1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 */ 28 29 /* 30 * Routines to manage ZFS mounts. We separate all the nasty routines that have 31 * to deal with the OS. The following functions are the main entry points -- 32 * they are used by mount and unmount and when changing a filesystem's 33 * mountpoint. 34 * 35 * zfs_is_mounted() 36 * zfs_mount() 37 * zfs_unmount() 38 * zfs_unmountall() 39 * 40 * This file also contains the functions used to manage sharing filesystems via 41 * NFS and iSCSI: 42 * 43 * zfs_is_shared() 44 * zfs_share() 45 * zfs_unshare() 46 * 47 * zfs_is_shared_nfs() 48 * zfs_is_shared_smb() 49 * zfs_share_proto() 50 * zfs_shareall(); 51 * zfs_unshare_nfs() 52 * zfs_unshare_smb() 53 * zfs_unshareall_nfs() 54 * zfs_unshareall_smb() 55 * zfs_unshareall() 56 * zfs_unshareall_bypath() 57 * 58 * The following functions are available for pool consumers, and will 59 * mount/unmount and share/unshare all datasets within pool: 60 * 61 * zpool_enable_datasets() 62 * zpool_disable_datasets() 63 */ 64 65 #include <dirent.h> 66 #include <dlfcn.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libgen.h> 70 #include <libintl.h> 71 #include <stdio.h> 72 #include <stdlib.h> 73 #include <strings.h> 74 #include <unistd.h> 75 #include <zone.h> 76 #include <sys/mntent.h> 77 #include <sys/mount.h> 78 #include <sys/stat.h> 79 #include <sys/statvfs.h> 80 81 #include <libzfs.h> 82 83 #include "libzfs_impl.h" 84 85 #include <libshare.h> 86 #include <sys/systeminfo.h> 87 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 88 89 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 90 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 91 zfs_share_proto_t); 92 93 /* 94 * The share protocols table must be in the same order as the zfs_share_prot_t 95 * enum in libzfs_impl.h 96 */ 97 typedef struct { 98 zfs_prop_t p_prop; 99 char *p_name; 100 int p_share_err; 101 int p_unshare_err; 102 } proto_table_t; 103 104 proto_table_t proto_table[PROTO_END] = { 105 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 106 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 107 }; 108 109 zfs_share_proto_t nfs_only[] = { 110 PROTO_NFS, 111 PROTO_END 112 }; 113 114 zfs_share_proto_t smb_only[] = { 115 PROTO_SMB, 116 PROTO_END 117 }; 118 zfs_share_proto_t share_all_proto[] = { 119 PROTO_NFS, 120 PROTO_SMB, 121 PROTO_END 122 }; 123 124 /* 125 * Search the sharetab for the given mountpoint and protocol, returning 126 * a zfs_share_type_t value. 127 */ 128 static zfs_share_type_t 129 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 130 { 131 char buf[MAXPATHLEN], *tab; 132 char *ptr; 133 134 if (hdl->libzfs_sharetab == NULL) 135 return (SHARED_NOT_SHARED); 136 137 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 138 139 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 140 141 /* the mountpoint is the first entry on each line */ 142 if ((tab = strchr(buf, '\t')) == NULL) 143 continue; 144 145 *tab = '\0'; 146 if (strcmp(buf, mountpoint) == 0) { 147 /* 148 * the protocol field is the third field 149 * skip over second field 150 */ 151 ptr = ++tab; 152 if ((tab = strchr(ptr, '\t')) == NULL) 153 continue; 154 ptr = ++tab; 155 if ((tab = strchr(ptr, '\t')) == NULL) 156 continue; 157 *tab = '\0'; 158 if (strcmp(ptr, 159 proto_table[proto].p_name) == 0) { 160 switch (proto) { 161 case PROTO_NFS: 162 return (SHARED_NFS); 163 case PROTO_SMB: 164 return (SHARED_SMB); 165 default: 166 return (0); 167 } 168 } 169 } 170 } 171 172 return (SHARED_NOT_SHARED); 173 } 174 175 static boolean_t 176 dir_is_empty_stat(const char *dirname) 177 { 178 struct stat st; 179 180 /* 181 * We only want to return false if the given path is a non empty 182 * directory, all other errors are handled elsewhere. 183 */ 184 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 185 return (B_TRUE); 186 } 187 188 /* 189 * An empty directory will still have two entries in it, one 190 * entry for each of "." and "..". 191 */ 192 if (st.st_size > 2) { 193 return (B_FALSE); 194 } 195 196 return (B_TRUE); 197 } 198 199 static boolean_t 200 dir_is_empty_readdir(const char *dirname) 201 { 202 DIR *dirp; 203 struct dirent64 *dp; 204 int dirfd; 205 206 if ((dirfd = openat(AT_FDCWD, dirname, 207 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 208 return (B_TRUE); 209 } 210 211 if ((dirp = fdopendir(dirfd)) == NULL) { 212 return (B_TRUE); 213 } 214 215 while ((dp = readdir64(dirp)) != NULL) { 216 217 if (strcmp(dp->d_name, ".") == 0 || 218 strcmp(dp->d_name, "..") == 0) 219 continue; 220 221 (void) closedir(dirp); 222 return (B_FALSE); 223 } 224 225 (void) closedir(dirp); 226 return (B_TRUE); 227 } 228 229 /* 230 * Returns true if the specified directory is empty. If we can't open the 231 * directory at all, return true so that the mount can fail with a more 232 * informative error message. 