1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2019 Nexenta Systems, Inc. 28 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 29 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 30 * Copyright 2017 Joyent, Inc. 31 * Copyright 2017 RackTop Systems. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 /* 36 * Routines to manage ZFS mounts. We separate all the nasty routines that have 37 * to deal with the OS. The following functions are the main entry points -- 38 * they are used by mount and unmount and when changing a filesystem's 39 * mountpoint. 40 * 41 * zfs_is_mounted() 42 * zfs_mount() 43 * zfs_unmount() 44 * zfs_unmountall() 45 * 46 * This file also contains the functions used to manage sharing filesystems via 47 * NFS and iSCSI: 48 * 49 * zfs_is_shared() 50 * zfs_share() 51 * zfs_unshare() 52 * 53 * zfs_is_shared_nfs() 54 * zfs_is_shared_smb() 55 * zfs_share_proto() 56 * zfs_shareall(); 57 * zfs_unshare_nfs() 58 * zfs_unshare_smb() 59 * zfs_unshareall_nfs() 60 * zfs_unshareall_smb() 61 * zfs_unshareall() 62 * zfs_unshareall_bypath() 63 * 64 * The following functions are available for pool consumers, and will 65 * mount/unmount and share/unshare all datasets within pool: 66 * 67 * zpool_enable_datasets() 68 * zpool_disable_datasets() 69 */ 70 71 #include <dirent.h> 72 #include <dlfcn.h> 73 #include <errno.h> 74 #include <fcntl.h> 75 #include <libgen.h> 76 #include <libintl.h> 77 #include <stdio.h> 78 #include <stdlib.h> 79 #include <strings.h> 80 #include <unistd.h> 81 #include <zone.h> 82 #include <sys/mntent.h> 83 #include <sys/mount.h> 84 #include <sys/stat.h> 85 #include <sys/statvfs.h> 86 #include <sys/dsl_crypt.h> 87 88 #include <libzfs.h> 89 90 #include "libzfs_impl.h" 91 #include "libzfs_taskq.h" 92 93 #include <libshare.h> 94 #include <sys/systeminfo.h> 95 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 96 97 static int mount_tq_nthr = 512; /* taskq threads for multi-threaded mounting */ 98 99 static void zfs_mount_task(void *); 100 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 101 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 102 zfs_share_proto_t); 103 104 /* 105 * The share protocols table must be in the same order as the zfs_share_proto_t 106 * enum in libzfs_impl.h 107 */ 108 typedef struct { 109 zfs_prop_t p_prop; 110 char *p_name; 111 int p_share_err; 112 int p_unshare_err; 113 } proto_table_t; 114 115 proto_table_t proto_table[PROTO_END] = { 116 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 117 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 118 }; 119 120 zfs_share_proto_t nfs_only[] = { 121 PROTO_NFS, 122 PROTO_END 123 }; 124 125 zfs_share_proto_t smb_only[] = { 126 PROTO_SMB, 127 PROTO_END 128 }; 129 zfs_share_proto_t share_all_proto[] = { 130 PROTO_NFS, 131 PROTO_SMB, 132 PROTO_END 133 }; 134 135 /* 136 * Search the sharetab for the given mountpoint and protocol, returning 137 * a zfs_share_type_t value. 138 */ 139 static zfs_share_type_t 140 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 141 { 142 char buf[MAXPATHLEN], *tab; 143 char *ptr; 144 145 if (hdl->libzfs_sharetab == NULL) 146 return (SHARED_NOT_SHARED); 147 148 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 149 150 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 151 152 /* the mountpoint is the first entry on each line */ 153 if ((tab = strchr(buf, '\t')) == NULL) 154 continue; 155 156 *tab = '\0'; 157 if (strcmp(buf, mountpoint) == 0) { 158 /* 159 * the protocol field is the third field 160 * skip over second field 161 */ 162 ptr = ++tab; 163 if ((tab = strchr(ptr, '\t')) == NULL) 164 continue; 165 ptr = ++tab; 166 if ((tab = strchr(ptr, '\t')) == NULL) 167 continue; 168 *tab = '\0'; 169 if (strcmp(ptr, 170 proto_table[proto].p_name) == 0) { 171 switch (proto) { 172 case PROTO_NFS: 173 return (SHARED_NFS); 174 case PROTO_SMB: 175 return (SHARED_SMB); 176 default: 177 return (0); 178 } 179 } 180 } 181 } 182 183 return (SHARED_NOT_SHARED); 184 } 185 186 static boolean_t 187 dir_is_empty_stat(const char *dirname) 188 { 189 struct stat st; 190 191 /* 192 * We only want to return false if the given path is a non empty 193 * directory, all other errors are handled elsewhere. 194 */ 195 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 196 return (B_TRUE); 197 } 198 199 /* 200 * An empty directory will still have two entries in it, one 201 * entry for each of "." and "..". 202 */ 203 if (st.st_size > 2) { 204 return (B_FALSE); 205 } 206 207 return (B_TRUE); 208 } 209 210 static boolean_t 211 dir_is_empty_readdir(const char *dirname) 212 { 213 DIR *dirp; 214 struct dirent64 *dp; 215 int dirfd; 216 217 if ((dirfd = openat(AT_FDCWD, dirname, 218 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 219 return (B_TRUE); 220 } 221 222 if ((dirp = fdopendir(dirfd)) == NULL) { 223 (void) close(dirfd); 224 return (B_TRUE); 225 } 226 227 while ((dp = readdir64(dirp)) != NULL) { 228 229 if (strcmp(dp->d_name, ".") == 0 || 230 strcmp(dp->d_name, "..") == 0) 231 continue; 232 233 (void) closedir(dirp); 234 return (B_FALSE); 235 } 236 237 (void) closedir(dirp); 238 return (B_TRUE); 239 } 240 241 /* 242 * Returns true if the specified directory is empty. If we can't open the 243 * directory at all, return true so that the mount can fail with a more 244 * informative error message. 245 */ 246 static boolean_t 247 dir_is_empty(const char *dirname) 248 { 249 struct statvfs64 st; 250 251 /* 252 * If the statvfs call fails or the filesystem is not a ZFS 253 * filesystem, fall back to the slow path which uses readdir. 254 */ 255 if ((statvfs64(dirname, &st) != 0) || 256 (strcmp(st.f_basetype, "zfs") != 0)) { 257 return (dir_is_empty_readdir(dirname)); 258 } 259 260 /* 261 * At this point, we know the provided path is on a ZFS 262 * filesystem, so we can use stat instead of readdir to 263 * determine if the directory is empty or not. We try to avoid 264 * using readdir because that requires opening "dirname"; this 265 * open file descriptor can potentially end up in a child 266 * process if there's a concurrent fork, thus preventing the 267 * zfs_mount() from otherwise succeeding (the open file 268 * descriptor inherited by the child process will cause the 269 * parent's mount to fail with EBUSY). The performance 270 * implications of replacing the open, read, and close with a 271 * single stat is nice; but is not the main motivation for the 272 * added complexity. 