xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_mount.c (revision ed093b41a93e8563e6e1e5dae0768dda2a7bcc27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * Copyright 2019 Nexenta Systems, Inc.
28  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
29  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
30  * Copyright 2017 Joyent, Inc.
31  * Copyright 2017 RackTop Systems.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
37  * to deal with the OS.  The following functions are the main entry points --
38  * they are used by mount and unmount and when changing a filesystem's
39  * mountpoint.
40  *
41  *	zfs_is_mounted()
42  *	zfs_mount()
43  *	zfs_unmount()
44  *	zfs_unmountall()
45  *
46  * This file also contains the functions used to manage sharing filesystems via
47  * NFS and iSCSI:
48  *
49  *	zfs_is_shared()
50  *	zfs_share()
51  *	zfs_unshare()
52  *
53  *	zfs_is_shared_nfs()
54  *	zfs_is_shared_smb()
55  *	zfs_share_proto()
56  *	zfs_shareall();
57  *	zfs_unshare_nfs()
58  *	zfs_unshare_smb()
59  *	zfs_unshareall_nfs()
60  *	zfs_unshareall_smb()
61  *	zfs_unshareall()
62  *	zfs_unshareall_bypath()
63  *
64  * The following functions are available for pool consumers, and will
65  * mount/unmount and share/unshare all datasets within pool:
66  *
67  *	zpool_enable_datasets()
68  *	zpool_disable_datasets()
69  */
70 
71 #include <dirent.h>
72 #include <dlfcn.h>
73 #include <errno.h>
74 #include <fcntl.h>
75 #include <libgen.h>
76 #include <libintl.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <strings.h>
80 #include <unistd.h>
81 #include <zone.h>
82 #include <sys/mntent.h>
83 #include <sys/mount.h>
84 #include <sys/stat.h>
85 #include <sys/statvfs.h>
86 #include <sys/dsl_crypt.h>
87 
88 #include <libzfs.h>
89 
90 #include "libzfs_impl.h"
91 #include "libzfs_taskq.h"
92 
93 #include <libshare.h>
94 #include <sys/systeminfo.h>
95 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
96 
97 static int mount_tq_nthr = 512;	/* taskq threads for multi-threaded mounting */
98 
99 static void zfs_mount_task(void *);
100 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
101 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
102     zfs_share_proto_t);
103 
104 /*
105  * The share protocols table must be in the same order as the zfs_share_proto_t
106  * enum in libzfs_impl.h
107  */
108 typedef struct {
109 	zfs_prop_t p_prop;
110 	char *p_name;
111 	int p_share_err;
112 	int p_unshare_err;
113 } proto_table_t;
114 
115 proto_table_t proto_table[PROTO_END] = {
116 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
117 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
118 };
119 
120 zfs_share_proto_t nfs_only[] = {
121 	PROTO_NFS,
122 	PROTO_END
123 };
124 
125 zfs_share_proto_t smb_only[] = {
126 	PROTO_SMB,
127 	PROTO_END
128 };
129 zfs_share_proto_t share_all_proto[] = {
130 	PROTO_NFS,
131 	PROTO_SMB,
132 	PROTO_END
133 };
134 
135 /*
136  * Search the sharetab for the given mountpoint and protocol, returning
137  * a zfs_share_type_t value.
138  */
139 static zfs_share_type_t
140 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
141 {
142 	char buf[MAXPATHLEN], *tab;
143 	char *ptr;
144 
145 	if (hdl->libzfs_sharetab == NULL)
146 		return (SHARED_NOT_SHARED);
147 
148 	(void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
149 
150 	while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
151 
152 		/* the mountpoint is the first entry on each line */
153 		if ((tab = strchr(buf, '\t')) == NULL)
154 			continue;
155 
156 		*tab = '\0';
157 		if (strcmp(buf, mountpoint) == 0) {
158 			/*
159 			 * the protocol field is the third field
160 			 * skip over second field
161 			 */
162 			ptr = ++tab;
163 			if ((tab = strchr(ptr, '\t')) == NULL)
164 				continue;
165 			ptr = ++tab;
166 			if ((tab = strchr(ptr, '\t')) == NULL)
167 				continue;
168 			*tab = '\0';
169 			if (strcmp(ptr,
170 			    proto_table[proto].p_name) == 0) {
171 				switch (proto) {
172 				case PROTO_NFS:
173 					return (SHARED_NFS);
174 				case PROTO_SMB:
175 					return (SHARED_SMB);
176 				default:
177 					return (0);
178 				}
179 			}
180 		}
181 	}
182 
183 	return (SHARED_NOT_SHARED);
184 }
185 
186 static boolean_t
187 dir_is_empty_stat(const char *dirname)
188 {
189 	struct stat st;
190 
191 	/*
192 	 * We only want to return false if the given path is a non empty
193 	 * directory, all other errors are handled elsewhere.
194 	 */
195 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
196 		return (B_TRUE);
197 	}
198 
199 	/*
200 	 * An empty directory will still have two entries in it, one
201 	 * entry for each of "." and "..".
202 	 */
203 	if (st.st_size > 2) {
204 		return (B_FALSE);
205 	}
206 
207 	return (B_TRUE);
208 }
209 
210 static boolean_t
211 dir_is_empty_readdir(const char *dirname)
212 {
213 	DIR *dirp;
214 	struct dirent64 *dp;
215 	int dirfd;
216 
217 	if ((dirfd = openat(AT_FDCWD, dirname,
218 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
219 		return (B_TRUE);
220 	}
221 
222 	if ((dirp = fdopendir(dirfd)) == NULL) {
223 		(void) close(dirfd);
224 		return (B_TRUE);
225 	}
226 
227 	while ((dp = readdir64(dirp)) != NULL) {
228 
229 		if (strcmp(dp->d_name, ".") == 0 ||
230 		    strcmp(dp->d_name, "..") == 0)
231 			continue;
232 
233 		(void) closedir(dirp);
234 		return (B_FALSE);
235 	}
236 
237 	(void) closedir(dirp);
238 	return (B_TRUE);
239 }
240 
241 /*
242  * Returns true if the specified directory is empty.  If we can't open the
243  * directory at all, return true so that the mount can fail with a more
244  * informative error message.
245  */
246 static boolean_t
247 dir_is_empty(const char *dirname)
248 {
249 	struct statvfs64 st;
250 
251 	/*
252 	 * If the statvfs call fails or the filesystem is not a ZFS
253 	 * filesystem, fall back to the slow path which uses readdir.