233 */ 234 static boolean_t 235 dir_is_empty(const char *dirname) 236 { 237 struct statvfs64 st; 238 239 /* 240 * If the statvfs call fails or the filesystem is not a ZFS 241 * filesystem, fall back to the slow path which uses readdir. 242 */ 243 if ((statvfs64(dirname, &st) != 0) || 244 (strcmp(st.f_basetype, "zfs") != 0)) { 245 return (dir_is_empty_readdir(dirname)); 246 } 247 248 /* 249 * At this point, we know the provided path is on a ZFS 250 * filesystem, so we can use stat instead of readdir to 251 * determine if the directory is empty or not. We try to avoid 252 * using readdir because that requires opening "dirname"; this 253 * open file descriptor can potentially end up in a child 254 * process if there's a concurrent fork, thus preventing the 255 * zfs_mount() from otherwise succeeding (the open file 256 * descriptor inherited by the child process will cause the 257 * parent's mount to fail with EBUSY). The performance 258 * implications of replacing the open, read, and close with a 259 * single stat is nice; but is not the main motivation for the 260 * added complexity. 261 */ 262 return (dir_is_empty_stat(dirname)); 263 } 264 265 /* 266 * Checks to see if the mount is active. If the filesystem is mounted, we fill 267 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 268 * 0. 269 */ 270 boolean_t 271 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 272 { 273 struct mnttab entry; 274 275 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 276 return (B_FALSE); 277 278 if (where != NULL) 279 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 280 281 return (B_TRUE); 282 } 283 284 boolean_t 285 zfs_is_mounted(zfs_handle_t *zhp, char **where) 286 { 287 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 288 } 289 290 /* 291 * Returns true if the given dataset is mountable, false otherwise. Returns the 292 * mountpoint in 'buf'. 293 */ 294 static boolean_t 295 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 296 zprop_source_t *source) 297 { 298 char sourceloc[MAXNAMELEN]; 299 zprop_source_t sourcetype; 300 301 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 302 return (B_FALSE); 303 304 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 305 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 306 307 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 308 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 309 return (B_FALSE); 310 311 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 312 return (B_FALSE); 313 314 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 315 getzoneid() == GLOBAL_ZONEID) 316 return (B_FALSE); 317 318 if (source) 319 *source = sourcetype; 320 321 return (B_TRUE); 322 } 323 324 /* 325 * Mount the given filesystem. 326 */ 327 int 328 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 329 { 330 struct stat buf; 331 char mountpoint[ZFS_MAXPROPLEN]; 332 char mntopts[MNT_LINE_MAX]; 333 libzfs_handle_t *hdl = zhp->zfs_hdl; 334 335 if (options == NULL) 336 mntopts[0] = '\0'; 337 else 338 (void) strlcpy(mntopts, options, sizeof (mntopts)); 339 340 /* 341 * If the pool is imported read-only then all mounts must be read-only 342 */ 343 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 344 flags |= MS_RDONLY; 345 346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 347 return (0); 348 349 /* Create the directory if it doesn't already exist */ 350 if (lstat(mountpoint, &buf) != 0) { 351 if (mkdirp(mountpoint, 0755) != 0) { 352 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 353 "failed to create mountpoint")); 354 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 355 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 356 mountpoint)); 357 } 358 } 359 360 /* 361 * Determine if the mountpoint is empty. If so, refuse to perform the 362 * mount. We don't perform this check if MS_OVERLAY is specified, which 363 * would defeat the point. We also avoid this check if 'remount' is 364 * specified. 