273 */ 274 return (dir_is_empty_stat(dirname)); 275 } 276 277 /* 278 * Checks to see if the mount is active. If the filesystem is mounted, we fill 279 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 280 * 0. 281 */ 282 boolean_t 283 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 284 { 285 struct mnttab entry; 286 287 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 288 return (B_FALSE); 289 290 if (where != NULL) 291 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 292 293 return (B_TRUE); 294 } 295 296 boolean_t 297 zfs_is_mounted(zfs_handle_t *zhp, char **where) 298 { 299 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 300 } 301 302 /* 303 * Returns true if the given dataset is mountable, false otherwise. Returns the 304 * mountpoint in 'buf'. 305 */ 306 static boolean_t 307 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 308 zprop_source_t *source) 309 { 310 char sourceloc[MAXNAMELEN]; 311 zprop_source_t sourcetype; 312 313 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 314 return (B_FALSE); 315 316 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 317 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 318 319 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 320 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 321 return (B_FALSE); 322 323 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 324 return (B_FALSE); 325 326 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 327 getzoneid() == GLOBAL_ZONEID) 328 return (B_FALSE); 329 330 if (source) 331 *source = sourcetype; 332 333 return (B_TRUE); 334 } 335 336 /* 337 * Mount the given filesystem. 338 */ 339 int 340 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 341 { 342 struct stat buf; 343 char mountpoint[ZFS_MAXPROPLEN]; 344 char mntopts[MNT_LINE_MAX]; 345 libzfs_handle_t *hdl = zhp->zfs_hdl; 346 uint64_t keystatus; 347 int rc; 348 349 if (options == NULL) 350 mntopts[0] = '\0'; 351 else 352 (void) strlcpy(mntopts, options, sizeof (mntopts)); 353 354 /* 355 * If the pool is imported read-only then all mounts must be read-only 356 */ 357 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 358 flags |= MS_RDONLY; 359 360 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 361 return (0); 362 363 /* 364 * If the filesystem is encrypted the key must be loaded in order to 365 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether 366 * or not we attempt to load the keys. Note: we must call 367 * zfs_refresh_properties() here since some callers of this function 368 * (most notably zpool_enable_datasets()) may implicitly load our key 369 * by loading the parent's key first. 370 */ 371 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 372 zfs_refresh_properties(zhp); 373 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS); 374 375 /* 376 * If the key is unavailable and MS_CRYPT is set give the 377 * user a chance to enter the key. Otherwise just fail 378 * immediately. 379 */ 380 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) { 381 if (flags & MS_CRYPT) { 382 rc = zfs_crypto_load_key(zhp, B_FALSE, NULL); 383 if (rc != 0) 384 return (rc); 385 } else { 386 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 387 "encryption key not loaded")); 388 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 389 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 390 mountpoint)); 391 } 392 } 393 394 } 395 396 /* Create the directory if it doesn't already exist */ 397 if (lstat(mountpoint, &buf) != 0) { 398 if (mkdirp(mountpoint, 0755) != 0) { 399 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 400 "failed to create mountpoint")); 401 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 402 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 403 mountpoint)); 404 } 405 } 406 407 /* 408 * Determine if the mountpoint is empty. If so, refuse to perform the 409 * mount. We don't perform this check if MS_OVERLAY is specified, which 410 * would defeat the point. We also avoid this check if 'remount' is 411 * specified. 412 */ 413 if ((flags & MS_OVERLAY) == 0 && 414 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 415 !dir_is_empty(mountpoint)) { 416 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 417 "directory is not empty")); 418 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 419 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 420 } 421 422 /* perform the mount */ 423 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 424 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 425 /* 426 * Generic errors are nasty, but there are just way too many 427 * from mount(), and they're well-understood. We pick a few 428 * common ones to improve upon. 429 */ 430 if (errno == EBUSY) { 431 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 432 "mountpoint or dataset is busy")); 433 } else if (errno == EPERM) { 434 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 435 "Insufficient privileges")); 436 } else if (errno == ENOTSUP) { 437 char buf[256]; 438 int spa_version; 439 440 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 441 (void) snprintf(buf, sizeof (buf), 442 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 443 "file system on a version %d pool. Pool must be" 444 " upgraded to mount this file system."), 445 (u_longlong_t)zfs_prop_get_int(zhp, 446 ZFS_PROP_VERSION), spa_version); 447 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 448 } else { 449 zfs_error_aux(hdl, strerror(errno)); 450 } 451 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 452 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 453 zhp->zfs_name)); 454 } 455 456 /* add the mounted entry into our cache */ 457 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 458 mntopts); 459 return (0); 460 } 461 462 /* 463 * Unmount a single filesystem. 