1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 */ 29 30 /* 31 * Routines to manage ZFS mounts. We separate all the nasty routines that have 32 * to deal with the OS. The following functions are the main entry points -- 33 * they are used by mount and unmount and when changing a filesystem's 34 * mountpoint. 35 * 36 * zfs_is_mounted() 37 * zfs_mount() 38 * zfs_unmount() 39 * zfs_unmountall() 40 * 41 * This file also contains the functions used to manage sharing filesystems via 42 * NFS and iSCSI: 43 * 44 * zfs_is_shared() 45 * zfs_share() 46 * zfs_unshare() 47 * 48 * zfs_is_shared_nfs() 49 * zfs_is_shared_smb() 50 * zfs_share_proto() 51 * zfs_shareall(); 52 * zfs_unshare_nfs() 53 * zfs_unshare_smb() 54 * zfs_unshareall_nfs() 55 * zfs_unshareall_smb() 56 * zfs_unshareall() 57 * zfs_unshareall_bypath() 58 * 59 * The following functions are available for pool consumers, and will 60 * mount/unmount and share/unshare all datasets within pool: 61 * 62 * zpool_enable_datasets() 63 * zpool_disable_datasets() 64 */ 65 66 #include <dirent.h> 67 #include <dlfcn.h> 68 #include <errno.h> 69 #include <fcntl.h> 70 #include <libgen.h> 71 #include <libintl.h> 72 #include <stdio.h> 73 #include <stdlib.h> 74 #include <strings.h> 75 #include <unistd.h> 76 #include <zone.h> 77 #include <sys/mntent.h> 78 #include <sys/mount.h> 79 #include <sys/stat.h> 80 #include <sys/statvfs.h> 81 82 #include <libzfs.h> 83 84 #include "libzfs_impl.h" 85 86 #include <libshare.h> 87 #include <sys/systeminfo.h> 88 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 89 90 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 91 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 92 zfs_share_proto_t); 93 94 /* 95 * The share protocols table must be in the same order as the zfs_share_proto_t 96 * enum in libzfs_impl.h 97 */ 98 typedef struct { 99 zfs_prop_t p_prop; 100 char *p_name; 101 int p_share_err; 102 int p_unshare_err; 103 } proto_table_t; 104 105 proto_table_t proto_table[PROTO_END] = { 106 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 107 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 108 }; 109 110 zfs_share_proto_t nfs_only[] = { 111 PROTO_NFS, 112 PROTO_END 113 }; 114 115 zfs_share_proto_t smb_only[] = { 116 PROTO_SMB, 117 PROTO_END 118 }; 119 zfs_share_proto_t share_all_proto[] = { 120 PROTO_NFS, 121 PROTO_SMB, 122 PROTO_END 123 }; 124 125 /* 126 * Search the sharetab for the given mountpoint and protocol, returning 127 * a zfs_share_type_t value. 128 */ 129 static zfs_share_type_t 130 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 131 { 132 char buf[MAXPATHLEN], *tab; 133 char *ptr; 134 135 if (hdl->libzfs_sharetab == NULL) 136 return (SHARED_NOT_SHARED); 137 138 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 139 140 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 141 142 /* the mountpoint is the first entry on each line */ 143 if ((tab = strchr(buf, '\t')) == NULL) 144 continue; 145 146 *tab = '\0'; 147 if (strcmp(buf, mountpoint) == 0) { 148 /* 149 * the protocol field is the third field 150 * skip over second field 151 */ 152 ptr = ++tab; 153 if ((tab = strchr(ptr, '\t')) == NULL) 154 continue; 155 ptr = ++tab; 156 if ((tab = strchr(ptr, '\t')) == NULL) 157 continue; 158 *tab = '\0'; 159 if (strcmp(ptr, 160 proto_table[proto].p_name) == 0) { 161 switch (proto) { 162 case PROTO_NFS: 163 return (SHARED_NFS); 164 case PROTO_SMB: 165 return (SHARED_SMB); 166 default: 167 return (0); 168 } 169 } 170 } 171 } 172 173 return (SHARED_NOT_SHARED); 174 } 175 176 static boolean_t 177 dir_is_empty_stat(const char *dirname) 178 { 179 struct stat st; 180 181 /* 182 * We only want to return false if the given path is a non empty 183 * directory, all other errors are handled elsewhere. 184 */ 185 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 186 return (B_TRUE); 187 } 188 189 /* 190 * An empty directory will still have two entries in it, one 191 * entry for each of "." and "..". 192 */ 193 if (st.st_size > 2) { 194 return (B_FALSE); 195 } 196 197 return (B_TRUE); 198 } 199 200 static boolean_t 201 dir_is_empty_readdir(const char *dirname) 202 { 203 DIR *dirp; 204 struct dirent64 *dp; 205 int dirfd; 206 207 if ((dirfd = openat(AT_FDCWD, dirname, 208 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 209 return (B_TRUE); 210 } 211 212 if ((dirp = fdopendir(dirfd)) == NULL) { 213 (void) close(dirfd); 214 return (B_TRUE); 215 } 216 217 while ((dp = readdir64(dirp)) != NULL) { 218 219 if (strcmp(dp->d_name, ".") == 0 || 220 strcmp(dp->d_name, "..") == 0) 221 continue; 222 223 (void) closedir(dirp); 224 return (B_FALSE); 225 } 226 227 (void) closedir(dirp); 228 return (B_TRUE); 229 } 230 231 /* 232 * Returns true if the specified directory is empty. If we can't open the 233 * directory at all, return true so that the mount can fail with a more 234 * informative error message. 