254 	 */
255 	if ((statvfs64(dirname, &st) != 0) ||
256 	    (strcmp(st.f_basetype, "zfs") != 0)) {
257 		return (dir_is_empty_readdir(dirname));
258 	}
259 
260 	/*
261 	 * At this point, we know the provided path is on a ZFS
262 	 * filesystem, so we can use stat instead of readdir to
263 	 * determine if the directory is empty or not. We try to avoid
264 	 * using readdir because that requires opening "dirname"; this
265 	 * open file descriptor can potentially end up in a child
266 	 * process if there's a concurrent fork, thus preventing the
267 	 * zfs_mount() from otherwise succeeding (the open file
268 	 * descriptor inherited by the child process will cause the
269 	 * parent's mount to fail with EBUSY). The performance
270 	 * implications of replacing the open, read, and close with a
271 	 * single stat is nice; but is not the main motivation for the
272 	 * added complexity.
273 	 */
274 	return (dir_is_empty_stat(dirname));
275 }
276 
277 /*
278  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
279  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
280  * 0.
281  */
282 boolean_t
283 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
284 {
285 	struct mnttab entry;
286 
287 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
288 		return (B_FALSE);
289 
290 	if (where != NULL)
291 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
292 
293 	return (B_TRUE);
294 }
295 
296 boolean_t
297 zfs_is_mounted(zfs_handle_t *zhp, char **where)
298 {
299 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
300 }
301 
302 /*
303  * Returns true if the given dataset is mountable, false otherwise.  Returns the
304  * mountpoint in 'buf'.
305  */
306 static boolean_t
307 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
308     zprop_source_t *source)
309 {
310 	char sourceloc[MAXNAMELEN];
311 	zprop_source_t sourcetype;
312 
313 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
314 		return (B_FALSE);
315 
316 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
317 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
318 
319 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
320 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
321 		return (B_FALSE);
322 
323 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
324 		return (B_FALSE);
325 
326 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
327 	    getzoneid() == GLOBAL_ZONEID)
328 		return (B_FALSE);
329 
330 	if (source)
331 		*source = sourcetype;
332 
333 	return (B_TRUE);
334 }
335 
336 /*
337  * Mount the given filesystem.
338  */
339 int
340 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
341 {
342 	struct stat buf;
343 	char mountpoint[ZFS_MAXPROPLEN];
344 	char mntopts[MNT_LINE_MAX];
345 	libzfs_handle_t *hdl = zhp->zfs_hdl;
346 	uint64_t keystatus;
347 	int rc;
348 
349 	if (options == NULL)
350 		mntopts[0] = '\0';
351 	else
352 		(void) strlcpy(mntopts, options, sizeof (mntopts));
353 
354 	/*
355 	 * If the pool is imported read-only then all mounts must be read-only
356 	 */
357 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
358 		flags |= MS_RDONLY;
359 
360 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
361 		return (0);
362 
363 	/*
364 	 * If the filesystem is encrypted the key must be loaded  in order to
365 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
366 	 * or not we attempt to load the keys. Note: we must call
367 	 * zfs_refresh_properties() here since some callers of this function
368 	 * (most notably zpool_enable_datasets()) may implicitly load our key
369 	 * by loading the parent's key first.
370 	 */
371 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
372 		zfs_refresh_properties(zhp);
373 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
374 
375 		/*
376 		 * If the key is unavailable and MS_CRYPT is set give the
377 		 * user a chance to enter the key. Otherwise just fail
378 		 * immediately.
379 		 */
380 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
381 			if (flags & MS_CRYPT) {
382 				rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
383 				if (rc != 0)
384 					return (rc);
385 			} else {
386 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
387 				    "encryption key not loaded"));
388 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
389 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
390 				    mountpoint));
391 			}
392 		}
393 
394 	}
395 
396 	/* Create the directory if it doesn't already exist */
397 	if (lstat(mountpoint, &buf) != 0) {
398 		if (mkdirp(mountpoint, 0755) != 0) {
399 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
400 			    "failed to create mountpoint"));
401 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
402 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
403 			    mountpoint));
404 		}
405 	}
406 
407 	/*
408 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
409 	 * mount.  We don't perform this check if MS_OVERLAY is specified, which
410 	 * would defeat the point.  We also avoid this check if 'remount' is
411 	 * specified.
412 	 */
413 	if ((flags & MS_OVERLAY) == 0 &&
414 	    strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
415 	    !dir_is_empty(mountpoint)) {
416 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
417 		    "directory is not empty"));
418 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
419 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
420 	}
421 
422 	/* perform the mount */
423 	if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
424 	    MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
425 		/*
426 		 * Generic errors are nasty, but there are just way too many
427 		 * from mount(), and they're well-understood.  We pick a few
428 		 * common ones to improve upon.
429 		 */
430 		if (errno == EBUSY) {
431 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
432 			    "mountpoint or dataset is busy"));
433 		} else if (errno == EPERM) {
434 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
435 			    "Insufficient privileges"));
436 		} else if (errno == ENOTSUP) {
437 			char buf[256];
438 			int spa_version;
439 
440 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
441 			(void) snprintf(buf, sizeof (buf),
442 			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
443 			    "file system on a version %d pool. Pool must be"
444 			    " upgraded to mount this file system."),
445 			    (u_longlong_t)zfs_prop_get_int(zhp,
446 			    ZFS_PROP_VERSION), spa_version);
447 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
448 		} else {
449 			zfs_error_aux(hdl, strerror(errno));
450 		}
451 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
452 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
453 		    zhp->zfs_name));
454 	}
455 
456 	/* add the mounted entry into our cache */
457 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
458 	    mntopts);
459 	return (0);
460 }
461 
462 /*
463  * Unmount a single filesystem.
464  */
465 static int
466 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
467 {
468 	if (umount2(mountpoint, flags) != 0) {
469 		zfs_error_aux(hdl, strerror(errno));
470 		return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
471 		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
472 		    mountpoint));
473 	}
474 
475 	return (0);
476 }
477 
478 /*
479  * Unmount the given filesystem.
