xref: /illumos-gate/usr/src/lib/libzpool/common/kernel.c (revision fce880d1411ac6f72a4f06d50af95f9912093f9f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <poll.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <zlib.h>
34 #include <libgen.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/zmod.h>
41 #include <sys/utsname.h>
42 #include <sys/systeminfo.h>
43 
44 /*
45  * Emulation of kernel services in userland.
46  */
47 
48 int aok;
49 uint64_t physmem;
50 vnode_t *rootdir = (vnode_t *)0xabcd1234;
51 char hw_serial[HW_HOSTID_LEN];
52 kmutex_t cpu_lock;
53 vmem_t *zio_arena = NULL;
54 
55 /* If set, all blocks read will be copied to the specified directory. */
56 char *vn_dumpdir = NULL;
57 
58 struct utsname utsname = {
59 	"userland", "libzpool", "1", "1", "na"
60 };
61 
62 /* this only exists to have its address taken */
63 struct proc p0;
64 
65 /*
66  * =========================================================================
67  * threads
68  * =========================================================================
69  */
70 /*ARGSUSED*/
71 kthread_t *
72 zk_thread_create(void (*func)(), void *arg, uint64_t len)
73 {
74 	thread_t tid;
75 
76 	ASSERT0(len);
77 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
78 	    &tid) == 0);
79 
80 	return ((void *)(uintptr_t)tid);
81 }
82 
83 /*
84  * =========================================================================
85  * kstats
86  * =========================================================================
87  */
88 /*ARGSUSED*/
89 kstat_t *
90 kstat_create(const char *module, int instance, const char *name,
91     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
92 {
93 	return (NULL);
94 }
95 
96 /*ARGSUSED*/
97 void
98 kstat_named_init(kstat_named_t *knp, const char *name, uchar_t type)
99 {}
100 
101 /*ARGSUSED*/
102 void
103 kstat_install(kstat_t *ksp)
104 {}
105 
106 /*ARGSUSED*/
107 void
108 kstat_delete(kstat_t *ksp)
109 {}
110 
111 /*ARGSUSED*/
112 void
113 kstat_waitq_enter(kstat_io_t *kiop)
114 {}
115 
116 /*ARGSUSED*/
117 void
118 kstat_waitq_exit(kstat_io_t *kiop)
119 {}
120 
121 /*ARGSUSED*/
122 void
123 kstat_runq_enter(kstat_io_t *kiop)
124 {}
125 
126 /*ARGSUSED*/
127 void
128 kstat_runq_exit(kstat_io_t *kiop)
129 {}
130 
131 /*ARGSUSED*/
132 void
133 kstat_waitq_to_runq(kstat_io_t *kiop)
134 {}
135 
136 /*ARGSUSED*/
137 void
138 kstat_runq_back_to_waitq(kstat_io_t *kiop)
139 {}
140 
141 /*
142  * =========================================================================
143  * mutexes
144  * =========================================================================
145  */
146 void
147 zmutex_init(kmutex_t *mp)
148 {
149 	mp->m_owner = NULL;
150 	mp->initialized = B_TRUE;
151 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
152 }
153 
154 void
155 zmutex_destroy(kmutex_t *mp)
156 {
157 	ASSERT(mp->initialized == B_TRUE);
158 	ASSERT(mp->m_owner == NULL);
159 	(void) _mutex_destroy(&(mp)->m_lock);
160 	mp->m_owner = (void *)-1UL;
161 	mp->initialized = B_FALSE;
162 }
163 
164 void
165 zmutex_enter(kmutex_t *mp)
166 {
167 	ASSERT(mp->initialized == B_TRUE);
168 	ASSERT(mp->m_owner != (void *)-1UL);
169 	ASSERT(mp->m_owner != curthread);
170 	VERIFY(mutex_lock(&mp->m_lock) == 0);
171 	ASSERT(mp->m_owner == NULL);
172 	mp->m_owner = curthread;
173 }
174 
175 int
176 mutex_tryenter(kmutex_t *mp)
177 {
178 	ASSERT(mp->initialized == B_TRUE);
179 	ASSERT(mp->m_owner != (void *)-1UL);
180 	if (0 == mutex_trylock(&mp->m_lock)) {
181 		ASSERT(mp->m_owner == NULL);
182 		mp->m_owner = curthread;
183 		return (1);
184 	} else {
185 		return (0);
186 	}
187 }
188 
189 void
190 zmutex_exit(kmutex_t *mp)
191 {
192 	ASSERT(mp->initialized == B_TRUE);
193 	ASSERT(mutex_owner(mp) == curthread);
194 	mp->m_owner = NULL;
195 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
196 }
197 
198 void *
199 mutex_owner(kmutex_t *mp)
200 {
201 	ASSERT(mp->initialized == B_TRUE);
202 	return (mp->m_owner);
203 }
204 
205 /*
