1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2017 Nexenta Systems, Inc. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 26 * Copyright 2015 RackTop Systems. 27 * Copyright (c) 2016, Intel Corporation. 28 * Copyright 2020 Joyent, Inc. 29 * Copyright 2023 Oxide Computer Company 30 */ 31 32 /* 33 * Pool import support functions. 34 * 35 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 36 * these commands are expected to run in the global zone, we can assume 37 * that the devices are all readable when called. 38 * 39 * To import a pool, we rely on reading the configuration information from the 40 * ZFS label of each device. If we successfully read the label, then we 41 * organize the configuration information in the following hierarchy: 42 * 43 * pool guid -> toplevel vdev guid -> label txg 44 * 45 * Duplicate entries matching this same tuple will be discarded. Once we have 46 * examined every device, we pick the best label txg config for each toplevel 47 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 48 * update any paths that have changed. Finally, we attempt to import the pool 49 * using our derived config, and record the results. 50 */ 51 52 #include <stdio.h> 53 #include <stdarg.h> 54 #include <assert.h> 55 #include <ctype.h> 56 #include <devid.h> 57 #include <dirent.h> 58 #include <errno.h> 59 #include <libintl.h> 60 #include <stddef.h> 61 #include <stdlib.h> 62 #include <string.h> 63 #include <sys/stat.h> 64 #include <unistd.h> 65 #include <fcntl.h> 66 #include <sys/vtoc.h> 67 #include <sys/dktp/fdisk.h> 68 #include <sys/efi_partition.h> 69 #include <sys/vdev_impl.h> 70 #include <sys/fs/zfs.h> 71 72 #include <thread_pool.h> 73 #include <libzutil.h> 74 #include <libnvpair.h> 75 76 #include "zutil_import.h" 77 78 #ifdef NDEBUG 79 #define verify(EX) ((void)(EX)) 80 #else 81 #define verify(EX) assert(EX) 82 #endif 83 84 /*PRINTFLIKE2*/ 85 static void 86 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 87 { 88 va_list ap; 89 90 va_start(ap, fmt); 91 92 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 93 hdl->lpc_desc_active = B_TRUE; 94 95 va_end(ap); 96 } 97 98 static void 99 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 100 va_list ap) 101 { 102 char action[1024]; 103 104 (void) vsnprintf(action, sizeof (action), fmt, ap); 105 106 if (hdl->lpc_desc_active) 107 hdl->lpc_desc_active = B_FALSE; 108 else 109 hdl->lpc_desc[0] = '\0'; 110 111 if (hdl->lpc_printerr) { 112 if (hdl->lpc_desc[0] != '\0') 113 error = hdl->lpc_desc; 114 115 (void) fprintf(stderr, "%s: %s\n", action, error); 116 } 117 } 118 119 /*PRINTFLIKE3*/ 120 static int 121 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 122 { 123 va_list ap; 124 125 va_start(ap, fmt); 126 127 zutil_verror(hdl, error, fmt, ap); 128 129 va_end(ap); 130 131 return (-1); 132 } 133 134 static int 135 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 136 { 137 return (zutil_error_fmt(hdl, error, "%s", msg)); 138 } 139 140 static int 141 zutil_no_memory(libpc_handle_t *hdl) 142 { 143 (void) zutil_error(hdl, EZFS_NOMEM, "internal error"); 144 exit(1); 145 } 146 147 void * 148 zutil_alloc(libpc_handle_t *hdl, size_t size) 149 { 150 void *data; 151 152 if ((data = calloc(1, size)) == NULL) 153 (void) zutil_no_memory(hdl); 154 155 return (data); 156 } 157 158 char * 159 zutil_strdup(libpc_handle_t *hdl, const char *str) 160 { 161 char *ret; 162 163 if ((ret = strdup(str)) == NULL) 164 (void) zutil_no_memory(hdl); 165 166 return (ret); 167 } 168 169 /* 170 * Intermediate structures used to gather configuration information. 171 */ 172 typedef struct config_entry { 173 uint64_t ce_txg; 174 nvlist_t *ce_config; 175 struct config_entry *ce_next; 176 } config_entry_t; 177 178 typedef struct vdev_entry { 179 uint64_t ve_guid; 180 config_entry_t *ve_configs; 181 struct vdev_entry *ve_next; 182 } vdev_entry_t; 183 184 typedef struct pool_entry { 185 uint64_t pe_guid; 186 vdev_entry_t *pe_vdevs; 187 struct pool_entry *pe_next; 188 } pool_entry_t; 189 190 typedef struct name_entry { 191 char *ne_name; 192 uint64_t ne_guid; 193 struct name_entry *ne_next; 194 } name_entry_t; 195 196 typedef struct pool_list { 197 pool_entry_t *pools; 198 name_entry_t *names; 199 } pool_list_t; 200 201 /* 202 * Go through and fix up any path and/or devid information for the given vdev 203 * configuration. 204 */ 205 static int 206 fix_paths(nvlist_t *nv, name_entry_t *names) 207 { 208 nvlist_t **child; 209 uint_t c, children; 210 uint64_t guid; 211 name_entry_t *ne, *best; 212 char *path, *devid; 213 int matched; 214 215 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 216 &child, &children) == 0) { 217 for (c = 0; c < children; c++) 218 if (fix_paths(child[c], names) != 0) 219 return (-1); 220 return (0); 221 } 222 223 /* 224 * This is a leaf (file or disk) vdev. In either case, go through 225 * the name list and see if we find a matching guid. If so, replace 226 * the path and see if we can calculate a new devid. 