xref: /illumos-gate/usr/src/lib/libzutil/common/zutil_import.c (revision 12042ab213b3af68474f48555504db816a449211)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2017 Nexenta Systems, Inc.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright 2015 RackTop Systems.
27  * Copyright (c) 2016, Intel Corporation.
28  */
29 
30 /*
31  * Pool import support functions.
32  *
33  * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
34  * these commands are expected to run in the global zone, we can assume
35  * that the devices are all readable when called.
36  *
37  * To import a pool, we rely on reading the configuration information from the
38  * ZFS label of each device.  If we successfully read the label, then we
39  * organize the configuration information in the following hierarchy:
40  *
41  *	pool guid -> toplevel vdev guid -> label txg
42  *
43  * Duplicate entries matching this same tuple will be discarded.  Once we have
44  * examined every device, we pick the best label txg config for each toplevel
45  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
46  * update any paths that have changed.  Finally, we attempt to import the pool
47  * using our derived config, and record the results.
48  */
49 
50 #include <stdio.h>
51 #include <stdarg.h>
52 #include <assert.h>
53 #include <ctype.h>
54 #include <devid.h>
55 #include <dirent.h>
56 #include <errno.h>
57 #include <libintl.h>
58 #include <stddef.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <sys/stat.h>
62 #include <unistd.h>
63 #include <fcntl.h>
64 #include <sys/vtoc.h>
65 #include <sys/dktp/fdisk.h>
66 #include <sys/efi_partition.h>
67 #include <sys/vdev_impl.h>
68 #include <sys/fs/zfs.h>
69 
70 #include <thread_pool.h>
71 #include <libzutil.h>
72 #include <libnvpair.h>
73 
74 #include "zutil_import.h"
75 
76 #ifdef NDEBUG
77 #define	verify(EX)	((void)(EX))
78 #else
79 #define	verify(EX)	assert(EX)
80 #endif
81 
82 /*PRINTFLIKE2*/
83 static void
84 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...)
85 {
86 	va_list ap;
87 
88 	va_start(ap, fmt);
89 
90 	(void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap);
91 	hdl->lpc_desc_active = B_TRUE;
92 
93 	va_end(ap);
94 }
95 
96 static void
97 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt,
98     va_list ap)
99 {
100 	char action[1024];
101 
102 	(void) vsnprintf(action, sizeof (action), fmt, ap);
103 
104 	if (hdl->lpc_desc_active)
105 		hdl->lpc_desc_active = B_FALSE;
106 	else
107 		hdl->lpc_desc[0] = '\0';
108 
109 	if (hdl->lpc_printerr) {
110 		if (hdl->lpc_desc[0] != '\0')
111 			error = hdl->lpc_desc;
112 
113 		(void) fprintf(stderr, "%s: %s\n", action, error);
114 	}
115 }
116 
117 /*PRINTFLIKE3*/
118 static int
119 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...)
120 {
121 	va_list ap;
122 
123 	va_start(ap, fmt);
124 
125 	zutil_verror(hdl, error, fmt, ap);
126 
127 	va_end(ap);
128 
129 	return (-1);
130 }
131 
132 static int
133 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg)
134 {
135 	return (zutil_error_fmt(hdl, error, "%s", msg));
136 }
137 
138 static int
139 zutil_no_memory(libpc_handle_t *hdl)
140 {
141 	(void) zutil_error(hdl, EZFS_NOMEM, "internal error");
142 	exit(1);
143 }
144 
145 void *
146 zutil_alloc(libpc_handle_t *hdl, size_t size)
147 {
148 	void *data;
149 
150 	if ((data = calloc(1, size)) == NULL)
151 		(void) zutil_no_memory(hdl);
152 
153 	return (data);
154 }
155 
156 char *
157 zutil_strdup(libpc_handle_t *hdl, const char *str)
158 {
159 	char *ret;
160 
161 	if ((ret = strdup(str)) == NULL)
162 		(void) zutil_no_memory(hdl);
163 
164 	return (ret);
165 }
166 
167 /*
168  * Intermediate structures used to gather configuration information.
169  */
170 typedef struct config_entry {
171 	uint64_t		ce_txg;
172 	nvlist_t		*ce_config;
173 	struct config_entry	*ce_next;
174 } config_entry_t;
175 
176 typedef struct vdev_entry {
177 	uint64_t		ve_guid;
178 	config_entry_t		*ve_configs;
179 	struct vdev_entry	*ve_next;
180 } vdev_entry_t;
181 
182 typedef struct pool_entry {
183 	uint64_t		pe_guid;
184 	vdev_entry_t		*pe_vdevs;
185 	struct pool_entry	*pe_next;
186 } pool_entry_t;
187 
188 typedef struct name_entry {
189 	char			*ne_name;
190 	uint64_t		ne_guid;
191 	struct name_entry	*ne_next;
192 } name_entry_t;
193 
194 typedef struct pool_list {
195 	pool_entry_t		*pools;
196 	name_entry_t		*names;
197 } pool_list_t;
198 
199 /*
200  * Go through and fix up any path and/or devid information for the given vdev
201  * configuration.
202  */
203 static int
204 fix_paths(nvlist_t *nv, name_entry_t *names)
205 {
206 	nvlist_t **child;
207 	uint_t c, children;
208 	uint64_t guid;
209 	name_entry_t *ne, *best;
210 	char *path, *devid;
211 	int matched;
212 
213 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
214 	    &child, &children) == 0) {
215 		for (c = 0; c < children; c++)
216 			if (fix_paths(child[c], names) != 0)
217 				return (-1);
218 		return (0);
219 	}
220 
221 	/*
222 	 * This is a leaf (file or disk) vdev.  In either case, go through
223 	 * the name list and see if we find a matching guid.  If so, replace
224 	 * the path and see if we can calculate a new devid.
