1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2017 Nexenta Systems, Inc. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 26 * Copyright 2015 RackTop Systems. 27 * Copyright (c) 2016, Intel Corporation. 28 * Copyright 2020 Joyent, Inc. 29 */ 30 31 /* 32 * Pool import support functions. 33 * 34 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 35 * these commands are expected to run in the global zone, we can assume 36 * that the devices are all readable when called. 37 * 38 * To import a pool, we rely on reading the configuration information from the 39 * ZFS label of each device. If we successfully read the label, then we 40 * organize the configuration information in the following hierarchy: 41 * 42 * pool guid -> toplevel vdev guid -> label txg 43 * 44 * Duplicate entries matching this same tuple will be discarded. Once we have 45 * examined every device, we pick the best label txg config for each toplevel 46 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 47 * update any paths that have changed. Finally, we attempt to import the pool 48 * using our derived config, and record the results. 49 */ 50 51 #include <stdio.h> 52 #include <stdarg.h> 53 #include <assert.h> 54 #include <ctype.h> 55 #include <devid.h> 56 #include <dirent.h> 57 #include <errno.h> 58 #include <libintl.h> 59 #include <stddef.h> 60 #include <stdlib.h> 61 #include <string.h> 62 #include <sys/stat.h> 63 #include <unistd.h> 64 #include <fcntl.h> 65 #include <sys/vtoc.h> 66 #include <sys/dktp/fdisk.h> 67 #include <sys/efi_partition.h> 68 #include <sys/vdev_impl.h> 69 #include <sys/fs/zfs.h> 70 71 #include <thread_pool.h> 72 #include <libzutil.h> 73 #include <libnvpair.h> 74 75 #include "zutil_import.h" 76 77 #ifdef NDEBUG 78 #define verify(EX) ((void)(EX)) 79 #else 80 #define verify(EX) assert(EX) 81 #endif 82 83 /*PRINTFLIKE2*/ 84 static void 85 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 86 { 87 va_list ap; 88 89 va_start(ap, fmt); 90 91 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 92 hdl->lpc_desc_active = B_TRUE; 93 94 va_end(ap); 95 } 96 97 static void 98 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 99 va_list ap) 100 { 101 char action[1024]; 102 103 (void) vsnprintf(action, sizeof (action), fmt, ap); 104 105 if (hdl->lpc_desc_active) 106 hdl->lpc_desc_active = B_FALSE; 107 else 108 hdl->lpc_desc[0] = '\0'; 109 110 if (hdl->lpc_printerr) { 111 if (hdl->lpc_desc[0] != '\0') 112 error = hdl->lpc_desc; 113 114 (void) fprintf(stderr, "%s: %s\n", action, error); 115 } 116 } 117 118 /*PRINTFLIKE3*/ 119 static int 120 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 121 { 122 va_list ap; 123 124 va_start(ap, fmt); 125 126 zutil_verror(hdl, error, fmt, ap); 127 128 va_end(ap); 129 130 return (-1); 131 } 132 133 static int 134 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 135 { 136 return (zutil_error_fmt(hdl, error, "%s", msg)); 137 } 138 139 static int 140 zutil_no_memory(libpc_handle_t *hdl) 141 { 142 (void) zutil_error(hdl, EZFS_NOMEM, "internal error"); 143 exit(1); 144 } 145 146 void * 147 zutil_alloc(libpc_handle_t *hdl, size_t size) 148 { 149 void *data; 150 151 if ((data = calloc(1, size)) == NULL) 152 (void) zutil_no_memory(hdl); 153 154 return (data); 155 } 156 157 char * 158 zutil_strdup(libpc_handle_t *hdl, const char *str) 159 { 160 char *ret; 161 162 if ((ret = strdup(str)) == NULL) 163 (void) zutil_no_memory(hdl); 164 165 return (ret); 166 } 167 168 /* 169 * Intermediate structures used to gather configuration information. 170 */ 171 typedef struct config_entry { 172 uint64_t ce_txg; 173 nvlist_t *ce_config; 174 struct config_entry *ce_next; 175 } config_entry_t; 176 177 typedef struct vdev_entry { 178 uint64_t ve_guid; 179 config_entry_t *ve_configs; 180 struct vdev_entry *ve_next; 181 } vdev_entry_t; 182 183 typedef struct pool_entry { 184 uint64_t pe_guid; 185 vdev_entry_t *pe_vdevs; 186 struct pool_entry *pe_next; 187 } pool_entry_t; 188 189 typedef struct name_entry { 190 char *ne_name; 191 uint64_t ne_guid; 192 struct name_entry *ne_next; 193 } name_entry_t; 194 195 typedef struct pool_list { 196 pool_entry_t *pools; 197 name_entry_t *names; 198 } pool_list_t; 199 200 /* 201 * Go through and fix up any path and/or devid information for the given vdev 202 * configuration. 203 */ 204 static int 205 fix_paths(nvlist_t *nv, name_entry_t *names) 206 { 207 nvlist_t **child; 208 uint_t c, children; 209 uint64_t guid; 210 name_entry_t *ne, *best; 211 char *path, *devid; 212 int matched; 213 214 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 215 &child, &children) == 0) { 216 for (c = 0; c < children; c++) 217 if (fix_paths(child[c], names) != 0) 218 return (-1); 219 return (0); 220 } 221 222 /* 223 * This is a leaf (file or disk) vdev. In either case, go through 224 * the name list and see if we find a matching guid. If so, replace 225 * the path and see if we can calculate a new devid. 