206  * =========================================================================
207  * rwlocks
208  * =========================================================================
209  */
210 /*ARGSUSED*/
211 void
212 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
213 {
214 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
215 	rwlp->rw_owner = NULL;
216 	rwlp->initialized = B_TRUE;
217 }
218 
219 void
220 rw_destroy(krwlock_t *rwlp)
221 {
222 	rwlock_destroy(&rwlp->rw_lock);
223 	rwlp->rw_owner = (void *)-1UL;
224 	rwlp->initialized = B_FALSE;
225 }
226 
227 void
228 rw_enter(krwlock_t *rwlp, krw_t rw)
229 {
230 	ASSERT(!RW_LOCK_HELD(rwlp));
231 	ASSERT(rwlp->initialized == B_TRUE);
232 	ASSERT(rwlp->rw_owner != (void *)-1UL);
233 	ASSERT(rwlp->rw_owner != curthread);
234 
235 	if (rw == RW_WRITER)
236 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
237 	else
238 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
239 
240 	rwlp->rw_owner = curthread;
241 }
242 
243 void
244 rw_exit(krwlock_t *rwlp)
245 {
246 	ASSERT(rwlp->initialized == B_TRUE);
247 	ASSERT(rwlp->rw_owner != (void *)-1UL);
248 
249 	rwlp->rw_owner = NULL;
250 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
251 }
252 
253 int
254 rw_tryenter(krwlock_t *rwlp, krw_t rw)
255 {
256 	int rv;
257 
258 	ASSERT(rwlp->initialized == B_TRUE);
259 	ASSERT(rwlp->rw_owner != (void *)-1UL);
260 
261 	if (rw == RW_WRITER)
262 		rv = rw_trywrlock(&rwlp->rw_lock);
263 	else
264 		rv = rw_tryrdlock(&rwlp->rw_lock);
265 
266 	if (rv == 0) {
267 		rwlp->rw_owner = curthread;
268 		return (1);
269 	}
270 
271 	return (0);
272 }
273 
274 /*ARGSUSED*/
275 int
276 rw_tryupgrade(krwlock_t *rwlp)
277 {
278 	ASSERT(rwlp->initialized == B_TRUE);
279 	ASSERT(rwlp->rw_owner != (void *)-1UL);
280 
281 	return (0);
282 }
283 
284 /*
285  * =========================================================================
286  * condition variables
287  * =========================================================================
288  */
289 /*ARGSUSED*/
290 void
291 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
292 {
293 	VERIFY(cond_init(cv, type, NULL) == 0);
294 }
295 
296 void
297 cv_destroy(kcondvar_t *cv)
298 {
299 	VERIFY(cond_destroy(cv) == 0);
300 }
301 
302 void
303 cv_wait(kcondvar_t *cv, kmutex_t *mp)
304 {
305 	ASSERT(mutex_owner(mp) == curthread);
306 	mp->m_owner = NULL;
307 	int ret = cond_wait(cv, &mp->m_lock);
308 	VERIFY(ret == 0 || ret == EINTR);
309 	mp->m_owner = curthread;
310 }
311 
312 clock_t
313 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
314 {
315 	int error;
316 	timestruc_t ts;
317 	clock_t delta;
318 
319 top:
320 	delta = abstime - ddi_get_lbolt();
321 	if (delta <= 0)
322 		return (-1);
323 
324 	ts.tv_sec = delta / hz;
325 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
326 
327 	ASSERT(mutex_owner(mp) == curthread);
328 	mp->m_owner = NULL;
329 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
330 	mp->m_owner = curthread;
331 
332 	if (error == ETIME)
333 		return (-1);
334 
335 	if (error == EINTR)
336 		goto top;
337 
338 	ASSERT(error == 0);
339 
340 	return (1);
341 }
342 
343 /*ARGSUSED*/
344 clock_t
345 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
346     int flag)
347 {
348 	int error;
349 	timestruc_t ts;
350 	hrtime_t delta;
351 
352 	ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
353 
354 top:
355 	delta = tim;
356 	if (flag & CALLOUT_FLAG_ABSOLUTE)
357 		delta -= gethrtime();
358 
359 	if (delta <= 0)
360 		return (-1);
361 
362 	ts.tv_sec = delta / NANOSEC;
363 	ts.tv_nsec = delta % NANOSEC;
364 
365 	ASSERT(mutex_owner(mp) == curthread);
366 	mp->m_owner = NULL;
367 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
368 	mp->m_owner = curthread;
369 
370 	if (error == ETIME)
371 		return (-1);
372 
373 	if (error == EINTR)
374 		goto top;
375 
376 	ASSERT(error == 0);
377 
378 	return (1);
379 }
380 
381 void
382 cv_signal(kcondvar_t *cv)
383 {
384 	VERIFY(cond_signal(cv) == 0);
385 }
386 
387 void
388 cv_broadcast(kcondvar_t *cv)
