUCCESS becomes SUCCESS.
54  */
55 
56 static CK_RV error_number_table[CRYPTO_LAST_ERROR] = {
57 CKR_OK,					/* SUCCESS */
58 CKR_CANCEL,				/* CANCEL */
59 CKR_HOST_MEMORY,			/* HOST_MEMORY */
60 CKR_GENERAL_ERROR,			/* GENERAL_ERROR */
61 CKR_FUNCTION_FAILED,			/* FAILED */
62 CKR_ARGUMENTS_BAD,			/* ARGUMENTS_BAD */
63 CKR_ATTRIBUTE_READ_ONLY,		/* ATTRIBUTE_READ_ONLY */
64 CKR_ATTRIBUTE_SENSITIVE,		/* ATTRIBUTE_SENSITIVE */
65 CKR_ATTRIBUTE_TYPE_INVALID,		/* ATTRIBUTE_TYPE_INVALID */
66 CKR_ATTRIBUTE_VALUE_INVALID,		/* ATTRIBUTE_VALUE_INVALID */
67 CKR_FUNCTION_FAILED,			/* CANCELED */
68 CKR_DATA_INVALID,			/* DATA_INVALID */
69 CKR_DATA_LEN_RANGE,			/* DATA_LEN_RANGE */
70 CKR_DEVICE_ERROR,			/* DEVICE_ERROR */
71 CKR_DEVICE_MEMORY,			/* DEVICE_MEMORY */
72 CKR_DEVICE_REMOVED,			/* DEVICE_REMOVED */
73 CKR_ENCRYPTED_DATA_INVALID,		/* ENCRYPTED_DATA_INVALID */
74 CKR_ENCRYPTED_DATA_LEN_RANGE,		/* ENCRYPTED_DATA_LEN_RANGE */
75 CKR_KEY_HANDLE_INVALID,			/* KEY_HANDLE_INVALID */
76 CKR_KEY_SIZE_RANGE,			/* KEY_SIZE_RANGE */
77 CKR_KEY_TYPE_INCONSISTENT,		/* KEY_TYPE_INCONSISTENT */
78 CKR_KEY_NOT_NEEDED,			/* KEY_NOT_NEEDED */
79 CKR_KEY_CHANGED,			/* KEY_CHANGED */
80 CKR_KEY_NEEDED,				/* KEY_NEEDED */
81 CKR_KEY_INDIGESTIBLE,			/* KEY_INDIGESTIBLE */
82 CKR_KEY_FUNCTION_NOT_PERMITTED,		/* KEY_FUNCTION_NOT_PERMITTED */
83 CKR_KEY_NOT_WRAPPABLE,			/* KEY_NOT_WRAPPABLE */
84 CKR_KEY_UNEXTRACTABLE,			/* KEY_UNEXTRACTABLE */
85 CKR_MECHANISM_INVALID,			/* MECHANISM_INVALID */
86 CKR_MECHANISM_PARAM_INVALID,		/* MECHANISM_PARAM_INVALID */
87 CKR_OBJECT_HANDLE_INVALID,		/* OBJECT_HANDLE_INVALID */
88 CKR_OPERATION_ACTIVE,			/* OPERATION_ACTIVE */
89 CKR_OPERATION_NOT_INITIALIZED,		/* OPERATION_NOT_INITIALIZED */
90 CKR_PIN_INCORRECT,			/* PIN_INCORRECT */
91 CKR_PIN_INVALID,			/* PIN_INVALID */
92 CKR_PIN_LEN_RANGE,			/* PIN_LEN_RANGE */
93 CKR_PIN_EXPIRED,			/* PIN_EXPIRED */
94 CKR_PIN_LOCKED,				/* PIN_LOCKED */
95 CKR_SESSION_CLOSED,			/* SESSION_CLOSED */
96 CKR_SESSION_COUNT,			/* SESSION_COUNT */
97 CKR_SESSION_HANDLE_INVALID,		/* SESSION_HANDLE_INVALID */
98 CKR_SESSION_READ_ONLY,			/* SESSION_READ_ONLY */
99 CKR_SESSION_EXISTS,			/* SESSION_EXISTS */
100 CKR_SESSION_READ_ONLY_EXISTS,		/* SESSION_READ_ONLY_EXISTS */
101 CKR_SESSION_READ_WRITE_SO_EXISTS,	/* SESSION_READ_WRITE_SO_EXISTS */
102 CKR_SIGNATURE_INVALID,			/* SIGNATURE_INVALID */
103 CKR_SIGNATURE_LEN_RANGE,		/* SIGNATURE_LEN_RANGE */
104 CKR_TEMPLATE_INCOMPLETE,		/* TEMPLATE_INCOMPLETE */
105 CKR_TEMPLATE_INCONSISTENT,		/* TEMPLATE_INCONSISTENT */
106 CKR_UNWRAPPING_KEY_HANDLE_INVALID,	/* UNWRAPPING_KEY_HANDLE_INVALID */
107 CKR_UNWRAPPING_KEY_SIZE_RANGE,		/* UNWRAPPING_KEY_SIZE_RANGE */
108 CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,	/* UNWRAPPING_KEY_TYPE_INCONSISTENT */
109 CKR_USER_ALREADY_LOGGED_IN,		/* USER_ALREADY_LOGGED_IN */
110 CKR_USER_NOT_LOGGED_IN,			/* USER_NOT_LOGGED_IN */
111 CKR_USER_PIN_NOT_INITIALIZED,		/* USER_PIN_NOT_INITIALIZED */
112 CKR_USER_TYPE_INVALID,			/* USER_TYPE_INVALID */
113 CKR_USER_ANOTHER_ALREADY_LOGGED_IN,	/* USER_ANOTHER_ALREADY_LOGGED_IN */
114 CKR_USER_TOO_MANY_TYPES,		/* USER_TOO_MANY_TYPES */
115 CKR_WRAPPED_KEY_INVALID,		/* WRAPPED_KEY_INVALID */
116 CKR_WRAPPED_KEY_LEN_RANGE,		/* WRAPPED_KEY_LEN_RANGE */
117 CKR_WRAPPING_KEY_HANDLE_INVALID,	/* WRAPPING_KEY_HANDLE_INVALID */
118 CKR_WRAPPING_KEY_SIZE_RANGE,		/* WRAPPING_KEY_SIZE_RANGE */
119 CKR_WRAPPING_KEY_TYPE_INCONSISTENT,	/* WRAPPING_KEY_TYPE_INCONSISTENT */
120 CKR_RANDOM_SEED_NOT_SUPPORTED,		/* RANDOM_SEED_NOT_SUPPORTED */
121 CKR_RANDOM_NO_RNG,			/* RANDOM_NO_RNG */
122 CKR_DOMAIN_PARAMS_INVALID,		/* DOMAIN_PARAMS_INVALID */
123 CKR_BUFFER_TOO_SMALL,			/* BUFFER_TOO_SMALL */