226 * 227 * There may be multiple names associated with a particular guid, in 228 * which case we have overlapping slices or multiple paths to the same 229 * disk. If this is the case, then we want to pick the path that is 230 * the most similar to the original, where "most similar" is the number 231 * of matching characters starting from the end of the path. This will 232 * preserve slice numbers even if the disks have been reorganized, and 233 * will also catch preferred disk names if multiple paths exist. 234 */ 235 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 236 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 237 path = NULL; 238 239 matched = 0; 240 best = NULL; 241 for (ne = names; ne != NULL; ne = ne->ne_next) { 242 if (ne->ne_guid == guid) { 243 const char *src, *dst; 244 int count; 245 246 if (path == NULL) { 247 best = ne; 248 break; 249 } 250 251 src = ne->ne_name + strlen(ne->ne_name) - 1; 252 dst = path + strlen(path) - 1; 253 for (count = 0; src >= ne->ne_name && dst >= path; 254 src--, dst--, count++) 255 if (*src != *dst) 256 break; 257 258 /* 259 * At this point, 'count' is the number of characters 260 * matched from the end. 261 */ 262 if (count > matched || best == NULL) { 263 best = ne; 264 matched = count; 265 } 266 } 267 } 268 269 if (best == NULL) 270 return (0); 271 272 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 273 return (-1); 274 275 if ((devid = devid_str_from_path(best->ne_name)) == NULL) { 276 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 277 } else { 278 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 279 devid_str_free(devid); 280 return (-1); 281 } 282 devid_str_free(devid); 283 } 284 285 return (0); 286 } 287 288 /* 289 * Add the given configuration to the list of known devices. 290 */ 291 static int 292 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 293 int order, int num_labels, nvlist_t *config) 294 { 295 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 296 pool_entry_t *pe; 297 vdev_entry_t *ve; 298 config_entry_t *ce; 299 name_entry_t *ne; 300 301 /* 302 * If this is a hot spare not currently in use or level 2 cache 303 * device, add it to the list of names to translate, but don't do 304 * anything else. 305 */ 306 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 307 &state) == 0 && 308 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 309 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 310 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 311 return (-1); 312 313 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 314 free(ne); 315 return (-1); 316 } 317 318 ne->ne_guid = vdev_guid; 319 ne->ne_next = pl->names; 320 pl->names = ne; 321 322 return (0); 323 } 324 325 /* 326 * If we have a valid config but cannot read any of these fields, then 327 * it means we have a half-initialized label. In vdev_label_init() 328 * we write a label with txg == 0 so that we can identify the device 329 * in case the user refers to the same disk later on. If we fail to 330 * create the pool, we'll be left with a label in this state 331 * which should not be considered part of a valid pool. 332 */ 333 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 334 &pool_guid) != 0 || 335 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 336 &vdev_guid) != 0 || 337 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 338 &top_guid) != 0 || 339 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 340 &txg) != 0 || txg == 0) { 341 return (0); 342 } 343 344 /* 345 * First, see if we know about this pool. If not, then add it to the 346 * list of known pools. 347 */ 348 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 349 if (pe->pe_guid == pool_guid) 350 break; 351 } 352 353 if (pe == NULL) { 354 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 355 return (-1); 356 } 357 pe->pe_guid = pool_guid; 358 pe->pe_next = pl->pools; 359 pl->pools = pe; 360 } 361 362 /* 363 * Second, see if we know about this toplevel vdev. Add it if its 364 * missing. 365 */ 366 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 367 if (ve->ve_guid == top_guid) 368 break; 369 } 370 371 if (ve == NULL) { 372 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 373 return (-1); 374 } 375 ve->ve_guid = top_guid; 376 ve->ve_next = pe->pe_vdevs; 377 pe->pe_vdevs = ve; 378 } 379 380 /* 381 * Third, see if we have a config with a matching transaction group. If 382 * so, then we do nothing. Otherwise, add it to the list of known 383 * configs. 384 */ 385 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 386 if (ce->ce_txg == txg) 387 break; 388 } 389 390 if (ce == NULL) { 391 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 392 return (-1); 393 } 394 ce->ce_txg = txg; 395 ce->ce_config = fnvlist_dup(config); 396 ce->ce_next = ve->ve_configs; 397 ve->ve_configs = ce; 398 } 399 400 /* 401 * At this point we've successfully added our config to the list of 402 * known configs. The last thing to do is add the vdev guid -> path 403 * mappings so that we can fix up the configuration as necessary before 404 * doing the import. 