227 * 228 * There may be multiple names associated with a particular guid, in 229 * which case we have overlapping slices or multiple paths to the same 230 * disk. If this is the case, then we want to pick the path that is 231 * the most similar to the original, where "most similar" is the number 232 * of matching characters starting from the end of the path. This will 233 * preserve slice numbers even if the disks have been reorganized, and 234 * will also catch preferred disk names if multiple paths exist. 235 */ 236 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 237 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 238 path = NULL; 239 240 matched = 0; 241 best = NULL; 242 for (ne = names; ne != NULL; ne = ne->ne_next) { 243 if (ne->ne_guid == guid) { 244 const char *src, *dst; 245 int count; 246 247 if (path == NULL) { 248 best = ne; 249 break; 250 } 251 252 src = ne->ne_name + strlen(ne->ne_name) - 1; 253 dst = path + strlen(path) - 1; 254 for (count = 0; src >= ne->ne_name && dst >= path; 255 src--, dst--, count++) 256 if (*src != *dst) 257 break; 258 259 /* 260 * At this point, 'count' is the number of characters 261 * matched from the end. 262 */ 263 if (count > matched || best == NULL) { 264 best = ne; 265 matched = count; 266 } 267 } 268 } 269 270 if (best == NULL) 271 return (0); 272 273 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 274 return (-1); 275 276 if ((devid = devid_str_from_path(best->ne_name)) == NULL) { 277 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 278 } else { 279 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 280 devid_str_free(devid); 281 return (-1); 282 } 283 devid_str_free(devid); 284 } 285 286 return (0); 287 } 288 289 /* 290 * Add the given configuration to the list of known devices. 291 */ 292 static int 293 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 294 int order, int num_labels, nvlist_t *config) 295 { 296 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 297 pool_entry_t *pe; 298 vdev_entry_t *ve; 299 config_entry_t *ce; 300 name_entry_t *ne; 301 302 /* 303 * If this is a hot spare not currently in use or level 2 cache 304 * device, add it to the list of names to translate, but don't do 305 * anything else. 306 */ 307 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 308 &state) == 0 && 309 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 310 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 311 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 312 return (-1); 313 314 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 315 free(ne); 316 return (-1); 317 } 318 319 ne->ne_guid = vdev_guid; 320 ne->ne_next = pl->names; 321 pl->names = ne; 322 323 return (0); 324 } 325 326 /* 327 * If we have a valid config but cannot read any of these fields, then 328 * it means we have a half-initialized label. In vdev_label_init() 329 * we write a label with txg == 0 so that we can identify the device 330 * in case the user refers to the same disk later on. If we fail to 331 * create the pool, we'll be left with a label in this state 332 * which should not be considered part of a valid pool. 333 */ 334 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 335 &pool_guid) != 0 || 336 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 337 &vdev_guid) != 0 || 338 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 339 &top_guid) != 0 || 340 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 341 &txg) != 0 || txg == 0) { 342 return (0); 343 } 344 345 /* 346 * First, see if we know about this pool. If not, then add it to the 347 * list of known pools. 348 */ 349 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 350 if (pe->pe_guid == pool_guid) 351 break; 352 } 353 354 if (pe == NULL) { 355 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 356 return (-1); 357 } 358 pe->pe_guid = pool_guid; 359 pe->pe_next = pl->pools; 360 pl->pools = pe; 361 } 362 363 /* 364 * Second, see if we know about this toplevel vdev. Add it if its 365 * missing. 366 */ 367 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 368 if (ve->ve_guid == top_guid) 369 break; 370 } 371 372 if (ve == NULL) { 373 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 374 return (-1); 375 } 376 ve->ve_guid = top_guid; 377 ve->ve_next = pe->pe_vdevs; 378 pe->pe_vdevs = ve; 379 } 380 381 /* 382 * Third, see if we have a config with a matching transaction group. If 383 * so, then we do nothing. Otherwise, add it to the list of known 384 * configs. 385 */ 386 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 387 if (ce->ce_txg == txg) 388 break; 389 } 390 391 if (ce == NULL) { 392 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 393 return (-1); 394 } 395 ce->ce_txg = txg; 396 ce->ce_config = fnvlist_dup(config); 397 ce->ce_next = ve->ve_configs; 398 ve->ve_configs = ce; 399 } 400 401 /* 402 * At this point we've successfully added our config to the list of 403 * known configs. The last thing to do is add the vdev guid -> path 404 * mappings so that we can fix up the configuration as necessary before 405 * doing the import. 