365 */ 366 if ((flags & MS_OVERLAY) == 0 && 367 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 368 !dir_is_empty(mountpoint)) { 369 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 370 "directory is not empty")); 371 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 372 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 373 } 374 375 /* perform the mount */ 376 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 377 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 378 /* 379 * Generic errors are nasty, but there are just way too many 380 * from mount(), and they're well-understood. We pick a few 381 * common ones to improve upon. 382 */ 383 if (errno == EBUSY) { 384 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 385 "mountpoint or dataset is busy")); 386 } else if (errno == EPERM) { 387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 388 "Insufficient privileges")); 389 } else if (errno == ENOTSUP) { 390 char buf[256]; 391 int spa_version; 392 393 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 394 (void) snprintf(buf, sizeof (buf), 395 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 396 "file system on a version %d pool. Pool must be" 397 " upgraded to mount this file system."), 398 (u_longlong_t)zfs_prop_get_int(zhp, 399 ZFS_PROP_VERSION), spa_version); 400 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 401 } else { 402 zfs_error_aux(hdl, strerror(errno)); 403 } 404 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 405 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 406 zhp->zfs_name)); 407 } 408 409 /* add the mounted entry into our cache */ 410 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 411 mntopts); 412 return (0); 413 } 414 415 /* 416 * Unmount a single filesystem. 417 */ 418 static int 419 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 420 { 421 if (umount2(mountpoint, flags) != 0) { 422 zfs_error_aux(hdl, strerror(errno)); 423 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 424 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 425 mountpoint)); 426 } 427 428 return (0); 429 } 430 431 /* 432 * Unmount the given filesystem. 433 */ 434 int 435 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 436 { 437 libzfs_handle_t *hdl = zhp->zfs_hdl; 438 struct mnttab entry; 439 char *mntpt = NULL; 440 441 /* check to see if we need to unmount the filesystem */ 442 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 443 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 444 /* 445 * mountpoint may have come from a call to 446 * getmnt/getmntany if it isn't NULL. If it is NULL, 447 * we know it comes from libzfs_mnttab_find which can 448 * then get freed later. We strdup it to play it safe. 449 */ 450 if (mountpoint == NULL) 451 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 452 else 453 mntpt = zfs_strdup(hdl, mountpoint); 454 455 /* 456 * Unshare and unmount the filesystem 457 */ 458 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 459 return (-1); 460 461 if (unmount_one(hdl, mntpt, flags) != 0) { 462 free(mntpt); 463 (void) zfs_shareall(zhp); 464 return (-1); 465 } 466 libzfs_mnttab_remove(hdl, zhp->zfs_name); 467 free(mntpt); 468 } 469 470 return (0); 471 } 472 473 /* 474 * Unmount this filesystem and any children inheriting the mountpoint property. 475 * To do this, just act like we're changing the mountpoint property, but don't 476 * remount the filesystems afterwards. 477 */ 478 int 479 zfs_unmountall(zfs_handle_t *zhp, int flags) 480 { 481 prop_changelist_t *clp; 482 int ret; 483 484 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 485 if (clp == NULL) 486 return (-1); 487 488 ret = changelist_prefix(clp); 489 changelist_free(clp); 490 491 return (ret); 492 } 493 494 boolean_t 495 zfs_is_shared(zfs_handle_t *zhp) 496 { 497 zfs_share_type_t rc = 0; 498 zfs_share_proto_t *curr_proto; 499 500 if (ZFS_IS_VOLUME(zhp)) 501 return (B_FALSE); 502 503 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 504 curr_proto++) 505 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 506 507 return (rc ? B_TRUE : B_FALSE); 508 } 509 510 int 511 zfs_share(zfs_handle_t *zhp) 512 { 513 assert(!ZFS_IS_VOLUME(zhp)); 514 return (zfs_share_proto(zhp, share_all_proto)); 515 } 516 517 int 518 zfs_unshare(zfs_handle_t *zhp) 519 { 520 assert(!ZFS_IS_VOLUME(zhp)); 521 return (zfs_unshareall(zhp)); 522 } 523 524 /* 525 * Check to see if the filesystem is currently shared. 