405 */ 406 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 407 return (-1); 408 409 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 410 free(ne); 411 return (-1); 412 } 413 414 ne->ne_guid = vdev_guid; 415 ne->ne_next = pl->names; 416 pl->names = ne; 417 418 return (0); 419 } 420 421 /* 422 * Returns true if the named pool matches the given GUID. 423 */ 424 static int 425 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 426 boolean_t *isactive) 427 { 428 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 429 430 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 431 guid, isactive); 432 433 return (error); 434 } 435 436 static nvlist_t * 437 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 438 { 439 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 440 441 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 442 tryconfig)); 443 } 444 445 /* 446 * Determine if the vdev id is a hole in the namespace. 447 */ 448 static boolean_t 449 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 450 { 451 for (int c = 0; c < holes; c++) { 452 453 /* Top-level is a hole */ 454 if (hole_array[c] == id) 455 return (B_TRUE); 456 } 457 return (B_FALSE); 458 } 459 460 /* 461 * Convert our list of pools into the definitive set of configurations. We 462 * start by picking the best config for each toplevel vdev. Once that's done, 463 * we assemble the toplevel vdevs into a full config for the pool. We make a 464 * pass to fix up any incorrect paths, and then add it to the main list to 465 * return to the user. 466 */ 467 static nvlist_t * 468 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 469 nvlist_t *policy) 470 { 471 pool_entry_t *pe; 472 vdev_entry_t *ve; 473 config_entry_t *ce; 474 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 475 nvlist_t **spares, **l2cache; 476 uint_t i, nspares, nl2cache; 477 boolean_t config_seen; 478 uint64_t best_txg; 479 char *name, *hostname = NULL; 480 uint64_t guid; 481 uint_t children = 0; 482 nvlist_t **child = NULL; 483 uint_t holes; 484 uint64_t *hole_array, max_id; 485 uint_t c; 486 boolean_t isactive; 487 uint64_t hostid; 488 nvlist_t *nvl; 489 boolean_t found_one = B_FALSE; 490 boolean_t valid_top_config = B_FALSE; 491 492 if (nvlist_alloc(&ret, 0, 0) != 0) 493 goto nomem; 494 495 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 496 uint64_t id, max_txg = 0; 497 498 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 499 goto nomem; 500 config_seen = B_FALSE; 501 502 /* 503 * Iterate over all toplevel vdevs. Grab the pool configuration 504 * from the first one we find, and then go through the rest and 505 * add them as necessary to the 'vdevs' member of the config. 506 */ 507 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 508 509 /* 510 * Determine the best configuration for this vdev by 511 * selecting the config with the latest transaction 512 * group. 513 */ 514 best_txg = 0; 515 for (ce = ve->ve_configs; ce != NULL; 516 ce = ce->ce_next) { 517 518 if (ce->ce_txg > best_txg) { 519 tmp = ce->ce_config; 520 best_txg = ce->ce_txg; 521 } 522 } 523 524 /* 525 * We rely on the fact that the max txg for the 526 * pool will contain the most up-to-date information 527 * about the valid top-levels in the vdev namespace. 528 */ 529 if (best_txg > max_txg) { 530 (void) nvlist_remove(config, 531 ZPOOL_CONFIG_VDEV_CHILDREN, 532 DATA_TYPE_UINT64); 533 (void) nvlist_remove(config, 534 ZPOOL_CONFIG_HOLE_ARRAY, 535 DATA_TYPE_UINT64_ARRAY); 536 537 max_txg = best_txg; 538 hole_array = NULL; 539 holes = 0; 540 max_id = 0; 541 valid_top_config = B_FALSE; 542 543 if (nvlist_lookup_uint64(tmp, 544 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 545 verify(nvlist_add_uint64(config, 546 ZPOOL_CONFIG_VDEV_CHILDREN, 547 max_id) == 0); 548 valid_top_config = B_TRUE; 549 } 550 551 if (nvlist_lookup_uint64_array(tmp, 552 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 553 &holes) == 0) { 554 verify(nvlist_add_uint64_array(config, 555 ZPOOL_CONFIG_HOLE_ARRAY, 556 hole_array, holes) == 0); 557 } 558 } 559 560 if (!config_seen) { 561 /* 562 * Copy the relevant pieces of data to the pool 563 * configuration: 564 * 565 * version 566 * pool guid 567 * name 568 * comment (if available) 569 * pool state 570 * hostid (if available) 571 * hostname (if available) 572 */ 573 uint64_t state, version; 574 char *comment = NULL; 575 576 version = fnvlist_lookup_uint64(tmp, 577 ZPOOL_CONFIG_VERSION); 578 fnvlist_add_uint64(config, 579 ZPOOL_CONFIG_VERSION, version); 580 guid = fnvlist_lookup_uint64(tmp, 581 ZPOOL_CONFIG_POOL_GUID); 582 fnvlist_add_uint64(config, 583 ZPOOL_CONFIG_POOL_GUID, guid); 584 name = fnvlist_lookup_string(tmp, 585 ZPOOL_CONFIG_POOL_NAME); 586 fnvlist_add_string(config, 587 ZPOOL_CONFIG_POOL_NAME, name); 588 589 if (nvlist_lookup_string(tmp, 590 ZPOOL_CONFIG_COMMENT, &comment) == 0) 591 fnvlist_add_string(config, 592 ZPOOL_CONFIG_COMMENT, comment); 593 594 state = fnvlist_lookup_uint64(tmp, 595 ZPOOL_CONFIG_POOL_STATE); 596 fnvlist_add_uint64(config, 597 ZPOOL_CONFIG_POOL_STATE, state); 598 599 hostid = 0; 600 if (nvlist_lookup_uint64(tmp, 601 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 602 fnvlist_add_uint64(config, 603 ZPOOL_CONFIG_HOSTID, hostid); 604 hostname = fnvlist_lookup_string(tmp, 605 ZPOOL_CONFIG_HOSTNAME); 606 fnvlist_add_string(config, 607 ZPOOL_CONFIG_HOSTNAME, hostname); 608 } 609 610 config_seen = B_TRUE; 611 } 612 613 /* 614 * Add this top-level vdev to the child array. 