389 {
390 	VERIFY(cond_broadcast(cv) == 0);
391 }
392 
393 /*
394  * =========================================================================
395  * vnode operations
396  * =========================================================================
397  */
398 /*
399  * Note: for the xxxat() versions of these functions, we assume that the
400  * starting vp is always rootdir (which is true for spa_directory.c, the only
401  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
402  * them by adding '/' in front of the path.
403  */
404 
405 /*ARGSUSED*/
406 int
407 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
408 {
409 	int fd;
410 	int dump_fd;
411 	vnode_t *vp;
412 	int old_umask;
413 	char realpath[MAXPATHLEN];
414 	struct stat64 st;
415 
416 	/*
417 	 * If we're accessing a real disk from userland, we need to use
418 	 * the character interface to avoid caching.  This is particularly
419 	 * important if we're trying to look at a real in-kernel storage
420 	 * pool from userland, e.g. via zdb, because otherwise we won't
421 	 * see the changes occurring under the segmap cache.
422 	 * On the other hand, the stupid character device returns zero
423 	 * for its size.  So -- gag -- we open the block device to get
424 	 * its size, and remember it for subsequent VOP_GETATTR().
425 	 */
426 	if (strncmp(path, "/dev/", 5) == 0) {
427 		char *dsk;
428 		fd = open64(path, O_RDONLY);
429 		if (fd == -1)
430 			return (errno);
431 		if (fstat64(fd, &st) == -1) {
432 			close(fd);
433 			return (errno);
434 		}
435 		close(fd);
436 		(void) sprintf(realpath, "%s", path);
437 		dsk = strstr(path, "/dsk/");
438 		if (dsk != NULL)
439 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
440 			    dsk + 1);
441 	} else {
442 		(void) sprintf(realpath, "%s", path);
443 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
444 			return (errno);
445 	}
446 
447 	if (flags & FCREAT)
448 		old_umask = umask(0);
449 
450 	/*
451 	 * The construct 'flags - FREAD' conveniently maps combinations of
452 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
453 	 */
454 	fd = open64(realpath, flags - FREAD, mode);
455 
456 	if (flags & FCREAT)
457 		(void) umask(old_umask);
458 
459 	if (vn_dumpdir != NULL) {
460 		char dumppath[MAXPATHLEN];
461 		(void) snprintf(dumppath, sizeof (dumppath),
462 		    "%s/%s", vn_dumpdir, basename(realpath));
463 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
464 		if (dump_fd == -1)
465 			return (errno);
466 	} else {
467 		dump_fd = -1;
468 	}
469 
470 	if (fd == -1)
471 		return (errno);
472 
473 	if (fstat64(fd, &st) == -1) {
474 		close(fd);
475 		return (errno);
476 	}
477 
478 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
479 
480 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
481 
482 	vp->v_fd = fd;
483 	vp->v_size = st.st_size;
484 	vp->v_path = spa_strdup(path);
485 	vp->v_dump_fd = dump_fd;
486 
487 	return (0);
488 }
489 
490 /*ARGSUSED*/
491 int
492 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
493     int x3, vnode_t *startvp, int fd)
494 {
495 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
496 	int ret;
497 
498 	ASSERT(startvp == rootdir);
499 	(void) sprintf(realpath, "/%s", path);
500 
501 	/* fd ignored for now, need if want to simulate nbmand support */
502 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
503 
504 	umem_free(realpath, strlen(path) + 2);
505 
506 	return (ret);
507 }
508 
509 /*ARGSUSED*/
510 int
511 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
512     int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
513 {
514 	ssize_t iolen, split;
515 
516 	if (uio == UIO_READ) {
517 		iolen = pread64(vp->v_fd, addr, len, offset);
518 		if (vp->v_dump_fd != -1) {
519 			int status =
520 			    pwrite64(vp->v_dump_fd, addr, iolen, offset);
521 			ASSERT(status != -1);
522 		}
523 	} else {
524 		/*
525 		 * To simulate partial disk writes, we split writes into two
526 		 * system calls so that the process can be killed in between.