225 	 *
226 	 * There may be multiple names associated with a particular guid, in
227 	 * which case we have overlapping slices or multiple paths to the same
228 	 * disk.  If this is the case, then we want to pick the path that is
229 	 * the most similar to the original, where "most similar" is the number
230 	 * of matching characters starting from the end of the path.  This will
231 	 * preserve slice numbers even if the disks have been reorganized, and
232 	 * will also catch preferred disk names if multiple paths exist.
233 	 */
234 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
235 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
236 		path = NULL;
237 
238 	matched = 0;
239 	best = NULL;
240 	for (ne = names; ne != NULL; ne = ne->ne_next) {
241 		if (ne->ne_guid == guid) {
242 			const char *src, *dst;
243 			int count;
244 
245 			if (path == NULL) {
246 				best = ne;
247 				break;
248 			}
249 
250 			src = ne->ne_name + strlen(ne->ne_name) - 1;
251 			dst = path + strlen(path) - 1;
252 			for (count = 0; src >= ne->ne_name && dst >= path;
253 			    src--, dst--, count++)
254 				if (*src != *dst)
255 					break;
256 
257 			/*
258 			 * At this point, 'count' is the number of characters
259 			 * matched from the end.
260 			 */
261 			if (count > matched || best == NULL) {
262 				best = ne;
263 				matched = count;
264 			}
265 		}
266 	}
267 
268 	if (best == NULL)
269 		return (0);
270 
271 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
272 		return (-1);
273 
274 	if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
275 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
276 	} else {
277 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
278 			devid_str_free(devid);
279 			return (-1);
280 		}
281 		devid_str_free(devid);
282 	}
283 
284 	return (0);
285 }
286 
287 /*
288  * Add the given configuration to the list of known devices.
289  */
290 static int
291 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path,
292     int order, int num_labels, nvlist_t *config)
293 {
294 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
295 	pool_entry_t *pe;
296 	vdev_entry_t *ve;
297 	config_entry_t *ce;
298 	name_entry_t *ne;
299 
300 	/*
301 	 * If this is a hot spare not currently in use or level 2 cache
302 	 * device, add it to the list of names to translate, but don't do
303 	 * anything else.
304 	 */
305 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
306 	    &state) == 0 &&
307 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
308 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
309 		if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
310 			return (-1);
311 
312 		if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
313 			free(ne);
314 			return (-1);
315 		}
316 
317 		ne->ne_guid = vdev_guid;
318 		ne->ne_next = pl->names;
319 		pl->names = ne;
320 
321 		return (0);
322 	}
323 
324 	/*
325 	 * If we have a valid config but cannot read any of these fields, then
326 	 * it means we have a half-initialized label.  In vdev_label_init()
327 	 * we write a label with txg == 0 so that we can identify the device
328 	 * in case the user refers to the same disk later on.  If we fail to
329 	 * create the pool, we'll be left with a label in this state
330 	 * which should not be considered part of a valid pool.
331 	 */
332 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
333 	    &pool_guid) != 0 ||
334 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
335 	    &vdev_guid) != 0 ||
336 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
337 	    &top_guid) != 0 ||
338 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
339 	    &txg) != 0 || txg == 0) {
340 		return (0);
341 	}
342 
343 	/*
344 	 * First, see if we know about this pool.  If not, then add it to the
345 	 * list of known pools.
346 	 */
347 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
348 		if (pe->pe_guid == pool_guid)
349 			break;
350 	}
351 
352 	if (pe == NULL) {
353 		if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
354 			return (-1);
355 		}
356 		pe->pe_guid = pool_guid;
357 		pe->pe_next = pl->pools;
358 		pl->pools = pe;
359 	}
360 
361 	/*
362 	 * Second, see if we know about this toplevel vdev.  Add it if its
363 	 * missing.
364 	 */
365 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
366 		if (ve->ve_guid == top_guid)
367 			break;
368 	}
369 
370 	if (ve == NULL) {
371 		if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
372 			return (-1);
373 		}
374 		ve->ve_guid = top_guid;
375 		ve->ve_next = pe->pe_vdevs;
376 		pe->pe_vdevs = ve;
377 	}
378 
379 	/*
380 	 * Third, see if we have a config with a matching transaction group.  If
381 	 * so, then we do nothing.  Otherwise, add it to the list of known
382 	 * configs.
383 	 */
384 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
385 		if (ce->ce_txg == txg)
386 			break;
387 	}
388 
389 	if (ce == NULL) {
390 		if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) {
391 			return (-1);
392 		}
393 		ce->ce_txg = txg;
394 		ce->ce_config = fnvlist_dup(config);
395 		ce->ce_next = ve->ve_configs;
396 		ve->ve_configs = ce;
397 	}
398 
399 	/*
400 	 * At this point we've successfully added our config to the list of
401 	 * known configs.  The last thing to do is add the vdev guid -> path
402 	 * mappings so that we can fix up the configuration as necessary before
403 	 * doing the import.
404 	 */
405 	if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
406 		return (-1);
407 
408 	if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
409 		free(ne);
410 		return (-1);
411 	}
412 
413 	ne->ne_guid = vdev_guid;
414 	ne->ne_next = pl->names;
415 	pl->names = ne;
416 
417 	return (0);
418 }
419 
420 /*
421  * Returns true if the named pool matches the given GUID.
422  */
423 static int
424 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid,
425     boolean_t *isactive)
426 {
427 	ASSERT(hdl->lpc_ops->pco_pool_active != NULL);
428 
429 	int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name,
430 	    guid, isactive);
431 
432 	return (error);
433 }
434 
435 static nvlist_t *
436 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig)
437 {
438 	ASSERT(hdl->lpc_ops->pco_refresh_config != NULL);
439 
440 	return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle,
441 	    tryconfig));
442 }
443 
444 /*
445  * Determine if the vdev id is a hole in the namespace.