464 */ 465 static int 466 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 467 { 468 if (umount2(mountpoint, flags) != 0) { 469 zfs_error_aux(hdl, strerror(errno)); 470 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 471 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 472 mountpoint)); 473 } 474 475 return (0); 476 } 477 478 /* 479 * Unmount the given filesystem. 480 */ 481 int 482 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 483 { 484 libzfs_handle_t *hdl = zhp->zfs_hdl; 485 struct mnttab entry; 486 char *mntpt = NULL; 487 488 /* check to see if we need to unmount the filesystem */ 489 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 490 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 491 /* 492 * mountpoint may have come from a call to 493 * getmnt/getmntany if it isn't NULL. If it is NULL, 494 * we know it comes from libzfs_mnttab_find which can 495 * then get freed later. We strdup it to play it safe. 496 */ 497 if (mountpoint == NULL) 498 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 499 else 500 mntpt = zfs_strdup(hdl, mountpoint); 501 502 /* 503 * Unshare and unmount the filesystem 504 */ 505 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 506 return (-1); 507 508 if (unmount_one(hdl, mntpt, flags) != 0) { 509 free(mntpt); 510 (void) zfs_shareall(zhp); 511 return (-1); 512 } 513 libzfs_mnttab_remove(hdl, zhp->zfs_name); 514 free(mntpt); 515 } 516 517 return (0); 518 } 519 520 /* 521 * Unmount this filesystem and any children inheriting the mountpoint property. 522 * To do this, just act like we're changing the mountpoint property, but don't 523 * remount the filesystems afterwards. 524 */ 525 int 526 zfs_unmountall(zfs_handle_t *zhp, int flags) 527 { 528 prop_changelist_t *clp; 529 int ret; 530 531 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 532 if (clp == NULL) 533 return (-1); 534 535 ret = changelist_prefix(clp); 536 changelist_free(clp); 537 538 return (ret); 539 } 540 541 boolean_t 542 zfs_is_shared(zfs_handle_t *zhp) 543 { 544 zfs_share_type_t rc = 0; 545 zfs_share_proto_t *curr_proto; 546 547 if (ZFS_IS_VOLUME(zhp)) 548 return (B_FALSE); 549 550 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 551 curr_proto++) 552 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 553 554 return (rc ? B_TRUE : B_FALSE); 555 } 556 557 int 558 zfs_share(zfs_handle_t *zhp) 559 { 560 assert(!ZFS_IS_VOLUME(zhp)); 561 return (zfs_share_proto(zhp, share_all_proto)); 562 } 563 564 int 565 zfs_unshare(zfs_handle_t *zhp) 566 { 567 assert(!ZFS_IS_VOLUME(zhp)); 568 return (zfs_unshareall(zhp)); 569 } 570 571 /* 572 * Check to see if the filesystem is currently shared. 573 */ 574 zfs_share_type_t 575 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 576 { 577 char *mountpoint; 578 zfs_share_type_t rc; 579 580 if (!zfs_is_mounted(zhp, &mountpoint)) 581 return (SHARED_NOT_SHARED); 582 583 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 584 != SHARED_NOT_SHARED) { 585 if (where != NULL) 586 *where = mountpoint; 587 else 588 free(mountpoint); 589 return (rc); 590 } else { 591 free(mountpoint); 592 return (SHARED_NOT_SHARED); 593 } 594 } 595 596 boolean_t 597 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 598 { 599 return (zfs_is_shared_proto(zhp, where, 600 PROTO_NFS) != SHARED_NOT_SHARED); 601 } 602 603 boolean_t 604 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 605 { 606 return (zfs_is_shared_proto(zhp, where, 607 PROTO_SMB) != SHARED_NOT_SHARED); 608 } 609 610 /* 611 * Make sure things will work if libshare isn't installed by using 612 * wrapper functions that check to see that the pointers to functions 613 * initialized in _zfs_init_libshare() are actually present. 614 */ 615 616 static sa_handle_t (*_sa_init)(int); 617 static sa_handle_t (*_sa_init_arg)(int, void *); 618 static int (*_sa_service)(sa_handle_t); 619 static void (*_sa_fini)(sa_handle_t); 620 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 621 static int (*_sa_enable_share)(sa_share_t, char *); 622 static int (*_sa_disable_share)(sa_share_t, char *); 623 static char *(*_sa_errorstr)(int); 624 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 625 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 626 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 627 static int (* _sa_get_zfs_share)(sa_handle_t, char *, zfs_handle_t *); 628 static void (*_sa_update_sharetab_ts)(sa_handle_t); 629 630 /* 631 * _zfs_init_libshare() 632 * 633 * Find the libshare.so.1 entry points that we use here and save the 634 * values to be used later. This is triggered by the runtime loader. 635 * Make sure the correct ISA version is loaded. 636 */ 637 638 #pragma init(_zfs_init_libshare) 639 static void 640 _zfs_init_libshare(void) 641 { 642 void *libshare; 643 char path[MAXPATHLEN]; 644 char isa[MAXISALEN]; 645 646 #if defined(_LP64) 647 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 648 isa[0] = '\0'; 649 #else 650 isa[0] = '\0'; 651 #endif 652 (void) snprintf(path, MAXPATHLEN, 653 "/usr/lib/%s/libshare.so.1", isa); 654 655 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 656 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 657 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 658 "sa_init_arg"); 659 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 660 _sa_service = (int (*)(sa_handle_t))dlsym(libshare, 661 "sa_service"); 662 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 663 dlsym(libshare, "sa_find_share"); 664 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 665 "sa_enable_share"); 666 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 667 "sa_disable_share"); 668 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 669 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 670 dlsym(libshare, "sa_parse_legacy_options"); 671 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 672 dlsym(libshare, "sa_needs_refresh"); 673 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 674 dlsym(libshare, "sa_get_zfs_handle"); 675 _sa_get_zfs_share = (int (*)(sa_handle_t, char *, 676 zfs_handle_t *)) dlsym(libshare, "sa_get_zfs_share"); 677 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 678 dlsym(libshare, "sa_update_sharetab_ts"); 679 if (_sa_init == NULL || _sa_init_arg == NULL || 680 _sa_fini == NULL || _sa_find_share == NULL || 681 _sa_enable_share == NULL || _sa_disable_share == NULL || 682 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 683 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 684 _sa_get_zfs_share == NULL || _sa_service == NULL || 685 _sa_update_sharetab_ts == NULL) { 686 _sa_init = NULL; 687 _sa_init_arg = NULL; 688 _sa_service = NULL; 689 _sa_fini = NULL; 690 _sa_disable_share = NULL; 691 _sa_enable_share = NULL; 692 _sa_errorstr = NULL; 693 _sa_parse_legacy_options = NULL; 694 (void) dlclose(libshare); 695 _sa_needs_refresh = NULL; 696 _sa_get_zfs_handle = NULL; 697 _sa_get_zfs_share = NULL; 698 _sa_update_sharetab_ts = NULL; 699 } 700 } 701 } 702 703 /* 704 * zfs_init_libshare(zhandle, service) 705 * 706 * Initialize the libshare API if it hasn't already been initialized. 