480  */
481 int
482 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
483 {
484 	libzfs_handle_t *hdl = zhp->zfs_hdl;
485 	struct mnttab entry;
486 	char *mntpt = NULL;
487 
488 	/* check to see if we need to unmount the filesystem */
489 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
490 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
491 		/*
492 		 * mountpoint may have come from a call to
493 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
494 		 * we know it comes from libzfs_mnttab_find which can
495 		 * then get freed later. We strdup it to play it safe.
496 		 */
497 		if (mountpoint == NULL)
498 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
499 		else
500 			mntpt = zfs_strdup(hdl, mountpoint);
501 
502 		/*
503 		 * Unshare and unmount the filesystem
504 		 */
505 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
506 			return (-1);
507 
508 		if (unmount_one(hdl, mntpt, flags) != 0) {
509 			free(mntpt);
510 			(void) zfs_shareall(zhp);
511 			return (-1);
512 		}
513 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
514 		free(mntpt);
515 	}
516 
517 	return (0);
518 }
519 
520 /*
521  * Unmount this filesystem and any children inheriting the mountpoint property.
522  * To do this, just act like we're changing the mountpoint property, but don't
523  * remount the filesystems afterwards.
524  */
525 int
526 zfs_unmountall(zfs_handle_t *zhp, int flags)
527 {
528 	prop_changelist_t *clp;
529 	int ret;
530 
531 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
532 	if (clp == NULL)
533 		return (-1);
534 
535 	ret = changelist_prefix(clp);
536 	changelist_free(clp);
537 
538 	return (ret);
539 }
540 
541 boolean_t
542 zfs_is_shared(zfs_handle_t *zhp)
543 {
544 	zfs_share_type_t rc = 0;
545 	zfs_share_proto_t *curr_proto;
546 
547 	if (ZFS_IS_VOLUME(zhp))
548 		return (B_FALSE);
549 
550 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
551 	    curr_proto++)
552 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
553 
554 	return (rc ? B_TRUE : B_FALSE);
555 }
556 
557 int
558 zfs_share(zfs_handle_t *zhp)
559 {
560 	assert(!ZFS_IS_VOLUME(zhp));
561 	return (zfs_share_proto(zhp, share_all_proto));
562 }
563 
564 int
565 zfs_unshare(zfs_handle_t *zhp)
566 {
567 	assert(!ZFS_IS_VOLUME(zhp));
568 	return (zfs_unshareall(zhp));
569 }
570 
571 /*
572  * Check to see if the filesystem is currently shared.
573  */
574 zfs_share_type_t
575 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
576 {
577 	char *mountpoint;
578 	zfs_share_type_t rc;
579 
580 	if (!zfs_is_mounted(zhp, &mountpoint))
581 		return (SHARED_NOT_SHARED);
582 
583 	if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
584 	    != SHARED_NOT_SHARED) {
585 		if (where != NULL)
586 			*where = mountpoint;
587 		else
588 			free(mountpoint);
589 		return (rc);
590 	} else {
591 		free(mountpoint);
592 		return (SHARED_NOT_SHARED);
593 	}
594 }
595 
596 boolean_t
597 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
598 {
599 	return (zfs_is_shared_proto(zhp, where,
600 	    PROTO_NFS) != SHARED_NOT_SHARED);
601 }
602 
603 boolean_t
604 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
605 {
606 	return (zfs_is_shared_proto(zhp, where,
607 	    PROTO_SMB) != SHARED_NOT_SHARED);
608 }
609 
610 /*
611  * Make sure things will work if libshare isn't installed by using
612  * wrapper functions that check to see that the pointers to functions
613  * initialized in _zfs_init_libshare() are actually present.
614  */
615 
616 static sa_handle_t (*_sa_init)(int);
617 static sa_handle_t (*_sa_init_arg)(int, void *);
618 static int (*_sa_service)(sa_handle_t);
619 static void (*_sa_fini)(sa_handle_t);
620 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
621 static int (*_sa_enable_share)(sa_share_t, char *);
622 static int (*_sa_disable_share)(sa_share_t, char *);
623 static char *(*_sa_errorstr)(int);
624 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
625 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
626 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
627 static int (* _sa_get_zfs_share)(sa_handle_t, char *, zfs_handle_t *);
628 static void (*_sa_update_sharetab_ts)(sa_handle_t);
629 
630 /*
631  * _zfs_init_libshare()
632  *
633  * Find the libshare.so.1 entry points that we use here and save the
634  * values to be used later. This is triggered by the runtime loader.
635  * Make sure the correct ISA version is loaded.
636  */
637 
638 #pragma init(_zfs_init_libshare)
639 static void
640 _zfs_init_libshare(void)
641 {
642 	void *libshare;
643 	char path[MAXPATHLEN];
644 	char isa[MAXISALEN];
645 
646 #if defined(_LP64)
647 	if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
648 		isa[0] = '\0';
649 #else
650 	isa[0] = '\0';
651 #endif
652 	(void) snprintf(path, MAXPATHLEN,
653 	    "/usr/lib/%s/libshare.so.1", isa);
654 
655 	if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
656 		_sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
657 		_sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
658 		    "sa_init_arg");
659 		_sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
660 		_sa_service = (int (*)(sa_handle_t))dlsym(libshare,
661 		    "sa_service");
662 		_sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
663 		    dlsym(libshare, "sa_find_share");
664 		_sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
665 		    "sa_enable_share");
666 		_sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
667 		    "sa_disable_share");
668 		_sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
669 		_sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
670 		    dlsym(libshare, "sa_parse_legacy_options");
671 		_sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
672 		    dlsym(libshare, "sa_needs_refresh");
673 		_sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
674 		    dlsym(libshare, "sa_get_zfs_handle");
675 		_sa_get_zfs_share = (int (*)(sa_handle_t, char *,
676 		    zfs_handle_t *)) dlsym(libshare, "sa_get_zfs_share");
677 		_sa_update_sharetab_ts = (void (*)(sa_handle_t))
678 		    dlsym(libshare, "sa_update_sharetab_ts");
679 		if (_sa_init == NULL || _sa_init_arg == NULL ||
680 		    _sa_fini == NULL || _sa_find_share == NULL ||
681 		    _sa_enable_share == NULL || _sa_disable_share == NULL ||
682 		    _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
683 		    _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
684 		    _sa_get_zfs_share == NULL || _sa_service == NULL ||
685 		    _sa_update_sharetab_ts == NULL) {
686 			_sa_init = NULL;
687 			_sa_init_arg = NULL;
688 			_sa_service = NULL;
689 			_sa_fini = NULL;
690 			_sa_disable_share = NULL;
691 			_sa_enable_share = NULL;
692 			_sa_errorstr = NULL;
693 			_sa_parse_legacy_options = NULL;
694 			(void) dlclose(libshare);
695 			_sa_needs_refresh = NULL;
696 			_sa_get_zfs_handle = NULL;
697 			_sa_get_zfs_share = NULL;
698 			_sa_update_sharetab_ts = NULL;
699 		}
700 	}
701 }
702 
703 /*
704  * zfs_init_libshare(zhandle, service)
705  *
706  * Initialize the libshare API if it hasn't already been initialized.