235 */ 236 static boolean_t 237 dir_is_empty(const char *dirname) 238 { 239 struct statvfs64 st; 240 241 /* 242 * If the statvfs call fails or the filesystem is not a ZFS 243 * filesystem, fall back to the slow path which uses readdir. 244 */ 245 if ((statvfs64(dirname, &st) != 0) || 246 (strcmp(st.f_basetype, "zfs") != 0)) { 247 return (dir_is_empty_readdir(dirname)); 248 } 249 250 /* 251 * At this point, we know the provided path is on a ZFS 252 * filesystem, so we can use stat instead of readdir to 253 * determine if the directory is empty or not. We try to avoid 254 * using readdir because that requires opening "dirname"; this 255 * open file descriptor can potentially end up in a child 256 * process if there's a concurrent fork, thus preventing the 257 * zfs_mount() from otherwise succeeding (the open file 258 * descriptor inherited by the child process will cause the 259 * parent's mount to fail with EBUSY). The performance 260 * implications of replacing the open, read, and close with a 261 * single stat is nice; but is not the main motivation for the 262 * added complexity. 263 */ 264 return (dir_is_empty_stat(dirname)); 265 } 266 267 /* 268 * Checks to see if the mount is active. If the filesystem is mounted, we fill 269 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 270 * 0. 271 */ 272 boolean_t 273 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 274 { 275 struct mnttab entry; 276 277 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 278 return (B_FALSE); 279 280 if (where != NULL) 281 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 282 283 return (B_TRUE); 284 } 285 286 boolean_t 287 zfs_is_mounted(zfs_handle_t *zhp, char **where) 288 { 289 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 290 } 291 292 /* 293 * Returns true if the given dataset is mountable, false otherwise. Returns the 294 * mountpoint in 'buf'. 295 */ 296 static boolean_t 297 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 298 zprop_source_t *source) 299 { 300 char sourceloc[MAXNAMELEN]; 301 zprop_source_t sourcetype; 302 303 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 304 return (B_FALSE); 305 306 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 307 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 308 309 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 310 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 311 return (B_FALSE); 312 313 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 314 return (B_FALSE); 315 316 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 317 getzoneid() == GLOBAL_ZONEID) 318 return (B_FALSE); 319 320 if (source) 321 *source = sourcetype; 322 323 return (B_TRUE); 324 } 325 326 /* 327 * Mount the given filesystem. 328 */ 329 int 330 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 331 { 332 struct stat buf; 333 char mountpoint[ZFS_MAXPROPLEN]; 334 char mntopts[MNT_LINE_MAX]; 335 libzfs_handle_t *hdl = zhp->zfs_hdl; 336 337 if (options == NULL) 338 mntopts[0] = '\0'; 339 else 340 (void) strlcpy(mntopts, options, sizeof (mntopts)); 341 342 /* 343 * If the pool is imported read-only then all mounts must be read-only 344 */ 345 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 346 flags |= MS_RDONLY; 347 348 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 349 return (0); 350 351 /* Create the directory if it doesn't already exist */ 352 if (lstat(mountpoint, &buf) != 0) { 353 if (mkdirp(mountpoint, 0755) != 0) { 354 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 355 "failed to create mountpoint")); 356 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 357 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 358 mountpoint)); 359 } 360 } 361 362 /* 363 * Determine if the mountpoint is empty. If so, refuse to perform the 364 * mount. We don't perform this check if MS_OVERLAY is specified, which 365 * would defeat the point. We also avoid this check if 'remount' is 366 * specified. 