406 */ 407 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 408 return (-1); 409 410 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 411 free(ne); 412 return (-1); 413 } 414 415 ne->ne_guid = vdev_guid; 416 ne->ne_next = pl->names; 417 pl->names = ne; 418 419 return (0); 420 } 421 422 /* 423 * Returns true if the named pool matches the given GUID. 424 */ 425 static int 426 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 427 boolean_t *isactive) 428 { 429 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 430 431 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 432 guid, isactive); 433 434 return (error); 435 } 436 437 static nvlist_t * 438 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 439 { 440 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 441 442 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 443 tryconfig)); 444 } 445 446 /* 447 * Determine if the vdev id is a hole in the namespace. 448 */ 449 static boolean_t 450 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 451 { 452 for (int c = 0; c < holes; c++) { 453 454 /* Top-level is a hole */ 455 if (hole_array[c] == id) 456 return (B_TRUE); 457 } 458 return (B_FALSE); 459 } 460 461 /* 462 * Convert our list of pools into the definitive set of configurations. We 463 * start by picking the best config for each toplevel vdev. Once that's done, 464 * we assemble the toplevel vdevs into a full config for the pool. We make a 465 * pass to fix up any incorrect paths, and then add it to the main list to 466 * return to the user. 467 */ 468 static nvlist_t * 469 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 470 nvlist_t *policy) 471 { 472 pool_entry_t *pe; 473 vdev_entry_t *ve; 474 config_entry_t *ce; 475 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 476 nvlist_t **spares, **l2cache; 477 uint_t i, nspares, nl2cache; 478 boolean_t config_seen; 479 uint64_t best_txg; 480 char *name, *hostname = NULL; 481 uint64_t guid; 482 uint_t children = 0; 483 nvlist_t **child = NULL; 484 uint_t holes; 485 uint64_t *hole_array, max_id; 486 uint_t c; 487 boolean_t isactive; 488 uint64_t hostid; 489 nvlist_t *nvl; 490 boolean_t found_one = B_FALSE; 491 boolean_t valid_top_config = B_FALSE; 492 493 if (nvlist_alloc(&ret, 0, 0) != 0) 494 goto nomem; 495 496 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 497 uint64_t id, max_txg = 0; 498 499 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 500 goto nomem; 501 config_seen = B_FALSE; 502 503 /* 504 * Iterate over all toplevel vdevs. Grab the pool configuration 505 * from the first one we find, and then go through the rest and 506 * add them as necessary to the 'vdevs' member of the config. 507 */ 508 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 509 510 /* 511 * Determine the best configuration for this vdev by 512 * selecting the config with the latest transaction 513 * group. 514 */ 515 best_txg = 0; 516 for (ce = ve->ve_configs; ce != NULL; 517 ce = ce->ce_next) { 518 519 if (ce->ce_txg > best_txg) { 520 tmp = ce->ce_config; 521 best_txg = ce->ce_txg; 522 } 523 } 524 525 /* 526 * We rely on the fact that the max txg for the 527 * pool will contain the most up-to-date information 528 * about the valid top-levels in the vdev namespace. 529 */ 530 if (best_txg > max_txg) { 531 (void) nvlist_remove(config, 532 ZPOOL_CONFIG_VDEV_CHILDREN, 533 DATA_TYPE_UINT64); 534 (void) nvlist_remove(config, 535 ZPOOL_CONFIG_HOLE_ARRAY, 536 DATA_TYPE_UINT64_ARRAY); 537 538 max_txg = best_txg; 539 hole_array = NULL; 540 holes = 0; 541 max_id = 0; 542 valid_top_config = B_FALSE; 543 544 if (nvlist_lookup_uint64(tmp, 545 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 546 verify(nvlist_add_uint64(config, 547 ZPOOL_CONFIG_VDEV_CHILDREN, 548 max_id) == 0); 549 valid_top_config = B_TRUE; 550 } 551 552 if (nvlist_lookup_uint64_array(tmp, 553 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 554 &holes) == 0) { 555 verify(nvlist_add_uint64_array(config, 556 ZPOOL_CONFIG_HOLE_ARRAY, 557 hole_array, holes) == 0); 558 } 559 } 560 561 if (!config_seen) { 562 /* 563 * Copy the relevant pieces of data to the pool 564 * configuration: 565 * 566 * version 567 * pool guid 568 * name 569 * comment (if available) 570 * pool state 571 * hostid (if available) 572 * hostname (if available) 573 */ 574 uint64_t state, version; 575 char *comment = NULL; 576 577 version = fnvlist_lookup_uint64(tmp, 578 ZPOOL_CONFIG_VERSION); 579 fnvlist_add_uint64(config, 580 ZPOOL_CONFIG_VERSION, version); 581 guid = fnvlist_lookup_uint64(tmp, 582 ZPOOL_CONFIG_POOL_GUID); 583 fnvlist_add_uint64(config, 584 ZPOOL_CONFIG_POOL_GUID, guid); 585 name = fnvlist_lookup_string(tmp, 586 ZPOOL_CONFIG_POOL_NAME); 587 fnvlist_add_string(config, 588 ZPOOL_CONFIG_POOL_NAME, name); 589 590 if (nvlist_lookup_string(tmp, 591 ZPOOL_CONFIG_COMMENT, &comment) == 0) 592 fnvlist_add_string(config, 593 ZPOOL_CONFIG_COMMENT, comment); 594 595 state = fnvlist_lookup_uint64(tmp, 596 ZPOOL_CONFIG_POOL_STATE); 597 fnvlist_add_uint64(config, 598 ZPOOL_CONFIG_POOL_STATE, state); 599 600 hostid = 0; 601 if (nvlist_lookup_uint64(tmp, 602 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 603 fnvlist_add_uint64(config, 604 ZPOOL_CONFIG_HOSTID, hostid); 605 hostname = fnvlist_lookup_string(tmp, 606 ZPOOL_CONFIG_HOSTNAME); 607 fnvlist_add_string(config, 608 ZPOOL_CONFIG_HOSTNAME, hostname); 609 } 610 611 config_seen = B_TRUE; 612 } 613 614 /* 615 * Add this top-level vdev to the child array. 