124 CKR_INFORMATION_SENSITIVE,		/* INFORMATION_SENSITIVE */
125 CKR_FUNCTION_NOT_SUPPORTED,		/* NOT_SUPPORTED */
126 CKR_GENERAL_ERROR,			/* QUEUED */
127 CKR_GENERAL_ERROR,			/* BUFFER_TOO_BIG */
128 CKR_OPERATION_NOT_INITIALIZED,		/* INVALID_CONTEXT */
129 CKR_GENERAL_ERROR,			/* INVALID_MAC */
130 CKR_GENERAL_ERROR,			/* MECH_NOT_SUPPORTED */
131 CKR_GENERAL_ERROR,			/* INCONSISTENT_ATTRIBUTE */
132 CKR_GENERAL_ERROR,			/* NO_PERMISSION */
133 CKR_SLOT_ID_INVALID,			/* INVALID_PROVIDER_ID */
134 CKR_GENERAL_ERROR,			/* VERSION_MISMATCH */
135 CKR_GENERAL_ERROR,			/* BUSY */
136 CKR_GENERAL_ERROR,			/* UNKNOWN_PROVIDER */
137 CKR_GENERAL_ERROR,			/* MODVERIFICATION_FAILED */
138 CKR_GENERAL_ERROR,			/* OLD_CTX_TEMPLATE */
139 CKR_GENERAL_ERROR,			/* WEAK_KEY */
140 };
141 
142 /*
143  * Map KCF error codes into PKCS11 error codes.
144  */
145 CK_RV
146 crypto2pkcs11_error_number(uint_t n)
147 {
148 	if (n > CRYPTO_LAST_ERROR)
149 		return (CKR_GENERAL_ERROR);
150 
151 	return (error_number_table[n]);
152 }
153 
154 #define	MECH_HASH(type)	(((uintptr_t)type) % KMECH_HASHTABLE_SIZE)
155 /*
156  * Serialize writes to the hash table. We don't need a per bucket lock as
157  * there are only a few writes and we don't need the lock for reads.
158  */
159 static pthread_mutex_t mechhash_mutex = PTHREAD_MUTEX_INITIALIZER;
160 
161 static CK_RV
162 kmech_hash_insert(CK_MECHANISM_TYPE type, crypto_mech_type_t kmech)
163 {
164 	uint_t h;
165 	kmh_elem_t *elem, *cur;
166 
167 	elem = malloc(sizeof (kmh_elem_t));
168 	if (elem == NULL)
169 		return (CKR_HOST_MEMORY);
170 
171 	h = MECH_HASH(type);
172 	elem->type = type;
173 	elem->kmech = kmech;
174 
175 	(void) pthread_mutex_lock(&mechhash_mutex);
176 	for (cur = kernel_mechhash[h]; cur != NULL; cur = cur->knext) {
177 		if (type == cur->type) {
178 			/* Some other thread beat us to it. */
179 			(void) pthread_mutex_unlock(&mechhash_mutex);
180 			free(elem);
181 			return (CKR_OK);
182 		}
183 	}
184 	elem->knext = kernel_mechhash[h];
185 	kernel_mechhash[h] = elem;
186 	(void) pthread_mutex_unlock(&mechhash_mutex);
187 
188 	return (CKR_OK);
189 }
190 
191 CK_RV
192 kernel_mech(CK_MECHANISM_TYPE type, crypto_mech_type_t *k_number)
193 {
194 	crypto_get_mechanism_number_t get_number;
195 	char *string;
196 	CK_RV rv;
197 	int r;
198 	kmh_elem_t *elem;
199 	uint_t h;
200 
201 	/*
202 	 * Search for an existing entry. No need to lock since we are
203 	 * just a reader and we never free the entries in the hash table.
204 	 */
205 	h = MECH_HASH(type);
206 	for (elem = kernel_mechhash[h]; elem != NULL; elem = elem->knext) {
207 		if (type == elem->type) {
208 			*k_number = elem->kmech;
209 			return (CKR_OK);
210 		}
211 	}
212 
213 	string = pkcs11_mech2str(type);
214 	if (string == NULL)
215 		return (CKR_MECHANISM_INVALID);
216 
217 	get_number.pn_mechanism_string = string;
218 	get_number.pn_mechanism_len = strlen(string) + 1;
219 
220 	while ((r = ioctl(kernel_fd, CRYPTO_GET_MECHANISM_NUMBER,
221 	    &get_number)) < 0) {
222 		if (errno != EINTR)
223 			break;
224 	}
225 	if (r < 0) {
226 		rv = CKR_MECHANISM_INVALID;
227 	} else {
228 		if (get_number.pn_return_value != CRYPTO_SUCCESS) {
229 			rv = crypto2pkcs11_error_number(
230 			    get_number.pn_return_value);
231 		} else {
232 			rv = CKR_OK;
233 		}
234 	}
235 
236 	if (rv == CKR_OK) {
237 		*k_number = get_number.pn_internal_number;
238 		/* Add this to the hash table */
239 		(void) kmech_hash_insert(type, *k_number);
240 	}
241 
242 	free(string);
243 	return (rv);
244 }
245 
246 
247 /*
248  * Return the value of a secret key object.
249  * This routine allocates memory for the value.
250  * A null pointer is returned on error.