707  * In all cases it returns 0 if it succeeded and an error if not. The
708  * service value is which part(s) of the API to initialize and is a
709  * direct map to the libshare sa_init(service) interface.
710  */
711 static int
712 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
713 {
714 	/*
715 	 * libshare is either not installed or we're in a branded zone. The
716 	 * rest of the wrapper functions around the libshare calls already
717 	 * handle NULL function pointers, but we don't want the callers of
718 	 * zfs_init_libshare() to fail prematurely if libshare is not available.
719 	 */
720 	if (_sa_init == NULL)
721 		return (SA_OK);
722 
723 	/*
724 	 * Attempt to refresh libshare. This is necessary if there was a cache
725 	 * miss for a new ZFS dataset that was just created, or if state of the
726 	 * sharetab file has changed since libshare was last initialized. We
727 	 * want to make sure so check timestamps to see if a different process
728 	 * has updated any of the configuration. If there was some non-ZFS
729 	 * change, we need to re-initialize the internal cache.
730 	 */
731 	if (_sa_needs_refresh != NULL &&
732 	    _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
733 		zfs_uninit_libshare(zhandle);
734 		zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
735 	}
736 
737 	if (zhandle && zhandle->libzfs_sharehdl == NULL)
738 		zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
739 
740 	if (zhandle->libzfs_sharehdl == NULL)
741 		return (SA_NO_MEMORY);
742 
743 	return (SA_OK);
744 }
745 int
746 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
747 {
748 	return (zfs_init_libshare_impl(zhandle, service, NULL));
749 }
750 
751 int
752 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
753 {
754 	return (zfs_init_libshare_impl(zhandle, service, arg));
755 }
756 
757 
758 /*
759  * zfs_uninit_libshare(zhandle)
760  *
761  * Uninitialize the libshare API if it hasn't already been
762  * uninitialized. It is OK to call multiple times.
763  */
764 void
765 zfs_uninit_libshare(libzfs_handle_t *zhandle)
766 {
767 	if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
768 		if (_sa_fini != NULL)
769 			_sa_fini(zhandle->libzfs_sharehdl);
770 		zhandle->libzfs_sharehdl = NULL;
771 	}
772 }
773 
774 /*
775  * zfs_parse_options(options, proto)
776  *
777  * Call the legacy parse interface to get the protocol specific
778  * options using the NULL arg to indicate that this is a "parse" only.
779  */
780 int
781 zfs_parse_options(char *options, zfs_share_proto_t proto)
782 {
783 	if (_sa_parse_legacy_options != NULL) {
784 		return (_sa_parse_legacy_options(NULL, options,
785 		    proto_table[proto].p_name));
786 	}
787 	return (SA_CONFIG_ERR);
788 }
789 
790 /*
791  * zfs_sa_find_share(handle, path)
792  *
793  * wrapper around sa_find_share to find a share path in the
794  * configuration.
795  */
796 static sa_share_t
797 zfs_sa_find_share(sa_handle_t handle, char *path)
798 {
799 	if (_sa_find_share != NULL)
800 		return (_sa_find_share(handle, path));
801 	return (NULL);
802 }
803 
804 /*
805  * zfs_sa_enable_share(share, proto)
806  *
807  * Wrapper for sa_enable_share which enables a share for a specified
808  * protocol.
809  */
810 static int
811 zfs_sa_enable_share(sa_share_t share, char *proto)
812 {
813 	if (_sa_enable_share != NULL)
814 		return (_sa_enable_share(share, proto));
815 	return (SA_CONFIG_ERR);
816 }
817 
818 /*
819  * zfs_sa_disable_share(share, proto)
820  *
821  * Wrapper for sa_enable_share which disables a share for a specified
822  * protocol.
823  */
824 static int
825 zfs_sa_disable_share(sa_share_t share, char *proto)
826 {
827 	if (_sa_disable_share != NULL)
828 		return (_sa_disable_share(share, proto));
829 	return (SA_CONFIG_ERR);
830 }
831 
832 /*
833  * Share the given filesystem according to the options in the specified
834  * protocol specific properties (sharenfs, sharesmb).  We rely
835  * on "libshare" to the dirty work for us.
836  */
837 static int
838 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
839 {
840 	char mountpoint[ZFS_MAXPROPLEN];
841 	char shareopts[ZFS_MAXPROPLEN];
842 	char sourcestr[ZFS_MAXPROPLEN];
843 	libzfs_handle_t *hdl = zhp->zfs_hdl;
844 	sa_share_t share;
845 	zfs_share_proto_t *curr_proto;
846 	zprop_source_t sourcetype;
847 	int service = SA_INIT_ONE_SHARE_FROM_HANDLE;
848 	int ret;
849 
850 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
851 		return (0);
852 
853 	/*
854 	 * Function may be called in a loop from higher up stack, with libshare
855 	 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
856 	 * zfs_init_libshare_arg will refresh the handle's cache if necessary.
857 	 * In this case we do not want to switch to per share initialization.
858 	 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
859 	 */
860 	if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
861 	    (_sa_service(hdl->libzfs_sharehdl) ==
862 	    SA_INIT_SHARE_API_SELECTIVE)) {
863 		service = SA_INIT_SHARE_API;
864 	}
865 
866 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
867 		/*
868 		 * Return success if there are no share options.
869 		 */
870 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
871 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
872 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
873 		    strcmp(shareopts, "off") == 0)
874 			continue;
875 		ret = zfs_init_libshare_arg(hdl, service, zhp);
876 		if (ret != SA_OK) {
877 			(void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
878 			    dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
879 			    zfs_get_name(zhp), _sa_errorstr != NULL ?
880 			    _sa_errorstr(ret) : "");
881 			return (-1);
882 		}
883 
884 		share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
885 		if (share == NULL) {
886 			/*
887 			 * This may be a new file system that was just
888 			 * created so isn't in the internal cache.