527 		 */
528 		int sectors = len >> SPA_MINBLOCKSHIFT;
529 		split = (sectors > 0 ? rand() % sectors : 0) <<
530 		    SPA_MINBLOCKSHIFT;
531 		iolen = pwrite64(vp->v_fd, addr, split, offset);
532 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
533 		    len - split, offset + split);
534 	}
535 
536 	if (iolen == -1)
537 		return (errno);
538 	if (residp)
539 		*residp = len - iolen;
540 	else if (iolen != len)
541 		return (EIO);
542 	return (0);
543 }
544 
545 void
546 vn_close(vnode_t *vp)
547 {
548 	close(vp->v_fd);
549 	if (vp->v_dump_fd != -1)
550 		close(vp->v_dump_fd);
551 	spa_strfree(vp->v_path);
552 	umem_free(vp, sizeof (vnode_t));
553 }
554 
555 /*
556  * At a minimum we need to update the size since vdev_reopen()
557  * will no longer call vn_openat().
558  */
559 int
560 fop_getattr(vnode_t *vp, vattr_t *vap)
561 {
562 	struct stat64 st;
563 
564 	if (fstat64(vp->v_fd, &st) == -1) {
565 		close(vp->v_fd);
566 		return (errno);
567 	}
568 
569 	vap->va_size = st.st_size;
570 	return (0);
571 }
572 
573 #ifdef ZFS_DEBUG
574 
575 /*
576  * =========================================================================
577  * Figure out which debugging statements to print
578  * =========================================================================
579  */
580 
581 static char *dprintf_string;
582 static int dprintf_print_all;
583 
584 int
585 dprintf_find_string(const char *string)
586 {
587 	char *tmp_str = dprintf_string;
588 	int len = strlen(string);
589 
590 	/*
591 	 * Find out if this is a string we want to print.
592 	 * String format: file1.c,function_name1,file2.c,file3.c
593 	 */
594 
595 	while (tmp_str != NULL) {
596 		if (strncmp(tmp_str, string, len) == 0 &&
597 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
598 			return (1);
599 		tmp_str = strchr(tmp_str, ',');
600 		if (tmp_str != NULL)
601 			tmp_str++; /* Get rid of , */
602 	}
603 	return (0);
604 }
605 
606 void
607 dprintf_setup(int *argc, char **argv)
608 {
609 	int i, j;
610 
611 	/*
612 	 * Debugging can be specified two ways: by setting the
613 	 * environment variable ZFS_DEBUG, or by including a
614 	 * "debug=..."  argument on the command line.  The command
615 	 * line setting overrides the environment variable.