616 */ 617 verify(nvlist_lookup_nvlist(tmp, 618 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 619 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 620 &id) == 0); 621 622 if (id >= children) { 623 nvlist_t **newchild; 624 625 newchild = zutil_alloc(hdl, (id + 1) * 626 sizeof (nvlist_t *)); 627 if (newchild == NULL) 628 goto nomem; 629 630 for (c = 0; c < children; c++) 631 newchild[c] = child[c]; 632 633 free(child); 634 child = newchild; 635 children = id + 1; 636 } 637 if (nvlist_dup(nvtop, &child[id], 0) != 0) 638 goto nomem; 639 640 } 641 642 /* 643 * If we have information about all the top-levels then 644 * clean up the nvlist which we've constructed. This 645 * means removing any extraneous devices that are 646 * beyond the valid range or adding devices to the end 647 * of our array which appear to be missing. 648 */ 649 if (valid_top_config) { 650 if (max_id < children) { 651 for (c = max_id; c < children; c++) 652 nvlist_free(child[c]); 653 children = max_id; 654 } else if (max_id > children) { 655 nvlist_t **newchild; 656 657 newchild = zutil_alloc(hdl, (max_id) * 658 sizeof (nvlist_t *)); 659 if (newchild == NULL) 660 goto nomem; 661 662 for (c = 0; c < children; c++) 663 newchild[c] = child[c]; 664 665 free(child); 666 child = newchild; 667 children = max_id; 668 } 669 } 670 671 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 672 &guid) == 0); 673 674 /* 675 * The vdev namespace may contain holes as a result of 676 * device removal. We must add them back into the vdev 677 * tree before we process any missing devices. 678 */ 679 if (holes > 0) { 680 ASSERT(valid_top_config); 681 682 for (c = 0; c < children; c++) { 683 nvlist_t *holey; 684 685 if (child[c] != NULL || 686 !vdev_is_hole(hole_array, holes, c)) 687 continue; 688 689 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 690 0) != 0) 691 goto nomem; 692 693 /* 694 * Holes in the namespace are treated as 695 * "hole" top-level vdevs and have a 696 * special flag set on them. 697 */ 698 if (nvlist_add_string(holey, 699 ZPOOL_CONFIG_TYPE, 700 VDEV_TYPE_HOLE) != 0 || 701 nvlist_add_uint64(holey, 702 ZPOOL_CONFIG_ID, c) != 0 || 703 nvlist_add_uint64(holey, 704 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 705 nvlist_free(holey); 706 goto nomem; 707 } 708 child[c] = holey; 709 } 710 } 711 712 /* 713 * Look for any missing top-level vdevs. If this is the case, 714 * create a faked up 'missing' vdev as a placeholder. We cannot 715 * simply compress the child array, because the kernel performs 716 * certain checks to make sure the vdev IDs match their location 717 * in the configuration. 718 */ 719 for (c = 0; c < children; c++) { 720 if (child[c] == NULL) { 721 nvlist_t *missing; 722 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 723 0) != 0) 724 goto nomem; 725 if (nvlist_add_string(missing, 726 ZPOOL_CONFIG_TYPE, 727 VDEV_TYPE_MISSING) != 0 || 728 nvlist_add_uint64(missing, 729 ZPOOL_CONFIG_ID, c) != 0 || 730 nvlist_add_uint64(missing, 731 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 732 nvlist_free(missing); 733 goto nomem; 734 } 735 child[c] = missing; 736 } 737 } 738 739 /* 740 * Put all of this pool's top-level vdevs into a root vdev. 741 */ 742 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 743 goto nomem; 744 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 745 VDEV_TYPE_ROOT) != 0 || 746 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 747 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 748 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 749 child, children) != 0) { 750 nvlist_free(nvroot); 751 goto nomem; 752 } 753 754 for (c = 0; c < children; c++) 755 nvlist_free(child[c]); 756 free(child); 757 children = 0; 758 child = NULL; 759 760 /* 761 * Go through and fix up any paths and/or devids based on our 762 * known list of vdev GUID -> path mappings. 763 */ 764 if (fix_paths(nvroot, pl->names) != 0) { 765 nvlist_free(nvroot); 766 goto nomem; 767 } 768 769 /* 770 * Add the root vdev to this pool's configuration. 