615 */ 616 verify(nvlist_lookup_nvlist(tmp, 617 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 618 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 619 &id) == 0); 620 621 if (id >= children) { 622 nvlist_t **newchild; 623 624 newchild = zutil_alloc(hdl, (id + 1) * 625 sizeof (nvlist_t *)); 626 if (newchild == NULL) 627 goto nomem; 628 629 for (c = 0; c < children; c++) 630 newchild[c] = child[c]; 631 632 free(child); 633 child = newchild; 634 children = id + 1; 635 } 636 if (nvlist_dup(nvtop, &child[id], 0) != 0) 637 goto nomem; 638 639 } 640 641 /* 642 * If we have information about all the top-levels then 643 * clean up the nvlist which we've constructed. This 644 * means removing any extraneous devices that are 645 * beyond the valid range or adding devices to the end 646 * of our array which appear to be missing. 647 */ 648 if (valid_top_config) { 649 if (max_id < children) { 650 for (c = max_id; c < children; c++) 651 nvlist_free(child[c]); 652 children = max_id; 653 } else if (max_id > children) { 654 nvlist_t **newchild; 655 656 newchild = zutil_alloc(hdl, (max_id) * 657 sizeof (nvlist_t *)); 658 if (newchild == NULL) 659 goto nomem; 660 661 for (c = 0; c < children; c++) 662 newchild[c] = child[c]; 663 664 free(child); 665 child = newchild; 666 children = max_id; 667 } 668 } 669 670 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 671 &guid) == 0); 672 673 /* 674 * The vdev namespace may contain holes as a result of 675 * device removal. We must add them back into the vdev 676 * tree before we process any missing devices. 677 */ 678 if (holes > 0) { 679 ASSERT(valid_top_config); 680 681 for (c = 0; c < children; c++) { 682 nvlist_t *holey; 683 684 if (child[c] != NULL || 685 !vdev_is_hole(hole_array, holes, c)) 686 continue; 687 688 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 689 0) != 0) 690 goto nomem; 691 692 /* 693 * Holes in the namespace are treated as 694 * "hole" top-level vdevs and have a 695 * special flag set on them. 696 */ 697 if (nvlist_add_string(holey, 698 ZPOOL_CONFIG_TYPE, 699 VDEV_TYPE_HOLE) != 0 || 700 nvlist_add_uint64(holey, 701 ZPOOL_CONFIG_ID, c) != 0 || 702 nvlist_add_uint64(holey, 703 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 704 nvlist_free(holey); 705 goto nomem; 706 } 707 child[c] = holey; 708 } 709 } 710 711 /* 712 * Look for any missing top-level vdevs. If this is the case, 713 * create a faked up 'missing' vdev as a placeholder. We cannot 714 * simply compress the child array, because the kernel performs 715 * certain checks to make sure the vdev IDs match their location 716 * in the configuration. 717 */ 718 for (c = 0; c < children; c++) { 719 if (child[c] == NULL) { 720 nvlist_t *missing; 721 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 722 0) != 0) 723 goto nomem; 724 if (nvlist_add_string(missing, 725 ZPOOL_CONFIG_TYPE, 726 VDEV_TYPE_MISSING) != 0 || 727 nvlist_add_uint64(missing, 728 ZPOOL_CONFIG_ID, c) != 0 || 729 nvlist_add_uint64(missing, 730 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 731 nvlist_free(missing); 732 goto nomem; 733 } 734 child[c] = missing; 735 } 736 } 737 738 /* 739 * Put all of this pool's top-level vdevs into a root vdev. 740 */ 741 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 742 goto nomem; 743 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 744 VDEV_TYPE_ROOT) != 0 || 745 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 746 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 747 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 748 child, children) != 0) { 749 nvlist_free(nvroot); 750 goto nomem; 751 } 752 753 for (c = 0; c < children; c++) 754 nvlist_free(child[c]); 755 free(child); 756 children = 0; 757 child = NULL; 758 759 /* 760 * Go through and fix up any paths and/or devids based on our 761 * known list of vdev GUID -> path mappings. 762 */ 763 if (fix_paths(nvroot, pl->names) != 0) { 764 nvlist_free(nvroot); 765 goto nomem; 766 } 767 768 /* 769 * Add the root vdev to this pool's configuration. 