889 			 * Rather than reloading the entire configuration,
890 			 * we can add just this one share to the cache.
891 			 */
892 			if ((_sa_get_zfs_share == NULL) ||
893 			    (_sa_get_zfs_share(hdl->libzfs_sharehdl, "zfs", zhp)
894 			    != SA_OK)) {
895 				(void) zfs_error_fmt(hdl,
896 				    proto_table[*curr_proto].p_share_err,
897 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
898 				    zfs_get_name(zhp));
899 				return (-1);
900 			}
901 			share = zfs_sa_find_share(hdl->libzfs_sharehdl,
902 			    mountpoint);
903 		}
904 		if (share != NULL) {
905 			int err;
906 			err = zfs_sa_enable_share(share,
907 			    proto_table[*curr_proto].p_name);
908 			if (err != SA_OK) {
909 				(void) zfs_error_fmt(hdl,
910 				    proto_table[*curr_proto].p_share_err,
911 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
912 				    zfs_get_name(zhp));
913 				return (-1);
914 			}
915 		} else {
916 			(void) zfs_error_fmt(hdl,
917 			    proto_table[*curr_proto].p_share_err,
918 			    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
919 			    zfs_get_name(zhp));
920 			return (-1);
921 		}
922 
923 	}
924 	return (0);
925 }
926 
927 
928 int
929 zfs_share_nfs(zfs_handle_t *zhp)
930 {
931 	return (zfs_share_proto(zhp, nfs_only));
932 }
933 
934 int
935 zfs_share_smb(zfs_handle_t *zhp)
936 {
937 	return (zfs_share_proto(zhp, smb_only));
938 }
939 
940 int
941 zfs_shareall(zfs_handle_t *zhp)
942 {
943 	return (zfs_share_proto(zhp, share_all_proto));
944 }
945 
946 /*
947  * Unshare a filesystem by mountpoint.
948  */
949 static int
950 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
951     zfs_share_proto_t proto)
952 {
953 	sa_share_t share;
954 	int err;
955 	char *mntpt;
956 	int service = SA_INIT_ONE_SHARE_FROM_NAME;
957 
958 	/*
959 	 * Mountpoint could get trashed if libshare calls getmntany
960 	 * which it does during API initialization, so strdup the
961 	 * value.
962 	 */
963 	mntpt = zfs_strdup(hdl, mountpoint);
964 
965 	/*
966 	 * Function may be called in a loop from higher up stack, with libshare
967 	 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
968 	 * zfs_init_libshare_arg will refresh the handle's cache if necessary.
969 	 * In this case we do not want to switch to per share initialization.
970 	 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
971 	 */
972 	if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
973 	    (_sa_service(hdl->libzfs_sharehdl) ==
974 	    SA_INIT_SHARE_API_SELECTIVE)) {
975 		service = SA_INIT_SHARE_API;
976 	}
977 
978 	err = zfs_init_libshare_arg(hdl, service, (void *)name);
979 	if (err != SA_OK) {
980 		free(mntpt);	/* don't need the copy anymore */
981 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
982 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
983 		    name, _sa_errorstr(err)));
984 	}
985 
986 	share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
987 	free(mntpt);	/* don't need the copy anymore */
988 
989 	if (share != NULL) {
990 		err = zfs_sa_disable_share(share, proto_table[proto].p_name);
991 		if (err != SA_OK) {
992 			return (zfs_error_fmt(hdl,
993 			    proto_table[proto].p_unshare_err,
994 			    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
995 			    name, _sa_errorstr(err)));
996 		}
997 	} else {
998 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
999 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
1000 		    name));
1001 	}
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Unshare the given filesystem.
1007  */
1008 int
1009 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
1010     zfs_share_proto_t *proto)
1011 {
1012 	libzfs_handle_t *hdl = zhp->zfs_hdl;
1013 	struct mnttab entry;
1014 	char *mntpt = NULL;
1015 
1016 	/* check to see if need to unmount the filesystem */
1017 	rewind(zhp->zfs_hdl->libzfs_mnttab);
1018 	if (mountpoint != NULL)
1019 		mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
1020 
1021 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
1022 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
1023 		zfs_share_proto_t *curr_proto;
1024 
1025 		if (mountpoint == NULL)
1026 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
1027 
1028 		for (curr_proto = proto; *curr_proto != PROTO_END;
1029 		    curr_proto++) {
1030 
1031 			if (is_shared(hdl, mntpt, *curr_proto) &&
1032 			    unshare_one(hdl, zhp->zfs_name,
1033 			    mntpt, *curr_proto) != 0) {
1034 				if (mntpt != NULL)
1035 					free(mntpt);
1036 				return (-1);
1037 			}
1038 		}
1039 	}
1040 	if (mntpt != NULL)
1041 		free(mntpt);
1042 
1043 	return (0);
1044 }
1045 
1046 int
1047 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
1048 {
1049 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1050 }
1051 
1052 int
1053 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
1054 {
1055 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1056 }
1057 
1058 /*
1059  * Same as zfs_unmountall(), but for NFS and SMB unshares.
1060  */
1061 int
1062 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
1063 {
1064 	prop_changelist_t *clp;
1065 	int ret;
1066 
1067 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1068 	if (clp == NULL)
1069 		return (-1);
1070 
1071 	ret = changelist_unshare(clp, proto);
1072 	changelist_free(clp);
1073 
1074 	return (ret);
1075 }
1076 
1077 int
1078 zfs_unshareall_nfs(zfs_handle_t *zhp)
1079 {
1080 	return (zfs_unshareall_proto(zhp, nfs_only));
1081 }
1082 
1083 int
1084 zfs_unshareall_smb(zfs_handle_t *zhp)
1085 {
1086 	return (zfs_unshareall_proto(zhp, smb_only));
1087 }
1088 
1089 int
1090 zfs_unshareall(zfs_handle_t *zhp)
1091 {
1092 	return (zfs_unshareall_proto(zhp, share_all_proto));
1093 }
1094 
1095 int
1096 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1097 {
1098 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1099 }
1100 
1101 /*
1102  * Remove the mountpoint associated with the current dataset, if necessary.
1103  * We only remove the underlying directory if:
1104  *
1105  *	- The mountpoint is not 'none' or 'legacy'
1106  *	- The mountpoint is non-empty
1107  *	- The mountpoint is the default or inherited
1108  *	- The 'zoned' property is set, or we're in a local zone
1109  *
1110  * Any other directories we leave alone.
