1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * Routines to manage ZFS mounts. We separate all the nasty routines that have 33 * to deal with the OS. The following functions are the main entry points -- 34 * they are used by mount and unmount and when changing a filesystem's 35 * mountpoint. 36 * 37 * zfs_is_mounted() 38 * zfs_mount() 39 * zfs_unmount() 40 * zfs_unmountall() 41 * 42 * This file also contains the functions used to manage sharing filesystems via 43 * NFS and iSCSI: 44 * 45 * zfs_is_shared() 46 * zfs_share() 47 * zfs_unshare() 48 * 49 * zfs_is_shared_nfs() 50 * zfs_is_shared_smb() 51 * zfs_share_proto() 52 * zfs_shareall(); 53 * zfs_unshare_nfs() 54 * zfs_unshare_smb() 55 * zfs_unshareall_nfs() 56 * zfs_unshareall_smb() 57 * zfs_unshareall() 58 * zfs_unshareall_bypath() 59 * 60 * The following functions are available for pool consumers, and will 61 * mount/unmount and share/unshare all datasets within pool: 62 * 63 * zpool_enable_datasets() 64 * zpool_disable_datasets() 65 */ 66 67 #include <dirent.h> 68 #include <dlfcn.h> 69 #include <errno.h> 70 #include <fcntl.h> 71 #include <libgen.h> 72 #include <libintl.h> 73 #include <stdio.h> 74 #include <stdlib.h> 75 #include <strings.h> 76 #include <unistd.h> 77 #include <zone.h> 78 #include <sys/mntent.h> 79 #include <sys/mount.h> 80 #include <sys/stat.h> 81 #include <sys/statvfs.h> 82 83 #include <libzfs.h> 84 85 #include "libzfs_impl.h" 86 87 #include <libshare.h> 88 #include <sys/systeminfo.h> 89 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 90 91 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 92 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 93 zfs_share_proto_t); 94 95 /* 96 * The share protocols table must be in the same order as the zfs_share_proto_t 97 * enum in libzfs_impl.h 98 */ 99 typedef struct { 100 zfs_prop_t p_prop; 101 char *p_name; 102 int p_share_err; 103 int p_unshare_err; 104 } proto_table_t; 105 106 proto_table_t proto_table[PROTO_END] = { 107 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 108 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 109 }; 110 111 zfs_share_proto_t nfs_only[] = { 112 PROTO_NFS, 113 PROTO_END 114 }; 115 116 zfs_share_proto_t smb_only[] = { 117 PROTO_SMB, 118 PROTO_END 119 }; 120 zfs_share_proto_t share_all_proto[] = { 121 PROTO_NFS, 122 PROTO_SMB, 123 PROTO_END 124 }; 125 126 /* 127 * Search the sharetab for the given mountpoint and protocol, returning 128 * a zfs_share_type_t value. 129 */ 130 static zfs_share_type_t 131 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 132 { 133 char buf[MAXPATHLEN], *tab; 134 char *ptr; 135 136 if (hdl->libzfs_sharetab == NULL) 137 return (SHARED_NOT_SHARED); 138 139 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 140 141 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 142 143 /* the mountpoint is the first entry on each line */ 144 if ((tab = strchr(buf, '\t')) == NULL) 145 continue; 146 147 *tab = '\0'; 148 if (strcmp(buf, mountpoint) == 0) { 149 /* 150 * the protocol field is the third field 151 * skip over second field 152 */ 153 ptr = ++tab; 154 if ((tab = strchr(ptr, '\t')) == NULL) 155 continue; 156 ptr = ++tab; 157 if ((tab = strchr(ptr, '\t')) == NULL) 158 continue; 159 *tab = '\0'; 160 if (strcmp(ptr, 161 proto_table[proto].p_name) == 0) { 162 switch (proto) { 163 case PROTO_NFS: 164 return (SHARED_NFS); 165 case PROTO_SMB: 166 return (SHARED_SMB); 167 default: 168 return (0); 169 } 170 } 171 } 172 } 173 174 return (SHARED_NOT_SHARED); 175 } 176 177 static boolean_t 178 dir_is_empty_stat(const char *dirname) 179 { 180 struct stat st; 181 182 /* 183 * We only want to return false if the given path is a non empty 184 * directory, all other errors are handled elsewhere. 185 */ 186 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 187 return (B_TRUE); 188 } 189 190 /* 191 * An empty directory will still have two entries in it, one 192 * entry for each of "." and "..". 