367 */ 368 if ((flags & MS_OVERLAY) == 0 && 369 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 370 !dir_is_empty(mountpoint)) { 371 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 372 "directory is not empty")); 373 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 374 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 375 } 376 377 /* perform the mount */ 378 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 379 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 380 /* 381 * Generic errors are nasty, but there are just way too many 382 * from mount(), and they're well-understood. We pick a few 383 * common ones to improve upon. 384 */ 385 if (errno == EBUSY) { 386 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 387 "mountpoint or dataset is busy")); 388 } else if (errno == EPERM) { 389 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 390 "Insufficient privileges")); 391 } else if (errno == ENOTSUP) { 392 char buf[256]; 393 int spa_version; 394 395 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 396 (void) snprintf(buf, sizeof (buf), 397 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 398 "file system on a version %d pool. Pool must be" 399 " upgraded to mount this file system."), 400 (u_longlong_t)zfs_prop_get_int(zhp, 401 ZFS_PROP_VERSION), spa_version); 402 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 403 } else { 404 zfs_error_aux(hdl, strerror(errno)); 405 } 406 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 407 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 408 zhp->zfs_name)); 409 } 410 411 /* add the mounted entry into our cache */ 412 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 413 mntopts); 414 return (0); 415 } 416 417 /* 418 * Unmount a single filesystem. 419 */ 420 static int 421 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 422 { 423 if (umount2(mountpoint, flags) != 0) { 424 zfs_error_aux(hdl, strerror(errno)); 425 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 426 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 427 mountpoint)); 428 } 429 430 return (0); 431 } 432 433 /* 434 * Unmount the given filesystem. 435 */ 436 int 437 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 438 { 439 libzfs_handle_t *hdl = zhp->zfs_hdl; 440 struct mnttab entry; 441 char *mntpt = NULL; 442 443 /* check to see if we need to unmount the filesystem */ 444 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 445 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 446 /* 447 * mountpoint may have come from a call to 448 * getmnt/getmntany if it isn't NULL. If it is NULL, 449 * we know it comes from libzfs_mnttab_find which can 450 * then get freed later. We strdup it to play it safe. 451 */ 452 if (mountpoint == NULL) 453 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 454 else 455 mntpt = zfs_strdup(hdl, mountpoint); 456 457 /* 458 * Unshare and unmount the filesystem 459 */ 460 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 461 return (-1); 462 463 if (unmount_one(hdl, mntpt, flags) != 0) { 464 free(mntpt); 465 (void) zfs_shareall(zhp); 466 return (-1); 467 } 468 libzfs_mnttab_remove(hdl, zhp->zfs_name); 469 free(mntpt); 470 } 471 472 return (0); 473 } 474 475 /* 476 * Unmount this filesystem and any children inheriting the mountpoint property. 477 * To do this, just act like we're changing the mountpoint property, but don't 478 * remount the filesystems afterwards. 479 */ 480 int 481 zfs_unmountall(zfs_handle_t *zhp, int flags) 482 { 483 prop_changelist_t *clp; 484 int ret; 485 486 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 487 if (clp == NULL) 488 return (-1); 489 490 ret = changelist_prefix(clp); 491 changelist_free(clp); 492 493 return (ret); 494 } 495 496 boolean_t 497 zfs_is_shared(zfs_handle_t *zhp) 498 { 499 zfs_share_type_t rc = 0; 500 zfs_share_proto_t *curr_proto; 501 502 if (ZFS_IS_VOLUME(zhp)) 503 return (B_FALSE); 504 505 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 506 curr_proto++) 507 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 508 509 return (rc ? B_TRUE : B_FALSE); 510 } 511 512 int 513 zfs_share(zfs_handle_t *zhp) 514 { 515 assert(!ZFS_IS_VOLUME(zhp)); 516 return (zfs_share_proto(zhp, share_all_proto)); 517 } 518 519 int 520 zfs_unshare(zfs_handle_t *zhp) 521 { 522 assert(!ZFS_IS_VOLUME(zhp)); 523 return (zfs_unshareall(zhp)); 524 } 525 526 /* 527 * Check to see if the filesystem is currently shared. 528 */ 529 zfs_share_type_t 530 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 531 { 532 char *mountpoint; 533 zfs_share_type_t rc; 534 535 if (!zfs_is_mounted(zhp, &mountpoint)) 536 return (SHARED_NOT_SHARED); 537 538 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 539 != SHARED_NOT_SHARED) { 540 if (where != NULL) 541 *where = mountpoint; 542 else 543 free(mountpoint); 544 return (rc); 545 } else { 546 free(mountpoint); 547 return (SHARED_NOT_SHARED); 548 } 549 } 550 551 boolean_t 552 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 553 { 554 return (zfs_is_shared_proto(zhp, where, 555 PROTO_NFS) != SHARED_NOT_SHARED); 556 } 557 558 boolean_t 559 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 560 { 561 return (zfs_is_shared_proto(zhp, where, 562 PROTO_SMB) != SHARED_NOT_SHARED); 563 } 564 565 /* 566 * Make sure things will work if libshare isn't installed by using 567 * wrapper functions that check to see that the pointers to functions 568 * initialized in _zfs_init_libshare() are actually present. 