707 * In all cases it returns 0 if it succeeded and an error if not. The 708 * service value is which part(s) of the API to initialize and is a 709 * direct map to the libshare sa_init(service) interface. 710 */ 711 static int 712 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 713 { 714 /* 715 * libshare is either not installed or we're in a branded zone. The 716 * rest of the wrapper functions around the libshare calls already 717 * handle NULL function pointers, but we don't want the callers of 718 * zfs_init_libshare() to fail prematurely if libshare is not available. 719 */ 720 if (_sa_init == NULL) 721 return (SA_OK); 722 723 /* 724 * Attempt to refresh libshare. This is necessary if there was a cache 725 * miss for a new ZFS dataset that was just created, or if state of the 726 * sharetab file has changed since libshare was last initialized. We 727 * want to make sure so check timestamps to see if a different process 728 * has updated any of the configuration. If there was some non-ZFS 729 * change, we need to re-initialize the internal cache. 730 */ 731 if (_sa_needs_refresh != NULL && 732 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 733 zfs_uninit_libshare(zhandle); 734 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 735 } 736 737 if (zhandle && zhandle->libzfs_sharehdl == NULL) 738 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 739 740 if (zhandle->libzfs_sharehdl == NULL) 741 return (SA_NO_MEMORY); 742 743 return (SA_OK); 744 } 745 int 746 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 747 { 748 return (zfs_init_libshare_impl(zhandle, service, NULL)); 749 } 750 751 int 752 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 753 { 754 return (zfs_init_libshare_impl(zhandle, service, arg)); 755 } 756 757 758 /* 759 * zfs_uninit_libshare(zhandle) 760 * 761 * Uninitialize the libshare API if it hasn't already been 762 * uninitialized. It is OK to call multiple times. 763 */ 764 void 765 zfs_uninit_libshare(libzfs_handle_t *zhandle) 766 { 767 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 768 if (_sa_fini != NULL) 769 _sa_fini(zhandle->libzfs_sharehdl); 770 zhandle->libzfs_sharehdl = NULL; 771 } 772 } 773 774 /* 775 * zfs_parse_options(options, proto) 776 * 777 * Call the legacy parse interface to get the protocol specific 778 * options using the NULL arg to indicate that this is a "parse" only. 779 */ 780 int 781 zfs_parse_options(char *options, zfs_share_proto_t proto) 782 { 783 if (_sa_parse_legacy_options != NULL) { 784 return (_sa_parse_legacy_options(NULL, options, 785 proto_table[proto].p_name)); 786 } 787 return (SA_CONFIG_ERR); 788 } 789 790 /* 791 * zfs_sa_find_share(handle, path) 792 * 793 * wrapper around sa_find_share to find a share path in the 794 * configuration. 795 */ 796 static sa_share_t 797 zfs_sa_find_share(sa_handle_t handle, char *path) 798 { 799 if (_sa_find_share != NULL) 800 return (_sa_find_share(handle, path)); 801 return (NULL); 802 } 803 804 /* 805 * zfs_sa_enable_share(share, proto) 806 * 807 * Wrapper for sa_enable_share which enables a share for a specified 808 * protocol. 809 */ 810 static int 811 zfs_sa_enable_share(sa_share_t share, char *proto) 812 { 813 if (_sa_enable_share != NULL) 814 return (_sa_enable_share(share, proto)); 815 return (SA_CONFIG_ERR); 816 } 817 818 /* 819 * zfs_sa_disable_share(share, proto) 820 * 821 * Wrapper for sa_enable_share which disables a share for a specified 822 * protocol. 823 */ 824 static int 825 zfs_sa_disable_share(sa_share_t share, char *proto) 826 { 827 if (_sa_disable_share != NULL) 828 return (_sa_disable_share(share, proto)); 829 return (SA_CONFIG_ERR); 830 } 831 832 /* 833 * Share the given filesystem according to the options in the specified 834 * protocol specific properties (sharenfs, sharesmb). We rely 835 * on "libshare" to the dirty work for us. 836 */ 837 static int 838 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 839 { 840 char mountpoint[ZFS_MAXPROPLEN]; 841 char shareopts[ZFS_MAXPROPLEN]; 842 char sourcestr[ZFS_MAXPROPLEN]; 843 libzfs_handle_t *hdl = zhp->zfs_hdl; 844 sa_share_t share; 845 zfs_share_proto_t *curr_proto; 846 zprop_source_t sourcetype; 847 int service = SA_INIT_ONE_SHARE_FROM_HANDLE; 848 int ret; 849 850 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 851 return (0); 852 853 /* 854 * Function may be called in a loop from higher up stack, with libshare 855 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE). 856 * zfs_init_libshare_arg will refresh the handle's cache if necessary. 857 * In this case we do not want to switch to per share initialization. 858 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required. 859 */ 860 if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) && 861 (_sa_service(hdl->libzfs_sharehdl) == 862 SA_INIT_SHARE_API_SELECTIVE)) { 863 service = SA_INIT_SHARE_API; 864 } 865 866 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 867 /* 868 * Return success if there are no share options. 869 */ 870 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 871 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 872 ZFS_MAXPROPLEN, B_FALSE) != 0 || 873 strcmp(shareopts, "off") == 0) 874 continue; 875 ret = zfs_init_libshare_arg(hdl, service, zhp); 876 if (ret != SA_OK) { 877 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 878 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 879 zfs_get_name(zhp), _sa_errorstr != NULL ? 