1111  */
1112 void
1113 remove_mountpoint(zfs_handle_t *zhp)
1114 {
1115 	char mountpoint[ZFS_MAXPROPLEN];
1116 	zprop_source_t source;
1117 
1118 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1119 	    &source))
1120 		return;
1121 
1122 	if (source == ZPROP_SRC_DEFAULT ||
1123 	    source == ZPROP_SRC_INHERITED) {
1124 		/*
1125 		 * Try to remove the directory, silently ignoring any errors.
1126 		 * The filesystem may have since been removed or moved around,
1127 		 * and this error isn't really useful to the administrator in
1128 		 * any way.
1129 		 */
1130 		(void) rmdir(mountpoint);
1131 	}
1132 }
1133 
1134 /*
1135  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1136  * the array if it is out of space.
1137  */
1138 void
1139 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1140 {
1141 	if (cbp->cb_alloc == cbp->cb_used) {
1142 		size_t newsz;
1143 		zfs_handle_t **newhandles;
1144 
1145 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1146 		newhandles = zfs_realloc(zhp->zfs_hdl,
1147 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1148 		    newsz * sizeof (zfs_handle_t *));
1149 		cbp->cb_handles = newhandles;
1150 		cbp->cb_alloc = newsz;
1151 	}
1152 	cbp->cb_handles[cbp->cb_used++] = zhp;
1153 }
1154 
1155 /*
1156  * Recursive helper function used during file system enumeration
1157  */
1158 static int
1159 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1160 {
1161 	get_all_cb_t *cbp = data;
1162 
1163 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1164 		zfs_close(zhp);
1165 		return (0);
1166 	}
1167 
1168 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1169 		zfs_close(zhp);
1170 		return (0);
1171 	}
1172 
1173 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1174 	    ZFS_KEYSTATUS_UNAVAILABLE) {
1175 		zfs_close(zhp);
1176 		return (0);
1177 	}
1178 
1179 	/*
1180 	 * If this filesystem is inconsistent and has a receive resume
1181 	 * token, we can not mount it.
1182 	 */
1183 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1184 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1185 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1186 		zfs_close(zhp);
1187 		return (0);
1188 	}
1189 
1190 	libzfs_add_handle(cbp, zhp);
1191 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1192 		zfs_close(zhp);
1193 		return (-1);
1194 	}
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Sort comparator that compares two mountpoint paths. We sort these paths so
1200  * that subdirectories immediately follow their parents. This means that we
1201  * effectively treat the '/' character as the lowest value non-nul char.
1202  * Since filesystems from non-global zones can have the same mountpoint
1203  * as other filesystems, the comparator sorts global zone filesystems to
1204  * the top of the list. This means that the global zone will traverse the
1205  * filesystem list in the correct order and can stop when it sees the
1206  * first zoned filesystem. In a non-global zone, only the delegated
1207  * filesystems are seen.
1208  *
1209  * An example sorted list using this comparator would look like:
1210  *
1211  * /foo
1212  * /foo/bar
1213  * /foo/bar/baz
1214  * /foo/baz
1215  * /foo.bar
1216  * /foo (NGZ1)
1217  * /foo (NGZ2)
1218  *
1219  * The mounting code depends on this ordering to deterministically iterate
1220  * over filesystems in order to spawn parallel mount tasks.
1221  */
1222 static int
1223 mountpoint_cmp(const void *arga, const void *argb)
1224 {
1225 	zfs_handle_t *const *zap = arga;
1226 	zfs_handle_t *za = *zap;
1227 	zfs_handle_t *const *zbp = argb;
1228 	zfs_handle_t *zb = *zbp;
1229 	char mounta[MAXPATHLEN];
1230 	char mountb[MAXPATHLEN];
1231 	const char *a = mounta;
1232 	const char *b = mountb;
1233 	boolean_t gota, gotb;
1234 	uint64_t zoneda, zonedb;
1235 
1236 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1237 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1238 	if (zoneda && !zonedb)
1239 		return (1);
1240 	if (!zoneda && zonedb)
1241 		return (-1);
1242 
1243 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1244 	if (gota) {
1245 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1246 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1247 	}
1248 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1249 	if (gotb) {
1250 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1251 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1252 	}
1253 
1254 	if (gota && gotb) {
1255 		while (*a != '\0' && (*a == *b)) {
1256 			a++;
1257 			b++;
1258 		}
1259 		if (*a == *b)
1260 			return (0);
1261 		if (*a == '\0')
1262 			return (-1);
1263 		if (*b == '\0')
1264 			return (1);
1265 		if (*a == '/')
1266 			return (-1);
1267 		if (*b == '/')
1268 			return (1);
1269 		return (*a < *b ? -1 : *a > *b);
1270 	}
1271 
1272 	if (gota)
1273 		return (-1);
1274 	if (gotb)
1275 		return (1);
1276 
1277 	/*
1278 	 * If neither filesystem has a mountpoint, revert to sorting by
1279 	 * dataset name.
1280 	 */
1281 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1282 }
1283 
1284 /*
1285  * Return true if path2 is a child of path1.
1286  */
1287 static boolean_t
1288 libzfs_path_contains(const char *path1, const char *path2)
1289 {
1290 	return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
1291 }
1292 
1293 /*
1294  * Given a mountpoint specified by idx in the handles array, find the first
1295  * non-descendent of that mountpoint and return its index. Descendant paths
1296  * start with the parent's path. This function relies on the ordering
1297  * enforced by mountpoint_cmp().
1298  */
1299 static int
1300 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1301 {
1302 	char parent[ZFS_MAXPROPLEN];
1303 	char child[ZFS_MAXPROPLEN];
1304 	int i;
1305 
1306 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1307 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1308 
1309 	for (i = idx + 1; i < num_handles; i++) {
1310 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1311 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1312 		if (!libzfs_path_contains(parent, child))
1313 			break;
1314 	}
1315 	return (i);
1316 }
1317 
1318 typedef struct mnt_param {
1319 	libzfs_handle_t	*mnt_hdl;
1320 	zfs_taskq_t	*mnt_tq;
1321 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1322 	size_t		mnt_num_handles;
1323 	int		mnt_idx;	/* Index of selected entry to mount */
1324 	zfs_iter_f	mnt_func;
1325 	void		*mnt_data;
1326 } mnt_param_t;
1327 
1328 /*
1329  * Allocate and populate the parameter struct for mount function, and
1330  * schedule mounting of the entry selected by idx.