193 */ 194 if (st.st_size > 2) { 195 return (B_FALSE); 196 } 197 198 return (B_TRUE); 199 } 200 201 static boolean_t 202 dir_is_empty_readdir(const char *dirname) 203 { 204 DIR *dirp; 205 struct dirent64 *dp; 206 int dirfd; 207 208 if ((dirfd = openat(AT_FDCWD, dirname, 209 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 210 return (B_TRUE); 211 } 212 213 if ((dirp = fdopendir(dirfd)) == NULL) { 214 (void) close(dirfd); 215 return (B_TRUE); 216 } 217 218 while ((dp = readdir64(dirp)) != NULL) { 219 220 if (strcmp(dp->d_name, ".") == 0 || 221 strcmp(dp->d_name, "..") == 0) 222 continue; 223 224 (void) closedir(dirp); 225 return (B_FALSE); 226 } 227 228 (void) closedir(dirp); 229 return (B_TRUE); 230 } 231 232 /* 233 * Returns true if the specified directory is empty. If we can't open the 234 * directory at all, return true so that the mount can fail with a more 235 * informative error message. 236 */ 237 static boolean_t 238 dir_is_empty(const char *dirname) 239 { 240 struct statvfs64 st; 241 242 /* 243 * If the statvfs call fails or the filesystem is not a ZFS 244 * filesystem, fall back to the slow path which uses readdir. 245 */ 246 if ((statvfs64(dirname, &st) != 0) || 247 (strcmp(st.f_basetype, "zfs") != 0)) { 248 return (dir_is_empty_readdir(dirname)); 249 } 250 251 /* 252 * At this point, we know the provided path is on a ZFS 253 * filesystem, so we can use stat instead of readdir to 254 * determine if the directory is empty or not. We try to avoid 255 * using readdir because that requires opening "dirname"; this 256 * open file descriptor can potentially end up in a child 257 * process if there's a concurrent fork, thus preventing the 258 * zfs_mount() from otherwise succeeding (the open file 259 * descriptor inherited by the child process will cause the 260 * parent's mount to fail with EBUSY). The performance 261 * implications of replacing the open, read, and close with a 262 * single stat is nice; but is not the main motivation for the 263 * added complexity. 264 */ 265 return (dir_is_empty_stat(dirname)); 266 } 267 268 /* 269 * Checks to see if the mount is active. If the filesystem is mounted, we fill 270 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 271 * 0. 272 */ 273 boolean_t 274 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 275 { 276 struct mnttab entry; 277 278 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 279 return (B_FALSE); 280 281 if (where != NULL) 282 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 283 284 return (B_TRUE); 285 } 286 287 boolean_t 288 zfs_is_mounted(zfs_handle_t *zhp, char **where) 289 { 290 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 291 } 292 293 /* 294 * Returns true if the given dataset is mountable, false otherwise. Returns the 295 * mountpoint in 'buf'. 296 */ 297 static boolean_t 298 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 299 zprop_source_t *source) 300 { 301 char sourceloc[MAXNAMELEN]; 302 zprop_source_t sourcetype; 303 304 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 305 return (B_FALSE); 306 307 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 308 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 309 310 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 311 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 312 return (B_FALSE); 313 314 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 315 return (B_FALSE); 316 317 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 318 getzoneid() == GLOBAL_ZONEID) 319 return (B_FALSE); 320 321 if (source) 322 *source = sourcetype; 323 324 return (B_TRUE); 325 } 326 327 /* 328 * Mount the given filesystem. 329 */ 330 int 331 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 332 { 333 struct stat buf; 334 char mountpoint[ZFS_MAXPROPLEN]; 335 char mntopts[MNT_LINE_MAX]; 336 libzfs_handle_t *hdl = zhp->zfs_hdl; 337 338 if (options == NULL) 339 mntopts[0] = '\0'; 340 else 341 (void) strlcpy(mntopts, options, sizeof (mntopts)); 342 343 /* 344 * If the pool is imported read-only then all mounts must be read-only 345 */ 346 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 347 flags |= MS_RDONLY; 348 349 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 350 return (0); 351 352 /* Create the directory if it doesn't already exist */ 353 if (lstat(mountpoint, &buf) != 0) { 354 if (mkdirp(mountpoint, 0755) != 0) { 355 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 356 "failed to create mountpoint")); 357 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 358 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 359 mountpoint)); 360 } 361 } 362 363 /* 364 * Determine if the mountpoint is empty. If so, refuse to perform the 365 * mount. We don't perform this check if MS_OVERLAY is specified, which 366 * would defeat the point. We also avoid this check if 'remount' is 367 * specified. 