251  */
252 unsigned char *
253 get_symmetric_key_value(kernel_object_t *key_p)
254 {
255 	uint8_t *cipherKey;
256 
257 	switch (key_p->class) {
258 
259 	case CKO_SECRET_KEY:
260 
261 		cipherKey = malloc(OBJ_SEC(key_p)->sk_value_len);
262 		if (cipherKey == NULL)
263 			return (NULL);
264 
265 		(void) memcpy(cipherKey, OBJ_SEC(key_p)->sk_value,
266 		    OBJ_SEC(key_p)->sk_value_len);
267 
268 		return (cipherKey);
269 
270 	default:
271 		return (NULL);
272 	}
273 }
274 
275 /*
276  * Convert a RSA private key object into a crypto_key structure.
277  * Memory is allocated for each attribute stored in the crypto_key
278  * structure.  Memory for the crypto_key structure is not
279  * allocated.  Attributes can be freed by free_key_attributes().
280  */
281 CK_RV
282 get_rsa_private_key(kernel_object_t *object_p, crypto_key_t *key)
283 {
284 	biginteger_t *big;
285 	crypto_object_attribute_t *attrs, *cur_attr;
286 	char *ptr;
287 	CK_RV rv;
288 
289 	(void) pthread_mutex_lock(&object_p->object_mutex);
290 	if (object_p->key_type != CKK_RSA ||
291 	    object_p->class != CKO_PRIVATE_KEY) {
292 		(void) pthread_mutex_unlock(&object_p->object_mutex);
293 		return (CKR_ATTRIBUTE_TYPE_INVALID);
294 	}
295 
296 	attrs = calloc(1,
297 	    RSA_PRI_ATTR_COUNT * sizeof (crypto_object_attribute_t));
298 	if (attrs == NULL) {
299 		(void) pthread_mutex_unlock(&object_p->object_mutex);
300 		return (CKR_HOST_MEMORY);
301 	}
302 
303 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
304 	key->ck_attrs = attrs;
305 	cur_attr = attrs;
306 
307 	/*
308 	 * Allocate memory for each key attribute and set up the value
309 	 * value length.
310 	 */
311 	key->ck_count = 0;
312 
313 	/* CKA_MODULUS is required. */
314 	big = OBJ_PRI_RSA_MOD(object_p);
315 	if (big->big_value == NULL) {
316 		rv = CKR_ATTRIBUTE_TYPE_INVALID;
317 		goto fail_cleanup;
318 	} else {
319 		if ((ptr = malloc(big->big_value_len)) == NULL) {
320 			rv = CKR_HOST_MEMORY;
321 			goto fail_cleanup;
322 		}
323 		ENCODE_ATTR(CKA_MODULUS, big->big_value, big->big_value_len);
324 		key->ck_count++;
325 	}
326 
327 	/* CKA_PRIVATE_EXPONENT is required. */
328 	big = OBJ_PRI_RSA_PRIEXPO(object_p);
329 	if (big->big_value == NULL) {
330 		rv = CKR_ATTRIBUTE_TYPE_INVALID;
331 		goto fail_cleanup;
332 	} else {
333 		if ((ptr = malloc(big->big_value_len)) == NULL) {
334 			rv = CKR_HOST_MEMORY;
335 			goto fail_cleanup;
336 		}
337 		ENCODE_ATTR(CKA_PRIVATE_EXPONENT, big->big_value,
338 		    big->big_value_len);
339 		key->ck_count++;
340 	}
341 
342 	/* CKA_PRIME_1 is optional. */
343 	big = OBJ_PRI_RSA_PRIME1(object_p);
344 	if (big->big_value != NULL) {
345 		if ((ptr = malloc(big->big_value_len)) == NULL) {
346 			rv = CKR_HOST_MEMORY;
347 			goto fail_cleanup;
348 		}
349 		ENCODE_ATTR(CKA_PRIME_1, big->big_value, big->big_value_len);
350 		key->ck_count++;
351 	}
352 
353 	/* CKA_PRIME_2 is optional. */
354 	big = OBJ_PRI_RSA_PRIME2(object_p);
355 	if (big->big_value != NULL) {
356 		if ((ptr = malloc(big->big_value_len)) == NULL) {
357 			rv = CKR_HOST_MEMORY;
358 			goto fail_cleanup;
359 		}
360 		ENCODE_ATTR(CKA_PRIME_2, big->big_value, big->big_value_len);
361 		key->ck_count++;
362 	}
363 
364 	/* CKA_EXPONENT_1 is optional. */
365 	big = OBJ_PRI_RSA_EXPO1(object_p);
366 	if (big->big_value != NULL) {
367 		if ((ptr = malloc(big->big_value_len)) == NULL) {
368 			rv = CKR_HOST_MEMORY;
369 			goto fail_cleanup;
370 		}
371 		ENCODE_ATTR(CKA_EXPONENT_1, big->big_value,
372 		    big->big_value_len);
373 		key->ck_count++;
374 	}
375 
376 	/* CKA_EXPONENT_2 is optional. */
377 	big = OBJ_PRI_RSA_EXPO2(object_p);
378 	if (big->big_value != NULL) {
379 		if ((ptr = malloc(big->big_value_len)) == NULL) {
380 			rv = CKR_HOST_MEMORY;
381 			goto fail_cleanup;
382 		}
383 		ENCODE_ATTR(CKA_EXPONENT_2, big->big_value,
384 		    big->big_value_len);
385 		key->ck_count++;
386 	}
387 
388 	/* CKA_COEFFICIENT is optional. */
389 	big = OBJ_PRI_RSA_COEF(object_p);
390 	if (big->big_value != NULL) {
391 		if ((ptr = malloc(big->big_value_len)) == NULL) {
392 			rv = CKR_HOST_MEMORY;
393 			goto fail_cleanup;
394 		}
395 		ENCODE_ATTR(CKA_COEFFICIENT, big->big_value,
396 		    big->big_value_len);
397 		key->ck_count++;
398 	}
399 
400 	(void) pthread_mutex_unlock(&object_p->object_mutex);
401 	return (CKR_OK);
402 
403 fail_cleanup:
404 	(void) pthread_mutex_unlock(&object_p->object_mutex);
405 	free_key_attributes(key);
406 	return (rv);
407 }
408 
409 /*
410  * Convert a RSA public key object into a crypto_key structure.