770 */ 771 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 772 nvroot) != 0) { 773 nvlist_free(nvroot); 774 goto nomem; 775 } 776 nvlist_free(nvroot); 777 778 /* 779 * zdb uses this path to report on active pools that were 780 * imported or created using -R. 781 */ 782 if (active_ok) 783 goto add_pool; 784 785 /* 786 * Determine if this pool is currently active, in which case we 787 * can't actually import it. 788 */ 789 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 790 &name) == 0); 791 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 792 &guid) == 0); 793 794 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 795 goto error; 796 797 if (isactive) { 798 nvlist_free(config); 799 config = NULL; 800 continue; 801 } 802 803 if (policy != NULL) { 804 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 805 policy) != 0) 806 goto nomem; 807 } 808 809 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 810 nvlist_free(config); 811 config = NULL; 812 continue; 813 } 814 815 nvlist_free(config); 816 config = nvl; 817 818 /* 819 * Go through and update the paths for spares, now that we have 820 * them. 821 */ 822 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 823 &nvroot) == 0); 824 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 825 &spares, &nspares) == 0) { 826 for (i = 0; i < nspares; i++) { 827 if (fix_paths(spares[i], pl->names) != 0) 828 goto nomem; 829 } 830 } 831 832 /* 833 * Update the paths for l2cache devices. 834 */ 835 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 836 &l2cache, &nl2cache) == 0) { 837 for (i = 0; i < nl2cache; i++) { 838 if (fix_paths(l2cache[i], pl->names) != 0) 839 goto nomem; 840 } 841 } 842 843 /* 844 * Restore the original information read from the actual label. 845 */ 846 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 847 DATA_TYPE_UINT64); 848 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 849 DATA_TYPE_STRING); 850 if (hostid != 0) { 851 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 852 hostid) == 0); 853 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 854 hostname) == 0); 855 } 856 857 add_pool: 858 /* 859 * Add this pool to the list of configs. 860 */ 861 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 862 &name) == 0); 863 if (nvlist_add_nvlist(ret, name, config) != 0) 864 goto nomem; 865 866 found_one = B_TRUE; 867 nvlist_free(config); 868 config = NULL; 869 } 870 871 if (!found_one) { 872 nvlist_free(ret); 873 ret = NULL; 874 } 875 876 return (ret); 877 878 nomem: 879 (void) zutil_no_memory(hdl); 880 error: 881 nvlist_free(config); 882 nvlist_free(ret); 883 for (c = 0; c < children; c++) 884 nvlist_free(child[c]); 885 free(child); 886 887 return (NULL); 888 } 889 890 /* 891 * Return the offset of the given label. 892 */ 893 static uint64_t 894 label_offset(uint64_t size, int l) 895 { 896 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 897 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 898 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 899 } 900 901 /* 902 * Given a file descriptor, read the label information and return an nvlist 903 * describing the configuration, if there is one. The number of valid 904 * labels found will be returned in num_labels when non-NULL. 905 */ 906 int 907 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 908 { 909 struct stat64 statbuf; 910 int l, count = 0; 911 vdev_label_t *label; 912 nvlist_t *expected_config = NULL; 913 uint64_t expected_guid = 0, size; 914 915 *config = NULL; 916 917 if (num_labels != NULL) 918 *num_labels = 0; 919 920 if (fstat64(fd, &statbuf) == -1) 921 return (0); 922 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 923 924 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 925 return (-1); 926 927 for (l = 0; l < VDEV_LABELS; l++) { 928 uint64_t state, guid, txg; 929 930 if (pread64(fd, label, sizeof (vdev_label_t), 931 label_offset(size, l)) != sizeof (vdev_label_t)) 932 continue; 933 934 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 935 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 936 continue; 937 938 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 939 &guid) != 0 || guid == 0) { 940 nvlist_free(*config); 941 continue; 942 } 943 944 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 945 &state) != 0 || state > POOL_STATE_L2CACHE) { 946 nvlist_free(*config); 947 continue; 948 } 949 950 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 951 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 952 &txg) != 0 || txg == 0)) { 953 nvlist_free(*config); 954 continue; 955 } 956 957 if (expected_guid) { 958 if (expected_guid == guid) 959 count++; 960 961 nvlist_free(*config); 962 } else { 963 expected_config = *config; 964 expected_guid = guid; 965 count++; 966 } 967 } 968 969 if (num_labels != NULL) 970 *num_labels = count; 971 972 free(label); 973 *config = expected_config; 974 975 return (0); 976 } 977 978 static int 979 slice_cache_compare(const void *arg1, const void *arg2) 980 { 981 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 982 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 983 char *nm1slice, *nm2slice; 984 int rv; 985 986 /* 987 * slices zero and two are the most likely to provide results, 988 * so put those first 989 */ 990 nm1slice = strstr(nm1, "s0"); 991 nm2slice = strstr(nm2, "s0"); 992 if (nm1slice && !nm2slice) { 993 return (-1); 994 } 995 if (!nm1slice && nm2slice) { 996 return (1); 997 } 998 nm1slice = strstr(nm1, "s2"); 999 nm2slice = strstr(nm2, "s2"); 1000 if (nm1slice && !nm2slice) { 1001 return (-1); 1002 } 1003 if (!nm1slice && nm2slice) { 1004 return (1); 1005 } 1006 1007 rv = strcmp(nm1, nm2); 1008 if (rv == 0) 1009 return (0); 1010 return (rv > 0 ? 