368 */ 369 if ((flags & MS_OVERLAY) == 0 && 370 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 371 !dir_is_empty(mountpoint)) { 372 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 373 "directory is not empty")); 374 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 375 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 376 } 377 378 /* perform the mount */ 379 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 380 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 381 /* 382 * Generic errors are nasty, but there are just way too many 383 * from mount(), and they're well-understood. We pick a few 384 * common ones to improve upon. 385 */ 386 if (errno == EBUSY) { 387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 388 "mountpoint or dataset is busy")); 389 } else if (errno == EPERM) { 390 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 391 "Insufficient privileges")); 392 } else if (errno == ENOTSUP) { 393 char buf[256]; 394 int spa_version; 395 396 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 397 (void) snprintf(buf, sizeof (buf), 398 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 399 "file system on a version %d pool. Pool must be" 400 " upgraded to mount this file system."), 401 (u_longlong_t)zfs_prop_get_int(zhp, 402 ZFS_PROP_VERSION), spa_version); 403 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 404 } else { 405 zfs_error_aux(hdl, strerror(errno)); 406 } 407 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 408 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 409 zhp->zfs_name)); 410 } 411 412 /* add the mounted entry into our cache */ 413 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 414 mntopts); 415 return (0); 416 } 417 418 /* 419 * Unmount a single filesystem. 420 */ 421 static int 422 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 423 { 424 if (umount2(mountpoint, flags) != 0) { 425 zfs_error_aux(hdl, strerror(errno)); 426 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 427 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 428 mountpoint)); 429 } 430 431 return (0); 432 } 433 434 /* 435 * Unmount the given filesystem. 436 */ 437 int 438 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 439 { 440 libzfs_handle_t *hdl = zhp->zfs_hdl; 441 struct mnttab entry; 442 char *mntpt = NULL; 443 444 /* check to see if we need to unmount the filesystem */ 445 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 446 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 447 /* 448 * mountpoint may have come from a call to 449 * getmnt/getmntany if it isn't NULL. If it is NULL, 450 * we know it comes from libzfs_mnttab_find which can 451 * then get freed later. We strdup it to play it safe. 452 */ 453 if (mountpoint == NULL) 454 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 455 else 456 mntpt = zfs_strdup(hdl, mountpoint); 457 458 /* 459 * Unshare and unmount the filesystem 460 */ 461 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 462 return (-1); 463 464 if (unmount_one(hdl, mntpt, flags) != 0) { 465 free(mntpt); 466 (void) zfs_shareall(zhp); 467 return (-1); 468 } 469 libzfs_mnttab_remove(hdl, zhp->zfs_name); 470 free(mntpt); 471 } 472 473 return (0); 474 } 475 476 /* 477 * Unmount this filesystem and any children inheriting the mountpoint property. 478 * To do this, just act like we're changing the mountpoint property, but don't 479 * remount the filesystems afterwards. 480 */ 481 int 482 zfs_unmountall(zfs_handle_t *zhp, int flags) 483 { 484 prop_changelist_t *clp; 485 int ret; 486 487 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 488 if (clp == NULL) 489 return (-1); 490 491 ret = changelist_prefix(clp); 492 changelist_free(clp); 493 494 return (ret); 495 } 496 497 boolean_t 498 zfs_is_shared(zfs_handle_t *zhp) 499 { 500 zfs_share_type_t rc = 0; 501 zfs_share_proto_t *curr_proto; 502 503 if (ZFS_IS_VOLUME(zhp)) 504 return (B_FALSE); 505 506 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 507 curr_proto++) 508 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 509 510 return (rc ? B_TRUE : B_FALSE); 511 } 512 513 int 514 zfs_share(zfs_handle_t *zhp) 515 { 516 assert(!ZFS_IS_VOLUME(zhp)); 517 return (zfs_share_proto(zhp, share_all_proto)); 518 } 519 520 int 521 zfs_unshare(zfs_handle_t *zhp) 522 { 523 assert(!ZFS_IS_VOLUME(zhp)); 524 return (zfs_unshareall(zhp)); 525 } 526 527 /* 528 * Check to see if the filesystem is currently shared. 