411  * Memory is allocated for each attribute stored in the crypto_key
412  * structure.  Memory for the crypto_key structure is not
413  * allocated.  Attributes can be freed by free_key_attributes().
414  */
415 CK_RV
416 get_rsa_public_key(kernel_object_t *object_p, crypto_key_t *key)
417 {
418 	biginteger_t *big;
419 	crypto_object_attribute_t *attrs, *cur_attr;
420 	char *ptr;
421 
422 	(void) pthread_mutex_lock(&object_p->object_mutex);
423 	if (object_p->key_type != CKK_RSA ||
424 	    object_p->class != CKO_PUBLIC_KEY) {
425 		(void) pthread_mutex_unlock(&object_p->object_mutex);
426 		return (CKR_ATTRIBUTE_TYPE_INVALID);
427 	}
428 
429 	attrs = calloc(1,
430 	    RSA_PUB_ATTR_COUNT * sizeof (crypto_object_attribute_t));
431 	if (attrs == NULL) {
432 		(void) pthread_mutex_unlock(&object_p->object_mutex);
433 		return (CKR_HOST_MEMORY);
434 	}
435 
436 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
437 	key->ck_count = RSA_PUB_ATTR_COUNT;
438 	key->ck_attrs = attrs;
439 
440 	cur_attr = attrs;
441 	big = OBJ_PUB_RSA_PUBEXPO(object_p);
442 	if ((ptr = malloc(big->big_value_len)) == NULL)
443 		goto mem_failure;
444 	ENCODE_ATTR(CKA_PUBLIC_EXPONENT, big->big_value, big->big_value_len);
445 
446 	big = OBJ_PUB_RSA_MOD(object_p);
447 	if ((ptr = malloc(big->big_value_len)) == NULL)
448 		goto mem_failure;
449 	ENCODE_ATTR(CKA_MODULUS, big->big_value, big->big_value_len);
450 
451 	if ((ptr = malloc(sizeof (CK_ULONG))) == NULL)
452 		goto mem_failure;
453 	ENCODE_ATTR(CKA_MODULUS_BITS, &OBJ_PUB_RSA_MOD_BITS(object_p),
454 	    sizeof (CK_ULONG));
455 
456 	(void) pthread_mutex_unlock(&object_p->object_mutex);
457 	return (CKR_OK);
458 
459 mem_failure:
460 	(void) pthread_mutex_unlock(&object_p->object_mutex);
461 	free_key_attributes(key);
462 	return (CKR_HOST_MEMORY);
463 }
464 
465 /*
466  * Free attribute storage in a crypto_key structure.
467  */
468 void
469 free_key_attributes(crypto_key_t *key)
470 {
471 	int i;
472 
473 	if (key->ck_format == CRYPTO_KEY_ATTR_LIST &&
474 	    (key->ck_count > 0) && key->ck_attrs != NULL) {
475 		for (i = 0; i < key->ck_count; i++) {
476 			if (key->ck_attrs[i].oa_value != NULL) {
477 				bzero(key->ck_attrs[i].oa_value,
478 				    key->ck_attrs[i].oa_value_len);
479 				free(key->ck_attrs[i].oa_value);
480 			}
481 		}
482 		free(key->ck_attrs);
483 	}
484 }
485 
486 
487 /*
488  * Convert a DSA private key object into a crypto_key structure.
489  * Memory is allocated for each attribute stored in the crypto_key
490  * structure.  Memory for the crypto_key structure is not
491  * allocated.  Attributes can be freed by free_dsa_key_attributes().
492  */
493 CK_RV
494 get_dsa_private_key(kernel_object_t *object_p, crypto_key_t *key)
495 {
496 	biginteger_t *big;
497 	crypto_object_attribute_t *attrs, *cur_attr;
498 	char *ptr;
499 
500 	(void) pthread_mutex_lock(&object_p->object_mutex);
501 	if (object_p->key_type != CKK_DSA ||
502 	    object_p->class != CKO_PRIVATE_KEY) {
503 		(void) pthread_mutex_unlock(&object_p->object_mutex);
504 		return (CKR_ATTRIBUTE_TYPE_INVALID);
505 	}
506 
507 	attrs = calloc(1,
508 	    DSA_ATTR_COUNT * sizeof (crypto_object_attribute_t));
509 	if (attrs == NULL) {
510 		(void) pthread_mutex_unlock(&object_p->object_mutex);
511 		return (CKR_HOST_MEMORY);
512 	}
513 
514 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
515 	key->ck_count = DSA_ATTR_COUNT;
516 	key->ck_attrs = attrs;
517 
518 	cur_attr = attrs;
519 	big = OBJ_PRI_DSA_PRIME(object_p);
520 	if ((ptr = malloc(big->big_value_len)) == NULL)
521 		goto mem_failure;
522 	ENCODE_ATTR(CKA_PRIME, big->big_value, big->big_value_len);
523 
524 	big = OBJ_PRI_DSA_SUBPRIME(object_p);
525 	if ((ptr = malloc(big->big_value_len)) == NULL)
526 		goto mem_failure;
527 	ENCODE_ATTR(CKA_SUBPRIME, big->big_value, big->big_value_len);
528 
529 	big = OBJ_PRI_DSA_BASE(object_p);
530 	if ((ptr = malloc(big->big_value_len)) == NULL)
531 		goto mem_failure;
532 	ENCODE_ATTR(CKA_BASE, big->big_value, big->big_value_len);
533 
534 	big = OBJ_PRI_DSA_VALUE(object_p);
535 	if ((ptr = malloc(big->big_value_len)) == NULL)
536 		goto mem_failure;
537 	ENCODE_ATTR(CKA_VALUE, big->big_value, big->big_value_len);
538 
539 	(void) pthread_mutex_unlock(&object_p->object_mutex);
540 	return (CKR_OK);
541 
542 mem_failure:
543 	(void) pthread_mutex_unlock(&object_p->object_mutex);
544 	free_key_attributes(key);
545 	return (CKR_HOST_MEMORY);
546 }
547 
548 
549 /*
550  * Convert a DSA public key object into a crypto_key structure.
551  * Memory is allocated for each attribute stored in the crypto_key
552  * structure.  Memory for the crypto_key structure is not
553  * allocated.  Attributes can be freed by free_dsa_key_attributes().