1 : -1); 1011 } 1012 1013 static void 1014 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 1015 diskaddr_t size, uint_t blksz) 1016 { 1017 rdsk_node_t tmpnode; 1018 rdsk_node_t *node; 1019 char sname[MAXNAMELEN]; 1020 1021 tmpnode.rn_name = &sname[0]; 1022 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 1023 diskname, partno); 1024 /* 1025 * protect against division by zero for disk labels that 1026 * contain a bogus sector size 1027 */ 1028 if (blksz == 0) 1029 blksz = DEV_BSIZE; 1030 /* too small to contain a zpool? */ 1031 if ((size < (SPA_MINDEVSIZE / blksz)) && 1032 (node = avl_find(r, &tmpnode, NULL))) 1033 node->rn_nozpool = B_TRUE; 1034 } 1035 1036 static void 1037 nozpool_all_slices(avl_tree_t *r, const char *sname) 1038 { 1039 char diskname[MAXNAMELEN]; 1040 char *ptr; 1041 int i; 1042 1043 (void) strncpy(diskname, sname, MAXNAMELEN); 1044 if (((ptr = strrchr(diskname, 's')) == NULL) && 1045 ((ptr = strrchr(diskname, 'p')) == NULL)) 1046 return; 1047 ptr[0] = 's'; 1048 ptr[1] = '\0'; 1049 for (i = 0; i < NDKMAP; i++) 1050 check_one_slice(r, diskname, i, 0, 1); 1051 ptr[0] = 'p'; 1052 for (i = 0; i <= FD_NUMPART; i++) 1053 check_one_slice(r, diskname, i, 0, 1); 1054 } 1055 1056 static void 1057 check_slices(avl_tree_t *r, int fd, const char *sname) 1058 { 1059 struct extvtoc vtoc; 1060 struct dk_gpt *gpt; 1061 char diskname[MAXNAMELEN]; 1062 char *ptr; 1063 int i; 1064 1065 (void) strncpy(diskname, sname, MAXNAMELEN); 1066 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1067 return; 1068 ptr[1] = '\0'; 1069 1070 if (read_extvtoc(fd, &vtoc) >= 0) { 1071 for (i = 0; i < NDKMAP; i++) 1072 check_one_slice(r, diskname, i, 1073 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1074 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1075 /* 1076 * on x86 we'll still have leftover links that point 1077 * to slices s[9-15], so use NDKMAP instead 1078 */ 1079 for (i = 0; i < NDKMAP; i++) 1080 check_one_slice(r, diskname, i, 1081 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1082 /* nodes p[1-4] are never used with EFI labels */ 1083 ptr[0] = 'p'; 1084 for (i = 1; i <= FD_NUMPART; i++) 1085 check_one_slice(r, diskname, i, 0, 1); 1086 efi_free(gpt); 1087 } 1088 } 1089 1090 void 1091 zpool_open_func(void *arg) 1092 { 1093 rdsk_node_t *rn = arg; 1094 struct stat64 statbuf; 1095 nvlist_t *config; 1096 int error; 1097 int num_labels = 0; 1098 int fd; 1099 1100 if (rn->rn_nozpool) 1101 return; 1102 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1103 /* symlink to a device that's no longer there */ 1104 if (errno == ENOENT) 1105 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1106 return; 1107 } 1108 /* 1109 * Ignore failed stats. We only want regular 1110 * files, character devs and block devs. 1111 */ 1112 if (fstat64(fd, &statbuf) != 0 || 1113 (!S_ISREG(statbuf.st_mode) && 1114 !S_ISCHR(statbuf.st_mode) && 1115 !S_ISBLK(statbuf.st_mode))) { 1116 (void) close(fd); 1117 return; 1118 } 1119 /* this file is too small to hold a zpool */ 1120 if (S_ISREG(statbuf.st_mode) && 1121 statbuf.st_size < SPA_MINDEVSIZE) { 1122 (void) close(fd); 1123 return; 1124 } else if (!S_ISREG(statbuf.st_mode)) { 1125 /* 1126 * Try to read the disk label first so we don't have to 1127 * open a bunch of minor nodes that can't have a zpool. 1128 */ 1129 check_slices(rn->rn_avl, fd, rn->rn_name); 1130 } 1131 1132 error = zpool_read_label(fd, &config, &num_labels); 1133 if (error != 0) { 1134 (void) close(fd); 1135 return; 1136 } 1137 1138 if (num_labels == 0) { 1139 (void) close(fd); 1140 nvlist_free(config); 1141 return; 1142 } 1143 1144 (void) close(fd); 1145 1146 rn->rn_config = config; 1147 rn->rn_num_labels = num_labels; 1148 } 1149 1150 /* 1151 * Given a list of directories to search, find all pools stored on disk. This 1152 * includes partial pools which are not available to import. If no args are 1153 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1154 * poolname or guid (but not both) are provided by the caller when trying 1155 * to import a specific pool. 1156 */ 1157 static nvlist_t * 1158 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg) 1159 { 1160 int i, dirs = iarg->paths; 1161 struct dirent64 *dp; 1162 char path[MAXPATHLEN]; 1163 char *end, **dir = iarg->path; 1164 size_t pathleft; 1165 nvlist_t *ret = NULL; 1166 static char *default_dir = ZFS_DISK_ROOT; 1167 pool_list_t pools = { 0 }; 1168 pool_entry_t *pe, *penext; 1169 vdev_entry_t *ve, *venext; 1170 config_entry_t *ce, *cenext; 1171 name_entry_t *ne, *nenext; 1172 