446  */
447 static boolean_t
448 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
449 {
450 	for (int c = 0; c < holes; c++) {
451 
452 		/* Top-level is a hole */
453 		if (hole_array[c] == id)
454 			return (B_TRUE);
455 	}
456 	return (B_FALSE);
457 }
458 
459 /*
460  * Convert our list of pools into the definitive set of configurations.  We
461  * start by picking the best config for each toplevel vdev.  Once that's done,
462  * we assemble the toplevel vdevs into a full config for the pool.  We make a
463  * pass to fix up any incorrect paths, and then add it to the main list to
464  * return to the user.
465  */
466 static nvlist_t *
467 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
468     nvlist_t *policy)
469 {
470 	pool_entry_t *pe;
471 	vdev_entry_t *ve;
472 	config_entry_t *ce;
473 	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
474 	nvlist_t **spares, **l2cache;
475 	uint_t i, nspares, nl2cache;
476 	boolean_t config_seen;
477 	uint64_t best_txg;
478 	char *name, *hostname = NULL;
479 	uint64_t guid;
480 	uint_t children = 0;
481 	nvlist_t **child = NULL;
482 	uint_t holes;
483 	uint64_t *hole_array, max_id;
484 	uint_t c;
485 	boolean_t isactive;
486 	uint64_t hostid;
487 	nvlist_t *nvl;
488 	boolean_t found_one = B_FALSE;
489 	boolean_t valid_top_config = B_FALSE;
490 
491 	if (nvlist_alloc(&ret, 0, 0) != 0)
492 		goto nomem;
493 
494 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
495 		uint64_t id, max_txg = 0;
496 
497 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
498 			goto nomem;
499 		config_seen = B_FALSE;
500 
501 		/*
502 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
503 		 * from the first one we find, and then go through the rest and
504 		 * add them as necessary to the 'vdevs' member of the config.
505 		 */
506 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
507 
508 			/*
509 			 * Determine the best configuration for this vdev by
510 			 * selecting the config with the latest transaction
511 			 * group.
512 			 */
513 			best_txg = 0;
514 			for (ce = ve->ve_configs; ce != NULL;
515 			    ce = ce->ce_next) {
516 
517 				if (ce->ce_txg > best_txg) {
518 					tmp = ce->ce_config;
519 					best_txg = ce->ce_txg;
520 				}
521 			}
522 
523 			/*
524 			 * We rely on the fact that the max txg for the
525 			 * pool will contain the most up-to-date information
526 			 * about the valid top-levels in the vdev namespace.
527 			 */
528 			if (best_txg > max_txg) {
529 				(void) nvlist_remove(config,
530 				    ZPOOL_CONFIG_VDEV_CHILDREN,
531 				    DATA_TYPE_UINT64);
532 				(void) nvlist_remove(config,
533 				    ZPOOL_CONFIG_HOLE_ARRAY,
534 				    DATA_TYPE_UINT64_ARRAY);
535 
536 				max_txg = best_txg;
537 				hole_array = NULL;
538 				holes = 0;
539 				max_id = 0;
540 				valid_top_config = B_FALSE;
541 
542 				if (nvlist_lookup_uint64(tmp,
543 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
544 					verify(nvlist_add_uint64(config,
545 					    ZPOOL_CONFIG_VDEV_CHILDREN,
546 					    max_id) == 0);
547 					valid_top_config = B_TRUE;
548 				}
549 
550 				if (nvlist_lookup_uint64_array(tmp,
551 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
552 				    &holes) == 0) {
553 					verify(nvlist_add_uint64_array(config,
554 					    ZPOOL_CONFIG_HOLE_ARRAY,
555 					    hole_array, holes) == 0);
556 				}
557 			}
558 
559 			if (!config_seen) {
560 				/*
561 				 * Copy the relevant pieces of data to the pool
562 				 * configuration:
563 				 *
564 				 *	version
565 				 *	pool guid
566 				 *	name
567 				 *	comment (if available)
568 				 *	pool state
569 				 *	hostid (if available)
570 				 *	hostname (if available)
571 				 */
572 				uint64_t state, version;
573 				char *comment = NULL;
574 
575 				version = fnvlist_lookup_uint64(tmp,
576 				    ZPOOL_CONFIG_VERSION);
577 				fnvlist_add_uint64(config,
578 				    ZPOOL_CONFIG_VERSION, version);
579 				guid = fnvlist_lookup_uint64(tmp,
580 				    ZPOOL_CONFIG_POOL_GUID);
581 				fnvlist_add_uint64(config,
582 				    ZPOOL_CONFIG_POOL_GUID, guid);
583 				name = fnvlist_lookup_string(tmp,
584 				    ZPOOL_CONFIG_POOL_NAME);
585 				fnvlist_add_string(config,
586 				    ZPOOL_CONFIG_POOL_NAME, name);
587 
588 				if (nvlist_lookup_string(tmp,
589 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
590 					fnvlist_add_string(config,
591 					    ZPOOL_CONFIG_COMMENT, comment);
592 
593 				state = fnvlist_lookup_uint64(tmp,
594 				    ZPOOL_CONFIG_POOL_STATE);
595 				fnvlist_add_uint64(config,
596 				    ZPOOL_CONFIG_POOL_STATE, state);
597 
598 				hostid = 0;
599 				if (nvlist_lookup_uint64(tmp,
600 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
601 					fnvlist_add_uint64(config,
602 					    ZPOOL_CONFIG_HOSTID, hostid);
603 					hostname = fnvlist_lookup_string(tmp,
604 					    ZPOOL_CONFIG_HOSTNAME);
605 					fnvlist_add_string(config,
606 					    ZPOOL_CONFIG_HOSTNAME, hostname);
607 				}
608 
609 				config_seen = B_TRUE;
610 			}
611 
612 			/*
613 			 * Add this top-level vdev to the child array.
