1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <poll.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <string.h> 33 #include <zlib.h> 34 #include <libgen.h> 35 #include <sys/spa.h> 36 #include <sys/stat.h> 37 #include <sys/processor.h> 38 #include <sys/zfs_context.h> 39 #include <sys/rrwlock.h> 40 #include <sys/zmod.h> 41 #include <sys/utsname.h> 42 #include <sys/systeminfo.h> 43 44 /* 45 * Emulation of kernel services in userland. 46 */ 47 48 int aok; 49 uint64_t physmem; 50 vnode_t *rootdir = (vnode_t *)0xabcd1234; 51 char hw_serial[HW_HOSTID_LEN]; 52 kmutex_t cpu_lock; 53 vmem_t *zio_arena = NULL; 54 55 /* If set, all blocks read will be copied to the specified directory. */ 56 char *vn_dumpdir = NULL; 57 58 struct utsname utsname = { 59 "userland", "libzpool", "1", "1", "na" 60 }; 61 62 /* this only exists to have its address taken */ 63 struct proc p0; 64 65 /* 66 * ========================================================================= 67 * threads 68 * ========================================================================= 69 */ 70 /*ARGSUSED*/ 71 kthread_t * 72 zk_thread_create(void (*func)(), void *arg, uint64_t len) 73 { 74 thread_t tid; 75 76 ASSERT0(len); 77 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 78 &tid) == 0); 79 80 return ((void *)(uintptr_t)tid); 81 } 82 83 /* 84 * ========================================================================= 85 * kstats 86 * ========================================================================= 87 */ 88 /*ARGSUSED*/ 89 kstat_t * 90 kstat_create(const char *module, int instance, const char *name, 91 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 92 { 93 return (NULL); 94 } 95 96 /*ARGSUSED*/ 97 void 98 kstat_install(kstat_t *ksp) 99 {} 100 101 /*ARGSUSED*/ 102 void 103 kstat_delete(kstat_t *ksp) 104 {} 105 106 /*ARGSUSED*/ 107 void 108 kstat_waitq_enter(kstat_io_t *kiop) 109 {} 110 111 /*ARGSUSED*/ 112 void 113 kstat_waitq_exit(kstat_io_t *kiop) 114 {} 115 116 /*ARGSUSED*/ 117 void 118 kstat_runq_enter(kstat_io_t *kiop) 119 {} 120 121 /*ARGSUSED*/ 122 void 123 kstat_runq_exit(kstat_io_t *kiop) 124 {} 125 126 /*ARGSUSED*/ 127 void 128 kstat_waitq_to_runq(kstat_io_t *kiop) 129 {} 130 131 /*ARGSUSED*/ 132 void 133 kstat_runq_back_to_waitq(kstat_io_t *kiop) 134 {} 135 136 /* 137 * ========================================================================= 138 * mutexes 139 * ========================================================================= 140 */ 141 void 142 zmutex_init(kmutex_t *mp) 143 { 144 mp->m_owner = NULL; 145 mp->initialized = B_TRUE; 146 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 147 } 148 149 void 150 zmutex_destroy(kmutex_t *mp) 151 { 152 ASSERT(mp->initialized == B_TRUE); 153 ASSERT(mp->m_owner == NULL); 154 (void) _mutex_destroy(&(mp)->m_lock); 155 mp->m_owner = (void *)-1UL; 156 mp->initialized = B_FALSE; 157 } 158 159 void 160 zmutex_enter(kmutex_t *mp) 161 { 162 ASSERT(mp->initialized == B_TRUE); 163 ASSERT(mp->m_owner != (void *)-1UL); 164 ASSERT(mp->m_owner != curthread); 165 VERIFY(mutex_lock(&mp->m_lock) == 0); 166 ASSERT(mp->m_owner == NULL); 167 mp->m_owner = curthread; 168 } 169 170 int 171 mutex_tryenter(kmutex_t *mp) 172 { 173 ASSERT(mp->initialized == B_TRUE); 174 ASSERT(mp->m_owner != (void *)-1UL); 175 if (0 == mutex_trylock(&mp->m_lock)) { 176 ASSERT(mp->m_owner == NULL); 177 mp->m_owner = curthread; 178 return (1); 179 } else { 180 return (0); 181 } 182 } 183 184 void 185 zmutex_exit(kmutex_t *mp) 186 { 187 ASSERT(mp->initialized == B_TRUE); 188 