529 */ 530 zfs_share_type_t 531 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 532 { 533 char *mountpoint; 534 zfs_share_type_t rc; 535 536 if (!zfs_is_mounted(zhp, &mountpoint)) 537 return (SHARED_NOT_SHARED); 538 539 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 540 != SHARED_NOT_SHARED) { 541 if (where != NULL) 542 *where = mountpoint; 543 else 544 free(mountpoint); 545 return (rc); 546 } else { 547 free(mountpoint); 548 return (SHARED_NOT_SHARED); 549 } 550 } 551 552 boolean_t 553 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 554 { 555 return (zfs_is_shared_proto(zhp, where, 556 PROTO_NFS) != SHARED_NOT_SHARED); 557 } 558 559 boolean_t 560 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 561 { 562 return (zfs_is_shared_proto(zhp, where, 563 PROTO_SMB) != SHARED_NOT_SHARED); 564 } 565 566 /* 567 * Make sure things will work if libshare isn't installed by using 568 * wrapper functions that check to see that the pointers to functions 569 * initialized in _zfs_init_libshare() are actually present. 570 */ 571 572 static sa_handle_t (*_sa_init)(int); 573 static sa_handle_t (*_sa_init_arg)(int, void *); 574 static void (*_sa_fini)(sa_handle_t); 575 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 576 static int (*_sa_enable_share)(sa_share_t, char *); 577 static int (*_sa_disable_share)(sa_share_t, char *); 578 static char *(*_sa_errorstr)(int); 579 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 580 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 581 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 582 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 583 char *, char *, zprop_source_t, char *, char *, char *); 584 static void (*_sa_update_sharetab_ts)(sa_handle_t); 585 586 /* 587 * _zfs_init_libshare() 588 * 589 * Find the libshare.so.1 entry points that we use here and save the 590 * values to be used later. This is triggered by the runtime loader. 591 * Make sure the correct ISA version is loaded. 592 */ 593 594 #pragma init(_zfs_init_libshare) 595 static void 596 _zfs_init_libshare(void) 597 { 598 void *libshare; 599 char path[MAXPATHLEN]; 600 char isa[MAXISALEN]; 601 602 #if defined(_LP64) 603 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 604 isa[0] = '\0'; 605 #else 606 isa[0] = '\0'; 607 #endif 608 (void) snprintf(path, MAXPATHLEN, 609 "/usr/lib/%s/libshare.so.1", isa); 610 611 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 612 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 613 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 614 "sa_init_arg"); 615 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 616 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 617 dlsym(libshare, "sa_find_share"); 618 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 619 "sa_enable_share"); 620 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 621 "sa_disable_share"); 622 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 623 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 624 dlsym(libshare, "sa_parse_legacy_options"); 625 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 626 dlsym(libshare, "sa_needs_refresh"); 627 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 628 dlsym(libshare, "sa_get_zfs_handle"); 629 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 630 sa_share_t, char *, char *, zprop_source_t, char *, 631 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 632 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 633 dlsym(libshare, "sa_update_sharetab_ts"); 634 if (_sa_init == NULL || _sa_init_arg == NULL || 635 _sa_fini == NULL || _sa_find_share == NULL || 636 _sa_enable_share == NULL || _sa_disable_share == NULL || 637 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 638 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 639 _sa_zfs_process_share == NULL || 640 _sa_update_sharetab_ts == NULL) { 641 _sa_init = NULL; 642 _sa_init_arg = NULL; 643 _sa_fini = NULL; 644 _sa_disable_share = NULL; 645 _sa_enable_share = NULL; 646 _sa_errorstr = NULL; 647 _sa_parse_legacy_options = NULL; 648 (void) dlclose(libshare); 649 _sa_needs_refresh = NULL; 650 _sa_get_zfs_handle = NULL; 651 _sa_zfs_process_share = NULL; 652 _sa_update_sharetab_ts = NULL; 653 } 654 } 655 } 656 657 /* 658 * zfs_init_libshare(zhandle, service) 659 * 660 * Initialize the libshare API if it hasn't already been initialized. 