554  */
555 CK_RV
556 get_dsa_public_key(kernel_object_t *object_p, crypto_key_t *key)
557 {
558 	biginteger_t *big;
559 	crypto_object_attribute_t *attrs, *cur_attr;
560 	char *ptr;
561 
562 	(void) pthread_mutex_lock(&object_p->object_mutex);
563 	if (object_p->key_type != CKK_DSA ||
564 	    object_p->class != CKO_PUBLIC_KEY) {
565 		(void) pthread_mutex_unlock(&object_p->object_mutex);
566 		return (CKR_ATTRIBUTE_TYPE_INVALID);
567 	}
568 
569 	attrs = calloc(1,
570 	    DSA_ATTR_COUNT * sizeof (crypto_object_attribute_t));
571 	if (attrs == NULL) {
572 		(void) pthread_mutex_unlock(&object_p->object_mutex);
573 		return (CKR_HOST_MEMORY);
574 	}
575 
576 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
577 	key->ck_count = DSA_ATTR_COUNT;
578 	key->ck_attrs = attrs;
579 
580 	cur_attr = attrs;
581 	big = OBJ_PUB_DSA_PRIME(object_p);
582 	if ((ptr = malloc(big->big_value_len)) == NULL)
583 		goto mem_failure;
584 	ENCODE_ATTR(CKA_PRIME, big->big_value, big->big_value_len);
585 
586 	big = OBJ_PUB_DSA_SUBPRIME(object_p);
587 	if ((ptr = malloc(big->big_value_len)) == NULL)
588 		goto mem_failure;
589 	ENCODE_ATTR(CKA_SUBPRIME, big->big_value, big->big_value_len);
590 
591 	big = OBJ_PUB_DSA_BASE(object_p);
592 	if ((ptr = malloc(big->big_value_len)) == NULL)
593 		goto mem_failure;
594 	ENCODE_ATTR(CKA_BASE, big->big_value, big->big_value_len);
595 
596 	big = OBJ_PUB_DSA_VALUE(object_p);
597 	if ((ptr = malloc(big->big_value_len)) == NULL)
598 		goto mem_failure;
599 	ENCODE_ATTR(CKA_VALUE, big->big_value, big->big_value_len);
600 
601 	(void) pthread_mutex_unlock(&object_p->object_mutex);
602 	return (CKR_OK);
603 
604 mem_failure:
605 	(void) pthread_mutex_unlock(&object_p->object_mutex);
606 	free_key_attributes(key);
607 	return (CKR_HOST_MEMORY);
608 }
609 
610 
611 /*
612  * Convert an attribute template into an obj_attrs array.
613  * Memory is allocated for each attribute stored in the obj_attrs.
614  * The memory can be freed by free_object_attributes().
615  *
616  * If the boolean pointer is_token_obj is not NULL, the caller wants to
617  * retrieve the value of the CKA_TOKEN attribute if it is specified in the
618  * template.
619  * - When this routine is called thru C_CreateObject(), C_CopyObject(), or
620  *   any key management function, is_token_obj should NOT be NULL.
621  * - When this routine is called thru C_GetAttributeValue() or
622  *   C_SetAttributeValue(), "is_token_obj" should be NULL.
623  */
624 CK_RV
625 process_object_attributes(CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount,
626     caddr_t *obj_attrs, CK_BBOOL *is_token_obj)
627 {
628 	crypto_object_attribute_t *attrs, *cur_attr;
629 	int i, cur_i;
630 	char *ptr;
631 	CK_RV rv;
632 	ssize_t value_len;
633 
634 	if (ulCount == 0) {
635 		obj_attrs = NULL;
636 		return (CKR_OK);
637 	}
638 
639 	attrs = calloc(1, ulCount * sizeof (crypto_object_attribute_t));
640 	if (attrs == NULL) {
641 		return (CKR_HOST_MEMORY);
642 	}
643 
644 	cur_attr = attrs;
645 	for (i = 0; i < ulCount; i++) {
646 		/*
647 		 * The length of long attributes must be set correctly
648 		 * so providers can determine whether they came from 32
649 		 * or 64-bit applications.
650 		 */
651 		switch (pTemplate[i].type) {
652 		case CKA_CLASS:
653 		case CKA_CERTIFICATE_TYPE:
654 		case CKA_KEY_TYPE:
655 		case CKA_HW_FEATURE_TYPE:
656 			value_len = sizeof (ulong_t);
657 			if (pTemplate[i].pValue != NULL &&
658 			    (pTemplate[i].ulValueLen < value_len)) {
659 				rv = CKR_BUFFER_TOO_SMALL;
660 				cur_i = i;
661 				goto fail_cleanup;
662 			}
663 			break;
664 		default:
665 			value_len = pTemplate[i].ulValueLen;
666 		}
667 
668 		cur_attr->oa_type = pTemplate[i].type;
669 		cur_attr->oa_value_len = value_len;
670 		cur_attr->oa_value = NULL;
671 
672 		if ((pTemplate[i].pValue != NULL) &&
673 		    (pTemplate[i].ulValueLen > 0)) {
674 			ptr = malloc(pTemplate[i].ulValueLen);
675 			if (ptr == NULL) {
676 				rv = CKR_HOST_MEMORY;
677 				cur_i = i;
678 				goto fail_cleanup;
679 			} else {
680 				(void) memcpy(ptr, pTemplate[i].pValue,
681 				    pTemplate[i].ulValueLen);
682 				cur_attr->oa_value = ptr;
683 			}
684 		}
685 
686 		if ((is_token_obj != NULL) &&
687 		    (pTemplate[i].type == CKA_TOKEN)) {
688 			/* Get the CKA_TOKEN attribute value. */
689 			if (pTemplate[i].pValue == NULL) {
690 				rv = CKR_ATTRIBUTE_VALUE_INVALID;
691 				cur_i = i;
692 				goto fail_cleanup;
693 			} else {
694 				*is_token_obj =
695 				    *(CK_BBOOL *)pTemplate[i].pValue;
696 			}
697 		}
698 
699 		cur_attr++;
700 	}
701 
702 	*obj_attrs = (char *)attrs;
703 	return (CKR_OK);
704 
705 fail_cleanup:
706 	cur_attr = attrs;
707 	for (i = 0; i < cur_i; i++) {
708 		if (cur_attr->oa_value != NULL) {
709 			(void) free(cur_attr->oa_value);
710 		}
711 		cur_attr++;
712 	}
713 
714 	(void) free(attrs);
715 	return (rv);
716 }
717 
718 
719 /*
720  * Copy the attribute values from obj_attrs to pTemplate.