avl_tree_t slice_cache; 1173 rdsk_node_t *slice; 1174 void *cookie; 1175 1176 if (dirs == 0) { 1177 dirs = 1; 1178 dir = &default_dir; 1179 } 1180 1181 /* 1182 * Go through and read the label configuration information from every 1183 * possible device, organizing the information according to pool GUID 1184 * and toplevel GUID. 1185 */ 1186 for (i = 0; i < dirs; i++) { 1187 tpool_t *t; 1188 char rdsk[MAXPATHLEN]; 1189 int dfd; 1190 boolean_t config_failed = B_FALSE; 1191 DIR *dirp; 1192 1193 /* use realpath to normalize the path */ 1194 if (realpath(dir[i], path) == 0) { 1195 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1196 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1197 goto error; 1198 } 1199 end = &path[strlen(path)]; 1200 *end++ = '/'; 1201 *end = 0; 1202 pathleft = &path[sizeof (path)] - end; 1203 1204 /* 1205 * Using raw devices instead of block devices when we're 1206 * reading the labels skips a bunch of slow operations during 1207 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1208 */ 1209 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1210 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1211 else 1212 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1213 1214 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1215 (dirp = fdopendir(dfd)) == NULL) { 1216 if (dfd >= 0) 1217 (void) close(dfd); 1218 zutil_error_aux(hdl, strerror(errno)); 1219 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1220 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1221 rdsk); 1222 goto error; 1223 } 1224 1225 avl_create(&slice_cache, slice_cache_compare, 1226 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1227 /* 1228 * This is not MT-safe, but we have no MT consumers of libzutil 1229 */ 1230 while ((dp = readdir64(dirp)) != NULL) { 1231 const char *name = dp->d_name; 1232 if (name[0] == '.' && 1233 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1234 continue; 1235 1236 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1237 slice->rn_name = zutil_strdup(hdl, name); 1238 slice->rn_avl = &slice_cache; 1239 slice->rn_dfd = dfd; 1240 slice->rn_hdl = hdl; 1241 slice->rn_nozpool = B_FALSE; 1242 avl_add(&slice_cache, slice); 1243 } 1244 /* 1245 * create a thread pool to do all of this in parallel; 1246 * rn_nozpool is not protected, so this is racy in that 1247 * multiple tasks could decide that the same slice can 1248 * not hold a zpool, which is benign. Also choose 1249 * double the number of processors; we hold a lot of 1250 * locks in the kernel, so going beyond this doesn't 1251 * buy us much. 1252 */ 1253 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1254 0, NULL); 1255 for (slice = avl_first(&slice_cache); slice; 1256 (slice = avl_walk(&slice_cache, slice, 1257 AVL_AFTER))) 1258 (void) tpool_dispatch(t, zpool_open_func, slice); 1259 tpool_wait(t); 1260 tpool_destroy(t); 1261 1262 cookie = NULL; 1263 while ((slice = avl_destroy_nodes(&slice_cache, 1264 &cookie)) != NULL) { 1265 if (slice->rn_config != NULL && !config_failed) { 1266 nvlist_t *config = slice->rn_config; 1267 boolean_t matched = B_TRUE; 1268 1269 if (iarg->poolname != NULL) { 1270 char *pname; 1271 1272 matched = nvlist_lookup_string(config, 1273 ZPOOL_CONFIG_POOL_NAME, 1274 &pname) == 0 && 1275 strcmp(iarg->poolname, pname) == 0; 1276 } else if (iarg->guid != 0) { 1277 uint64_t this_guid; 1278 1279 matched = nvlist_lookup_uint64(config, 1280 ZPOOL_CONFIG_POOL_GUID, 1281 &this_guid) == 0 && 1282 iarg->guid == this_guid; 1283 } 1284 if (matched) { 1285 /* 1286 * use the non-raw path for the config 1287 */ 1288 (void) strlcpy(end, slice->rn_name, 1289 pathleft); 1290 (void) add_config(hdl, &pools, 1291 path, slice->rn_order, 1292 slice->rn_num_labels, config); 1293 } 1294 nvlist_free(config); 1295 } 1296 free(slice->rn_name); 1297 free(slice); 1298 } 1299 avl_destroy(&slice_cache); 1300 1301 (void) closedir(dirp); 1302 1303 if (config_failed) 1304 goto error; 1305 } 1306 1307 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1308 1309 error: 1310 for (pe = pools.pools; pe != NULL; pe = penext) { 1311 penext = pe->pe_next; 1312 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1313 venext = ve->ve_next; 1314 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1315 cenext = ce->ce_next; 1316 nvlist_free(ce->ce_config); 1317 free(ce); 1318 } 1319 free(ve); 1320 } 1321 free(pe); 1322 } 1323 1324 for (ne = pools.names; ne != NULL; ne = nenext) { 1325 nenext = ne->ne_next; 1326 free(ne->ne_name); 1327 free(ne); 1328 } 1329 1330 return (ret); 1331 } 1332 1333 /* 1334 * Given a cache file, return the contents as a list of importable pools. 