661 * In all cases it returns 0 if it succeeded and an error if not. The 662 * service value is which part(s) of the API to initialize and is a 663 * direct map to the libshare sa_init(service) interface. 664 */ 665 static int 666 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 667 { 668 /* 669 * libshare is either not installed or we're in a branded zone. The 670 * rest of the wrapper functions around the libshare calls already 671 * handle NULL function pointers, but we don't want the callers of 672 * zfs_init_libshare() to fail prematurely if libshare is not available. 673 */ 674 if (_sa_init == NULL) 675 return (SA_OK); 676 677 /* 678 * Attempt to refresh libshare. This is necessary if there was a cache 679 * miss for a new ZFS dataset that was just created, or if state of the 680 * sharetab file has changed since libshare was last initialized. We 681 * want to make sure so check timestamps to see if a different process 682 * has updated any of the configuration. If there was some non-ZFS 683 * change, we need to re-initialize the internal cache. 684 */ 685 if (_sa_needs_refresh != NULL && 686 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 687 zfs_uninit_libshare(zhandle); 688 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 689 } 690 691 if (zhandle && zhandle->libzfs_sharehdl == NULL) 692 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 693 694 if (zhandle->libzfs_sharehdl == NULL) 695 return (SA_NO_MEMORY); 696 697 return (SA_OK); 698 } 699 int 700 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 701 { 702 return (zfs_init_libshare_impl(zhandle, service, NULL)); 703 } 704 705 int 706 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 707 { 708 return (zfs_init_libshare_impl(zhandle, service, arg)); 709 } 710 711 712 /* 713 * zfs_uninit_libshare(zhandle) 714 * 715 * Uninitialize the libshare API if it hasn't already been 716 * uninitialized. It is OK to call multiple times. 717 */ 718 void 719 zfs_uninit_libshare(libzfs_handle_t *zhandle) 720 { 721 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 722 if (_sa_fini != NULL) 723 _sa_fini(zhandle->libzfs_sharehdl); 724 zhandle->libzfs_sharehdl = NULL; 725 } 726 } 727 728 /* 729 * zfs_parse_options(options, proto) 730 * 731 * Call the legacy parse interface to get the protocol specific 732 * options using the NULL arg to indicate that this is a "parse" only. 733 */ 734 int 735 zfs_parse_options(char *options, zfs_share_proto_t proto) 736 { 737 if (_sa_parse_legacy_options != NULL) { 738 return (_sa_parse_legacy_options(NULL, options, 739 proto_table[proto].p_name)); 740 } 741 return (SA_CONFIG_ERR); 742 } 743 744 /* 745 * zfs_sa_find_share(handle, path) 746 * 747 * wrapper around sa_find_share to find a share path in the 748 * configuration. 749 */ 750 static sa_share_t 751 zfs_sa_find_share(sa_handle_t handle, char *path) 752 { 753 if (_sa_find_share != NULL) 754 return (_sa_find_share(handle, path)); 755 return (NULL); 756 } 757 758 /* 759 * zfs_sa_enable_share(share, proto) 760 * 761 * Wrapper for sa_enable_share which enables a share for a specified 762 * protocol. 763 */ 764 static int 765 zfs_sa_enable_share(sa_share_t share, char *proto) 766 { 767 if (_sa_enable_share != NULL) 768 return (_sa_enable_share(share, proto)); 769 return (SA_CONFIG_ERR); 770 } 771 772 /* 773 * zfs_sa_disable_share(share, proto) 774 * 775 * Wrapper for sa_enable_share which disables a share for a specified 776 * protocol. 