614 			 */
615 			verify(nvlist_lookup_nvlist(tmp,
616 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
617 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
618 			    &id) == 0);
619 
620 			if (id >= children) {
621 				nvlist_t **newchild;
622 
623 				newchild = zutil_alloc(hdl, (id + 1) *
624 				    sizeof (nvlist_t *));
625 				if (newchild == NULL)
626 					goto nomem;
627 
628 				for (c = 0; c < children; c++)
629 					newchild[c] = child[c];
630 
631 				free(child);
632 				child = newchild;
633 				children = id + 1;
634 			}
635 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
636 				goto nomem;
637 
638 		}
639 
640 		/*
641 		 * If we have information about all the top-levels then
642 		 * clean up the nvlist which we've constructed. This
643 		 * means removing any extraneous devices that are
644 		 * beyond the valid range or adding devices to the end
645 		 * of our array which appear to be missing.
646 		 */
647 		if (valid_top_config) {
648 			if (max_id < children) {
649 				for (c = max_id; c < children; c++)
650 					nvlist_free(child[c]);
651 				children = max_id;
652 			} else if (max_id > children) {
653 				nvlist_t **newchild;
654 
655 				newchild = zutil_alloc(hdl, (max_id) *
656 				    sizeof (nvlist_t *));
657 				if (newchild == NULL)
658 					goto nomem;
659 
660 				for (c = 0; c < children; c++)
661 					newchild[c] = child[c];
662 
663 				free(child);
664 				child = newchild;
665 				children = max_id;
666 			}
667 		}
668 
669 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
670 		    &guid) == 0);
671 
672 		/*
673 		 * The vdev namespace may contain holes as a result of
674 		 * device removal. We must add them back into the vdev
675 		 * tree before we process any missing devices.
676 		 */
677 		if (holes > 0) {
678 			ASSERT(valid_top_config);
679 
680 			for (c = 0; c < children; c++) {
681 				nvlist_t *holey;
682 
683 				if (child[c] != NULL ||
684 				    !vdev_is_hole(hole_array, holes, c))
685 					continue;
686 
687 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
688 				    0) != 0)
689 					goto nomem;
690 
691 				/*
692 				 * Holes in the namespace are treated as
693 				 * "hole" top-level vdevs and have a
694 				 * special flag set on them.
695 				 */
696 				if (nvlist_add_string(holey,
697 				    ZPOOL_CONFIG_TYPE,
698 				    VDEV_TYPE_HOLE) != 0 ||
699 				    nvlist_add_uint64(holey,
700 				    ZPOOL_CONFIG_ID, c) != 0 ||
701 				    nvlist_add_uint64(holey,
702 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
703 					nvlist_free(holey);
704 					goto nomem;
705 				}
706 				child[c] = holey;
707 			}
708 		}
709 
710 		/*
711 		 * Look for any missing top-level vdevs.  If this is the case,
712 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
713 		 * simply compress the child array, because the kernel performs
714 		 * certain checks to make sure the vdev IDs match their location
715 		 * in the configuration.
716 		 */
717 		for (c = 0; c < children; c++) {
718 			if (child[c] == NULL) {
719 				nvlist_t *missing;
720 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
721 				    0) != 0)
722 					goto nomem;
723 				if (nvlist_add_string(missing,
724 				    ZPOOL_CONFIG_TYPE,
725 				    VDEV_TYPE_MISSING) != 0 ||
726 				    nvlist_add_uint64(missing,
727 				    ZPOOL_CONFIG_ID, c) != 0 ||
728 				    nvlist_add_uint64(missing,
729 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
730 					nvlist_free(missing);
731 					goto nomem;
732 				}
733 				child[c] = missing;
734 			}
735 		}
736 
737 		/*
738 		 * Put all of this pool's top-level vdevs into a root vdev.
739 		 */
740 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
741 			goto nomem;
742 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
743 		    VDEV_TYPE_ROOT) != 0 ||
744 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
745 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
746 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
747 		    child, children) != 0) {
748 			nvlist_free(nvroot);
749 			goto nomem;
750 		}
751 
752 		for (c = 0; c < children; c++)
753 			nvlist_free(child[c]);
754 		free(child);
755 		children = 0;
756 		child = NULL;
757 
758 		/*
759 		 * Go through and fix up any paths and/or devids based on our
760 		 * known list of vdev GUID -> path mappings.
761 		 */
762 		if (fix_paths(nvroot, pl->names) != 0) {
763 			nvlist_free(nvroot);
764 			goto nomem;
765 		}
766 
767 		/*
768 		 * Add the root vdev to this pool's configuration.
769 		 */
770 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
771 		    nvroot) != 0) {
772 			nvlist_free(nvroot);
773 			goto nomem;
774 		}
775 		nvlist_free(nvroot);
776 
777 		/*
778 		 * zdb uses this path to report on active pools that were
779 		 * imported or created using -R.
780 		 */
781 		if (active_ok)
782 			goto add_pool;
783 
784 		/*
785 		 * Determine if this pool is currently active, in which case we
786 		 * can't actually import it.
787 		 */
788 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
789 		    &name) == 0);
790 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
791 		    &guid) == 0);
792 
793 		if (zutil_pool_active(hdl, name, guid, &isactive) != 0)
794 			goto error;
795 
796 		if (isactive) {
797 			nvlist_free(config);
798 			config = NULL;
799 			continue;
800 		}
801 
802 		if (policy != NULL) {
803 			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
804 			    policy) != 0)
805 				goto nomem;
806 		}
807 
808 		if ((nvl = zutil_refresh_config(hdl, config)) == NULL) {
809 			nvlist_free(config);
810 			config = NULL;
811 			continue;
812 		}
813 
814 		nvlist_free(config);
815 		config = nvl;
816 
817 		/*
818 		 * Go through and update the paths for spares, now that we have
819 		 * them.