721  * The obj_attrs is an image of the Template and is expected to have the
722  * same attributes in the same order and each one of the attribute pValue
723  * in obj_attr has enough space allocated for the corresponding valueLen
724  * in pTemplate.
725  */
726 CK_RV
727 get_object_attributes(CK_ATTRIBUTE_PTR pTemplate,  CK_ULONG ulCount,
728     caddr_t obj_attrs)
729 {
730 	crypto_object_attribute_t *cur_attr;
731 	CK_RV rv = CKR_OK;
732 	int i;
733 
734 	/* LINTED */
735 	cur_attr = (crypto_object_attribute_t *)obj_attrs;
736 	for (i = 0; i < ulCount; i++) {
737 		if (pTemplate[i].type != cur_attr->oa_type) {
738 			/* The attribute type doesn't match, this is bad. */
739 			rv = CKR_FUNCTION_FAILED;
740 			return (rv);
741 		}
742 
743 		pTemplate[i].ulValueLen = cur_attr->oa_value_len;
744 
745 		if ((pTemplate[i].pValue != NULL) &&
746 		    ((CK_LONG)pTemplate[i].ulValueLen != -1)) {
747 			(void) memcpy(pTemplate[i].pValue, cur_attr->oa_value,
748 			    pTemplate[i].ulValueLen);
749 		}
750 		cur_attr++;
751 	}
752 
753 	return (rv);
754 }
755 
756 /*
757  * Free the attribute storage in a crypto_object_attribute_t structure.
758  */
759 void
760 free_object_attributes(caddr_t obj_attrs, CK_ULONG ulCount)
761 {
762 	crypto_object_attribute_t *cur_attr;
763 	int i;
764 
765 	if ((ulCount == 0) || (obj_attrs == NULL)) {
766 		return;
767 	}
768 
769 	/* LINTED */
770 	cur_attr = (crypto_object_attribute_t *)obj_attrs;
771 	for (i = 0; i < ulCount; i++) {
772 		if (cur_attr->oa_value != NULL) {
773 			free(cur_attr->oa_value);
774 		}
775 		cur_attr++;
776 	}
777 
778 	free(obj_attrs);
779 }
780 
781 /*
782  * This function is called by process_found_objects().  It will check the
783  * CKA_PRIVATE and CKA_TOKEN attributes for the kernel object "oid", then
784  * initialize all the necessary fields in the object wrapper "objp".
785  */
786 static CK_RV
787 create_new_tobj_in_lib(kernel_slot_t *pslot, kernel_session_t *sp,
788     kernel_object_t *objp,  crypto_object_id_t oid)
789 {
790 	CK_RV  rv = CKR_OK;
791 	crypto_object_get_attribute_value_t obj_ga;
792 	boolean_t is_pri_obj;
793 	boolean_t is_token_obj;
794 	CK_BBOOL pri_value, token_value;
795 	CK_ATTRIBUTE  pTemplate[2];
796 	int r;
797 
798 	/*
799 	 * Make a CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE ioctl call to get this
800 	 * kernel object's attribute values for CKA_PRIVATE and CKA_TOKEN.
801 	 */
802 	obj_ga.og_session = sp->k_session;
803 	obj_ga.og_handle = oid;
804 	obj_ga.og_count = 2;
805 
806 	pTemplate[0].type = CKA_PRIVATE;
807 	pTemplate[0].pValue = &pri_value;
808 	pTemplate[0].ulValueLen = sizeof (pri_value);
809 	pTemplate[1].type = CKA_TOKEN;
810 	pTemplate[1].pValue = &token_value;
811 	pTemplate[1].ulValueLen = sizeof (token_value);
812 	rv = process_object_attributes(pTemplate, 2, &obj_ga.og_attributes,
813 	    NULL);
814 	if (rv != CKR_OK) {
815 		return (rv);
816 	}
817 
818 	while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE,
819 	    &obj_ga)) < 0) {
820 		if (errno != EINTR)
821 			break;
822 	}
823 	if (r < 0) {
824 		rv = CKR_FUNCTION_FAILED;
825 	} else {
826 		rv = crypto2pkcs11_error_number(obj_ga.og_return_value);
827 	}
828 
829 	if (rv == CKR_OK) {
830 		rv = get_object_attributes(pTemplate, 2, obj_ga.og_attributes);
831 		if (rv == CKR_OK) {
832 			is_pri_obj = *(CK_BBOOL *)pTemplate[0].pValue;
833 			is_token_obj = *(CK_BBOOL *)pTemplate[1].pValue;
834 		}
835 	}
836 
837 	free_object_attributes(obj_ga.og_attributes, 2);
838 	if (rv != CKR_OK) {
839 		return (rv);
840 	}
841 
842 	/* Make sure it is a token object. */
843 	if (!is_token_obj) {
844 		rv = CKR_ATTRIBUTE_VALUE_INVALID;
845 		return (rv);
846 	}
847 
848 	/* If it is a private object, make sure the user has logged in. */
849 	if (is_pri_obj && (pslot->sl_state != CKU_USER)) {
850 		rv = CKR_ATTRIBUTE_VALUE_INVALID;
851 		return (rv);
852 	}
853 
854 	objp->is_lib_obj = B_FALSE;
855 	objp->k_handle = oid;
856 	objp->bool_attr_mask |= TOKEN_BOOL_ON;
857 	if (is_pri_obj) {
858 		objp->bool_attr_mask |= PRIVATE_BOOL_ON;
859 	} else {
860 		objp->bool_attr_mask &= ~PRIVATE_BOOL_ON;
861 	}
862 
863 	(void) pthread_mutex_init(&objp->object_mutex, NULL);
864 	objp->magic_marker = KERNELTOKEN_OBJECT_MAGIC;
865 	objp->session_handle = (CK_SESSION_HANDLE) sp;
866 
867 	return (CKR_OK);
868 }
869 
870 /*
871  * This function processes the kernel object handles returned from the
872  * CRYPTO_OBJECT_FIND_UPDATE ioctl and returns an object handle list
873  * and the number of object handles to the caller - C_FindObjects().