1331  */
1332 static void
1333 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1334     size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq)
1335 {
1336 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1337 
1338 	mnt_param->mnt_hdl = hdl;
1339 	mnt_param->mnt_tq = tq;
1340 	mnt_param->mnt_zhps = handles;
1341 	mnt_param->mnt_num_handles = num_handles;
1342 	mnt_param->mnt_idx = idx;
1343 	mnt_param->mnt_func = func;
1344 	mnt_param->mnt_data = data;
1345 
1346 	(void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1347 	    ZFS_TQ_SLEEP);
1348 }
1349 
1350 /*
1351  * This is the structure used to keep state of mounting or sharing operations
1352  * during a call to zpool_enable_datasets().
1353  */
1354 typedef struct mount_state {
1355 	/*
1356 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1357 	 * could update this variable concurrently, no synchronization is
1358 	 * needed as it's only ever set to -1.
1359 	 */
1360 	int		ms_mntstatus;
1361 	int		ms_mntflags;
1362 	const char	*ms_mntopts;
1363 } mount_state_t;
1364 
1365 static int
1366 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1367 {
1368 	mount_state_t *ms = arg;
1369 	int ret = 0;
1370 
1371 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1372 	    ZFS_KEYSTATUS_UNAVAILABLE)
1373 		return (0);
1374 
1375 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1376 		ret = ms->ms_mntstatus = -1;
1377 	return (ret);
1378 }
1379 
1380 static int
1381 zfs_share_one(zfs_handle_t *zhp, void *arg)
1382 {
1383 	mount_state_t *ms = arg;
1384 	int ret = 0;
1385 
1386 	if (zfs_share(zhp) != 0)
1387 		ret = ms->ms_mntstatus = -1;
1388 	return (ret);
1389 }
1390 
1391 /*
1392  * Task queue function to mount one file system. On completion, it finds and
1393  * schedules its children to be mounted. This depends on the sorting done in
1394  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1395  * each descending from the previous) will have no parallelism since we always
1396  * have to wait for the parent to finish mounting before we can schedule
1397  * its children.
1398  */
1399 static void
1400 zfs_mount_task(void *arg)
1401 {
1402 	mnt_param_t *mp = arg;
1403 	int idx = mp->mnt_idx;
1404 	zfs_handle_t **handles = mp->mnt_zhps;
1405 	size_t num_handles = mp->mnt_num_handles;
1406 	char mountpoint[ZFS_MAXPROPLEN];
1407 
1408 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1409 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1410 
1411 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1412 		return;
1413 
1414 	/*
1415 	 * We dispatch tasks to mount filesystems with mountpoints underneath
1416 	 * this one. We do this by dispatching the next filesystem with a
1417 	 * descendant mountpoint of the one we just mounted, then skip all of
1418 	 * its descendants, dispatch the next descendant mountpoint, and so on.
1419 	 * The non_descendant_idx() function skips over filesystems that are
1420 	 * descendants of the filesystem we just dispatched.
1421 	 */
1422 	for (int i = idx + 1; i < num_handles;
1423 	    i = non_descendant_idx(handles, num_handles, i)) {
1424 		char child[ZFS_MAXPROPLEN];
1425 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1426 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1427 
1428 		if (!libzfs_path_contains(mountpoint, child))
1429 			break; /* not a descendant, return */
1430 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1431 		    mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1432 	}
1433 	free(mp);
1434 }
1435 
1436 /*
1437  * Issue the func callback for each ZFS handle contained in the handles
1438  * array. This function is used to mount all datasets, and so this function
1439  * guarantees that filesystems for parent mountpoints are called before their
1440  * children. As such, before issuing any callbacks, we first sort the array
1441  * of handles by mountpoint.
1442  *
1443  * Callbacks are issued in one of two ways:
1444  *
1445  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1446  *    environment variable is set, then we issue callbacks sequentially.
1447  *
1448  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1449  *    environment variable is not set, then we use a taskq to dispatch threads
1450  *    to mount filesystems is parallel. This function dispatches tasks to mount
1451  *    the filesystems at the top-level mountpoints, and these tasks in turn
1452  *    are responsible for recursively mounting filesystems in their children
1453  *    mountpoints.
1454  */
1455 void
1456 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1457     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1458 {
1459 	zoneid_t zoneid = getzoneid();
1460 
1461 	/*
1462 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1463 	 * variable that can be used as a convenience to do a/b comparison
1464 	 * of serial vs. parallel mounting.
1465 	 */
1466 	boolean_t serial_mount = !parallel ||
1467 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1468 
1469 	/*
1470 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1471 	 * of how these are sorted.
1472 	 */
1473 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1474 
1475 	if (serial_mount) {
1476 		for (int i = 0; i < num_handles; i++) {
1477 			func(handles[i], data);
1478 		}
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * Issue the callback function for each dataset using a parallel
1484 	 * algorithm that uses a taskq to manage threads.
1485 	 */
1486 	zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0,
1487 	    mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE);
1488 
1489 	/*
1490 	 * There may be multiple "top level" mountpoints outside of the pool's
1491 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1492 	 * these.
1493 	 */
1494 	for (int i = 0; i < num_handles;
1495 	    i = non_descendant_idx(handles, num_handles, i)) {
1496 		/*
1497 		 * Since the mountpoints have been sorted so that the zoned
1498 		 * filesystems are at the end, a zoned filesystem seen from
1499 		 * the global zone means that we're done.
1500 		 */
1501 		if (zoneid == GLOBAL_ZONEID &&
1502 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1503 			break;
1504 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1505 		    tq);
1506 	}
1507 
1508 	zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */
1509 	zfs_taskq_destroy(tq);
1510 }
1511 
1512 /*
1513  * Mount and share all datasets within the given pool.  This assumes that no
1514  * datasets within the pool are currently mounted.
1515  */
1516 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1517 int
1518 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1519 {
1520 	get_all_cb_t cb = { 0 };
1521 	mount_state_t ms = { 0 };
1522 	zfs_handle_t *zfsp;
1523 	sa_init_selective_arg_t sharearg;
1524 	int ret = 0;
1525 
1526 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1527 	    ZFS_TYPE_DATASET)) == NULL)
1528 		goto out;
1529 
1530 
1531 	/*
1532 	 * Gather all non-snapshot datasets within the pool. Start by adding
1533 	 * the root filesystem for this pool to the list, and then iterate
1534 	 * over all child filesystems.