880 _sa_errorstr(ret) : ""); 881 return (-1); 882 } 883 884 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 885 if (share == NULL) { 886 /* 887 * This may be a new file system that was just 888 * created so isn't in the internal cache. 889 * Rather than reloading the entire configuration, 890 * we can add just this one share to the cache. 891 */ 892 if ((_sa_get_zfs_share == NULL) || 893 (_sa_get_zfs_share(hdl->libzfs_sharehdl, "zfs", zhp) 894 != SA_OK)) { 895 (void) zfs_error_fmt(hdl, 896 proto_table[*curr_proto].p_share_err, 897 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 898 zfs_get_name(zhp)); 899 return (-1); 900 } 901 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 902 mountpoint); 903 } 904 if (share != NULL) { 905 int err; 906 err = zfs_sa_enable_share(share, 907 proto_table[*curr_proto].p_name); 908 if (err != SA_OK) { 909 (void) zfs_error_fmt(hdl, 910 proto_table[*curr_proto].p_share_err, 911 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 912 zfs_get_name(zhp)); 913 return (-1); 914 } 915 } else { 916 (void) zfs_error_fmt(hdl, 917 proto_table[*curr_proto].p_share_err, 918 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 919 zfs_get_name(zhp)); 920 return (-1); 921 } 922 923 } 924 return (0); 925 } 926 927 928 int 929 zfs_share_nfs(zfs_handle_t *zhp) 930 { 931 return (zfs_share_proto(zhp, nfs_only)); 932 } 933 934 int 935 zfs_share_smb(zfs_handle_t *zhp) 936 { 937 return (zfs_share_proto(zhp, smb_only)); 938 } 939 940 int 941 zfs_shareall(zfs_handle_t *zhp) 942 { 943 return (zfs_share_proto(zhp, share_all_proto)); 944 } 945 946 /* 947 * Unshare a filesystem by mountpoint. 948 */ 949 static int 950 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 951 zfs_share_proto_t proto) 952 { 953 sa_share_t share; 954 int err; 955 char *mntpt; 956 int service = SA_INIT_ONE_SHARE_FROM_NAME; 957 958 /* 959 * Mountpoint could get trashed if libshare calls getmntany 960 * which it does during API initialization, so strdup the 961 * value. 962 */ 963 mntpt = zfs_strdup(hdl, mountpoint); 964 965 /* 966 * Function may be called in a loop from higher up stack, with libshare 967 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE). 968 * zfs_init_libshare_arg will refresh the handle's cache if necessary. 969 * In this case we do not want to switch to per share initialization. 970 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required. 971 */ 972 if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) && 973 (_sa_service(hdl->libzfs_sharehdl) == 974 SA_INIT_SHARE_API_SELECTIVE)) { 975 service = SA_INIT_SHARE_API; 976 } 977 978 err = zfs_init_libshare_arg(hdl, service, (void *)name); 979 if (err != SA_OK) { 980 free(mntpt); /* don't need the copy anymore */ 981 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 982 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 983 name, _sa_errorstr(err))); 984 } 985 986 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 987 free(mntpt); /* don't need the copy anymore */ 988 989 if (share != NULL) { 990 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 991 if (err != SA_OK) { 992 return (zfs_error_fmt(hdl, 993 proto_table[proto].p_unshare_err, 994 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 995 name, _sa_errorstr(err))); 996 } 997 } else { 998 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 999 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 1000 name)); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Unshare the given filesystem. 1007 */ 1008 int 1009 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 1010 zfs_share_proto_t *proto) 1011 { 1012 libzfs_handle_t *hdl = zhp->zfs_hdl; 1013 struct mnttab entry; 1014 char *mntpt = NULL; 1015 1016 /* check to see if need to unmount the filesystem */ 1017 rewind(zhp->zfs_hdl->libzfs_mnttab); 1018 if (mountpoint != NULL) 1019 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 1020 1021 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 1022 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 1023 zfs_share_proto_t *curr_proto; 1024 1025 if (mountpoint == NULL) 1026 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 1027 1028 for (curr_proto = proto; *curr_proto != PROTO_END; 1029 curr_proto++) { 1030 1031 if (is_shared(hdl, mntpt, *curr_proto) && 1032 unshare_one(hdl, zhp->zfs_name, 1033 mntpt, *curr_proto) != 0) { 1034 if (mntpt != NULL) 1035 free(mntpt); 1036 return (-1); 1037 } 1038 } 1039 } 1040 if (mntpt != NULL) 1041 free(mntpt); 1042 1043 return (0); 1044 } 1045 1046 int 1047 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 1048 { 1049 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 1050 } 1051 1052 int 1053 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 1054 { 1055 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 1056 } 1057 1058 /* 1059 * Same as zfs_unmountall(), but for NFS and SMB unshares. 1060 */ 1061 int 1062 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 1063 { 1064 prop_changelist_t *clp; 1065 int ret; 1066 1067 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1068 if (clp == NULL) 1069 return (-1); 1070 1071 ret = changelist_unshare(clp, proto); 1072 changelist_free(clp); 1073 1074 return (ret); 1075 } 1076 1077 int 1078 zfs_unshareall_nfs(zfs_handle_t *zhp) 1079 { 1080 return (zfs_unshareall_proto(zhp, nfs_only)); 1081 } 1082 1083 int 1084 zfs_unshareall_smb(zfs_handle_t *zhp) 1085 { 1086 return (zfs_unshareall_proto(zhp, smb_only)); 1087 } 1088 1089 int 1090 zfs_unshareall(zfs_handle_t *zhp) 1091 { 1092 return (zfs_unshareall_proto(zhp, share_all_proto)); 1093 } 1094 1095 int 1096 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1097 { 1098 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1099 } 1100 1101 /* 1102 * Remove the mountpoint associated with the current dataset, if necessary. 1103 * We only remove the underlying directory if: 1104 * 1105 * - The mountpoint is not 'none' or 'legacy' 1106 * - The mountpoint is non-empty 1107 * - The mountpoint is the default or inherited 1108 * - The 'zoned' property is set, or we're in a local zone 1109 * 1110 * Any other directories we leave alone. 