820 		 */
821 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
822 		    &nvroot) == 0);
823 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
824 		    &spares, &nspares) == 0) {
825 			for (i = 0; i < nspares; i++) {
826 				if (fix_paths(spares[i], pl->names) != 0)
827 					goto nomem;
828 			}
829 		}
830 
831 		/*
832 		 * Update the paths for l2cache devices.
833 		 */
834 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
835 		    &l2cache, &nl2cache) == 0) {
836 			for (i = 0; i < nl2cache; i++) {
837 				if (fix_paths(l2cache[i], pl->names) != 0)
838 					goto nomem;
839 			}
840 		}
841 
842 		/*
843 		 * Restore the original information read from the actual label.
844 		 */
845 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
846 		    DATA_TYPE_UINT64);
847 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
848 		    DATA_TYPE_STRING);
849 		if (hostid != 0) {
850 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
851 			    hostid) == 0);
852 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
853 			    hostname) == 0);
854 		}
855 
856 add_pool:
857 		/*
858 		 * Add this pool to the list of configs.
859 		 */
860 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
861 		    &name) == 0);
862 		if (nvlist_add_nvlist(ret, name, config) != 0)
863 			goto nomem;
864 
865 		found_one = B_TRUE;
866 		nvlist_free(config);
867 		config = NULL;
868 	}
869 
870 	if (!found_one) {
871 		nvlist_free(ret);
872 		ret = NULL;
873 	}
874 
875 	return (ret);
876 
877 nomem:
878 	(void) zutil_no_memory(hdl);
879 error:
880 	nvlist_free(config);
881 	nvlist_free(ret);
882 	for (c = 0; c < children; c++)
883 		nvlist_free(child[c]);
884 	free(child);
885 
886 	return (NULL);
887 }
888 
889 /*
890  * Return the offset of the given label.
891  */
892 static uint64_t
893 label_offset(uint64_t size, int l)
894 {
895 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
896 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
897 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
898 }
899 
900 /*
901  * Given a file descriptor, read the label information and return an nvlist
902  * describing the configuration, if there is one. The number of valid
903  * labels found will be returned in num_labels when non-NULL.
904  */
905 int
906 zpool_read_label(int fd, nvlist_t **config, int *num_labels)
907 {
908 	struct stat64 statbuf;
909 	int l, count = 0;
910 	vdev_label_t *label;
911 	nvlist_t *expected_config = NULL;
912 	uint64_t expected_guid = 0, size;
913 
914 	*config = NULL;
915 
916 	if (fstat64(fd, &statbuf) == -1)
917 		return (-1);
918 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
919 
920 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
921 		return (-1);
922 
923 	for (l = 0; l < VDEV_LABELS; l++) {
924 		uint64_t state, guid, txg;
925 
926 		if (pread64(fd, label, sizeof (vdev_label_t),
927 		    label_offset(size, l)) != sizeof (vdev_label_t))
928 			continue;
929 
930 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
931 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
932 			continue;
933 
934 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
935 		    &guid) != 0 || guid == 0) {
936 			nvlist_free(*config);
937 			continue;
938 		}
939 
940 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
941 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
942 			nvlist_free(*config);
943 			continue;
944 		}
945 
946 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
947 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
948 		    &txg) != 0 || txg == 0)) {
949 			nvlist_free(*config);
950 			continue;
951 		}
952 
953 		if (expected_guid) {
954 			if (expected_guid == guid)
955 				count++;
956 
957 			nvlist_free(*config);
958 		} else {
959 			expected_config = *config;
960 			expected_guid = guid;
961 			count++;
962 		}
963 	}
964 
965 	if (num_labels != NULL)
966 		*num_labels = count;
967 
968 	free(label);
969 	*config = expected_config;
970 
971 	if (count == 0) {
972 		errno = ENOENT;
973 		return (-1);
974 	}
975 
976 	return (0);
977 }
978 
979 static int
980 slice_cache_compare(const void *arg1, const void *arg2)
981 {
982 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
983 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
984 	char *nm1slice, *nm2slice;
985 	int rv;
986 
987 	/*
988 	 * slices zero and two are the most likely to provide results,
989 	 * so put those first
990 	 */
991 	nm1slice = strstr(nm1, "s0");
992 	nm2slice = strstr(nm2, "s0");
993 	if (nm1slice && !nm2slice) {
994 		return (-1);
995 	}
996 	if (!nm1slice && nm2slice) {
997 		return (1);
998 	}
999 	nm1slice = strstr(nm1, "s2");
1000 	nm2slice = strstr(nm2, "s2");
1001 	if (nm1slice && !nm2slice) {
1002 		return (-1);
1003 	}
1004 	if (!nm1slice && nm2slice) {
1005 		return (1);
1006 	}
1007 
1008 	rv = strcmp(nm1, nm2);
1009 	if (rv == 0)
1010 		return (0);
1011 	return (rv > 0 ? 1 : -1);
1012 }
1013 
1014 static void
1015 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