1335 * poolname or guid (but not both) are provided by the caller when trying 1336 * to import a specific pool. 1337 */ 1338 static nvlist_t * 1339 zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile, 1340 const char *poolname, uint64_t guid) 1341 { 1342 char *buf; 1343 int fd; 1344 struct stat64 statbuf; 1345 nvlist_t *raw, *src, *dst; 1346 nvlist_t *pools; 1347 nvpair_t *elem; 1348 char *name; 1349 uint64_t this_guid; 1350 boolean_t active; 1351 1352 verify(poolname == NULL || guid == 0); 1353 1354 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1355 zutil_error_aux(hdl, "%s", strerror(errno)); 1356 (void) zutil_error(hdl, EZFS_BADCACHE, 1357 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1358 return (NULL); 1359 } 1360 1361 if (fstat64(fd, &statbuf) != 0) { 1362 zutil_error_aux(hdl, "%s", strerror(errno)); 1363 (void) close(fd); 1364 (void) zutil_error(hdl, EZFS_BADCACHE, 1365 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1366 return (NULL); 1367 } 1368 1369 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1370 (void) close(fd); 1371 return (NULL); 1372 } 1373 1374 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1375 (void) close(fd); 1376 free(buf); 1377 (void) zutil_error(hdl, EZFS_BADCACHE, 1378 dgettext(TEXT_DOMAIN, 1379 "failed to read cache file contents")); 1380 return (NULL); 1381 } 1382 1383 (void) close(fd); 1384 1385 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1386 free(buf); 1387 (void) zutil_error(hdl, EZFS_BADCACHE, 1388 dgettext(TEXT_DOMAIN, 1389 "invalid or corrupt cache file contents")); 1390 return (NULL); 1391 } 1392 1393 free(buf); 1394 1395 /* 1396 * Go through and get the current state of the pools and refresh their 1397 * state. 1398 */ 1399 if (nvlist_alloc(&pools, 0, 0) != 0) { 1400 (void) zutil_no_memory(hdl); 1401 nvlist_free(raw); 1402 return (NULL); 1403 } 1404 1405 elem = NULL; 1406 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1407 src = fnvpair_value_nvlist(elem); 1408 1409 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1410 if (poolname != NULL && strcmp(poolname, name) != 0) 1411 continue; 1412 1413 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1414 if (guid != 0 && guid != this_guid) 1415 continue; 1416 1417 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1418 nvlist_free(raw); 1419 nvlist_free(pools); 1420 return (NULL); 1421 } 1422 1423 if (active) 1424 continue; 1425 1426 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1427 cachefile) != 0) { 1428 (void) zutil_no_memory(hdl); 1429 nvlist_free(raw); 1430 nvlist_free(pools); 1431 return (NULL); 1432 } 1433 1434 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1435 nvlist_free(raw); 1436 nvlist_free(pools); 1437 return (NULL); 1438 } 1439 1440 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1441 (void) zutil_no_memory(hdl); 1442 nvlist_free(dst); 1443 nvlist_free(raw); 1444 nvlist_free(pools); 1445 return (NULL); 1446 } 1447 nvlist_free(dst); 1448 } 1449 1450 nvlist_free(raw); 1451 return (pools); 1452 } 1453 1454 nvlist_t * 1455 zpool_search_import(void *hdl, importargs_t *import, 1456 const pool_config_ops_t *pco) 1457 { 1458 libpc_handle_t handle = { 0 }; 1459 nvlist_t *pools = NULL; 1460 1461 handle.lpc_lib_handle = hdl; 1462 handle.lpc_ops = pco; 1463 handle.lpc_printerr = B_TRUE; 1464 1465 verify(import->poolname == NULL || import->guid == 0); 1466 1467 if (import->cachefile != NULL) 1468 pools = zpool_find_import_cached(&handle, import->cachefile, 1469 import->poolname, import->guid); 1470 else 1471 pools = zpool_find_import_impl(&handle, import); 1472 1473 if ((pools == NULL || nvlist_empty(pools)) && 1474 handle.lpc_open_access_error && geteuid() != 0) { 1475 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1476 "no pools found")); 1477 } 1478 1479 return (pools); 1480 } 1481 1482 static boolean_t 1483 pool_match(nvlist_t *cfg, char *tgt) 1484 { 1485 uint64_t v, guid = strtoull(tgt, NULL, 0); 1486 char *s; 1487 1488 if (guid != 0) { 1489 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1490 return (v == guid); 1491 } else { 1492 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1493 return (strcmp(s, tgt) == 0); 1494 } 1495 return (B_FALSE); 1496 } 1497 1498 int 1499 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1500 importargs_t *args, const pool_config_ops_t *pco) 1501 { 1502 nvlist_t *pools; 1503 nvlist_t *match = NULL; 1504 nvlist_t *config = NULL; 1505 char *sepp = NULL; 1506 int count = 0; 1507 char *targetdup = strdup(target); 1508 1509 *configp = NULL; 1510 1511 if ((sepp = strpbrk(targetdup, "/@")) != NULL) { 1512 *sepp = '\0'; 1513 } 1514 1515 pools = zpool_search_import(hdl, args, pco); 1516 1517 if (pools != NULL) { 1518 nvpair_t *elem = NULL; 1519 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1520 VERIFY0(nvpair_value_nvlist(elem, &config)); 1521 if (pool_match(config, targetdup)) { 1522 count++; 1523 if (match != NULL) { 1524 /* multiple matches found */ 1525 continue; 1526 } else { 1527 match = config; 1528 } 1529 } 1530 } 1531 } 1532 1533 if (count == 0) { 1534 free(targetdup); 1535 return (ENOENT); 1536 } 1537 1538 if (count > 1) { 1539 free(targetdup); 1540 return (EINVAL); 1541 } 1542 1543 *configp = match; 1544 free(targetdup); 1545 1546 return (0); 1547 } 1548