874  * The caller acquires the slot lock and the session lock.
875  */
876 CK_RV
877 process_found_objects(kernel_session_t *cur_sp, CK_OBJECT_HANDLE *obj_found,
878     CK_ULONG *found_obj_count, crypto_object_find_update_t obj_fu)
879 {
880 	CK_RV rv = CKR_OK;
881 	crypto_object_id_t  *oid_p;
882 	kernel_slot_t *pslot;
883 	kernel_object_t *objp;
884 	kernel_object_t *objp1;
885 	kernel_object_t *new_tobj_list = NULL;
886 	kernel_session_t  *sp;
887 	CK_ULONG num_obj_found = 0;
888 	boolean_t is_in_lib;
889 	int i;
890 
891 	if (obj_fu.fu_count == 0) {
892 		*found_obj_count = 0;
893 		return (CKR_OK);
894 	}
895 
896 	pslot = slot_table[cur_sp->ses_slotid];
897 
898 	/* LINTED */
899 	oid_p = (crypto_object_id_t *)obj_fu.fu_handles;
900 	for (i = 0; i < obj_fu.fu_count; i++) {
901 		is_in_lib = B_FALSE;
902 		/*
903 		 * Check if this oid has an object wrapper in the library
904 		 * already.  First, search the slot's token object list.
905 		 */
906 		objp = pslot->sl_tobj_list;
907 		while (!is_in_lib && objp) {
908 			if (objp->k_handle == *oid_p) {
909 				is_in_lib = B_TRUE;
910 			} else {
911 				objp = objp->next;
912 			}
913 		}
914 
915 		/*
916 		 * If it is not in the slot's token object list,
917 		 * search it in all the sessions.
918 		 */
919 		if (!is_in_lib) {
920 			sp = pslot->sl_sess_list;
921 			while (!is_in_lib && sp) {
922 				objp = sp->object_list;
923 				while (!is_in_lib && objp) {
924 					if (objp->k_handle == *oid_p) {
925 						is_in_lib = B_TRUE;
926 					} else {
927 						objp = objp->next;
928 					}
929 				}
930 				sp = sp->next;
931 			}
932 		}
933 
934 		/*
935 		 * If this object is in the library already, add its object
936 		 * wrapper to the returned find object list.
937 		 */
938 		if (is_in_lib) {
939 			obj_found[num_obj_found++] = (CK_OBJECT_HANDLE)objp;
940 		}
941 
942 		/*
943 		 * If we still do not find it in the library.  This object
944 		 * must be a token object pre-existed in the HW provider.
945 		 * We need to create an object wrapper for it in the library.
946 		 */
947 		if (!is_in_lib) {
948 			objp1 = calloc(1, sizeof (kernel_object_t));
949 			if (objp1 == NULL) {
950 				rv = CKR_HOST_MEMORY;
951 				goto failed_exit;
952 			}
953 			rv = create_new_tobj_in_lib(pslot, cur_sp, objp1,
954 			    *oid_p);
955 
956 			if (rv == CKR_OK) {
957 				/* Save the new object to the new_tobj_list. */
958 				if (new_tobj_list == NULL) {
959 					new_tobj_list = objp1;
960 					objp1->next = NULL;
961 					objp1->prev = NULL;
962 				} else {
963 					new_tobj_list->prev = objp1;
964 					objp1->next = new_tobj_list;
965 					objp1->prev = NULL;
966 					new_tobj_list = objp1;
967 				}
968 			} else {
969 				/*
970 				 * If create_new_tobj_in_lib() doesn't fail
971 				 * with CKR_HOST_MEMORY, the failure should be
972 				 * caused by the attributes' checking. We will
973 				 * just ignore this object and continue on.
974 				 */
975 				free(objp1);
976 				if (rv == CKR_HOST_MEMORY) {
977 					goto failed_exit;
978 				}
979 			}
980 		}
981 
982 		/* Process next one */
983 		oid_p++;
984 	}
985 
986 	/*
987 	 * Add the newly created token object wrappers to the found object
988 	 * list and to the slot's token object list.
989 	 */
990 	if (new_tobj_list != NULL) {
991 		/* Add to the obj_found array. */
992 		objp = new_tobj_list;
993 		while (objp) {
994 			obj_found[num_obj_found++] = (CK_OBJECT_HANDLE)objp;
995 			if (objp->next == NULL) {
996 				break;
997 			}
998 			objp = objp->next;
999 		}
1000 
1001 		/* Add to the beginning of the slot's token object list. */
1002 		if (pslot->sl_tobj_list != NULL) {
1003 			objp->next = pslot->sl_tobj_list;
1004 			pslot->sl_tobj_list->prev = objp;
1005 		}
1006 		pslot->sl_tobj_list = new_tobj_list;
1007 	}
1008 
1009 	*found_obj_count = num_obj_found;
1010 	return (CKR_OK);
1011 
1012 failed_exit:
1013 
1014 	/* Free the newly created token object wrappers. */
1015 	objp = new_tobj_list;
1016 	while (objp) {
1017 		objp1 = objp->next;
1018 		(void) pthread_mutex_destroy(&objp->object_mutex);
1019 		free(objp);
1020 		objp = objp1;
1021 	}
1022 
1023 	return (rv);
1024 }
1025 
1026 
1027 /*
1028  * Get the value of the CKA_PRIVATE attribute for the object just returned
1029  * from the HW provider.  This function will be called by any function
1030  * that creates a new object, because the CKA_PRIVATE value of an object is
1031  * token sepecific.  The CKA_PRIVATE attribute value of the new object will be
1032  * stored in the object structure in the library, which will be used later at
1033  * C_Logout to clean up all private objects.