569 */ 570 571 static sa_handle_t (*_sa_init)(int); 572 static sa_handle_t (*_sa_init_arg)(int, void *); 573 static void (*_sa_fini)(sa_handle_t); 574 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 575 static int (*_sa_enable_share)(sa_share_t, char *); 576 static int (*_sa_disable_share)(sa_share_t, char *); 577 static char *(*_sa_errorstr)(int); 578 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 579 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 580 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 581 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 582 char *, char *, zprop_source_t, char *, char *, char *); 583 static void (*_sa_update_sharetab_ts)(sa_handle_t); 584 585 /* 586 * _zfs_init_libshare() 587 * 588 * Find the libshare.so.1 entry points that we use here and save the 589 * values to be used later. This is triggered by the runtime loader. 590 * Make sure the correct ISA version is loaded. 591 */ 592 593 #pragma init(_zfs_init_libshare) 594 static void 595 _zfs_init_libshare(void) 596 { 597 void *libshare; 598 char path[MAXPATHLEN]; 599 char isa[MAXISALEN]; 600 601 #if defined(_LP64) 602 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 603 isa[0] = '\0'; 604 #else 605 isa[0] = '\0'; 606 #endif 607 (void) snprintf(path, MAXPATHLEN, 608 "/usr/lib/%s/libshare.so.1", isa); 609 610 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 611 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 612 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 613 "sa_init_arg"); 614 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 615 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 616 dlsym(libshare, "sa_find_share"); 617 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 618 "sa_enable_share"); 619 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 620 "sa_disable_share"); 621 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 622 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 623 dlsym(libshare, "sa_parse_legacy_options"); 624 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 625 dlsym(libshare, "sa_needs_refresh"); 626 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 627 dlsym(libshare, "sa_get_zfs_handle"); 628 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 629 sa_share_t, char *, char *, zprop_source_t, char *, 630 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 631 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 632 dlsym(libshare, "sa_update_sharetab_ts"); 633 if (_sa_init == NULL || _sa_init_arg == NULL || 634 _sa_fini == NULL || _sa_find_share == NULL || 635 _sa_enable_share == NULL || _sa_disable_share == NULL || 636 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 637 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 638 _sa_zfs_process_share == NULL || 639 _sa_update_sharetab_ts == NULL) { 640 _sa_init = NULL; 641 _sa_init_arg = NULL; 642 _sa_fini = NULL; 643 _sa_disable_share = NULL; 644 _sa_enable_share = NULL; 645 _sa_errorstr = NULL; 646 _sa_parse_legacy_options = NULL; 647 (void) dlclose(libshare); 648 _sa_needs_refresh = NULL; 649 _sa_get_zfs_handle = NULL; 650 _sa_zfs_process_share = NULL; 651 _sa_update_sharetab_ts = NULL; 652 } 653 } 654 } 655 656 /* 657 * zfs_init_libshare(zhandle, service) 658 * 659 * Initialize the libshare API if it hasn't already been initialized. 660 * In all cases it returns 0 if it succeeded and an error if not. The 661 * service value is which part(s) of the API to initialize and is a 662 * direct map to the libshare sa_init(service) interface. 663 */ 664 static int 665 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 666 { 667 if (_sa_init == NULL) 668 return (SA_CONFIG_ERR); 669 670 /* 671 * Attempt to refresh libshare. This is necessary if there was a cache 672 * miss for a new ZFS dataset that was just created, or if state of the 673 * sharetab file has changed since libshare was last initialized. We 674 * want to make sure so check timestamps to see if a different process 675 * has updated any of the configuration. If there was some non-ZFS 676 * change, we need to re-initialize the internal cache. 