526 */ 527 zfs_share_type_t 528 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 529 { 530 char *mountpoint; 531 zfs_share_type_t rc; 532 533 if (!zfs_is_mounted(zhp, &mountpoint)) 534 return (SHARED_NOT_SHARED); 535 536 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 537 != SHARED_NOT_SHARED) { 538 if (where != NULL) 539 *where = mountpoint; 540 else 541 free(mountpoint); 542 return (rc); 543 } else { 544 free(mountpoint); 545 return (SHARED_NOT_SHARED); 546 } 547 } 548 549 boolean_t 550 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 551 { 552 return (zfs_is_shared_proto(zhp, where, 553 PROTO_NFS) != SHARED_NOT_SHARED); 554 } 555 556 boolean_t 557 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 558 { 559 return (zfs_is_shared_proto(zhp, where, 560 PROTO_SMB) != SHARED_NOT_SHARED); 561 } 562 563 /* 564 * Make sure things will work if libshare isn't installed by using 565 * wrapper functions that check to see that the pointers to functions 566 * initialized in _zfs_init_libshare() are actually present. 567 */ 568 569 static sa_handle_t (*_sa_init)(int); 570 static void (*_sa_fini)(sa_handle_t); 571 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 572 static int (*_sa_enable_share)(sa_share_t, char *); 573 static int (*_sa_disable_share)(sa_share_t, char *); 574 static char *(*_sa_errorstr)(int); 575 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 576 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 577 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 578 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 579 char *, char *, zprop_source_t, char *, char *, char *); 580 static void (*_sa_update_sharetab_ts)(sa_handle_t); 581 582 /* 583 * _zfs_init_libshare() 584 * 585 * Find the libshare.so.1 entry points that we use here and save the 586 * values to be used later. This is triggered by the runtime loader. 587 * Make sure the correct ISA version is loaded. 588 */ 589 590 #pragma init(_zfs_init_libshare) 591 static void 592 _zfs_init_libshare(void) 593 { 594 void *libshare; 595 char path[MAXPATHLEN]; 596 char isa[MAXISALEN]; 597 598 #if defined(_LP64) 599 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 600 isa[0] = '\0'; 601 #else 602 isa[0] = '\0'; 603 #endif 604 (void) snprintf(path, MAXPATHLEN, 605 "/usr/lib/%s/libshare.so.1", isa); 606 607 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 608 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 609 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 610 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 611 dlsym(libshare, "sa_find_share"); 612 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 613 "sa_enable_share"); 614 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 615 "sa_disable_share"); 616 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 617 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 618 dlsym(libshare, "sa_parse_legacy_options"); 619 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 620 dlsym(libshare, "sa_needs_refresh"); 621 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 622 dlsym(libshare, "sa_get_zfs_handle"); 623 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 624 sa_share_t, char *, char *, zprop_source_t, char *, 625 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 626 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 627 dlsym(libshare, "sa_update_sharetab_ts"); 628 if (_sa_init == NULL || _sa_fini == NULL || 629 _sa_find_share == NULL || _sa_enable_share == NULL || 630 _sa_disable_share == NULL || _sa_errorstr == NULL || 631 _sa_parse_legacy_options == NULL || 632 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 633 _sa_zfs_process_share == NULL || 634 _sa_update_sharetab_ts == NULL) { 635 _sa_init = NULL; 636 _sa_fini = NULL; 637 _sa_disable_share = NULL; 638 _sa_enable_share = NULL; 639 _sa_errorstr = NULL; 640 _sa_parse_legacy_options = NULL; 641 (void) dlclose(libshare); 642 _sa_needs_refresh = NULL; 643 _sa_get_zfs_handle = NULL; 644 _sa_zfs_process_share = NULL; 645 _sa_update_sharetab_ts = NULL; 646 } 647 } 648 } 649 650 /* 651 * zfs_init_libshare(zhandle, service) 652 * 653 * Initialize the libshare API if it hasn't already been initialized. 654 * In all cases it returns 0 if it succeeded and an error if not. The 655 * service value is which part(s) of the API to initialize and is a 656 * direct map to the libshare sa_init(service) interface. 657 */ 658 int 659 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 660 { 661 if (_sa_init == NULL) 662 return (SA_CONFIG_ERR); 663 664 /* 665 * Attempt to refresh libshare. This is necessary if there was a cache 666 * miss for a new ZFS dataset that was just created, or if state of the 667 * sharetab file has changed since libshare was last initialized. We 668 * want to make sure so check timestamps to see if a different process 669 * has updated any of the configuration. If there was some non-ZFS 670 * change, we need to re-initialize the internal cache. 