1034  */
1035 CK_RV
1036 get_cka_private_value(kernel_session_t *sp, crypto_object_id_t oid,
1037     CK_BBOOL *is_pri_obj)
1038 {
1039 	CK_RV  rv = CKR_OK;
1040 	crypto_object_get_attribute_value_t obj_ga;
1041 	crypto_object_attribute_t obj_attr;
1042 	CK_BBOOL pri_value;
1043 	int r;
1044 
1045 	obj_ga.og_session = sp->k_session;
1046 	obj_ga.og_handle = oid;
1047 	obj_ga.og_count = 1;
1048 
1049 	obj_attr.oa_type = CKA_PRIVATE;
1050 	obj_attr.oa_value = (char *)&pri_value;
1051 	obj_attr.oa_value_len = sizeof (CK_BBOOL);
1052 	obj_ga.og_attributes = (char *)&obj_attr;
1053 
1054 	while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE,
1055 	    &obj_ga)) < 0) {
1056 		if (errno != EINTR)
1057 			break;
1058 	}
1059 	if (r < 0) {
1060 		rv = CKR_FUNCTION_FAILED;
1061 	} else {
1062 		rv = crypto2pkcs11_error_number(obj_ga.og_return_value);
1063 	}
1064 
1065 	if (rv == CKR_OK) {
1066 		*is_pri_obj = *(CK_BBOOL *)obj_attr.oa_value;
1067 	}
1068 
1069 	return (rv);
1070 }
1071 
1072 
1073 CK_RV
1074 get_mechanism_info(kernel_slot_t *pslot, CK_MECHANISM_TYPE type,
1075     CK_MECHANISM_INFO_PTR pInfo, uint32_t *k_mi_flags)
1076 {
1077 	crypto_get_provider_mechanism_info_t mechanism_info;
1078 	char *string;
1079 	CK_FLAGS flags, mi_flags;
1080 	CK_RV rv;
1081 	int r;
1082 
1083 	string = pkcs11_mech2str(type);
1084 	if (string == NULL)
1085 		return (CKR_MECHANISM_INVALID);
1086 
1087 	(void) strcpy(mechanism_info.mi_mechanism_name, string);
1088 	mechanism_info.mi_provider_id = pslot->sl_provider_id;
1089 
1090 	while ((r = ioctl(kernel_fd, CRYPTO_GET_PROVIDER_MECHANISM_INFO,
1091 	    &mechanism_info)) < 0) {
1092 		if (errno != EINTR)
1093 			break;
1094 	}
1095 	if (r < 0) {
1096 		rv = CKR_FUNCTION_FAILED;
1097 	} else {
1098 		rv = crypto2pkcs11_error_number(
1099 		    mechanism_info.mi_return_value);
1100 	}
1101 
1102 	if (rv != CKR_OK) {
1103 		goto out;
1104 	}
1105 
1106 	/*
1107 	 * Atomic flags are not part of PKCS#11 so we filter
1108 	 * them out here.
1109 	 */
1110 	mi_flags = mechanism_info.mi_flags;
1111 	mi_flags &= ~(CRYPTO_FG_DIGEST_ATOMIC | CRYPTO_FG_ENCRYPT_ATOMIC |
1112 	    CRYPTO_FG_DECRYPT_ATOMIC | CRYPTO_FG_MAC_ATOMIC |
1113 	    CRYPTO_FG_SIGN_ATOMIC | CRYPTO_FG_VERIFY_ATOMIC |
1114 	    CRYPTO_FG_SIGN_RECOVER_ATOMIC |
1115 	    CRYPTO_FG_VERIFY_RECOVER_ATOMIC |
1116 	    CRYPTO_FG_ENCRYPT_MAC_ATOMIC |
1117 	    CRYPTO_FG_MAC_DECRYPT_ATOMIC);
1118 
1119 	if (mi_flags == 0) {
1120 		rv = CKR_MECHANISM_INVALID;
1121 		goto out;
1122 	}
1123 
1124 	if (rv == CKR_OK) {
1125 		/* set the value of k_mi_flags first */
1126 		*k_mi_flags = mi_flags;
1127 
1128 		/* convert KEF flags into pkcs11 flags */
1129 		flags = CKF_HW;
1130 		if (mi_flags & CRYPTO_FG_ENCRYPT)
1131 			flags |= CKF_ENCRYPT;
1132 		if (mi_flags & CRYPTO_FG_DECRYPT) {
1133 			flags |= CKF_DECRYPT;
1134 			/*
1135 			 * Since we'll be emulating C_UnwrapKey() for some
1136 			 * cases, we can go ahead and claim CKF_UNWRAP
1137 			 */
1138 			flags |= CKF_UNWRAP;
1139 		}
1140 		if (mi_flags & CRYPTO_FG_DIGEST)
1141 			flags |= CKF_DIGEST;
1142 		if (mi_flags & CRYPTO_FG_SIGN)
1143 			flags |= CKF_SIGN;
1144 		if (mi_flags & CRYPTO_FG_SIGN_RECOVER)
1145 			flags |= CKF_SIGN_RECOVER;
1146 		if (mi_flags & CRYPTO_FG_VERIFY)
1147 			flags |= CKF_VERIFY;
1148 		if (mi_flags & CRYPTO_FG_VERIFY_RECOVER)
1149 			flags |= CKF_VERIFY_RECOVER;
1150 		if (mi_flags & CRYPTO_FG_GENERATE)
1151 			flags |= CKF_GENERATE;
1152 		if (mi_flags & CRYPTO_FG_GENERATE_KEY_PAIR)
1153 			flags |= CKF_GENERATE_KEY_PAIR;
1154 		if (mi_flags & CRYPTO_FG_WRAP)
1155 			flags |= CKF_WRAP;
1156 		if (mi_flags & CRYPTO_FG_UNWRAP)
1157 			flags |= CKF_UNWRAP;
1158 		if (mi_flags & CRYPTO_FG_DERIVE)
1159 			flags |= CKF_DERIVE;
1160 
1161 		pInfo->ulMinKeySize = mechanism_info.mi_min_key_size;
1162 		pInfo->ulMaxKeySize = mechanism_info.mi_max_key_size;
1163 		pInfo->flags = flags;
1164 
1165 	}
1166 
1167 out:
1168 	free(string);
1169 	return (rv);
1170 }
1171