677 */ 678 if (_sa_needs_refresh != NULL && 679 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 680 zfs_uninit_libshare(zhandle); 681 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 682 } 683 684 if (zhandle && zhandle->libzfs_sharehdl == NULL) 685 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 686 687 if (zhandle->libzfs_sharehdl == NULL) 688 return (SA_NO_MEMORY); 689 690 return (SA_OK); 691 } 692 int 693 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 694 { 695 return (zfs_init_libshare_impl(zhandle, service, NULL)); 696 } 697 698 int 699 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 700 { 701 return (zfs_init_libshare_impl(zhandle, service, arg)); 702 } 703 704 705 /* 706 * zfs_uninit_libshare(zhandle) 707 * 708 * Uninitialize the libshare API if it hasn't already been 709 * uninitialized. It is OK to call multiple times. 710 */ 711 void 712 zfs_uninit_libshare(libzfs_handle_t *zhandle) 713 { 714 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 715 if (_sa_fini != NULL) 716 _sa_fini(zhandle->libzfs_sharehdl); 717 zhandle->libzfs_sharehdl = NULL; 718 } 719 } 720 721 /* 722 * zfs_parse_options(options, proto) 723 * 724 * Call the legacy parse interface to get the protocol specific 725 * options using the NULL arg to indicate that this is a "parse" only. 726 */ 727 int 728 zfs_parse_options(char *options, zfs_share_proto_t proto) 729 { 730 if (_sa_parse_legacy_options != NULL) { 731 return (_sa_parse_legacy_options(NULL, options, 732 proto_table[proto].p_name)); 733 } 734 return (SA_CONFIG_ERR); 735 } 736 737 /* 738 * zfs_sa_find_share(handle, path) 739 * 740 * wrapper around sa_find_share to find a share path in the 741 * configuration. 742 */ 743 static sa_share_t 744 zfs_sa_find_share(sa_handle_t handle, char *path) 745 { 746 if (_sa_find_share != NULL) 747 return (_sa_find_share(handle, path)); 748 return (NULL); 749 } 750 751 /* 752 * zfs_sa_enable_share(share, proto) 753 * 754 * Wrapper for sa_enable_share which enables a share for a specified 755 * protocol. 756 */ 757 static int 758 zfs_sa_enable_share(sa_share_t share, char *proto) 759 { 760 if (_sa_enable_share != NULL) 761 return (_sa_enable_share(share, proto)); 762 return (SA_CONFIG_ERR); 763 } 764 765 /* 766 * zfs_sa_disable_share(share, proto) 767 * 768 * Wrapper for sa_enable_share which disables a share for a specified 769 * protocol. 770 */ 771 static int 772 zfs_sa_disable_share(sa_share_t share, char *proto) 773 { 774 if (_sa_disable_share != NULL) 775 return (_sa_disable_share(share, proto)); 776 return (SA_CONFIG_ERR); 777 } 778 779 /* 780 * Share the given filesystem according to the options in the specified 781 * protocol specific properties (sharenfs, sharesmb). We rely 782 * on "libshare" to the dirty work for us. 783 */ 784 static int 785 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 786 { 787 char mountpoint[ZFS_MAXPROPLEN]; 788 char shareopts[ZFS_MAXPROPLEN]; 789 char sourcestr[ZFS_MAXPROPLEN]; 790 libzfs_handle_t *hdl = zhp->zfs_hdl; 791 sa_share_t share; 792 zfs_share_proto_t *curr_proto; 793 zprop_source_t sourcetype; 794 int ret; 795 796 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 797 return (0); 798 799 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 800 /* 801 * Return success if there are no share options. 802 */ 803 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 804 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 805 ZFS_MAXPROPLEN, B_FALSE) != 0 || 806 strcmp(shareopts, "off") == 0) 807 continue; 808 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE, 809 zhp); 810 if (ret != SA_OK) { 811 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 812 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 813 zfs_get_name(zhp), _sa_errorstr != NULL ? 814 _sa_errorstr(ret) : ""); 815 return (-1); 816 } 817 818 /* 819 * If the 'zoned' property is set, then zfs_is_mountable() 820 * will have already bailed out if we are in the global zone. 821 * But local zones cannot be NFS servers, so we ignore it for 822 * local zones as well. 823 */ 824 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 825 continue; 826 827 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 828 if (share == NULL) { 829 /* 830 * This may be a new file system that was just 831 * created so isn't in the internal cache 832 * (second time through). Rather than 833 * reloading the entire configuration, we can 834 * assume ZFS has done the checking and it is 835 * safe to add this to the internal 836 * configuration. 