771 */ 772 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 773 nvroot) != 0) { 774 nvlist_free(nvroot); 775 goto nomem; 776 } 777 nvlist_free(nvroot); 778 779 /* 780 * zdb uses this path to report on active pools that were 781 * imported or created using -R. 782 */ 783 if (active_ok) 784 goto add_pool; 785 786 /* 787 * Determine if this pool is currently active, in which case we 788 * can't actually import it. 789 */ 790 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 791 &name) == 0); 792 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 793 &guid) == 0); 794 795 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 796 goto error; 797 798 if (isactive) { 799 nvlist_free(config); 800 config = NULL; 801 continue; 802 } 803 804 if (policy != NULL) { 805 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 806 policy) != 0) 807 goto nomem; 808 } 809 810 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 811 nvlist_free(config); 812 config = NULL; 813 continue; 814 } 815 816 nvlist_free(config); 817 config = nvl; 818 819 /* 820 * Go through and update the paths for spares, now that we have 821 * them. 822 */ 823 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 824 &nvroot) == 0); 825 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 826 &spares, &nspares) == 0) { 827 for (i = 0; i < nspares; i++) { 828 if (fix_paths(spares[i], pl->names) != 0) 829 goto nomem; 830 } 831 } 832 833 /* 834 * Update the paths for l2cache devices. 835 */ 836 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 837 &l2cache, &nl2cache) == 0) { 838 for (i = 0; i < nl2cache; i++) { 839 if (fix_paths(l2cache[i], pl->names) != 0) 840 goto nomem; 841 } 842 } 843 844 /* 845 * Restore the original information read from the actual label. 846 */ 847 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 848 DATA_TYPE_UINT64); 849 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 850 DATA_TYPE_STRING); 851 if (hostid != 0) { 852 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 853 hostid) == 0); 854 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 855 hostname) == 0); 856 } 857 858 add_pool: 859 /* 860 * Add this pool to the list of configs. 861 */ 862 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 863 &name) == 0); 864 if (nvlist_add_nvlist(ret, name, config) != 0) 865 goto nomem; 866 867 found_one = B_TRUE; 868 nvlist_free(config); 869 config = NULL; 870 } 871 872 if (!found_one) { 873 nvlist_free(ret); 874 ret = NULL; 875 } 876 877 return (ret); 878 879 nomem: 880 (void) zutil_no_memory(hdl); 881 error: 882 nvlist_free(config); 883 nvlist_free(ret); 884 for (c = 0; c < children; c++) 885 nvlist_free(child[c]); 886 free(child); 887 888 return (NULL); 889 } 890 891 /* 892 * Return the offset of the given label. 893 */ 894 static uint64_t 895 label_offset(uint64_t size, int l) 896 { 897 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 898 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 899 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 900 } 901 902 /* 903 * Given a file descriptor, read the label information and return an nvlist 904 * describing the configuration, if there is one. The number of valid 905 * labels found will be returned in num_labels when non-NULL. 906 */ 907 int 908 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 909 { 910 struct stat64 statbuf; 911 int l, count = 0; 912 vdev_label_t *label; 913 nvlist_t *expected_config = NULL; 914 uint64_t expected_guid = 0, size; 915 916 *config = NULL; 917 918 if (num_labels != NULL) 919 *num_labels = 0; 920 921 if (fstat64(fd, &statbuf) == -1) 922 return (0); 923 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 924 925 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 926 return (-1); 927 928 for (l = 0; l < VDEV_LABELS; l++) { 929 uint64_t state, guid, txg; 930 931 if (pread64(fd, label, sizeof (vdev_label_t), 932 label_offset(size, l)) != sizeof (vdev_label_t)) 933 continue; 934 935 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 936 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 937 continue; 938 939 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 940 &guid) != 0 || guid == 0) { 941 nvlist_free(*config); 942 continue; 943 } 944 945 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 946 &state) != 0 || state > POOL_STATE_L2CACHE) { 947 nvlist_free(*config); 948 continue; 949 } 950 951 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 952 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 953 &txg) != 0 || txg == 0)) { 954 nvlist_free(*config); 955 continue; 956 } 957 958 if (expected_guid) { 959 if (expected_guid == guid) 960 count++; 961 962 nvlist_free(*config); 963 } else { 964 expected_config = *config; 965 expected_guid = guid; 966 count++; 967 } 968 } 969 970 if (num_labels != NULL) 971 *num_labels = count; 972 973 free(label); 974 *config = expected_config; 975 976 return (0); 977 } 978 979 static int 980 slice_cache_compare(const void *arg1, const void *arg2) 981 { 982 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 983 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 984 char *nm1slice, *nm2slice; 985 int rv; 986 987 /* 988 * slices zero and two are the most likely to provide results, 989 * so put those first 990 */ 991 nm1slice = strstr(nm1, "s0"); 992 nm2slice = strstr(nm2, "s0"); 993 if (nm1slice && !nm2slice) { 994 return (-1); 995 } 996 if (!nm1slice && nm2slice) { 997 return (1); 998 } 999 nm1slice = strstr(nm1, "s2"); 1000 nm2slice = strstr(nm2, "s2"); 1001 if (nm1slice && !nm2slice) { 1002 return (-1); 1003 } 1004 if (!nm1slice && nm2slice) { 1005 return (1); 1006 } 1007 1008 rv = strcmp(nm1, nm2); 1009 if (rv == 0) 1010 return (0); 1011 return (rv > 0 ? 