1535 	 */
1536 	libzfs_add_handle(&cb, zfsp);
1537 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1538 		goto out;
1539 
1540 	ms.ms_mntopts = mntopts;
1541 	ms.ms_mntflags = flags;
1542 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1543 	    zfs_mount_one, &ms, B_TRUE);
1544 	if (ms.ms_mntstatus != 0)
1545 		ret = ms.ms_mntstatus;
1546 
1547 	/*
1548 	 * Initialize libshare SA_INIT_SHARE_API_SELECTIVE here
1549 	 * to avoid unnecessary load/unload of the libshare API
1550 	 * per shared dataset downstream.
1551 	 */
1552 	sharearg.zhandle_arr = cb.cb_handles;
1553 	sharearg.zhandle_len = cb.cb_used;
1554 	if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl,
1555 	    SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0)
1556 		goto out;
1557 
1558 	ms.ms_mntstatus = 0;
1559 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1560 	    zfs_share_one, &ms, B_FALSE);
1561 	if (ms.ms_mntstatus != 0)
1562 		ret = ms.ms_mntstatus;
1563 
1564 out:
1565 	for (int i = 0; i < cb.cb_used; i++)
1566 		zfs_close(cb.cb_handles[i]);
1567 	free(cb.cb_handles);
1568 
1569 	return (ret);
1570 }
1571 
1572 static int
1573 mountpoint_compare(const void *a, const void *b)
1574 {
1575 	const char *mounta = *((char **)a);
1576 	const char *mountb = *((char **)b);
1577 
1578 	return (strcmp(mountb, mounta));
1579 }
1580 
1581 /* alias for 2002/240 */
1582 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1583 /*
1584  * Unshare and unmount all datasets within the given pool.  We don't want to
1585  * rely on traversing the DSL to discover the filesystems within the pool,
1586  * because this may be expensive (if not all of them are mounted), and can fail
1587  * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mnttab and
1588  * gather all the filesystems that are currently mounted.
1589  */
1590 int
1591 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1592 {
1593 	int used, alloc;
1594 	struct mnttab entry;
1595 	size_t namelen;
1596 	char **mountpoints = NULL;
1597 	zfs_handle_t **datasets = NULL;
1598 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1599 	int i;
1600 	int ret = -1;
1601 	int flags = (force ? MS_FORCE : 0);
1602 	sa_init_selective_arg_t sharearg;
1603 
1604 	namelen = strlen(zhp->zpool_name);
1605 
1606 	rewind(hdl->libzfs_mnttab);
1607 	used = alloc = 0;
1608 	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1609 		/*
1610 		 * Ignore non-ZFS entries.
1611 		 */
1612 		if (entry.mnt_fstype == NULL ||
1613 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1614 			continue;
1615 
1616 		/*
1617 		 * Ignore filesystems not within this pool.
1618 		 */
1619 		if (entry.mnt_mountp == NULL ||
1620 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1621 		    (entry.mnt_special[namelen] != '/' &&
1622 		    entry.mnt_special[namelen] != '\0'))
1623 			continue;
1624 
1625 		/*
1626 		 * At this point we've found a filesystem within our pool.  Add
1627 		 * it to our growing list.
1628 		 */
1629 		if (used == alloc) {
1630 			if (alloc == 0) {
1631 				if ((mountpoints = zfs_alloc(hdl,
1632 				    8 * sizeof (void *))) == NULL)
1633 					goto out;
1634 
1635 				if ((datasets = zfs_alloc(hdl,
1636 				    8 * sizeof (void *))) == NULL)
1637 					goto out;
1638 
1639 				alloc = 8;
1640 			} else {
1641 				void *ptr;
1642 
1643 				if ((ptr = zfs_realloc(hdl, mountpoints,
1644 				    alloc * sizeof (void *),
1645 				    alloc * 2 * sizeof (void *))) == NULL)
1646 					goto out;
1647 				mountpoints = ptr;
1648 
1649 				if ((ptr = zfs_realloc(hdl, datasets,
1650 				    alloc * sizeof (void *),
1651 				    alloc * 2 * sizeof (void *))) == NULL)
1652 					goto out;
1653 				datasets = ptr;
1654 
1655 				alloc *= 2;
1656 			}
1657 		}
1658 
1659 		if ((mountpoints[used] = zfs_strdup(hdl,
1660 		    entry.mnt_mountp)) == NULL)
1661 			goto out;
1662 
1663 		/*
1664 		 * This is allowed to fail, in case there is some I/O error.  It
1665 		 * is only used to determine if we need to remove the underlying
1666 		 * mountpoint, so failure is not fatal.
1667 		 */
1668 		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1669 
1670 		used++;
1671 	}
1672 
1673 	/*
1674 	 * At this point, we have the entire list of filesystems, so sort it by
1675 	 * mountpoint.
1676 	 */
1677 	sharearg.zhandle_arr = datasets;
1678 	sharearg.zhandle_len = used;
1679 	ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1680 	    &sharearg);
1681 	if (ret != 0)
1682 		goto out;
1683 	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1684 
1685 	/*
1686 	 * Walk through and first unshare everything.
1687 	 */
1688 	for (i = 0; i < used; i++) {
1689 		zfs_share_proto_t *curr_proto;
1690 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1691 		    curr_proto++) {
1692 			if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1693 			    unshare_one(hdl, mountpoints[i],
1694 			    mountpoints[i], *curr_proto) != 0)
1695 				goto out;
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Now unmount everything, removing the underlying directories as
1701 	 * appropriate.
1702 	 */
1703 	for (i = 0; i < used; i++) {
1704 		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1705 			goto out;
1706 	}
1707 
1708 	for (i = 0; i < used; i++) {
1709 		if (datasets[i])
1710 			remove_mountpoint(datasets[i]);
1711 	}
1712 
1713 	ret = 0;
1714 out:
1715 	for (i = 0; i < used; i++) {
1716 		if (datasets[i])
1717 			zfs_close(datasets[i]);
1718 		free(mountpoints[i]);
1719 	}
1720 	free(datasets);
1721 	free(mountpoints);
1722 
1723 	return (ret);
1724 }
1725