1111 */ 1112 void 1113 remove_mountpoint(zfs_handle_t *zhp) 1114 { 1115 char mountpoint[ZFS_MAXPROPLEN]; 1116 zprop_source_t source; 1117 1118 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1119 &source)) 1120 return; 1121 1122 if (source == ZPROP_SRC_DEFAULT || 1123 source == ZPROP_SRC_INHERITED) { 1124 /* 1125 * Try to remove the directory, silently ignoring any errors. 1126 * The filesystem may have since been removed or moved around, 1127 * and this error isn't really useful to the administrator in 1128 * any way. 1129 */ 1130 (void) rmdir(mountpoint); 1131 } 1132 } 1133 1134 /* 1135 * Add the given zfs handle to the cb_handles array, dynamically reallocating 1136 * the array if it is out of space. 1137 */ 1138 void 1139 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1140 { 1141 if (cbp->cb_alloc == cbp->cb_used) { 1142 size_t newsz; 1143 zfs_handle_t **newhandles; 1144 1145 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 1146 newhandles = zfs_realloc(zhp->zfs_hdl, 1147 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 1148 newsz * sizeof (zfs_handle_t *)); 1149 cbp->cb_handles = newhandles; 1150 cbp->cb_alloc = newsz; 1151 } 1152 cbp->cb_handles[cbp->cb_used++] = zhp; 1153 } 1154 1155 /* 1156 * Recursive helper function used during file system enumeration 1157 */ 1158 static int 1159 zfs_iter_cb(zfs_handle_t *zhp, void *data) 1160 { 1161 get_all_cb_t *cbp = data; 1162 1163 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1164 zfs_close(zhp); 1165 return (0); 1166 } 1167 1168 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1169 zfs_close(zhp); 1170 return (0); 1171 } 1172 1173 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1174 ZFS_KEYSTATUS_UNAVAILABLE) { 1175 zfs_close(zhp); 1176 return (0); 1177 } 1178 1179 /* 1180 * If this filesystem is inconsistent and has a receive resume 1181 * token, we can not mount it. 1182 */ 1183 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1184 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1185 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1186 zfs_close(zhp); 1187 return (0); 1188 } 1189 1190 libzfs_add_handle(cbp, zhp); 1191 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) { 1192 zfs_close(zhp); 1193 return (-1); 1194 } 1195 return (0); 1196 } 1197 1198 /* 1199 * Sort comparator that compares two mountpoint paths. We sort these paths so 1200 * that subdirectories immediately follow their parents. This means that we 1201 * effectively treat the '/' character as the lowest value non-nul char. 1202 * Since filesystems from non-global zones can have the same mountpoint 1203 * as other filesystems, the comparator sorts global zone filesystems to 1204 * the top of the list. This means that the global zone will traverse the 1205 * filesystem list in the correct order and can stop when it sees the 1206 * first zoned filesystem. In a non-global zone, only the delegated 1207 * filesystems are seen. 1208 * 1209 * An example sorted list using this comparator would look like: 1210 * 1211 * /foo 1212 * /foo/bar 1213 * /foo/bar/baz 1214 * /foo/baz 1215 * /foo.bar 1216 * /foo (NGZ1) 1217 * /foo (NGZ2) 1218 * 1219 * The mounting code depends on this ordering to deterministically iterate 1220 * over filesystems in order to spawn parallel mount tasks. 1221 */ 1222 static int 1223 mountpoint_cmp(const void *arga, const void *argb) 1224 { 1225 zfs_handle_t *const *zap = arga; 1226 zfs_handle_t *za = *zap; 1227 zfs_handle_t *const *zbp = argb; 1228 zfs_handle_t *zb = *zbp; 1229 char mounta[MAXPATHLEN]; 1230 char mountb[MAXPATHLEN]; 1231 const char *a = mounta; 1232 const char *b = mountb; 1233 boolean_t gota, gotb; 1234 uint64_t zoneda, zonedb; 1235 1236 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED); 1237 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED); 1238 if (zoneda && !zonedb) 1239 return (1); 1240 if (!zoneda && zonedb) 1241 return (-1); 1242 1243 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 1244 if (gota) { 1245 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 1246 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1247 } 1248 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1249 if (gotb) { 1250 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1251 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1252 } 1253 1254 if (gota && gotb) { 1255 while (*a != '\0' && (*a == *b)) { 1256 a++; 1257 b++; 1258 } 1259 if (*a == *b) 1260 return (0); 1261 if (*a == '\0') 1262 return (-1); 1263 if (*b == '\0') 1264 return (1); 1265 if (*a == '/') 1266 return (-1); 1267 if (*b == '/') 1268 return (1); 1269 return (*a < *b ? -1 : *a > *b); 1270 } 1271 1272 if (gota) 1273 return (-1); 1274 if (gotb) 1275 return (1); 1276 1277 /* 1278 * If neither filesystem has a mountpoint, revert to sorting by 1279 * dataset name. 1280 */ 1281 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1282 } 1283 1284 /* 1285 * Return true if path2 is a child of path1. 1286 */ 1287 static boolean_t 1288 libzfs_path_contains(const char *path1, const char *path2) 1289 { 1290 return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'); 1291 } 1292 1293 /* 1294 * Given a mountpoint specified by idx in the handles array, find the first 1295 * non-descendent of that mountpoint and return its index. Descendant paths 1296 * start with the parent's path. This function relies on the ordering 1297 * enforced by mountpoint_cmp(). 