1016     diskaddr_t size, uint_t blksz)
1017 {
1018 	rdsk_node_t tmpnode;
1019 	rdsk_node_t *node;
1020 	char sname[MAXNAMELEN];
1021 
1022 	tmpnode.rn_name = &sname[0];
1023 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
1024 	    diskname, partno);
1025 	/*
1026 	 * protect against division by zero for disk labels that
1027 	 * contain a bogus sector size
1028 	 */
1029 	if (blksz == 0)
1030 		blksz = DEV_BSIZE;
1031 	/* too small to contain a zpool? */
1032 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
1033 	    (node = avl_find(r, &tmpnode, NULL)))
1034 		node->rn_nozpool = B_TRUE;
1035 }
1036 
1037 static void
1038 nozpool_all_slices(avl_tree_t *r, const char *sname)
1039 {
1040 	char diskname[MAXNAMELEN];
1041 	char *ptr;
1042 	int i;
1043 
1044 	(void) strncpy(diskname, sname, MAXNAMELEN);
1045 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
1046 	    ((ptr = strrchr(diskname, 'p')) == NULL))
1047 		return;
1048 	ptr[0] = 's';
1049 	ptr[1] = '\0';
1050 	for (i = 0; i < NDKMAP; i++)
1051 		check_one_slice(r, diskname, i, 0, 1);
1052 	ptr[0] = 'p';
1053 	for (i = 0; i <= FD_NUMPART; i++)
1054 		check_one_slice(r, diskname, i, 0, 1);
1055 }
1056 
1057 static void
1058 check_slices(avl_tree_t *r, int fd, const char *sname)
1059 {
1060 	struct extvtoc vtoc;
1061 	struct dk_gpt *gpt;
1062 	char diskname[MAXNAMELEN];
1063 	char *ptr;
1064 	int i;
1065 
1066 	(void) strncpy(diskname, sname, MAXNAMELEN);
1067 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1068 		return;
1069 	ptr[1] = '\0';
1070 
1071 	if (read_extvtoc(fd, &vtoc) >= 0) {
1072 		for (i = 0; i < NDKMAP; i++)
1073 			check_one_slice(r, diskname, i,
1074 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1075 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1076 		/*
1077 		 * on x86 we'll still have leftover links that point
1078 		 * to slices s[9-15], so use NDKMAP instead
1079 		 */
1080 		for (i = 0; i < NDKMAP; i++)
1081 			check_one_slice(r, diskname, i,
1082 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1083 		/* nodes p[1-4] are never used with EFI labels */
1084 		ptr[0] = 'p';
1085 		for (i = 1; i <= FD_NUMPART; i++)
1086 			check_one_slice(r, diskname, i, 0, 1);
1087 		efi_free(gpt);
1088 	}
1089 }
1090 
1091 void
1092 zpool_open_func(void *arg)
1093 {
1094 	rdsk_node_t *rn = arg;
1095 	struct stat64 statbuf;
1096 	nvlist_t *config;
1097 	int error;
1098 	int num_labels = 0;
1099 	int fd;
1100 
1101 	if (rn->rn_nozpool)
1102 		return;
1103 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1104 		/* symlink to a device that's no longer there */
1105 		if (errno == ENOENT)
1106 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1107 		return;
1108 	}
1109 	/*
1110 	 * Ignore failed stats.  We only want regular
1111 	 * files, character devs and block devs.
1112 	 */
1113 	if (fstat64(fd, &statbuf) != 0 ||
1114 	    (!S_ISREG(statbuf.st_mode) &&
1115 	    !S_ISCHR(statbuf.st_mode) &&
1116 	    !S_ISBLK(statbuf.st_mode))) {
1117 		(void) close(fd);
1118 		return;
1119 	}
1120 	/* this file is too small to hold a zpool */
1121 	if (S_ISREG(statbuf.st_mode) &&
1122 	    statbuf.st_size < SPA_MINDEVSIZE) {
1123 		(void) close(fd);
1124 		return;
1125 	} else if (!S_ISREG(statbuf.st_mode)) {
1126 		/*
1127 		 * Try to read the disk label first so we don't have to
1128 		 * open a bunch of minor nodes that can't have a zpool.
1129 		 */
1130 		check_slices(rn->rn_avl, fd, rn->rn_name);
1131 	}
1132 
1133 	error = zpool_read_label(fd, &config, &num_labels);
1134 	if (error != 0) {
1135 		(void) close(fd);
1136 		return;
1137 	}
1138 
1139 	if (num_labels == 0) {
1140 		(void) close(fd);
1141 		nvlist_free(config);
1142 		return;
1143 	}
1144 
1145 	(void) close(fd);
1146 
1147 	rn->rn_config = config;
1148 	rn->rn_num_labels = num_labels;
1149 }
1150 
1151 /*
1152  * Given a list of directories to search, find all pools stored on disk.  This
1153  * includes partial pools which are not available to import.  If no args are
1154  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1155  * poolname or guid (but not both) are provided by the caller when trying
1156  * to import a specific pool.
1157  */
1158 static nvlist_t *
1159 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg)
1160 {
1161 	int i, dirs = iarg->paths;
1162 	struct dirent64 *dp;
1163 	char path[MAXPATHLEN];
1164 	char *end, **dir = iarg->path;
1165 	size_t pathleft;
1166 	nvlist_t *ret = NULL;
1167 	static char *default_dir = ZFS_DISK_ROOT;
1168 	pool_list_t pools = { 0 };
1169 	pool_entry_t *pe, *penext;
1170 	vdev_entry_t *ve, *venext;
1171 	config_entry_t *ce, *cenext;
1172 	name_entry_t *ne, *nenext;
1173 	avl_tree_t slice_cache;
1174 	rdsk_node_t *slice;
1175 	void *cookie;
1176 
1177 	if (dirs == 0) {
1178 		dirs = 1;
1179 		dir = &default_dir;
1180 	}
1181 
1182 	/*
1183 	 * Go through and read the label configuration information from every
1184 	 * possible device, organizing the information according to pool GUID
1185 	 * and toplevel GUID.