837 */ 838 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 839 NULL, NULL, mountpoint, 840 proto_table[*curr_proto].p_name, sourcetype, 841 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 842 (void) zfs_error_fmt(hdl, 843 proto_table[*curr_proto].p_share_err, 844 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 845 zfs_get_name(zhp)); 846 return (-1); 847 } 848 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 849 mountpoint); 850 } 851 if (share != NULL) { 852 int err; 853 err = zfs_sa_enable_share(share, 854 proto_table[*curr_proto].p_name); 855 if (err != SA_OK) { 856 (void) zfs_error_fmt(hdl, 857 proto_table[*curr_proto].p_share_err, 858 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 859 zfs_get_name(zhp)); 860 return (-1); 861 } 862 } else { 863 (void) zfs_error_fmt(hdl, 864 proto_table[*curr_proto].p_share_err, 865 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 866 zfs_get_name(zhp)); 867 return (-1); 868 } 869 870 } 871 return (0); 872 } 873 874 875 int 876 zfs_share_nfs(zfs_handle_t *zhp) 877 { 878 return (zfs_share_proto(zhp, nfs_only)); 879 } 880 881 int 882 zfs_share_smb(zfs_handle_t *zhp) 883 { 884 return (zfs_share_proto(zhp, smb_only)); 885 } 886 887 int 888 zfs_shareall(zfs_handle_t *zhp) 889 { 890 return (zfs_share_proto(zhp, share_all_proto)); 891 } 892 893 /* 894 * Unshare a filesystem by mountpoint. 895 */ 896 static int 897 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 898 zfs_share_proto_t proto) 899 { 900 sa_share_t share; 901 int err; 902 char *mntpt; 903 904 /* 905 * Mountpoint could get trashed if libshare calls getmntany 906 * which it does during API initialization, so strdup the 907 * value. 908 */ 909 mntpt = zfs_strdup(hdl, mountpoint); 910 911 /* 912 * make sure libshare initialized, initialize everything because we 913 * don't know what other unsharing may happen later. Functions up the 914 * stack are allowed to initialize instead a subset of shares at the 915 * time the set is known. 916 */ 917 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME, 918 (void *)name)) != SA_OK) { 919 free(mntpt); /* don't need the copy anymore */ 920 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 921 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 922 name, _sa_errorstr(err))); 923 } 924 925 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 926 free(mntpt); /* don't need the copy anymore */ 927 928 if (share != NULL) { 929 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 930 if (err != SA_OK) { 931 return (zfs_error_fmt(hdl, 932 proto_table[proto].p_unshare_err, 933 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 934 name, _sa_errorstr(err))); 935 } 936 } else { 937 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 938 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 939 name)); 940 } 941 return (0); 942 } 943 944 /* 945 * Unshare the given filesystem. 946 */ 947 int 948 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 949 zfs_share_proto_t *proto) 950 { 951 libzfs_handle_t *hdl = zhp->zfs_hdl; 952 struct mnttab entry; 953 char *mntpt = NULL; 954 955 /* check to see if need to unmount the filesystem */ 956 rewind(zhp->zfs_hdl->libzfs_mnttab); 957 if (mountpoint != NULL) 958 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 959 960 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 961 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 962 zfs_share_proto_t *curr_proto; 963 964 if (mountpoint == NULL) 965 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 966 967 for (curr_proto = proto; *curr_proto != PROTO_END; 968 curr_proto++) { 969 970 if (is_shared(hdl, mntpt, *curr_proto) && 971 unshare_one(hdl, zhp->zfs_name, 972 mntpt, *curr_proto) != 0) { 973 if (mntpt != NULL) 974 free(mntpt); 975 return (-1); 976 } 977 } 978 } 979 if (mntpt != NULL) 980 free(mntpt); 981 982 return (0); 983 } 984 985 int 986 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 987 { 988 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 989 } 990 991 int 992 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 993 { 994 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 995 } 996 997 /* 998 * Same as zfs_unmountall(), but for NFS and SMB unshares. 999 */ 1000 int 1001 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 1002 { 1003 prop_changelist_t *clp; 1004 int ret; 1005 1006 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1007 if (clp == NULL) 1008 return (-1); 1009 1010 ret = changelist_unshare(clp, proto); 1011 changelist_free(clp); 1012 1013 return (ret); 1014 } 1015 1016 int 1017 zfs_unshareall_nfs(zfs_handle_t *zhp) 1018 { 1019 return (zfs_unshareall_proto(zhp, nfs_only)); 1020 } 1021 1022 int 1023 zfs_unshareall_smb(zfs_handle_t *zhp) 1024 { 1025 return (zfs_unshareall_proto(zhp, smb_only)); 1026 } 1027 1028 int 1029 zfs_unshareall(zfs_handle_t *zhp) 1030 { 1031 return (zfs_unshareall_proto(zhp, share_all_proto)); 1032 } 1033 1034 int 1035 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1036 { 1037 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1038 } 1039 1040 /* 1041 * Remove the mountpoint associated with the current dataset, if necessary. 