1298 */ 1299 static int 1300 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1301 { 1302 char parent[ZFS_MAXPROPLEN]; 1303 char child[ZFS_MAXPROPLEN]; 1304 int i; 1305 1306 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1307 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1308 1309 for (i = idx + 1; i < num_handles; i++) { 1310 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1311 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1312 if (!libzfs_path_contains(parent, child)) 1313 break; 1314 } 1315 return (i); 1316 } 1317 1318 typedef struct mnt_param { 1319 libzfs_handle_t *mnt_hdl; 1320 zfs_taskq_t *mnt_tq; 1321 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1322 size_t mnt_num_handles; 1323 int mnt_idx; /* Index of selected entry to mount */ 1324 zfs_iter_f mnt_func; 1325 void *mnt_data; 1326 } mnt_param_t; 1327 1328 /* 1329 * Allocate and populate the parameter struct for mount function, and 1330 * schedule mounting of the entry selected by idx. 1331 */ 1332 static void 1333 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1334 size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq) 1335 { 1336 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1337 1338 mnt_param->mnt_hdl = hdl; 1339 mnt_param->mnt_tq = tq; 1340 mnt_param->mnt_zhps = handles; 1341 mnt_param->mnt_num_handles = num_handles; 1342 mnt_param->mnt_idx = idx; 1343 mnt_param->mnt_func = func; 1344 mnt_param->mnt_data = data; 1345 1346 (void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param, 1347 ZFS_TQ_SLEEP); 1348 } 1349 1350 /* 1351 * This is the structure used to keep state of mounting or sharing operations 1352 * during a call to zpool_enable_datasets(). 1353 */ 1354 typedef struct mount_state { 1355 /* 1356 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1357 * could update this variable concurrently, no synchronization is 1358 * needed as it's only ever set to -1. 1359 */ 1360 int ms_mntstatus; 1361 int ms_mntflags; 1362 const char *ms_mntopts; 1363 } mount_state_t; 1364 1365 static int 1366 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1367 { 1368 mount_state_t *ms = arg; 1369 int ret = 0; 1370 1371 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1372 ZFS_KEYSTATUS_UNAVAILABLE) 1373 return (0); 1374 1375 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1376 ret = ms->ms_mntstatus = -1; 1377 return (ret); 1378 } 1379 1380 static int 1381 zfs_share_one(zfs_handle_t *zhp, void *arg) 1382 { 1383 mount_state_t *ms = arg; 1384 int ret = 0; 1385 1386 if (zfs_share(zhp) != 0) 1387 ret = ms->ms_mntstatus = -1; 1388 return (ret); 1389 } 1390 1391 /* 1392 * Task queue function to mount one file system. On completion, it finds and 1393 * schedules its children to be mounted. This depends on the sorting done in 1394 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1395 * each descending from the previous) will have no parallelism since we always 1396 * have to wait for the parent to finish mounting before we can schedule 1397 * its children. 1398 */ 1399 static void 1400 zfs_mount_task(void *arg) 1401 { 1402 mnt_param_t *mp = arg; 1403 int idx = mp->mnt_idx; 1404 zfs_handle_t **handles = mp->mnt_zhps; 1405 size_t num_handles = mp->mnt_num_handles; 1406 char mountpoint[ZFS_MAXPROPLEN]; 1407 1408 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1409 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1410 1411 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1412 return; 1413 1414 /* 1415 * We dispatch tasks to mount filesystems with mountpoints underneath 1416 * this one. We do this by dispatching the next filesystem with a 1417 * descendant mountpoint of the one we just mounted, then skip all of 1418 * its descendants, dispatch the next descendant mountpoint, and so on. 1419 * The non_descendant_idx() function skips over filesystems that are 1420 * descendants of the filesystem we just dispatched. 1421 */ 1422 for (int i = idx + 1; i < num_handles; 1423 i = non_descendant_idx(handles, num_handles, i)) { 1424 char child[ZFS_MAXPROPLEN]; 1425 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1426 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1427 1428 if (!libzfs_path_contains(mountpoint, child)) 1429 break; /* not a descendant, return */ 1430 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1431 mp->mnt_func, mp->mnt_data, mp->mnt_tq); 1432 } 1433 free(mp); 1434 } 1435 1436 /* 1437 * Issue the func callback for each ZFS handle contained in the handles 1438 * array. This function is used to mount all datasets, and so this function 1439 * guarantees that filesystems for parent mountpoints are called before their 1440 * children. As such, before issuing any callbacks, we first sort the array 1441 * of handles by mountpoint. 1442 * 1443 * Callbacks are issued in one of two ways: 1444 * 1445 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT 1446 * environment variable is set, then we issue callbacks sequentially. 1447 * 1448 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT 1449 * environment variable is not set, then we use a taskq to dispatch threads 1450 * to mount filesystems is parallel. This function dispatches tasks to mount 1451 * the filesystems at the top-level mountpoints, and these tasks in turn 1452 * are responsible for recursively mounting filesystems in their children 1453 * mountpoints. 1454 */ 1455 void 1456 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1457 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel) 1458 { 1459 zoneid_t zoneid = getzoneid(); 1460 1461 /* 1462 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1463 * variable that can be used as a convenience to do a/b comparison 1464 * of serial vs. parallel mounting. 1465 */ 1466 boolean_t serial_mount = !parallel || 1467 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1468 1469 /* 1470 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1471 * of how these are sorted. 1472 */ 1473 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1474 1475 if (serial_mount) { 1476 for (int i = 0; i < num_handles; i++) { 1477 func(handles[i], data); 1478 } 1479 return; 1480 } 1481 1482 /* 1483 * Issue the callback function for each dataset using a parallel 1484 * algorithm that uses a taskq to manage threads. 1485 */ 1486 zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0, 1487 mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE); 1488 1489 /* 1490 * There may be multiple "top level" mountpoints outside of the pool's 1491 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1492 * these. 