671 */ 672 if (_sa_needs_refresh != NULL && 673 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 674 zfs_uninit_libshare(zhandle); 675 zhandle->libzfs_sharehdl = _sa_init(service); 676 } 677 678 if (zhandle && zhandle->libzfs_sharehdl == NULL) 679 zhandle->libzfs_sharehdl = _sa_init(service); 680 681 if (zhandle->libzfs_sharehdl == NULL) 682 return (SA_NO_MEMORY); 683 684 return (SA_OK); 685 } 686 687 /* 688 * zfs_uninit_libshare(zhandle) 689 * 690 * Uninitialize the libshare API if it hasn't already been 691 * uninitialized. It is OK to call multiple times. 692 */ 693 void 694 zfs_uninit_libshare(libzfs_handle_t *zhandle) 695 { 696 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 697 if (_sa_fini != NULL) 698 _sa_fini(zhandle->libzfs_sharehdl); 699 zhandle->libzfs_sharehdl = NULL; 700 } 701 } 702 703 /* 704 * zfs_parse_options(options, proto) 705 * 706 * Call the legacy parse interface to get the protocol specific 707 * options using the NULL arg to indicate that this is a "parse" only. 708 */ 709 int 710 zfs_parse_options(char *options, zfs_share_proto_t proto) 711 { 712 if (_sa_parse_legacy_options != NULL) { 713 return (_sa_parse_legacy_options(NULL, options, 714 proto_table[proto].p_name)); 715 } 716 return (SA_CONFIG_ERR); 717 } 718 719 /* 720 * zfs_sa_find_share(handle, path) 721 * 722 * wrapper around sa_find_share to find a share path in the 723 * configuration. 724 */ 725 static sa_share_t 726 zfs_sa_find_share(sa_handle_t handle, char *path) 727 { 728 if (_sa_find_share != NULL) 729 return (_sa_find_share(handle, path)); 730 return (NULL); 731 } 732 733 /* 734 * zfs_sa_enable_share(share, proto) 735 * 736 * Wrapper for sa_enable_share which enables a share for a specified 737 * protocol. 738 */ 739 static int 740 zfs_sa_enable_share(sa_share_t share, char *proto) 741 { 742 if (_sa_enable_share != NULL) 743 return (_sa_enable_share(share, proto)); 744 return (SA_CONFIG_ERR); 745 } 746 747 /* 748 * zfs_sa_disable_share(share, proto) 749 * 750 * Wrapper for sa_enable_share which disables a share for a specified 751 * protocol. 752 */ 753 static int 754 zfs_sa_disable_share(sa_share_t share, char *proto) 755 { 756 if (_sa_disable_share != NULL) 757 return (_sa_disable_share(share, proto)); 758 return (SA_CONFIG_ERR); 759 } 760 761 /* 762 * Share the given filesystem according to the options in the specified 763 * protocol specific properties (sharenfs, sharesmb). We rely 764 * on "libshare" to the dirty work for us. 765 */ 766 static int 767 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 768 { 769 char mountpoint[ZFS_MAXPROPLEN]; 770 char shareopts[ZFS_MAXPROPLEN]; 771 char sourcestr[ZFS_MAXPROPLEN]; 772 libzfs_handle_t *hdl = zhp->zfs_hdl; 773 sa_share_t share; 774 zfs_share_proto_t *curr_proto; 775 zprop_source_t sourcetype; 776 int ret; 777 778 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 779 return (0); 780 781 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 782 /* 783 * Return success if there are no share options. 784 */ 785 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 786 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 787 ZFS_MAXPROPLEN, B_FALSE) != 0 || 788 strcmp(shareopts, "off") == 0) 789 continue; 790 791 ret = zfs_init_libshare(hdl, SA_INIT_SHARE_API); 792 if (ret != SA_OK) { 793 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 794 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 795 zfs_get_name(zhp), _sa_errorstr != NULL ? 796 _sa_errorstr(ret) : ""); 797 return (-1); 798 } 799 800 /* 801 * If the 'zoned' property is set, then zfs_is_mountable() 802 * will have already bailed out if we are in the global zone. 803 * But local zones cannot be NFS servers, so we ignore it for 804 * local zones as well. 805 */ 806 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 807 continue; 808 809 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 810 if (share == NULL) { 811 /* 812 * This may be a new file system that was just 813 * created so isn't in the internal cache 814 * (second time through). Rather than 815 * reloading the entire configuration, we can 816 * assume ZFS has done the checking and it is 817 * safe to add this to the internal 818 * configuration. 