1 : -1); 1012 } 1013 1014 static void 1015 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 1016 diskaddr_t size, uint_t blksz) 1017 { 1018 rdsk_node_t tmpnode; 1019 rdsk_node_t *node; 1020 char sname[MAXNAMELEN]; 1021 1022 tmpnode.rn_name = &sname[0]; 1023 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 1024 diskname, partno); 1025 /* 1026 * protect against division by zero for disk labels that 1027 * contain a bogus sector size 1028 */ 1029 if (blksz == 0) 1030 blksz = DEV_BSIZE; 1031 /* too small to contain a zpool? */ 1032 if ((size < (SPA_MINDEVSIZE / blksz)) && 1033 (node = avl_find(r, &tmpnode, NULL))) 1034 node->rn_nozpool = B_TRUE; 1035 } 1036 1037 static void 1038 nozpool_all_slices(avl_tree_t *r, const char *sname) 1039 { 1040 char diskname[MAXNAMELEN]; 1041 char *ptr; 1042 int i; 1043 1044 (void) strncpy(diskname, sname, MAXNAMELEN); 1045 if (((ptr = strrchr(diskname, 's')) == NULL) && 1046 ((ptr = strrchr(diskname, 'p')) == NULL)) 1047 return; 1048 ptr[0] = 's'; 1049 ptr[1] = '\0'; 1050 for (i = 0; i < NDKMAP; i++) 1051 check_one_slice(r, diskname, i, 0, 1); 1052 ptr[0] = 'p'; 1053 for (i = 0; i <= FD_NUMPART; i++) 1054 check_one_slice(r, diskname, i, 0, 1); 1055 } 1056 1057 static void 1058 check_slices(avl_tree_t *r, int fd, const char *sname) 1059 { 1060 struct extvtoc vtoc; 1061 struct dk_gpt *gpt; 1062 char diskname[MAXNAMELEN]; 1063 char *ptr; 1064 int i; 1065 1066 (void) strncpy(diskname, sname, MAXNAMELEN); 1067 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1068 return; 1069 ptr[1] = '\0'; 1070 1071 if (read_extvtoc(fd, &vtoc) >= 0) { 1072 for (i = 0; i < NDKMAP; i++) 1073 check_one_slice(r, diskname, i, 1074 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1075 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1076 /* 1077 * on x86 we'll still have leftover links that point 1078 * to slices s[9-15], so use NDKMAP instead 1079 */ 1080 for (i = 0; i < NDKMAP; i++) 1081 check_one_slice(r, diskname, i, 1082 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1083 /* nodes p[1-4] are never used with EFI labels */ 1084 ptr[0] = 'p'; 1085 for (i = 1; i <= FD_NUMPART; i++) 1086 check_one_slice(r, diskname, i, 0, 1); 1087 efi_free(gpt); 1088 } 1089 } 1090 1091 void 1092 zpool_open_func(void *arg) 1093 { 1094 rdsk_node_t *rn = arg; 1095 struct stat64 statbuf; 1096 nvlist_t *config; 1097 int error; 1098 int num_labels = 0; 1099 int fd; 1100 1101 if (rn->rn_nozpool) 1102 return; 1103 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1104 /* symlink to a device that's no longer there */ 1105 if (errno == ENOENT) 1106 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1107 return; 1108 } 1109 /* 1110 * Ignore failed stats. We only want regular 1111 * files, character devs and block devs. 1112 */ 1113 if (fstat64(fd, &statbuf) != 0 || 1114 (!S_ISREG(statbuf.st_mode) && 1115 !S_ISCHR(statbuf.st_mode) && 1116 !S_ISBLK(statbuf.st_mode))) { 1117 (void) close(fd); 1118 return; 1119 } 1120 /* this file is too small to hold a zpool */ 1121 if (S_ISREG(statbuf.st_mode) && 1122 statbuf.st_size < SPA_MINDEVSIZE) { 1123 (void) close(fd); 1124 return; 1125 } else if (!S_ISREG(statbuf.st_mode)) { 1126 /* 1127 * Try to read the disk label first so we don't have to 1128 * open a bunch of minor nodes that can't have a zpool. 1129 */ 1130 check_slices(rn->rn_avl, fd, rn->rn_name); 1131 } 1132 1133 error = zpool_read_label(fd, &config, &num_labels); 1134 if (error != 0) { 1135 (void) close(fd); 1136 return; 1137 } 1138 1139 if (num_labels == 0) { 1140 (void) close(fd); 1141 nvlist_free(config); 1142 return; 1143 } 1144 1145 (void) close(fd); 1146 1147 rn->rn_config = config; 1148 rn->rn_num_labels = num_labels; 1149 } 1150 1151 /* 1152 * Given a list of directories to search, find all pools stored on disk. This 1153 * includes partial pools which are not available to import. If no args are 1154 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1155 * poolname or guid (but not both) are provided by the caller when trying 1156 * to import a specific pool. 1157 */ 1158 static nvlist_t * 1159 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg) 1160 { 1161 int i, dirs = iarg->paths; 1162 struct dirent64 *dp; 1163 char path[MAXPATHLEN]; 1164 char *end, **dir = iarg->path; 1165 size_t pathleft; 1166 nvlist_t *ret = NULL; 1167 static char *default_dir = ZFS_DISK_ROOT; 1168 pool_list_t pools = { 0 }; 1169 pool_entry_t *pe, *penext; 1170 vdev_entry_t *ve, *venext; 1171 config_entry_t *ce, *cenext; 1172 name_entry_t *ne, *nenext; 1173 avl_tree_t slice_cache; 1174 rdsk_node_t *slice; 1175 void *cookie; 1176 1177 if (dirs == 0) { 1178 dirs = 1; 1179 dir = &default_dir; 1180 } 1181 1182 /* 1183 * Go through and read the label configuration information from every 1184 * possible device, organizing the information according to pool GUID 1185 * and toplevel GUID. 1186 */ 1187 for (i = 0; i < dirs; i++) { 1188 tpool_t *t; 