ASSERT(mutex_owner(mp) == curthread); 189 mp->m_owner = NULL; 190 VERIFY(mutex_unlock(&mp->m_lock) == 0); 191 } 192 193 void * 194 mutex_owner(kmutex_t *mp) 195 { 196 ASSERT(mp->initialized == B_TRUE); 197 return (mp->m_owner); 198 } 199 200 /* 201 * ========================================================================= 202 * rwlocks 203 * ========================================================================= 204 */ 205 /*ARGSUSED*/ 206 void 207 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 208 { 209 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 210 rwlp->rw_owner = NULL; 211 rwlp->initialized = B_TRUE; 212 } 213 214 void 215 rw_destroy(krwlock_t *rwlp) 216 { 217 rwlock_destroy(&rwlp->rw_lock); 218 rwlp->rw_owner = (void *)-1UL; 219 rwlp->initialized = B_FALSE; 220 } 221 222 void 223 rw_enter(krwlock_t *rwlp, krw_t rw) 224 { 225 ASSERT(!RW_LOCK_HELD(rwlp)); 226 ASSERT(rwlp->initialized == B_TRUE); 227 ASSERT(rwlp->rw_owner != (void *)-1UL); 228 ASSERT(rwlp->rw_owner != curthread); 229 230 if (rw == RW_WRITER) 231 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 232 else 233 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 234 235 rwlp->rw_owner = curthread; 236 } 237 238 void 239 rw_exit(krwlock_t *rwlp) 240 { 241 ASSERT(rwlp->initialized == B_TRUE); 242 ASSERT(rwlp->rw_owner != (void *)-1UL); 243 244 rwlp->rw_owner = NULL; 245 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 246 } 247 248 int 249 rw_tryenter(krwlock_t *rwlp, krw_t rw) 250 { 251 int rv; 252 253 ASSERT(rwlp->initialized == B_TRUE); 254 ASSERT(rwlp->rw_owner != (void *)-1UL); 255 256 if (rw == RW_WRITER) 257 rv = rw_trywrlock(&rwlp->rw_lock); 258 else 259 rv = rw_tryrdlock(&rwlp->rw_lock); 260 261 if (rv == 0) { 262 rwlp->rw_owner = curthread; 263 return (1); 264 } 265 266 return (0); 267 } 268 269 /*ARGSUSED*/ 270 int 271 rw_tryupgrade(krwlock_t *rwlp) 272 { 273 ASSERT(rwlp->initialized == B_TRUE); 274 ASSERT(rwlp->rw_owner != (void *)-1UL); 275 276 return (0); 277 } 278 279 /* 280 * ========================================================================= 281 * condition variables 282 * ========================================================================= 283 */ 284 /*ARGSUSED*/ 285 void 286 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 287 { 288 VERIFY(cond_init(cv, type, NULL) == 0); 289 } 290 291 void 292 cv_destroy(kcondvar_t *cv) 293 { 294 VERIFY(cond_destroy(cv) == 0); 295 } 296 297 void 298 cv_wait(kcondvar_t *cv, kmutex_t *mp) 299 { 300 ASSERT(mutex_owner(mp) == curthread); 301 mp->m_owner = NULL; 302 int ret = cond_wait(cv, &mp->m_lock); 303 VERIFY(ret == 0 || ret == EINTR); 304 mp->m_owner = curthread; 305 } 306 307 clock_t 308 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 309 { 310 int error; 311 timestruc_t ts; 312 clock_t delta; 313 314 top: 315 delta = abstime - ddi_get_lbolt(); 316 if (delta <= 0) 317 return (-1); 318 319 ts.tv_sec = delta / hz; 320 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 321 322 ASSERT(mutex_owner(mp) == curthread); 323 mp->m_owner = NULL; 324 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 325 mp->m_owner = curthread; 326 327 if (error == ETIME) 328 return (-1); 329 330 if (error == EINTR) 331 goto top; 332 333 ASSERT(error == 0); 334 335 return (1); 336 } 337 338 /*ARGSUSED*/ 339 clock_t 340 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 341 int flag) 342 { 343 int error; 344 timestruc_t ts; 345 hrtime_t delta; 346 347 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 348 349 top: 350 delta = tim; 351 if (flag & CALLOUT_FLAG_ABSOLUTE) 352 delta -= gethrtime(); 353 354 if (delta <= 0) 355 return (-1); 356 357 ts.tv_sec = delta / NANOSEC; 358 ts.tv_nsec = delta % NANOSEC; 359 360 ASSERT(mutex_owner(mp) == curthread); 361 mp->m_owner = NULL; 362 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 363 mp->m_owner = curthread; 364 365 if (error == ETIME) 366 return (-1); 367 368 if (error == EINTR) 369 goto top; 370 371 ASSERT(error == 0); 372 373 return (1); 374 } 375 376 void 377 cv_signal(kcondvar_t *cv) 378 { 379 VERIFY(cond_signal(cv) == 0); 380 } 381 382 void 383 cv_broadcast(kcondvar_t *cv) 384 { 385 VERIFY(cond_broadcast(cv) == 0); 386 } 387 388 /* 389 * ========================================================================= 390 * vnode operations 391 * ========================================================================= 392 */ 393 /* 394 * Note: for the xxxat() versions of these functions, we assume that the 395 * starting vp is always rootdir (which is true for spa_directory.c, the only 396 * ZFS consumer of these interfaces). We assert this is true, and then emulate 397 * them by adding '/' in front of the path. 398 */ 399 400 /*ARGSUSED*/ 401 int 402 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 403 { 404 int fd; 405 int dump_fd; 406 vnode_t *vp; 407 int old_umask; 408 char realpath[MAXPATHLEN]; 409 struct stat64 st; 410 411 /* 412 * If we're accessing a real disk from userland, we need to use 413 * the character interface to avoid caching. This is particularly 414 * important if we're trying to look at a real in-kernel storage 415 * pool from userland, e.g. via zdb, because otherwise we won't 416 * see the changes occurring under the segmap cache. 417 * On the other hand, the stupid character device returns zero 418 * for its size. So -- gag -- we open the block device to get 419 * its size, and remember it for subsequent VOP_GETATTR(). 420 */ 421 if (strncmp(path, "/dev/", 5) == 0) { 422 char *dsk; 423 fd = open64(path, O_RDONLY); 424 if (fd == -1) 425 return (errno); 426 if (fstat64(fd, &st) == -1) { 427 close(fd); 428 return (errno); 429 } 430 close(fd); 431 (void) sprintf(realpath, "%s", path); 432 dsk = strstr(path, "/dsk/"); 433 if (dsk != NULL) 434 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 435 dsk + 1); 436 } else { 437 (void) sprintf(realpath, "%s", path); 438 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 439 return (errno); 440 } 441 442 if (flags & FCREAT) 443 old_umask = umask(0); 444 445 /* 446 * The construct 'flags - FREAD' conveniently maps combinations of 447 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 448 */ 449 fd = open64(realpath, flags - FREAD, mode); 450 451 if (flags & FCREAT) 452 (void) umask(old_umask); 453 454 if (vn_dumpdir != NULL) { 455 char dumppath[MAXPATHLEN]; 456 (void) snprintf(dumppath, sizeof (dumppath), 457 "%s/%s", vn_dumpdir, basename(realpath)); 458 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 459 if (dump_fd == -1) 460 return (errno); 461 } else { 462 dump_fd = -1; 463 } 464 465 if (fd == -1) 466 return (errno); 467 468 if (fstat64(fd, &st) == -1) { 469 close(fd); 470 return (errno); 471 } 472 473 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 474 475 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 476 477 vp->v_fd = fd; 478 vp->v_size = st.st_size; 479 vp->v_path = spa_strdup(path); 480 vp->v_dump_fd = dump_fd; 481 482 return (0); 483 } 484 485 /*ARGSUSED*/ 486 int 487 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 488 int x3, vnode_t *startvp, int fd) 489 { 