616 	 */
617 
618 	for (i = 1; i < *argc; i++) {
619 		int len = strlen("debug=");
620 		/* First look for a command line argument */
621 		if (strncmp("debug=", argv[i], len) == 0) {
622 			dprintf_string = argv[i] + len;
623 			/* Remove from args */
624 			for (j = i; j < *argc; j++)
625 				argv[j] = argv[j+1];
626 			argv[j] = NULL;
627 			(*argc)--;
628 		}
629 	}
630 
631 	if (dprintf_string == NULL) {
632 		/* Look for ZFS_DEBUG environment variable */
633 		dprintf_string = getenv("ZFS_DEBUG");
634 	}
635 
636 	/*
637 	 * Are we just turning on all debugging?
638 	 */
639 	if (dprintf_find_string("on"))
640 		dprintf_print_all = 1;
641 
642 	if (dprintf_string != NULL)
643 		zfs_flags |= ZFS_DEBUG_DPRINTF;
644 }
645 
646 /*
647  * =========================================================================
648  * debug printfs
649  * =========================================================================
650  */
651 void
652 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
653 {
654 	const char *newfile;
655 	va_list adx;
656 
657 	/*
658 	 * Get rid of annoying "../common/" prefix to filename.
659 	 */
660 	newfile = strrchr(file, '/');
661 	if (newfile != NULL) {
662 		newfile = newfile + 1; /* Get rid of leading / */
663 	} else {
664 		newfile = file;
665 	}
666 
667 	if (dprintf_print_all ||
668 	    dprintf_find_string(newfile) ||
669 	    dprintf_find_string(func)) {
670 		/* Print out just the function name if requested */
671 		flockfile(stdout);
672 		if (dprintf_find_string("pid"))
673 			(void) printf("%d ", getpid());
674 		if (dprintf_find_string("tid"))
675 			(void) printf("%u ", thr_self());
676 		if (dprintf_find_string("cpu"))
677 			(void) printf("%u ", getcpuid());
678 		if (dprintf_find_string("time"))
679 			(void) printf("%llu ", gethrtime());
680 		if (dprintf_find_string("long"))
681 			(void) printf("%s, line %d: ", newfile, line);
682 		(void) printf("%s: ", func);
683 		va_start(adx, fmt);
684 		(void) vprintf(fmt, adx);
685 		va_end(adx);
686 		funlockfile(stdout);
687 	}
688 }
689 
690 #endif /* ZFS_DEBUG */
691 
692 /*
693  * =========================================================================
694  * cmn_err() and panic()
695  * =========================================================================
696  */
697 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
698 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
699 
700 void
701 vpanic(const char *fmt, va_list adx)
702 {
703 	char buf[512];
704 	(void) vsnprintf(buf, 512, fmt, adx);
705 	assfail(buf, NULL, 0);
706 }
707 
708 void
709 panic(const char *fmt, ...)
710 {
711 	va_list adx;
712 
713 	va_start(adx, fmt);
714 	vpanic(fmt, adx);
715 	va_end(adx);
716 }
717 
718 void
719 vcmn_err(int ce, const char *fmt, va_list adx)
720 {
721 	if (ce == CE_PANIC)
722 		vpanic(fmt, adx);
723 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
724 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
725 		(void) vfprintf(stderr, fmt, adx);
726 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
727 	}
728 }
729 
730 /*PRINTFLIKE2*/
731 void
732 cmn_err(int ce, const char *fmt, ...)
733 {
734 	va_list adx;
735 
736 	va_start(adx, fmt);
737 	vcmn_err(ce, fmt, adx);
738 	va_end(adx);
739 }
740 
741 /*
742  * =========================================================================
743  * kobj interfaces
744  * =========================================================================
745  */
746 struct _buf *
747 kobj_open_file(char *name)
748 {
749 	struct _buf *file;
750 	vnode_t *vp;
751 
752 	/* set vp as the _fd field of the file */
753 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
754 	    -1) != 0)
755 		return ((void *)-1UL);
756 
757 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
758 	file->_fd = (intptr_t)vp;
759 	return (file);
760 }
761 
762 int
763 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
764 {
765 	ssize_t resid;
766 
767 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
768 	    UIO_SYSSPACE, 0, 0, 0, &resid);
769 
770 	return (size - resid);
771 }
772 
773 void
774 kobj_close_file(struct _buf *file)
775 {
776 	vn_close((vnode_t *)file->_fd);
777 	umem_free(file, sizeof (struct _buf));
778 }
779 
780 int
781 kobj_get_filesize(struct _buf *file, uint64_t *size)
782 {
783 	struct stat64 st;
784 	vnode_t *vp = (vnode_t *)file->_fd;
785 
786 	if (fstat64(vp->v_fd, &st) == -1) {
787 		vn_close(vp);
788 		return (errno);
789 	}
790 	*size = st.st_size;
791 	return (0);
792 }
793 
794 /*
795  * =========================================================================
796  * misc routines
797  * =========================================================================
798  */
799 
800 void
801 delay(clock_t ticks)
802 {
803 	poll(0, 0, ticks * (1000 / hz));
804 }
805 
806 /*
807  * Find highest one bit set.