1042 * We only remove the underlying directory if: 1043 * 1044 * - The mountpoint is not 'none' or 'legacy' 1045 * - The mountpoint is non-empty 1046 * - The mountpoint is the default or inherited 1047 * - The 'zoned' property is set, or we're in a local zone 1048 * 1049 * Any other directories we leave alone. 1050 */ 1051 void 1052 remove_mountpoint(zfs_handle_t *zhp) 1053 { 1054 char mountpoint[ZFS_MAXPROPLEN]; 1055 zprop_source_t source; 1056 1057 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1058 &source)) 1059 return; 1060 1061 if (source == ZPROP_SRC_DEFAULT || 1062 source == ZPROP_SRC_INHERITED) { 1063 /* 1064 * Try to remove the directory, silently ignoring any errors. 1065 * The filesystem may have since been removed or moved around, 1066 * and this error isn't really useful to the administrator in 1067 * any way. 1068 */ 1069 (void) rmdir(mountpoint); 1070 } 1071 } 1072 1073 void 1074 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1075 { 1076 if (cbp->cb_alloc == cbp->cb_used) { 1077 size_t newsz; 1078 void *ptr; 1079 1080 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1081 ptr = zfs_realloc(zhp->zfs_hdl, 1082 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1083 newsz * sizeof (void *)); 1084 cbp->cb_handles = ptr; 1085 cbp->cb_alloc = newsz; 1086 } 1087 cbp->cb_handles[cbp->cb_used++] = zhp; 1088 } 1089 1090 static int 1091 mount_cb(zfs_handle_t *zhp, void *data) 1092 { 1093 get_all_cb_t *cbp = data; 1094 1095 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1096 zfs_close(zhp); 1097 return (0); 1098 } 1099 1100 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1101 zfs_close(zhp); 1102 return (0); 1103 } 1104 1105 /* 1106 * If this filesystem is inconsistent and has a receive resume 1107 * token, we can not mount it. 1108 */ 1109 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1110 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1111 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1112 zfs_close(zhp); 1113 return (0); 1114 } 1115 1116 libzfs_add_handle(cbp, zhp); 1117 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1118 zfs_close(zhp); 1119 return (-1); 1120 } 1121 return (0); 1122 } 1123 1124 int 1125 libzfs_dataset_cmp(const void *a, const void *b) 1126 { 1127 zfs_handle_t **za = (zfs_handle_t **)a; 1128 zfs_handle_t **zb = (zfs_handle_t **)b; 1129 char mounta[MAXPATHLEN]; 1130 char mountb[MAXPATHLEN]; 1131 boolean_t gota, gotb; 1132 1133 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1134 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1135 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1136 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1137 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1138 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1139 1140 if (gota && gotb) 1141 return (strcmp(mounta, mountb)); 1142 1143 if (gota) 1144 return (-1); 1145 if (gotb) 1146 return (1); 1147 1148 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1149 } 1150 1151 /* 1152 * Mount and share all datasets within the given pool. This assumes that no 1153 * datasets within the pool are currently mounted. Because users can create 1154 * complicated nested hierarchies of mountpoints, we first gather all the 1155 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1156 * we have the list of all filesystems, we iterate over them in order and mount 1157 * and/or share each one. 1158 */ 1159 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1160 int 1161 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1162 { 1163 get_all_cb_t cb = { 0 }; 1164 libzfs_handle_t *hdl = zhp->zpool_hdl; 1165 zfs_handle_t *zfsp; 1166 int i, ret = -1; 1167 int *good; 1168 1169 /* 1170 * Gather all non-snap datasets within the pool. 1171 */ 1172 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1173 goto out; 1174 1175 libzfs_add_handle(&cb, zfsp); 1176 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1177 goto out; 1178 /* 1179 * Sort the datasets by mountpoint. 1180 */ 1181 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1182 libzfs_dataset_cmp); 1183 1184 /* 1185 * And mount all the datasets, keeping track of which ones 1186 * succeeded or failed. 