1189 char rdsk[MAXPATHLEN]; 1190 int dfd; 1191 boolean_t config_failed = B_FALSE; 1192 DIR *dirp; 1193 1194 /* use realpath to normalize the path */ 1195 if (realpath(dir[i], path) == 0) { 1196 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1197 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1198 goto error; 1199 } 1200 end = &path[strlen(path)]; 1201 *end++ = '/'; 1202 *end = 0; 1203 pathleft = &path[sizeof (path)] - end; 1204 1205 /* 1206 * Using raw devices instead of block devices when we're 1207 * reading the labels skips a bunch of slow operations during 1208 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1209 */ 1210 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1211 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1212 else 1213 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1214 1215 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1216 (dirp = fdopendir(dfd)) == NULL) { 1217 if (dfd >= 0) 1218 (void) close(dfd); 1219 zutil_error_aux(hdl, strerror(errno)); 1220 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1221 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1222 rdsk); 1223 goto error; 1224 } 1225 1226 avl_create(&slice_cache, slice_cache_compare, 1227 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1228 /* 1229 * This is not MT-safe, but we have no MT consumers of libzutil 1230 */ 1231 while ((dp = readdir64(dirp)) != NULL) { 1232 char *name = dp->d_name; 1233 avl_index_t where; 1234 1235 if (name[0] == '.' && 1236 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1237 continue; 1238 1239 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1240 slice->rn_name = name; 1241 slice->rn_avl = &slice_cache; 1242 slice->rn_dfd = dfd; 1243 slice->rn_hdl = hdl; 1244 slice->rn_nozpool = B_FALSE; 1245 /* 1246 * readdir(3C) buffers several directory entries per 1247 * actual read operation. It is possible that if 1248 * directory entries appear between reading one chunk 1249 * and the next, that the same entry name can end up 1250 * being returned more than once. We need to check that 1251 * this entry doesn't already exist before adding it to 1252 * the tree. 1253 */ 1254 if (avl_find(&slice_cache, slice, &where) == NULL) { 1255 slice->rn_name = zutil_strdup(hdl, name); 1256 avl_insert(&slice_cache, slice, where); 1257 } else { 1258 free(slice); 1259 } 1260 } 1261 /* 1262 * create a thread pool to do all of this in parallel; 1263 * rn_nozpool is not protected, so this is racy in that 1264 * multiple tasks could decide that the same slice can 1265 * not hold a zpool, which is benign. Also choose 1266 * double the number of processors; we hold a lot of 1267 * locks in the kernel, so going beyond this doesn't 1268 * buy us much. 1269 */ 1270 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1271 0, NULL); 1272 for (slice = avl_first(&slice_cache); slice; 1273 (slice = avl_walk(&slice_cache, slice, 1274 AVL_AFTER))) 1275 (void) tpool_dispatch(t, zpool_open_func, slice); 1276 tpool_wait(t); 1277 tpool_destroy(t); 1278 1279 cookie = NULL; 1280 while ((slice = avl_destroy_nodes(&slice_cache, 1281 &cookie)) != NULL) { 1282 if (slice->rn_config != NULL && !config_failed) { 1283 nvlist_t *config = slice->rn_config; 1284 boolean_t matched = B_TRUE; 1285 1286 if (iarg->poolname != NULL) { 1287 char *pname; 1288 1289 matched = nvlist_lookup_string(config, 1290 ZPOOL_CONFIG_POOL_NAME, 1291 &pname) == 0 && 1292 strcmp(iarg->poolname, pname) == 0; 1293 } else if (iarg->guid != 0) { 1294 uint64_t this_guid; 1295 1296 matched = nvlist_lookup_uint64(config, 1297 ZPOOL_CONFIG_POOL_GUID, 1298 &this_guid) == 0 && 1299 iarg->guid == this_guid; 1300 } 1301 if (matched) { 1302 /* 1303 * use the non-raw path for the config 1304 */ 1305 (void) strlcpy(end, slice->rn_name, 1306 pathleft); 1307 (void) add_config(hdl, &pools, 1308 path, slice->rn_order, 1309 slice->rn_num_labels, config); 1310 } 1311 nvlist_free(config); 1312 } 1313 free(slice->rn_name); 1314 free(slice); 1315 } 1316 avl_destroy(&slice_cache); 1317 1318 (void) closedir(dirp); 1319 1320 if (config_failed) 1321 goto error; 1322 } 1323 1324 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1325 1326 error: 1327 for (pe = pools.pools; pe != NULL; pe = penext) { 1328 penext = pe->pe_next; 1329 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1330 venext = ve->ve_next; 1331 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1332 cenext = ce->ce_next; 1333 nvlist_free(ce->ce_config); 1334 free(ce); 1335 } 1336 free(ve); 1337 } 1338 free(pe); 1339 } 1340 1341 for (ne = pools.names; ne != NULL; ne = nenext) { 1342 nenext = ne->ne_next; 1343 free(ne->ne_name); 1344 free(ne); 1345 } 1346 1347 return (ret); 1348 } 1349 1350 /* 1351 * Given a cache file, return the contents as a list of importable pools. 