819 */ 820 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 821 NULL, NULL, mountpoint, 822 proto_table[*curr_proto].p_name, sourcetype, 823 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 824 (void) zfs_error_fmt(hdl, 825 proto_table[*curr_proto].p_share_err, 826 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 827 zfs_get_name(zhp)); 828 return (-1); 829 } 830 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 831 mountpoint); 832 } 833 if (share != NULL) { 834 int err; 835 err = zfs_sa_enable_share(share, 836 proto_table[*curr_proto].p_name); 837 if (err != SA_OK) { 838 (void) zfs_error_fmt(hdl, 839 proto_table[*curr_proto].p_share_err, 840 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 841 zfs_get_name(zhp)); 842 return (-1); 843 } 844 } else { 845 (void) zfs_error_fmt(hdl, 846 proto_table[*curr_proto].p_share_err, 847 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 848 zfs_get_name(zhp)); 849 return (-1); 850 } 851 852 } 853 return (0); 854 } 855 856 857 int 858 zfs_share_nfs(zfs_handle_t *zhp) 859 { 860 return (zfs_share_proto(zhp, nfs_only)); 861 } 862 863 int 864 zfs_share_smb(zfs_handle_t *zhp) 865 { 866 return (zfs_share_proto(zhp, smb_only)); 867 } 868 869 int 870 zfs_shareall(zfs_handle_t *zhp) 871 { 872 return (zfs_share_proto(zhp, share_all_proto)); 873 } 874 875 /* 876 * Unshare a filesystem by mountpoint. 877 */ 878 static int 879 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 880 zfs_share_proto_t proto) 881 { 882 sa_share_t share; 883 int err; 884 char *mntpt; 885 /* 886 * Mountpoint could get trashed if libshare calls getmntany 887 * which it does during API initialization, so strdup the 888 * value. 889 */ 890 mntpt = zfs_strdup(hdl, mountpoint); 891 892 /* make sure libshare initialized */ 893 if ((err = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) { 894 free(mntpt); /* don't need the copy anymore */ 895 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 896 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 897 name, _sa_errorstr(err))); 898 } 899 900 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 901 free(mntpt); /* don't need the copy anymore */ 902 903 if (share != NULL) { 904 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 905 if (err != SA_OK) { 906 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 907 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 908 name, _sa_errorstr(err))); 909 } 910 } else { 911 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 912 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 913 name)); 914 } 915 return (0); 916 } 917 918 /* 919 * Unshare the given filesystem. 920 */ 921 int 922 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 923 zfs_share_proto_t *proto) 924 { 925 libzfs_handle_t *hdl = zhp->zfs_hdl; 926 struct mnttab entry; 927 char *mntpt = NULL; 928 929 /* check to see if need to unmount the filesystem */ 930 rewind(zhp->zfs_hdl->libzfs_mnttab); 931 if (mountpoint != NULL) 932 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 933 934 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 935 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 936 zfs_share_proto_t *curr_proto; 937 938 if (mountpoint == NULL) 939 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 940 941 for (curr_proto = proto; *curr_proto != PROTO_END; 942 curr_proto++) { 943 944 if (is_shared(hdl, mntpt, *curr_proto) && 945 unshare_one(hdl, zhp->zfs_name, 946 mntpt, *curr_proto) != 0) { 947 if (mntpt != NULL) 948 free(mntpt); 949 return (-1); 950 } 951 } 952 } 953 if (mntpt != NULL) 954 free(mntpt); 955 956 return (0); 957 } 958 959 int 960 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 961 { 962 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 963 } 964 965 int 966 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 967 { 968 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 969 } 970 971 /* 972 * Same as zfs_unmountall(), but for NFS and SMB unshares. 973 */ 974 int 975 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 976 { 977 prop_changelist_t *clp; 978 int ret; 979 980 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 981 if (clp == NULL) 982 return (-1); 983 984 ret = changelist_unshare(clp, proto); 985 changelist_free(clp); 986 987 return (ret); 988 } 989 990 int 991 zfs_unshareall_nfs(zfs_handle_t *zhp) 992 { 993 return (zfs_unshareall_proto(zhp, nfs_only)); 994 } 995 996 int 997 zfs_unshareall_smb(zfs_handle_t *zhp) 998 { 999 return (zfs_unshareall_proto(zhp, smb_only)); 1000 } 1001 1002 int 1003 zfs_unshareall(zfs_handle_t *zhp) 1004 { 1005 return (zfs_unshareall_proto(zhp, share_all_proto)); 1006 } 1007 1008 int 1009 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1010 { 1011 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1012 } 1013 1014 /* 1015 * Remove the mountpoint associated with the current dataset, if necessary. 