777 */ 778 static int 779 zfs_sa_disable_share(sa_share_t share, char *proto) 780 { 781 if (_sa_disable_share != NULL) 782 return (_sa_disable_share(share, proto)); 783 return (SA_CONFIG_ERR); 784 } 785 786 /* 787 * Share the given filesystem according to the options in the specified 788 * protocol specific properties (sharenfs, sharesmb). We rely 789 * on "libshare" to the dirty work for us. 790 */ 791 static int 792 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 793 { 794 char mountpoint[ZFS_MAXPROPLEN]; 795 char shareopts[ZFS_MAXPROPLEN]; 796 char sourcestr[ZFS_MAXPROPLEN]; 797 libzfs_handle_t *hdl = zhp->zfs_hdl; 798 sa_share_t share; 799 zfs_share_proto_t *curr_proto; 800 zprop_source_t sourcetype; 801 int ret; 802 803 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 804 return (0); 805 806 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 807 /* 808 * Return success if there are no share options. 809 */ 810 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 811 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 812 ZFS_MAXPROPLEN, B_FALSE) != 0 || 813 strcmp(shareopts, "off") == 0) 814 continue; 815 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE, 816 zhp); 817 if (ret != SA_OK) { 818 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 819 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 820 zfs_get_name(zhp), _sa_errorstr != NULL ? 821 _sa_errorstr(ret) : ""); 822 return (-1); 823 } 824 825 /* 826 * If the 'zoned' property is set, then zfs_is_mountable() 827 * will have already bailed out if we are in the global zone. 828 * But local zones cannot be NFS servers, so we ignore it for 829 * local zones as well. 830 */ 831 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 832 continue; 833 834 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 835 if (share == NULL) { 836 /* 837 * This may be a new file system that was just 838 * created so isn't in the internal cache 839 * (second time through). Rather than 840 * reloading the entire configuration, we can 841 * assume ZFS has done the checking and it is 842 * safe to add this to the internal 843 * configuration. 844 */ 845 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 846 NULL, NULL, mountpoint, 847 proto_table[*curr_proto].p_name, sourcetype, 848 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 849 (void) zfs_error_fmt(hdl, 850 proto_table[*curr_proto].p_share_err, 851 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 852 zfs_get_name(zhp)); 853 return (-1); 854 } 855 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 856 mountpoint); 857 } 858 if (share != NULL) { 859 int err; 860 err = zfs_sa_enable_share(share, 861 proto_table[*curr_proto].p_name); 862 if (err != SA_OK) { 863 (void) zfs_error_fmt(hdl, 864 proto_table[*curr_proto].p_share_err, 865 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 866 zfs_get_name(zhp)); 867 return (-1); 868 } 869 } else { 870 (void) zfs_error_fmt(hdl, 871 proto_table[*curr_proto].p_share_err, 872 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 873 zfs_get_name(zhp)); 874 return (-1); 875 } 876 877 } 878 return (0); 879 } 880 881 882 int 883 zfs_share_nfs(zfs_handle_t *zhp) 884 { 885 return (zfs_share_proto(zhp, nfs_only)); 886 } 887 888 int 889 zfs_share_smb(zfs_handle_t *zhp) 890 { 891 return (zfs_share_proto(zhp, smb_only)); 892 } 893 894 int 895 zfs_shareall(zfs_handle_t *zhp) 896 { 897 return (zfs_share_proto(zhp, share_all_proto)); 898 } 899 900 /* 901 * Unshare a filesystem by mountpoint. 902 */ 903 static int 904 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 905 zfs_share_proto_t proto) 906 { 907 sa_share_t share; 908 int err; 909 char *mntpt; 910 911 /* 912 * Mountpoint could get trashed if libshare calls getmntany 913 * which it does during API initialization, so strdup the 914 * value. 915 */ 916 mntpt = zfs_strdup(hdl, mountpoint); 917 918 /* 919 * make sure libshare initialized, initialize everything because we 920 * don't know what other unsharing may happen later. Functions up the 921 * stack are allowed to initialize instead a subset of shares at the 922 * time the set is known. 923 */ 924 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME, 925 (void *)name)) != SA_OK) { 926 free(mntpt); /* don't need the copy anymore */ 927 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 928 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 929 name, _sa_errorstr(err))); 930 } 931 932 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 933 free(mntpt); /* don't need the copy anymore */ 934 935 if (share != NULL) { 936 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 937 if (err != SA_OK) { 938 return (zfs_error_fmt(hdl, 939 proto_table[proto].p_unshare_err, 940 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 941 name, _sa_errorstr(err))); 942 } 943 } else { 944 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 945 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 946 name)); 947 } 948 return (0); 949 } 950 951 /* 952 * Unshare the given filesystem. 