1493 */ 1494 for (int i = 0; i < num_handles; 1495 i = non_descendant_idx(handles, num_handles, i)) { 1496 /* 1497 * Since the mountpoints have been sorted so that the zoned 1498 * filesystems are at the end, a zoned filesystem seen from 1499 * the global zone means that we're done. 1500 */ 1501 if (zoneid == GLOBAL_ZONEID && 1502 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED)) 1503 break; 1504 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1505 tq); 1506 } 1507 1508 zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */ 1509 zfs_taskq_destroy(tq); 1510 } 1511 1512 /* 1513 * Mount and share all datasets within the given pool. This assumes that no 1514 * datasets within the pool are currently mounted. 1515 */ 1516 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1517 int 1518 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1519 { 1520 get_all_cb_t cb = { 0 }; 1521 mount_state_t ms = { 0 }; 1522 zfs_handle_t *zfsp; 1523 sa_init_selective_arg_t sharearg; 1524 int ret = 0; 1525 1526 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1527 ZFS_TYPE_DATASET)) == NULL) 1528 goto out; 1529 1530 1531 /* 1532 * Gather all non-snapshot datasets within the pool. Start by adding 1533 * the root filesystem for this pool to the list, and then iterate 1534 * over all child filesystems. 1535 */ 1536 libzfs_add_handle(&cb, zfsp); 1537 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0) 1538 goto out; 1539 1540 ms.ms_mntopts = mntopts; 1541 ms.ms_mntflags = flags; 1542 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1543 zfs_mount_one, &ms, B_TRUE); 1544 if (ms.ms_mntstatus != 0) 1545 ret = ms.ms_mntstatus; 1546 1547 /* 1548 * Initialize libshare SA_INIT_SHARE_API_SELECTIVE here 1549 * to avoid unnecessary load/unload of the libshare API 1550 * per shared dataset downstream. 1551 */ 1552 sharearg.zhandle_arr = cb.cb_handles; 1553 sharearg.zhandle_len = cb.cb_used; 1554 if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl, 1555 SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0) 1556 goto out; 1557 1558 ms.ms_mntstatus = 0; 1559 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1560 zfs_share_one, &ms, B_FALSE); 1561 if (ms.ms_mntstatus != 0) 1562 ret = ms.ms_mntstatus; 1563 1564 out: 1565 for (int i = 0; i < cb.cb_used; i++) 1566 zfs_close(cb.cb_handles[i]); 1567 free(cb.cb_handles); 1568 1569 return (ret); 1570 } 1571 1572 static int 1573 mountpoint_compare(const void *a, const void *b) 1574 { 1575 const char *mounta = *((char **)a); 1576 const char *mountb = *((char **)b); 1577 1578 return (strcmp(mountb, mounta)); 1579 } 1580 1581 /* alias for 2002/240 */ 1582 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1583 /* 1584 * Unshare and unmount all datasets within the given pool. We don't want to 1585 * rely on traversing the DSL to discover the filesystems within the pool, 1586 * because this may be expensive (if not all of them are mounted), and can fail 1587 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1588 * gather all the filesystems that are currently mounted. 1589 */ 1590 int 1591 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1592 { 1593 int used, alloc; 1594 struct mnttab entry; 1595 size_t namelen; 1596 char **mountpoints = NULL; 1597 zfs_handle_t **datasets = NULL; 1598 libzfs_handle_t *hdl = zhp->zpool_hdl; 1599 int i; 1600 int ret = -1; 1601 int flags = (force ? MS_FORCE : 0); 1602 sa_init_selective_arg_t sharearg; 1603 1604 namelen = strlen(zhp->zpool_name); 1605 1606 rewind(hdl->libzfs_mnttab); 1607 used = alloc = 0; 1608 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1609 /* 1610 * Ignore non-ZFS entries. 1611 */ 1612 if (entry.mnt_fstype == NULL || 1613 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1614 continue; 1615 1616 /* 1617 * Ignore filesystems not within this pool. 1618 */ 1619 if (entry.mnt_mountp == NULL || 1620 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1621 (entry.mnt_special[namelen] != '/' && 1622 entry.mnt_special[namelen] != '\0')) 1623 continue; 1624 1625 /* 1626 * At this point we've found a filesystem within our pool. Add 1627 * it to our growing list. 1628 */ 1629 if (used == alloc) { 1630 if (alloc == 0) { 1631 if ((mountpoints = zfs_alloc(hdl, 1632 8 * sizeof (void *))) == NULL) 1633 goto out; 1634 1635 if ((datasets = zfs_alloc(hdl, 1636 8 * sizeof (void *))) == NULL) 1637 goto out; 1638 1639 alloc = 8; 1640 } else { 1641 void *ptr; 1642 1643 if ((ptr = zfs_realloc(hdl, mountpoints, 1644 alloc * sizeof (void *), 1645 alloc * 2 * sizeof (void *))) == NULL) 1646 goto out; 1647 mountpoints = ptr; 1648 1649 if ((ptr = zfs_realloc(hdl, datasets, 1650 alloc * sizeof (void *), 1651 alloc * 2 * sizeof (void *))) == NULL) 1652 goto out; 1653 datasets = ptr; 1654 1655 alloc *= 2; 1656 } 1657 } 1658 1659 if ((mountpoints[used] = zfs_strdup(hdl, 1660 entry.mnt_mountp)) == NULL) 1661 goto out; 1662 1663 /* 1664 * This is allowed to fail, in case there is some I/O error. It 1665 * is only used to determine if we need to remove the underlying 1666 * mountpoint, so failure is not fatal. 1667 */ 1668 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1669 1670 used++; 1671 } 1672 1673 /* 1674 * At this point, we have the entire list of filesystems, so sort it by 1675 * mountpoint. 1676 */ 1677 sharearg.zhandle_arr = datasets; 1678 sharearg.zhandle_len = used; 1679 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1680 &sharearg); 1681 if (ret != 0) 1682 goto out; 1683 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1684 1685 /* 1686 * Walk through and first unshare everything. 1687 */ 1688 for (i = 0; i < used; i++) { 1689 zfs_share_proto_t *curr_proto; 1690 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1691 curr_proto++) { 1692 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1693 unshare_one(hdl, mountpoints[i], 1694 mountpoints[i], *curr_proto) != 0) 1695 goto out; 1696 } 1697 } 1698 1699 /* 1700 * Now unmount everything, removing the underlying directories as 1701 * appropriate. 1702 */ 1703 for (i = 0; i < used; i++) { 1704 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1705 goto out; 1706 } 1707 1708 for (i = 0; i < used; i++) { 1709 if (datasets[i]) 1710 remove_mountpoint(datasets[i]); 1711 } 1712 1713 ret = 0; 1714 out: 1715 for (i = 0; i < used; i++) { 1716 if (datasets[i]) 1717 zfs_close(datasets[i]); 1718 free(mountpoints[i]); 1719 } 1720 free(datasets); 1721 free(mountpoints); 1722 1723 return (ret); 1724 } 1725