1016 * We only remove the underlying directory if: 1017 * 1018 * - The mountpoint is not 'none' or 'legacy' 1019 * - The mountpoint is non-empty 1020 * - The mountpoint is the default or inherited 1021 * - The 'zoned' property is set, or we're in a local zone 1022 * 1023 * Any other directories we leave alone. 1024 */ 1025 void 1026 remove_mountpoint(zfs_handle_t *zhp) 1027 { 1028 char mountpoint[ZFS_MAXPROPLEN]; 1029 zprop_source_t source; 1030 1031 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1032 &source)) 1033 return; 1034 1035 if (source == ZPROP_SRC_DEFAULT || 1036 source == ZPROP_SRC_INHERITED) { 1037 /* 1038 * Try to remove the directory, silently ignoring any errors. 1039 * The filesystem may have since been removed or moved around, 1040 * and this error isn't really useful to the administrator in 1041 * any way. 1042 */ 1043 (void) rmdir(mountpoint); 1044 } 1045 } 1046 1047 void 1048 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1049 { 1050 if (cbp->cb_alloc == cbp->cb_used) { 1051 size_t newsz; 1052 void *ptr; 1053 1054 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1055 ptr = zfs_realloc(zhp->zfs_hdl, 1056 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1057 newsz * sizeof (void *)); 1058 cbp->cb_handles = ptr; 1059 cbp->cb_alloc = newsz; 1060 } 1061 cbp->cb_handles[cbp->cb_used++] = zhp; 1062 } 1063 1064 static int 1065 mount_cb(zfs_handle_t *zhp, void *data) 1066 { 1067 get_all_cb_t *cbp = data; 1068 1069 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1070 zfs_close(zhp); 1071 return (0); 1072 } 1073 1074 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1075 zfs_close(zhp); 1076 return (0); 1077 } 1078 1079 /* 1080 * If this filesystem is inconsistent and has a receive resume 1081 * token, we can not mount it. 1082 */ 1083 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1084 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1085 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1086 zfs_close(zhp); 1087 return (0); 1088 } 1089 1090 libzfs_add_handle(cbp, zhp); 1091 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1092 zfs_close(zhp); 1093 return (-1); 1094 } 1095 return (0); 1096 } 1097 1098 int 1099 libzfs_dataset_cmp(const void *a, const void *b) 1100 { 1101 zfs_handle_t **za = (zfs_handle_t **)a; 1102 zfs_handle_t **zb = (zfs_handle_t **)b; 1103 char mounta[MAXPATHLEN]; 1104 char mountb[MAXPATHLEN]; 1105 boolean_t gota, gotb; 1106 1107 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1108 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1109 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1110 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1111 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1112 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1113 1114 if (gota && gotb) 1115 return (strcmp(mounta, mountb)); 1116 1117 if (gota) 1118 return (-1); 1119 if (gotb) 1120 return (1); 1121 1122 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1123 } 1124 1125 /* 1126 * Mount and share all datasets within the given pool. This assumes that no 1127 * datasets within the pool are currently mounted. Because users can create 1128 * complicated nested hierarchies of mountpoints, we first gather all the 1129 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1130 * we have the list of all filesystems, we iterate over them in order and mount 1131 * and/or share each one. 1132 */ 1133 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1134 int 1135 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1136 { 1137 get_all_cb_t cb = { 0 }; 1138 libzfs_handle_t *hdl = zhp->zpool_hdl; 1139 zfs_handle_t *zfsp; 1140 int i, ret = -1; 1141 int *good; 1142 1143 /* 1144 * Gather all non-snap datasets within the pool. 1145 */ 1146 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1147 goto out; 1148 1149 libzfs_add_handle(&cb, zfsp); 1150 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1151 goto out; 1152 /* 1153 * Sort the datasets by mountpoint. 1154 */ 1155 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1156 libzfs_dataset_cmp); 1157 1158 /* 1159 * And mount all the datasets, keeping track of which ones 1160 * succeeded or failed. 