953 */ 954 int 955 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 956 zfs_share_proto_t *proto) 957 { 958 libzfs_handle_t *hdl = zhp->zfs_hdl; 959 struct mnttab entry; 960 char *mntpt = NULL; 961 962 /* check to see if need to unmount the filesystem */ 963 rewind(zhp->zfs_hdl->libzfs_mnttab); 964 if (mountpoint != NULL) 965 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 966 967 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 968 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 969 zfs_share_proto_t *curr_proto; 970 971 if (mountpoint == NULL) 972 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 973 974 for (curr_proto = proto; *curr_proto != PROTO_END; 975 curr_proto++) { 976 977 if (is_shared(hdl, mntpt, *curr_proto) && 978 unshare_one(hdl, zhp->zfs_name, 979 mntpt, *curr_proto) != 0) { 980 if (mntpt != NULL) 981 free(mntpt); 982 return (-1); 983 } 984 } 985 } 986 if (mntpt != NULL) 987 free(mntpt); 988 989 return (0); 990 } 991 992 int 993 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 994 { 995 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 996 } 997 998 int 999 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 1000 { 1001 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 1002 } 1003 1004 /* 1005 * Same as zfs_unmountall(), but for NFS and SMB unshares. 1006 */ 1007 int 1008 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 1009 { 1010 prop_changelist_t *clp; 1011 int ret; 1012 1013 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1014 if (clp == NULL) 1015 return (-1); 1016 1017 ret = changelist_unshare(clp, proto); 1018 changelist_free(clp); 1019 1020 return (ret); 1021 } 1022 1023 int 1024 zfs_unshareall_nfs(zfs_handle_t *zhp) 1025 { 1026 return (zfs_unshareall_proto(zhp, nfs_only)); 1027 } 1028 1029 int 1030 zfs_unshareall_smb(zfs_handle_t *zhp) 1031 { 1032 return (zfs_unshareall_proto(zhp, smb_only)); 1033 } 1034 1035 int 1036 zfs_unshareall(zfs_handle_t *zhp) 1037 { 1038 return (zfs_unshareall_proto(zhp, share_all_proto)); 1039 } 1040 1041 int 1042 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1043 { 1044 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1045 } 1046 1047 /* 1048 * Remove the mountpoint associated with the current dataset, if necessary. 1049 * We only remove the underlying directory if: 1050 * 1051 * - The mountpoint is not 'none' or 'legacy' 1052 * - The mountpoint is non-empty 1053 * - The mountpoint is the default or inherited 1054 * - The 'zoned' property is set, or we're in a local zone 1055 * 1056 * Any other directories we leave alone. 1057 */ 1058 void 1059 remove_mountpoint(zfs_handle_t *zhp) 1060 { 1061 char mountpoint[ZFS_MAXPROPLEN]; 1062 zprop_source_t source; 1063 1064 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1065 &source)) 1066 return; 1067 1068 if (source == ZPROP_SRC_DEFAULT || 1069 source == ZPROP_SRC_INHERITED) { 1070 /* 1071 * Try to remove the directory, silently ignoring any errors. 1072 * The filesystem may have since been removed or moved around, 1073 * and this error isn't really useful to the administrator in 1074 * any way. 1075 */ 1076 (void) rmdir(mountpoint); 1077 } 1078 } 1079 1080 void 1081 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1082 { 1083 if (cbp->cb_alloc == cbp->cb_used) { 1084 size_t newsz; 1085 void *ptr; 1086 1087 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1088 ptr = zfs_realloc(zhp->zfs_hdl, 1089 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1090 newsz * sizeof (void *)); 1091 cbp->cb_handles = ptr; 1092 cbp->cb_alloc = newsz; 1093 } 1094 cbp->cb_handles[cbp->cb_used++] = zhp; 1095 } 1096 1097 static int 1098 mount_cb(zfs_handle_t *zhp, void *data) 1099 { 1100 get_all_cb_t *cbp = data; 1101 1102 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1103 zfs_close(zhp); 1104 return (0); 1105 } 1106 1107 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1108 