490 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 491 int ret; 492 493 ASSERT(startvp == rootdir); 494 (void) sprintf(realpath, "/%s", path); 495 496 /* fd ignored for now, need if want to simulate nbmand support */ 497 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 498 499 umem_free(realpath, strlen(path) + 2); 500 501 return (ret); 502 } 503 504 /*ARGSUSED*/ 505 int 506 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 507 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 508 { 509 ssize_t iolen, split; 510 511 if (uio == UIO_READ) { 512 iolen = pread64(vp->v_fd, addr, len, offset); 513 if (vp->v_dump_fd != -1) { 514 int status = 515 pwrite64(vp->v_dump_fd, addr, iolen, offset); 516 ASSERT(status != -1); 517 } 518 } else { 519 /* 520 * To simulate partial disk writes, we split writes into two 521 * system calls so that the process can be killed in between. 522 */ 523 int sectors = len >> SPA_MINBLOCKSHIFT; 524 split = (sectors > 0 ? rand() % sectors : 0) << 525 SPA_MINBLOCKSHIFT; 526 iolen = pwrite64(vp->v_fd, addr, split, offset); 527 iolen += pwrite64(vp->v_fd, (char *)addr + split, 528 len - split, offset + split); 529 } 530 531 if (iolen == -1) 532 return (errno); 533 if (residp) 534 *residp = len - iolen; 535 else if (iolen != len) 536 return (EIO); 537 return (0); 538 } 539 540 void 541 vn_close(vnode_t *vp) 542 { 543 close(vp->v_fd); 544 if (vp->v_dump_fd != -1) 545 close(vp->v_dump_fd); 546 spa_strfree(vp->v_path); 547 umem_free(vp, sizeof (vnode_t)); 548 } 549 550 /* 551 * At a minimum we need to update the size since vdev_reopen() 552 * will no longer call vn_openat(). 553 */ 554 int 555 fop_getattr(vnode_t *vp, vattr_t *vap) 556 { 557 struct stat64 st; 558 559 if (fstat64(vp->v_fd, &st) == -1) { 560 close(vp->v_fd); 561 return (errno); 562 } 563 564 vap->va_size = st.st_size; 565 return (0); 566 } 567 568 #ifdef ZFS_DEBUG 569 570 /* 571 * ========================================================================= 572 * Figure out which debugging statements to print 573 * ========================================================================= 574 */ 575 576 static char *dprintf_string; 577 static int dprintf_print_all; 578 579 int 580 dprintf_find_string(const char *string) 581 { 582 char *tmp_str = dprintf_string; 583 int len = strlen(string); 584 585 /* 586 * Find out if this is a string we want to print. 587 * String format: file1.c,function_name1,file2.c,file3.c 588 */ 589 590 while (tmp_str != NULL) { 591 if (strncmp(tmp_str, string, len) == 0 && 592 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 593 return (1); 594 tmp_str = strchr(tmp_str, ','); 595 if (tmp_str != NULL) 596 tmp_str++; /* Get rid of , */ 597 } 598 return (0); 599 } 600 601 void 602 dprintf_setup(int *argc, char **argv) 603 { 604 int i, j; 605 606 /* 607 * Debugging can be specified two ways: by setting the 608 * environment variable ZFS_DEBUG, or by including a 609 * "debug=..." argument on the command line. The command 610 * line setting overrides the environment variable. 611 */ 612 613 for (i = 1; i < *argc; i++) { 614 int len = strlen("debug="); 615 /* First look for a command line argument */ 616 if (strncmp("debug=", argv[i], len) == 0) { 617 dprintf_string = argv[i] + len; 618 /* Remove from args */ 619 for (j = i; j < *argc; j++) 620 argv[j] = argv[j+1]; 621 argv[j] = NULL; 622 (*argc)--; 623 } 624 } 625 626 if (dprintf_string == NULL) { 627 /* Look for ZFS_DEBUG environment variable */ 628 dprintf_string = getenv("ZFS_DEBUG"); 629 } 630 631 /* 632 * Are we just turning on all debugging? 