1161 */ 1162 if ((good = zfs_alloc(zhp->zpool_hdl, 1163 cb.cb_used * sizeof (int))) == NULL) 1164 goto out; 1165 1166 ret = 0; 1167 for (i = 0; i < cb.cb_used; i++) { 1168 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1169 ret = -1; 1170 else 1171 good[i] = 1; 1172 } 1173 1174 /* 1175 * Then share all the ones that need to be shared. This needs 1176 * to be a separate pass in order to avoid excessive reloading 1177 * of the configuration. Good should never be NULL since 1178 * zfs_alloc is supposed to exit if memory isn't available. 1179 */ 1180 for (i = 0; i < cb.cb_used; i++) { 1181 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1182 ret = -1; 1183 } 1184 1185 free(good); 1186 1187 out: 1188 for (i = 0; i < cb.cb_used; i++) 1189 zfs_close(cb.cb_handles[i]); 1190 free(cb.cb_handles); 1191 1192 return (ret); 1193 } 1194 1195 static int 1196 mountpoint_compare(const void *a, const void *b) 1197 { 1198 const char *mounta = *((char **)a); 1199 const char *mountb = *((char **)b); 1200 1201 return (strcmp(mountb, mounta)); 1202 } 1203 1204 /* alias for 2002/240 */ 1205 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1206 /* 1207 * Unshare and unmount all datasets within the given pool. We don't want to 1208 * rely on traversing the DSL to discover the filesystems within the pool, 1209 * because this may be expensive (if not all of them are mounted), and can fail 1210 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1211 * gather all the filesystems that are currently mounted. 1212 */ 1213 int 1214 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1215 { 1216 int used, alloc; 1217 struct mnttab entry; 1218 size_t namelen; 1219 char **mountpoints = NULL; 1220 zfs_handle_t **datasets = NULL; 1221 libzfs_handle_t *hdl = zhp->zpool_hdl; 1222 int i; 1223 int ret = -1; 1224 int flags = (force ? MS_FORCE : 0); 1225 1226 namelen = strlen(zhp->zpool_name); 1227 1228 rewind(hdl->libzfs_mnttab); 1229 used = alloc = 0; 1230 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1231 /* 1232 * Ignore non-ZFS entries. 1233 */ 1234 if (entry.mnt_fstype == NULL || 1235 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1236 continue; 1237 1238 /* 1239 * Ignore filesystems not within this pool. 1240 */ 1241 if (entry.mnt_mountp == NULL || 1242 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1243 (entry.mnt_special[namelen] != '/' && 1244 entry.mnt_special[namelen] != '\0')) 1245 continue; 1246 1247 /* 1248 * At this point we've found a filesystem within our pool. Add 1249 * it to our growing list. 1250 */ 1251 if (used == alloc) { 1252 if (alloc == 0) { 1253 if ((mountpoints = zfs_alloc(hdl, 1254 8 * sizeof (void *))) == NULL) 1255 goto out; 1256 1257 if ((datasets = zfs_alloc(hdl, 1258 8 * sizeof (void *))) == NULL) 1259 goto out; 1260 1261 alloc = 8; 1262 } else { 1263 void *ptr; 1264 1265 if ((ptr = zfs_realloc(hdl, mountpoints, 1266 alloc * sizeof (void *), 1267 alloc * 2 * sizeof (void *))) == NULL) 1268 goto out; 1269 mountpoints = ptr; 1270 1271 if ((ptr = zfs_realloc(hdl, datasets, 1272 alloc * sizeof (void *), 1273 alloc * 2 * sizeof (void *))) == NULL) 1274 goto out; 1275 datasets = ptr; 1276 1277 alloc *= 2; 1278 } 1279 } 1280 1281 if ((mountpoints[used] = zfs_strdup(hdl, 1282 entry.mnt_mountp)) == NULL) 1283 goto out; 1284 1285 /* 1286 * This is allowed to fail, in case there is some I/O error. It 1287 * is only used to determine if we need to remove the underlying 1288 * mountpoint, so failure is not fatal. 1289 */ 1290 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1291 1292 used++; 1293 } 1294 1295 /* 1296 * At this point, we have the entire list of filesystems, so sort it by 1297 * mountpoint. 1298 */ 1299 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1300 1301 /* 1302 * Walk through and first unshare everything. 1303 */ 1304 for (i = 0; i < used; i++) { 1305 zfs_share_proto_t *curr_proto; 1306 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1307 curr_proto++) { 1308 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1309 unshare_one(hdl, mountpoints[i], 1310 mountpoints[i], *curr_proto) != 0) 1311 goto out; 1312 } 1313 } 1314 1315 /* 1316 * Now unmount everything, removing the underlying directories as 1317 * appropriate. 1318 */ 1319 for (i = 0; i < used; i++) { 1320 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1321 goto out; 1322 } 1323 1324 for (i = 0; i < used; i++) { 1325 if (datasets[i]) 1326 remove_mountpoint(datasets[i]); 1327 } 1328 1329 ret = 0; 1330 out: 1331 for (i = 0; i < used; i++) { 1332 if (datasets[i]) 1333 zfs_close(datasets[i]); 1334 free(mountpoints[i]); 1335 } 1336 free(datasets); 1337 free(mountpoints); 1338 1339 return (ret); 1340 } 1341