1352 * poolname or guid (but not both) are provided by the caller when trying 1353 * to import a specific pool. 1354 */ 1355 static nvlist_t * 1356 zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile, 1357 const char *poolname, uint64_t guid) 1358 { 1359 char *buf; 1360 int fd; 1361 struct stat64 statbuf; 1362 nvlist_t *raw, *src, *dst; 1363 nvlist_t *pools; 1364 nvpair_t *elem; 1365 char *name; 1366 uint64_t this_guid; 1367 boolean_t active; 1368 1369 verify(poolname == NULL || guid == 0); 1370 1371 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1372 zutil_error_aux(hdl, "%s", strerror(errno)); 1373 (void) zutil_error(hdl, EZFS_BADCACHE, 1374 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1375 return (NULL); 1376 } 1377 1378 if (fstat64(fd, &statbuf) != 0) { 1379 zutil_error_aux(hdl, "%s", strerror(errno)); 1380 (void) close(fd); 1381 (void) zutil_error(hdl, EZFS_BADCACHE, 1382 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1383 return (NULL); 1384 } 1385 1386 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1387 (void) close(fd); 1388 return (NULL); 1389 } 1390 1391 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1392 (void) close(fd); 1393 free(buf); 1394 (void) zutil_error(hdl, EZFS_BADCACHE, 1395 dgettext(TEXT_DOMAIN, 1396 "failed to read cache file contents")); 1397 return (NULL); 1398 } 1399 1400 (void) close(fd); 1401 1402 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1403 free(buf); 1404 (void) zutil_error(hdl, EZFS_BADCACHE, 1405 dgettext(TEXT_DOMAIN, 1406 "invalid or corrupt cache file contents")); 1407 return (NULL); 1408 } 1409 1410 free(buf); 1411 1412 /* 1413 * Go through and get the current state of the pools and refresh their 1414 * state. 1415 */ 1416 if (nvlist_alloc(&pools, 0, 0) != 0) { 1417 (void) zutil_no_memory(hdl); 1418 nvlist_free(raw); 1419 return (NULL); 1420 } 1421 1422 elem = NULL; 1423 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1424 src = fnvpair_value_nvlist(elem); 1425 1426 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1427 if (poolname != NULL && strcmp(poolname, name) != 0) 1428 continue; 1429 1430 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1431 if (guid != 0 && guid != this_guid) 1432 continue; 1433 1434 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1435 nvlist_free(raw); 1436 nvlist_free(pools); 1437 return (NULL); 1438 } 1439 1440 if (active) 1441 continue; 1442 1443 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1444 cachefile) != 0) { 1445 (void) zutil_no_memory(hdl); 1446 nvlist_free(raw); 1447 nvlist_free(pools); 1448 return (NULL); 1449 } 1450 1451 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1452 nvlist_free(raw); 1453 nvlist_free(pools); 1454 return (NULL); 1455 } 1456 1457 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1458 (void) zutil_no_memory(hdl); 1459 nvlist_free(dst); 1460 nvlist_free(raw); 1461 nvlist_free(pools); 1462 return (NULL); 1463 } 1464 nvlist_free(dst); 1465 } 1466 1467 nvlist_free(raw); 1468 return (pools); 1469 } 1470 1471 nvlist_t * 1472 zpool_search_import(void *hdl, importargs_t *import, 1473 const pool_config_ops_t *pco) 1474 { 1475 libpc_handle_t handle = { 0 }; 1476 nvlist_t *pools = NULL; 1477 1478 handle.lpc_lib_handle = hdl; 1479 handle.lpc_ops = pco; 1480 handle.lpc_printerr = B_TRUE; 1481 1482 verify(import->poolname == NULL || import->guid == 0); 1483 1484 if (import->cachefile != NULL) 1485 pools = zpool_find_import_cached(&handle, import->cachefile, 1486 import->poolname, import->guid); 1487 else 1488 pools = zpool_find_import_impl(&handle, import); 1489 1490 if ((pools == NULL || nvlist_empty(pools)) && 1491 handle.lpc_open_access_error && geteuid() != 0) { 1492 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1493 "no pools found")); 1494 } 1495 1496 return (pools); 1497 } 1498 1499 static boolean_t 1500 pool_match(nvlist_t *cfg, char *tgt) 1501 { 1502 uint64_t v, guid = strtoull(tgt, NULL, 0); 1503 char *s; 1504 1505 if (guid != 0) { 1506 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1507 return (v == guid); 1508 } else { 1509 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1510 return (strcmp(s, tgt) == 0); 1511 } 1512 return (B_FALSE); 1513 } 1514 1515 int 1516 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1517 importargs_t *args, const pool_config_ops_t *pco) 1518 { 1519 nvlist_t *pools; 1520 nvlist_t *match = NULL; 1521 nvlist_t *config = NULL; 1522 char *sepp = NULL; 1523 int count = 0; 1524 char *targetdup = strdup(target); 1525 1526 *configp = NULL; 1527 1528 if ((sepp = strpbrk(targetdup, "/@")) != NULL) { 1529 *sepp = '\0'; 1530 } 1531 1532 pools = zpool_search_import(hdl, args, pco); 1533 1534 if (pools != NULL) { 1535 nvpair_t *elem = NULL; 1536 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1537 VERIFY0(nvpair_value_nvlist(elem, &config)); 1538 if (pool_match(config, targetdup)) { 1539 count++; 1540 if (match != NULL) { 1541 /* multiple matches found */ 1542 continue; 1543 } else { 1544 match = config; 1545 } 1546 } 1547 } 1548 } 1549 1550 if (count == 0) { 1551 free(targetdup); 1552 return (ENOENT); 1553 } 1554 1555 if (count > 1) { 1556 free(targetdup); 1557 return (EINVAL); 1558 } 1559 1560 *configp = match; 1561 free(targetdup); 1562 1563 return (0); 1564 } 1565