633 */ 634 if (dprintf_find_string("on")) 635 dprintf_print_all = 1; 636 637 if (dprintf_string != NULL) 638 zfs_flags |= ZFS_DEBUG_DPRINTF; 639 } 640 641 /* 642 * ========================================================================= 643 * debug printfs 644 * ========================================================================= 645 */ 646 void 647 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 648 { 649 const char *newfile; 650 va_list adx; 651 652 /* 653 * Get rid of annoying "../common/" prefix to filename. 654 */ 655 newfile = strrchr(file, '/'); 656 if (newfile != NULL) { 657 newfile = newfile + 1; /* Get rid of leading / */ 658 } else { 659 newfile = file; 660 } 661 662 if (dprintf_print_all || 663 dprintf_find_string(newfile) || 664 dprintf_find_string(func)) { 665 /* Print out just the function name if requested */ 666 flockfile(stdout); 667 if (dprintf_find_string("pid")) 668 (void) printf("%d ", getpid()); 669 if (dprintf_find_string("tid")) 670 (void) printf("%u ", thr_self()); 671 if (dprintf_find_string("cpu")) 672 (void) printf("%u ", getcpuid()); 673 if (dprintf_find_string("time")) 674 (void) printf("%llu ", gethrtime()); 675 if (dprintf_find_string("long")) 676 (void) printf("%s, line %d: ", newfile, line); 677 (void) printf("%s: ", func); 678 va_start(adx, fmt); 679 (void) vprintf(fmt, adx); 680 va_end(adx); 681 funlockfile(stdout); 682 } 683 } 684 685 #endif /* ZFS_DEBUG */ 686 687 /* 688 * ========================================================================= 689 * cmn_err() and panic() 690 * ========================================================================= 691 */ 692 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 693 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 694 695 void 696 vpanic(const char *fmt, va_list adx) 697 { 698 char buf[512]; 699 (void) vsnprintf(buf, 512, fmt, adx); 700 assfail(buf, NULL, 0); 701 } 702 703 void 704 panic(const char *fmt, ...) 705 { 706 va_list adx; 707 708 va_start(adx, fmt); 709 vpanic(fmt, adx); 710 va_end(adx); 711 } 712 713 void 714 vcmn_err(int ce, const char *fmt, va_list adx) 715 { 716 if (ce == CE_PANIC) 717 vpanic(fmt, adx); 718 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 719 (void) fprintf(stderr, "%s", ce_prefix[ce]); 720 (void) vfprintf(stderr, fmt, adx); 721 (void) fprintf(stderr, "%s", ce_suffix[ce]); 722 } 723 } 724 725 /*PRINTFLIKE2*/ 726 void 727 cmn_err(int ce, const char *fmt, ...) 728 { 729 va_list adx; 730 731 va_start(adx, fmt); 732 vcmn_err(ce, fmt, adx); 733 va_end(adx); 734 } 735 736 /* 737 * ========================================================================= 738 * kobj interfaces 739 * ========================================================================= 740 */ 741 struct _buf * 742 kobj_open_file(char *name) 743 { 744 struct _buf *file; 745 vnode_t *vp; 746 747 /* set vp as the _fd field of the file */ 748 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 749 -1) != 0) 750 return ((void *)-1UL); 751 752 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 753 file->_fd = (intptr_t)vp; 754 return (file); 755 } 756 757 int 758 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 759 { 760 ssize_t resid; 761 762 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 763 UIO_SYSSPACE, 0, 0, 0, &resid); 764 765 return (size - resid); 766 } 767 768 void 769 kobj_close_file(struct _buf *file) 770 { 771 vn_close((vnode_t *)file->_fd); 772 umem_free(file, sizeof (struct _buf)); 773 } 774 775 int 776 kobj_get_filesize(struct _buf *file, uint64_t *size) 777 { 778 struct stat64 st; 779 vnode_t *vp = (vnode_t *)file->_fd; 780 781 if (fstat64(vp->v_fd, &st) == -1) { 782 vn_close(vp); 783 return (errno); 784 } 785 *size = st.st_size; 786 return (0); 787 } 788 789 /* 790 * ========================================================================= 791 * misc routines 792 * ========================================================================= 793 */ 794 795 void 796 delay(clock_t ticks) 797 { 798 poll(0, 0, ticks * (1000 / hz)); 799 } 800 801 /* 802 * Find highest one bit set. 803 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 804 */ 805 int 806 highbit64(uint64_t i) 807 { 808 int h = 1; 809 810 if (i == 0) 811 return (0); 812 if (i & 0xffffffff00000000ULL) { 813 h += 32; i >>= 32; 814 } 815 if (i & 0xffff0000) { 816 h += 16; i >>= 16; 817 } 818 if (i & 0xff00) { 819 h += 8; i >>= 8; 820 } 821 if (i & 0xf0) { 822 h += 4; i >>= 4; 823 } 824 if (i & 0xc) { 825 h += 2; i >>= 2; 826 } 827 if (i & 0x2) { 828 h += 1; 829 } 830 return (h); 831 } 832 833 static int random_fd = -1, urandom_fd = -1; 834 835 static int 836 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 837 { 838 size_t resid = len; 839 ssize_t bytes; 840 841 ASSERT(fd != -1); 842 843 while (resid != 0) { 844 bytes = read(fd, ptr, resid); 845 ASSERT3S(bytes, >=, 0); 846 ptr += bytes; 847 resid -= bytes; 848 } 849 850 return (0); 851 } 852 853 int 854 random_get_bytes(uint8_t *ptr, size_t len) 855 { 856 return (random_get_bytes_common(ptr, len, random_fd)); 857 } 858 859 int 860 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 861 { 862 return (random_get_bytes_common(ptr, len, urandom_fd)); 863 } 864 865 int 866 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 867 { 868 char *end; 869 870 *result = strtoul(hw_serial, &end, base); 871 if (*result == 0) 872 return (errno); 873 return (0); 874 } 875 876 int 877 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 878 { 879 char *end; 880 881 *result = strtoull(str, &end, base); 882 if (*result == 0) 883 return (errno); 884 return (0); 885 } 886 887 /* ARGSUSED */ 888 cyclic_id_t 889 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) 890 { 891 return (1); 892 } 893 894 /* ARGSUSED */ 895 void 896 cyclic_remove(cyclic_id_t id) 897 { 898 } 899 900 /* ARGSUSED */ 901 int 902 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) 903 { 904 return (1); 905 } 906 907 /* 908 * ========================================================================= 909 * kernel emulation setup & teardown 910 * ========================================================================= 911 */ 912 static int 913 umem_out_of_memory(void) 914 { 915 char errmsg[] = "out of memory -- generating core dump\n"; 916 917 write(fileno(stderr), errmsg, sizeof (errmsg)); 918 abort(); 919 return (0); 920 } 921 922 void 923 kernel_init(int mode) 924 { 925 extern uint_t rrw_tsd_key; 926 927 umem_nofail_callback(umem_out_of_memory); 928 929 physmem = sysconf(_SC_PHYS_PAGES); 930 931 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 932 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 933 934 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 935 (mode & FWRITE) ? gethostid() : 0); 936 937 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 938 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 939 940 system_taskq_init(); 941 942 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); 943 944 spa_init(mode); 945 946 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 947 } 948 949 void 950 