808  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
809  */
810 int
811 highbit64(uint64_t i)
812 {
813 	int h = 1;
814 
815 	if (i == 0)
816 		return (0);
817 	if (i & 0xffffffff00000000ULL) {
818 		h += 32; i >>= 32;
819 	}
820 	if (i & 0xffff0000) {
821 		h += 16; i >>= 16;
822 	}
823 	if (i & 0xff00) {
824 		h += 8; i >>= 8;
825 	}
826 	if (i & 0xf0) {
827 		h += 4; i >>= 4;
828 	}
829 	if (i & 0xc) {
830 		h += 2; i >>= 2;
831 	}
832 	if (i & 0x2) {
833 		h += 1;
834 	}
835 	return (h);
836 }
837 
838 static int random_fd = -1, urandom_fd = -1;
839 
840 static int
841 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
842 {
843 	size_t resid = len;
844 	ssize_t bytes;
845 
846 	ASSERT(fd != -1);
847 
848 	while (resid != 0) {
849 		bytes = read(fd, ptr, resid);
850 		ASSERT3S(bytes, >=, 0);
851 		ptr += bytes;
852 		resid -= bytes;
853 	}
854 
855 	return (0);
856 }
857 
858 int
859 random_get_bytes(uint8_t *ptr, size_t len)
860 {
861 	return (random_get_bytes_common(ptr, len, random_fd));
862 }
863 
864 int
865 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
866 {
867 	return (random_get_bytes_common(ptr, len, urandom_fd));
868 }
869 
870 int
871 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
872 {
873 	char *end;
874 
875 	*result = strtoul(hw_serial, &end, base);
876 	if (*result == 0)
877 		return (errno);
878 	return (0);
879 }
880 
881 int
882 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
883 {
884 	char *end;
885 
886 	*result = strtoull(str, &end, base);
887 	if (*result == 0)
888 		return (errno);
889 	return (0);
890 }
891 
892 /* ARGSUSED */
893 cyclic_id_t
894 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
895 {
896 	return (1);
897 }
898 
899 /* ARGSUSED */
900 void
901 cyclic_remove(cyclic_id_t id)
902 {
903 }
904 
905 /* ARGSUSED */
906 int
907 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
908 {
909 	return (1);
910 }
911 
912 /*
913  * =========================================================================
914  * kernel emulation setup & teardown
915  * =========================================================================
916  */
917 static int
918 umem_out_of_memory(void)
919 {
920 	char errmsg[] = "out of memory -- generating core dump\n";
921 
922 	write(fileno(stderr), errmsg, sizeof (errmsg));
923 	abort();
924 	return (0);
925 }
926 
927 void
928 kernel_init(int mode)
929 {
930 	extern uint_t rrw_tsd_key;
931 
932 	umem_nofail_callback(umem_out_of_memory);
933 
934 	physmem = sysconf(_SC_PHYS_PAGES);
935 
936 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
937 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
938 
939 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
940 	    (mode & FWRITE) ? gethostid() : 0);
941 
942 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
943 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
944 
945 	system_taskq_init();
946 
947 	mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
948 
949 	spa_init(mode);
950 
951 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
952 }
953 
954 void
955 kernel_fini(void)
956 {
957 	spa_fini();
958 
959 	system_taskq_fini();
960 
961 	close(random_fd);
962 	close(urandom_fd);
963 
964 	random_fd = -1;
965 	urandom_fd = -1;
966 }
967 
968 int
969 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
970 {
971 	int ret;
972 	uLongf len = *dstlen;
973 