1187 */ 1188 if ((good = zfs_alloc(zhp->zpool_hdl, 1189 cb.cb_used * sizeof (int))) == NULL) 1190 goto out; 1191 1192 ret = 0; 1193 for (i = 0; i < cb.cb_used; i++) { 1194 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1195 ret = -1; 1196 else 1197 good[i] = 1; 1198 } 1199 1200 /* 1201 * Then share all the ones that need to be shared. This needs 1202 * to be a separate pass in order to avoid excessive reloading 1203 * of the configuration. Good should never be NULL since 1204 * zfs_alloc is supposed to exit if memory isn't available. 1205 */ 1206 for (i = 0; i < cb.cb_used; i++) { 1207 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1208 ret = -1; 1209 } 1210 1211 free(good); 1212 1213 out: 1214 for (i = 0; i < cb.cb_used; i++) 1215 zfs_close(cb.cb_handles[i]); 1216 free(cb.cb_handles); 1217 1218 return (ret); 1219 } 1220 1221 static int 1222 mountpoint_compare(const void *a, const void *b) 1223 { 1224 const char *mounta = *((char **)a); 1225 const char *mountb = *((char **)b); 1226 1227 return (strcmp(mountb, mounta)); 1228 } 1229 1230 /* alias for 2002/240 */ 1231 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1232 /* 1233 * Unshare and unmount all datasets within the given pool. We don't want to 1234 * rely on traversing the DSL to discover the filesystems within the pool, 1235 * because this may be expensive (if not all of them are mounted), and can fail 1236 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1237 * gather all the filesystems that are currently mounted. 1238 */ 1239 int 1240 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1241 { 1242 int used, alloc; 1243 struct mnttab entry; 1244 size_t namelen; 1245 char **mountpoints = NULL; 1246 zfs_handle_t **datasets = NULL; 1247 libzfs_handle_t *hdl = zhp->zpool_hdl; 1248 int i; 1249 int ret = -1; 1250 int flags = (force ? MS_FORCE : 0); 1251 sa_init_selective_arg_t sharearg; 1252 1253 namelen = strlen(zhp->zpool_name); 1254 1255 rewind(hdl->libzfs_mnttab); 1256 used = alloc = 0; 1257 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1258 /* 1259 * Ignore non-ZFS entries. 1260 */ 1261 if (entry.mnt_fstype == NULL || 1262 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1263 continue; 1264 1265 /* 1266 * Ignore filesystems not within this pool. 1267 */ 1268 if (entry.mnt_mountp == NULL || 1269 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1270 (entry.mnt_special[namelen] != '/' && 1271 entry.mnt_special[namelen] != '\0')) 1272 continue; 1273 1274 /* 1275 * At this point we've found a filesystem within our pool. Add 1276 * it to our growing list. 1277 */ 1278 if (used == alloc) { 1279 if (alloc == 0) { 1280 if ((mountpoints = zfs_alloc(hdl, 1281 8 * sizeof (void *))) == NULL) 1282 goto out; 1283 1284 if ((datasets = zfs_alloc(hdl, 1285 8 * sizeof (void *))) == NULL) 1286 goto out; 1287 1288 alloc = 8; 1289 } else { 1290 void *ptr; 1291 1292 if ((ptr = zfs_realloc(hdl, mountpoints, 1293 alloc * sizeof (void *), 1294 alloc * 2 * sizeof (void *))) == NULL) 1295 goto out; 1296 mountpoints = ptr; 1297 1298 if ((ptr = zfs_realloc(hdl, datasets, 1299 alloc * sizeof (void *), 1300 alloc * 2 * sizeof (void *))) == NULL) 1301 goto out; 1302 datasets = ptr; 1303 1304 alloc *= 2; 1305 } 1306 } 1307 1308 if ((mountpoints[used] = zfs_strdup(hdl, 1309 entry.mnt_mountp)) == NULL) 1310 goto out; 1311 1312 /* 1313 * This is allowed to fail, in case there is some I/O error. It 1314 * is only used to determine if we need to remove the underlying 1315 * mountpoint, so failure is not fatal. 1316 */ 1317 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1318 1319 used++; 1320 } 1321 1322 /* 1323 * At this point, we have the entire list of filesystems, so sort it by 1324 * mountpoint. 1325 */ 1326 sharearg.zhandle_arr = datasets; 1327 sharearg.zhandle_len = used; 1328 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1329 &sharearg); 1330 if (ret != 0) 1331 goto out; 1332 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1333 1334 /* 1335 * Walk through and first unshare everything. 1336 */ 1337 for (i = 0; i < used; i++) { 1338 zfs_share_proto_t *curr_proto; 1339 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1340 curr_proto++) { 1341 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1342 unshare_one(hdl, mountpoints[i], 1343 mountpoints[i], *curr_proto) != 0) 1344 goto out; 1345 } 1346 } 1347 1348 /* 1349 * Now unmount everything, removing the underlying directories as 1350 * appropriate. 1351 */ 1352 for (i = 0; i < used; i++) { 1353 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1354 goto out; 1355 } 1356 1357 for (i = 0; i < used; i++) { 1358 if (datasets[i]) 1359 remove_mountpoint(datasets[i]); 1360 } 1361 1362 ret = 0; 1363 out: 1364 for (i = 0; i < used; i++) { 1365 if (datasets[i]) 1366 zfs_close(datasets[i]); 1367 free(mountpoints[i]); 1368 } 1369 free(datasets); 1370 free(mountpoints); 1371 1372 return (ret); 1373 } 1374