1186 	 */
1187 	for (i = 0; i < dirs; i++) {
1188 		tpool_t *t;
1189 		char rdsk[MAXPATHLEN];
1190 		int dfd;
1191 		boolean_t config_failed = B_FALSE;
1192 		DIR *dirp;
1193 
1194 		/* use realpath to normalize the path */
1195 		if (realpath(dir[i], path) == 0) {
1196 			(void) zutil_error_fmt(hdl, EZFS_BADPATH,
1197 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1198 			goto error;
1199 		}
1200 		end = &path[strlen(path)];
1201 		*end++ = '/';
1202 		*end = 0;
1203 		pathleft = &path[sizeof (path)] - end;
1204 
1205 		/*
1206 		 * Using raw devices instead of block devices when we're
1207 		 * reading the labels skips a bunch of slow operations during
1208 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1209 		 */
1210 		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1211 			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1212 		else
1213 			(void) strlcpy(rdsk, path, sizeof (rdsk));
1214 
1215 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1216 		    (dirp = fdopendir(dfd)) == NULL) {
1217 			if (dfd >= 0)
1218 				(void) close(dfd);
1219 			zutil_error_aux(hdl, strerror(errno));
1220 			(void) zutil_error_fmt(hdl, EZFS_BADPATH,
1221 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1222 			    rdsk);
1223 			goto error;
1224 		}
1225 
1226 		avl_create(&slice_cache, slice_cache_compare,
1227 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1228 		/*
1229 		 * This is not MT-safe, but we have no MT consumers of libzutil
1230 		 */
1231 		while ((dp = readdir64(dirp)) != NULL) {
1232 			const char *name = dp->d_name;
1233 			if (name[0] == '.' &&
1234 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1235 				continue;
1236 
1237 			slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
1238 			slice->rn_name = zutil_strdup(hdl, name);
1239 			slice->rn_avl = &slice_cache;
1240 			slice->rn_dfd = dfd;
1241 			slice->rn_hdl = hdl;
1242 			slice->rn_nozpool = B_FALSE;
1243 			avl_add(&slice_cache, slice);
1244 		}
1245 		/*
1246 		 * create a thread pool to do all of this in parallel;
1247 		 * rn_nozpool is not protected, so this is racy in that
1248 		 * multiple tasks could decide that the same slice can
1249 		 * not hold a zpool, which is benign.  Also choose
1250 		 * double the number of processors; we hold a lot of
1251 		 * locks in the kernel, so going beyond this doesn't
1252 		 * buy us much.
1253 		 */
1254 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1255 		    0, NULL);
1256 		for (slice = avl_first(&slice_cache); slice;
1257 		    (slice = avl_walk(&slice_cache, slice,
1258 		    AVL_AFTER)))
1259 			(void) tpool_dispatch(t, zpool_open_func, slice);
1260 		tpool_wait(t);
1261 		tpool_destroy(t);
1262 
1263 		cookie = NULL;
1264 		while ((slice = avl_destroy_nodes(&slice_cache,
1265 		    &cookie)) != NULL) {
1266 			if (slice->rn_config != NULL && !config_failed) {
1267 				nvlist_t *config = slice->rn_config;
1268 				boolean_t matched = B_TRUE;
1269 
1270 				if (iarg->poolname != NULL) {
1271 					char *pname;
1272 
1273 					matched = nvlist_lookup_string(config,
1274 					    ZPOOL_CONFIG_POOL_NAME,
1275 					    &pname) == 0 &&
1276 					    strcmp(iarg->poolname, pname) == 0;
1277 				} else if (iarg->guid != 0) {
1278 					uint64_t this_guid;
1279 
1280 					matched = nvlist_lookup_uint64(config,
1281 					    ZPOOL_CONFIG_POOL_GUID,
1282 					    &this_guid) == 0 &&
1283 					    iarg->guid == this_guid;
1284 				}
1285 				if (matched) {
1286 					/*
1287 					 * use the non-raw path for the config
1288 					 */
1289 					(void) strlcpy(end, slice->rn_name,
1290 					    pathleft);
1291 					(void) add_config(hdl, &pools,
1292 					    path, slice->rn_order,
1293 					    slice->rn_num_labels, config);
1294 				}
1295 				nvlist_free(config);
1296 			}
1297 			free(slice->rn_name);
1298 			free(slice);
1299 		}
1300 		avl_destroy(&slice_cache);
1301 
1302 		(void) closedir(dirp);
1303 
1304 		if (config_failed)
1305 			goto error;
1306 	}
1307 
1308 	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1309 
1310 error:
1311 	for (pe = pools.pools; pe != NULL; pe = penext) {
1312 		penext = pe->pe_next;
1313 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1314 			venext = ve->ve_next;
1315 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1316 				cenext = ce->ce_next;
1317 				nvlist_free(ce->ce_config);
1318 				free(ce);
1319 			}
1320 			free(ve);
1321 		}
1322 		free(pe);
1323 	}
1324 
1325 	for (ne = pools.names; ne != NULL; ne = nenext) {
1326 		nenext = ne->ne_next;
1327 		free(ne->ne_name);
1328 		free(ne);
1329 	}
1330 
1331 	return (ret);
1332 }
1333 
1334 /*
1335  * Given a cache file, return the contents as a list of importable pools.
1336  * poolname or guid (but not both) are provided by the caller when trying
1337  * to import a specific pool.