kernel_fini(void) 951 { 952 spa_fini(); 953 954 system_taskq_fini(); 955 956 close(random_fd); 957 close(urandom_fd); 958 959 random_fd = -1; 960 urandom_fd = -1; 961 } 962 963 int 964 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 965 { 966 int ret; 967 uLongf len = *dstlen; 968 969 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 970 *dstlen = (size_t)len; 971 972 return (ret); 973 } 974 975 int 976 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 977 int level) 978 { 979 int ret; 980 uLongf len = *dstlen; 981 982 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 983 *dstlen = (size_t)len; 984 985 return (ret); 986 } 987 988 uid_t 989 crgetuid(cred_t *cr) 990 { 991 return (0); 992 } 993 994 uid_t 995 crgetruid(cred_t *cr) 996 { 997 return (0); 998 } 999 1000 gid_t 1001 crgetgid(cred_t *cr) 1002 { 1003 return (0); 1004 } 1005 1006 int 1007 crgetngroups(cred_t *cr) 1008 { 1009 return (0); 1010 } 1011 1012 gid_t * 1013 crgetgroups(cred_t *cr) 1014 { 1015 return (NULL); 1016 } 1017 1018 int 1019 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 1020 { 1021 return (0); 1022 } 1023 1024 int 1025 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 1026 { 1027 return (0); 1028 } 1029 1030 int 1031 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 1032 { 1033 return (0); 1034 } 1035 1036 ksiddomain_t * 1037 ksid_lookupdomain(const char *dom) 1038 { 1039 ksiddomain_t *kd; 1040 1041 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 1042 kd->kd_name = spa_strdup(dom); 1043 return (kd); 1044 } 1045 1046 void 1047 ksiddomain_rele(ksiddomain_t *ksid) 1048 { 1049 spa_strfree(ksid->kd_name); 1050 umem_free(ksid, sizeof (ksiddomain_t)); 1051 } 1052 1053 /* 1054 * Do not change the length of the returned string; it must be freed 1055 * with strfree(). 1056 */ 1057 char * 1058 kmem_asprintf(const char *fmt, ...) 1059 { 1060 int size; 1061 va_list adx; 1062 char *buf; 1063 1064 va_start(adx, fmt); 1065 size = vsnprintf(NULL, 0, fmt, adx) + 1; 1066 va_end(adx); 1067 1068 buf = kmem_alloc(size, KM_SLEEP); 1069 1070 va_start(adx, fmt); 1071 size = vsnprintf(buf, size, fmt, adx); 1072 va_end(adx); 1073 1074 return (buf); 1075 } 1076 1077 /* ARGSUSED */ 1078 int 1079 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1080 { 1081 *minorp = 0; 1082 return (0); 1083 } 1084 1085 /* ARGSUSED */ 1086 void 1087 zfs_onexit_fd_rele(int fd) 1088 { 1089 } 1090 1091 /* ARGSUSED */ 1092 int 1093 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1094 uint64_t *action_handle) 1095 { 1096 return (0); 1097 } 1098 1099 /* ARGSUSED */ 1100 int 1101 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) 1102 { 1103 return (0); 1104 } 1105 1106 /* ARGSUSED */ 1107 int 1108 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) 1109 { 1110 return (0); 1111 } 1112 1113 void 1114 bioinit(buf_t *bp) 1115 { 1116 bzero(bp, sizeof (buf_t)); 1117 } 1118 1119 void 1120 biodone(buf_t *bp) 1121 { 1122 if (bp->b_iodone != NULL) { 1123 (*(bp->b_iodone))(bp); 1124 return; 1125 } 1126 ASSERT((bp->b_flags & B_DONE) == 0); 1127 bp->b_flags |= B_DONE; 1128 } 1129 1130 void 1131 bioerror(buf_t *bp, int error) 1132 { 1133 ASSERT(bp != NULL); 1134 ASSERT(error >= 0); 1135 1136 if (error != 0) { 1137 bp->b_flags |= B_ERROR; 1138 } else { 1139 bp->b_flags &= ~B_ERROR; 1140 } 1141 bp->b_error = error; 1142 } 1143 1144 1145 int 1146 geterror(struct buf *bp) 1147 { 1148 int error = 0; 1149 1150 if (bp->b_flags & B_ERROR) { 1151 error = bp->b_error; 1152 if (!error) 1153 error = EIO; 1154 } 1155 return (error); 1156 } 1157