974 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
975 		*dstlen = (size_t)len;
976 
977 	return (ret);
978 }
979 
980 int
981 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
982     int level)
983 {
984 	int ret;
985 	uLongf len = *dstlen;
986 
987 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
988 		*dstlen = (size_t)len;
989 
990 	return (ret);
991 }
992 
993 uid_t
994 crgetuid(cred_t *cr)
995 {
996 	return (0);
997 }
998 
999 uid_t
1000 crgetruid(cred_t *cr)
1001 {
1002 	return (0);
1003 }
1004 
1005 gid_t
1006 crgetgid(cred_t *cr)
1007 {
1008 	return (0);
1009 }
1010 
1011 int
1012 crgetngroups(cred_t *cr)
1013 {
1014 	return (0);
1015 }
1016 
1017 gid_t *
1018 crgetgroups(cred_t *cr)
1019 {
1020 	return (NULL);
1021 }
1022 
1023 int
1024 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1025 {
1026 	return (0);
1027 }
1028 
1029 int
1030 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1031 {
1032 	return (0);
1033 }
1034 
1035 int
1036 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1037 {
1038 	return (0);
1039 }
1040 
1041 ksiddomain_t *
1042 ksid_lookupdomain(const char *dom)
1043 {
1044 	ksiddomain_t *kd;
1045 
1046 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1047 	kd->kd_name = spa_strdup(dom);
1048 	return (kd);
1049 }
1050 
1051 void
1052 ksiddomain_rele(ksiddomain_t *ksid)
1053 {
1054 	spa_strfree(ksid->kd_name);
1055 	umem_free(ksid, sizeof (ksiddomain_t));
1056 }
1057 
1058 /*
1059  * Do not change the length of the returned string; it must be freed
1060  * with strfree().
1061  */
1062 char *
1063 kmem_asprintf(const char *fmt, ...)
1064 {
1065 	int size;
1066 	va_list adx;
1067 	char *buf;
1068 
1069 	va_start(adx, fmt);
1070 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
1071 	va_end(adx);
1072 
1073 	buf = kmem_alloc(size, KM_SLEEP);
1074 
1075 	va_start(adx, fmt);
1076 	size = vsnprintf(buf, size, fmt, adx);
1077 	va_end(adx);
1078 
1079 	return (buf);
1080 }
1081 
1082 /* ARGSUSED */
1083 int
1084 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1085 {
1086 	*minorp = 0;
1087 	return (0);
1088 }
1089 
1090 /* ARGSUSED */
1091 void
1092 zfs_onexit_fd_rele(int fd)
1093 {
1094 }
1095 
1096 /* ARGSUSED */
1097 int
1098 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1099     uint64_t *action_handle)
1100 {
1101 	return (0);
1102 }
1103 
1104 /* ARGSUSED */
1105 int
1106 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1107 {
1108 	return (0);
1109 }
1110 
1111 /* ARGSUSED */
1112 int
1113 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1114 {
1115 	return (0);
1116 }
1117 
1118 void
1119 bioinit(buf_t *bp)
1120 {
1121 	bzero(bp, sizeof (buf_t));
1122 }
1123 
1124 void
1125 biodone(buf_t *bp)
1126 {
1127 	if (bp->b_iodone != NULL) {
1128 		(*(bp->b_iodone))(bp);
1129 		return;
1130 	}
1131 	ASSERT((bp->b_flags & B_DONE) == 0);
1132 	bp->b_flags |= B_DONE;
1133 }
1134 
1135 void
1136 bioerror(buf_t *bp, int error)
1137 {
1138 	ASSERT(bp != NULL);
1139 	ASSERT(error >= 0);
1140 
1141 	if (error != 0) {
1142 		bp->b_flags |= B_ERROR;
1143 	} else {
1144 		bp->b_flags &= ~B_ERROR;
1145 	}
1146 	bp->b_error = error;
1147 }
1148 
1149 
1150 int
1151 geterror(struct buf *bp)
1152 {
1153 	int error = 0;
1154 
1155 	if (bp->b_flags & B_ERROR) {
1156 		error = bp->b_error;
1157 		if (!error)
1158 			error = EIO;
1159 	}
1160 	return (error);
1161 }
1162