1338  */
1339 static nvlist_t *
1340 zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile,
1341     const char *poolname, uint64_t guid)
1342 {
1343 	char *buf;
1344 	int fd;
1345 	struct stat64 statbuf;
1346 	nvlist_t *raw, *src, *dst;
1347 	nvlist_t *pools;
1348 	nvpair_t *elem;
1349 	char *name;
1350 	uint64_t this_guid;
1351 	boolean_t active;
1352 
1353 	verify(poolname == NULL || guid == 0);
1354 
1355 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1356 		zutil_error_aux(hdl, "%s", strerror(errno));
1357 		(void) zutil_error(hdl, EZFS_BADCACHE,
1358 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1359 		return (NULL);
1360 	}
1361 
1362 	if (fstat64(fd, &statbuf) != 0) {
1363 		zutil_error_aux(hdl, "%s", strerror(errno));
1364 		(void) close(fd);
1365 		(void) zutil_error(hdl, EZFS_BADCACHE,
1366 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1367 		return (NULL);
1368 	}
1369 
1370 	if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) {
1371 		(void) close(fd);
1372 		return (NULL);
1373 	}
1374 
1375 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1376 		(void) close(fd);
1377 		free(buf);
1378 		(void) zutil_error(hdl, EZFS_BADCACHE,
1379 		    dgettext(TEXT_DOMAIN,
1380 		    "failed to read cache file contents"));
1381 		return (NULL);
1382 	}
1383 
1384 	(void) close(fd);
1385 
1386 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1387 		free(buf);
1388 		(void) zutil_error(hdl, EZFS_BADCACHE,
1389 		    dgettext(TEXT_DOMAIN,
1390 		    "invalid or corrupt cache file contents"));
1391 		return (NULL);
1392 	}
1393 
1394 	free(buf);
1395 
1396 	/*
1397 	 * Go through and get the current state of the pools and refresh their
1398 	 * state.
1399 	 */
1400 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1401 		(void) zutil_no_memory(hdl);
1402 		nvlist_free(raw);
1403 		return (NULL);
1404 	}
1405 
1406 	elem = NULL;
1407 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1408 		src = fnvpair_value_nvlist(elem);
1409 
1410 		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1411 		if (poolname != NULL && strcmp(poolname, name) != 0)
1412 			continue;
1413 
1414 		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1415 		if (guid != 0 && guid != this_guid)
1416 			continue;
1417 
1418 		if (zutil_pool_active(hdl, name, this_guid, &active) != 0) {
1419 			nvlist_free(raw);
1420 			nvlist_free(pools);
1421 			return (NULL);
1422 		}
1423 
1424 		if (active)
1425 			continue;
1426 
1427 		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1428 		    cachefile) != 0) {
1429 			(void) zutil_no_memory(hdl);
1430 			nvlist_free(raw);
1431 			nvlist_free(pools);
1432 			return (NULL);
1433 		}
1434 
1435 		if ((dst = zutil_refresh_config(hdl, src)) == NULL) {
1436 			nvlist_free(raw);
1437 			nvlist_free(pools);
1438 			return (NULL);
1439 		}
1440 
1441 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1442 			(void) zutil_no_memory(hdl);
1443 			nvlist_free(dst);
1444 			nvlist_free(raw);
1445 			nvlist_free(pools);
1446 			return (NULL);
1447 		}
1448 		nvlist_free(dst);
1449 	}
1450 
1451 	nvlist_free(raw);
1452 	return (pools);
1453 }
1454 
1455 nvlist_t *
1456 zpool_search_import(void *hdl, importargs_t *import,
1457     const pool_config_ops_t *pco)
1458 {
1459 	libpc_handle_t handle = { 0 };
1460 	nvlist_t *pools = NULL;
1461 
1462 	handle.lpc_lib_handle = hdl;
1463 	handle.lpc_ops = pco;
1464 	handle.lpc_printerr = B_TRUE;
1465 
1466 	verify(import->poolname == NULL || import->guid == 0);
1467 
1468 	if (import->cachefile != NULL)
1469 		pools = zpool_find_import_cached(&handle, import->cachefile,
1470 		    import->poolname, import->guid);
1471 	else
1472 		pools = zpool_find_import_impl(&handle, import);
1473 
1474 	if ((pools == NULL || nvlist_empty(pools)) &&
1475 	    handle.lpc_open_access_error && geteuid() != 0) {
1476 		(void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN,
1477 		    "no pools found"));
1478 	}
1479 
1480 	return (pools);
1481 }
1482 
1483 static boolean_t
1484 pool_match(nvlist_t *cfg, char *tgt)
1485 {
1486 	uint64_t v, guid = strtoull(tgt, NULL, 0);
1487 	char *s;
1488 
1489 	if (guid != 0) {
1490 		if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
1491 			return (v == guid);
1492 	} else {
1493 		if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
1494 			return (strcmp(s, tgt) == 0);
1495 	}
1496 	return (B_FALSE);
1497 }
1498 
1499 int
1500 zpool_find_config(void *hdl, const char *target, nvlist_t **configp,
1501     importargs_t *args, const pool_config_ops_t *pco)
1502 {
1503 	nvlist_t *pools;
1504 	nvlist_t *match = NULL;
1505 	nvlist_t *config = NULL;
1506 	char *sepp = NULL;
1507 	int count = 0;
1508 	char *targetdup = strdup(target);
1509 
1510 	*configp = NULL;
1511 
1512 	if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
1513 		*sepp = '\0';
1514 	}
1515 
1516 	pools = zpool_search_import(hdl, args, pco);
1517 
1518 	if (pools != NULL) {
1519 		nvpair_t *elem = NULL;
1520 		while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
1521 			VERIFY0(nvpair_value_nvlist(elem, &config));
1522 			if (pool_match(config, targetdup)) {
1523 				count++;
1524 				if (match != NULL) {
1525 					/* multiple matches found */
1526 					continue;
1527 				} else {
1528 					match = config;
1529 				}
1530 			}
1531 		}
1532 	}
1533 
1534 	if (count == 0) {
1535 		free(targetdup);
1536 		return (ENOENT);
1537 	}
1538 
1539 	if (count > 1) {
1540 		free(targetdup);
1541 		return (EINVAL);
1542 	}
1543 
1544 	*configp = match;
1545 	free(targetdup);
1546 
1547 	return (0);
1548 }
1549