zfs_close(zhp); 1109 return (0); 1110 } 1111 1112 /* 1113 * If this filesystem is inconsistent and has a receive resume 1114 * token, we can not mount it. 1115 */ 1116 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1117 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1118 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1119 zfs_close(zhp); 1120 return (0); 1121 } 1122 1123 libzfs_add_handle(cbp, zhp); 1124 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1125 zfs_close(zhp); 1126 return (-1); 1127 } 1128 return (0); 1129 } 1130 1131 int 1132 libzfs_dataset_cmp(const void *a, const void *b) 1133 { 1134 zfs_handle_t **za = (zfs_handle_t **)a; 1135 zfs_handle_t **zb = (zfs_handle_t **)b; 1136 char mounta[MAXPATHLEN]; 1137 char mountb[MAXPATHLEN]; 1138 boolean_t gota, gotb; 1139 1140 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1141 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1142 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1143 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1144 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1145 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1146 1147 if (gota && gotb) 1148 return (strcmp(mounta, mountb)); 1149 1150 if (gota) 1151 return (-1); 1152 if (gotb) 1153 return (1); 1154 1155 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1156 } 1157 1158 /* 1159 * Mount and share all datasets within the given pool. This assumes that no 1160 * datasets within the pool are currently mounted. Because users can create 1161 * complicated nested hierarchies of mountpoints, we first gather all the 1162 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1163 * we have the list of all filesystems, we iterate over them in order and mount 1164 * and/or share each one. 1165 */ 1166 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1167 int 1168 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1169 { 1170 get_all_cb_t cb = { 0 }; 1171 libzfs_handle_t *hdl = zhp->zpool_hdl; 1172 zfs_handle_t *zfsp; 1173 int i, ret = -1; 1174 int *good; 1175 1176 /* 1177 * Gather all non-snap datasets within the pool. 1178 */ 1179 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1180 goto out; 1181 1182 libzfs_add_handle(&cb, zfsp); 1183 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1184 goto out; 1185 /* 1186 * Sort the datasets by mountpoint. 1187 */ 1188 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1189 libzfs_dataset_cmp); 1190 1191 /* 1192 * And mount all the datasets, keeping track of which ones 1193 * succeeded or failed. 1194 */ 1195 if ((good = zfs_alloc(zhp->zpool_hdl, 1196 cb.cb_used * sizeof (int))) == NULL) 1197 goto out; 1198 1199 ret = 0; 1200 for (i = 0; i < cb.cb_used; i++) { 1201 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1202 ret = -1; 1203 else 1204 good[i] = 1; 1205 } 1206 1207 /* 1208 * Then share all the ones that need to be shared. This needs 1209 * to be a separate pass in order to avoid excessive reloading 1210 * of the configuration. Good should never be NULL since 1211 * zfs_alloc is supposed to exit if memory isn't available. 1212 */ 1213 for (i = 0; i < cb.cb_used; i++) { 1214 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1215 ret = -1; 1216 } 1217 1218 free(good); 1219 1220 out: 1221 for (i = 0; i < cb.cb_used; i++) 1222 zfs_close(cb.cb_handles[i]); 1223 free(cb.cb_handles); 1224 1225 return (ret); 1226 } 1227 1228 static int 1229 mountpoint_compare(const void *a, const void *b) 1230 { 1231 const char *mounta = *((char **)a); 1232 const char *mountb = *((char **)b); 1233 1234 return (strcmp(mountb, mounta)); 1235 } 1236 1237 /* alias for 2002/240 */ 1238 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1239 /* 1240 * Unshare and unmount all datasets within the given pool. We don't want to 1241 * rely on traversing the DSL to discover the filesystems within the pool, 1242 * because this may be expensive (if not all of them are mounted), and can fail 1243 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1244 * gather all the filesystems that are currently mounted. 1245 */ 1246 int 1247 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1248 { 1249 int used, alloc; 1250 struct mnttab entry; 1251 size_t namelen; 1252 char **mountpoints = NULL; 1253 zfs_handle_t **datasets = NULL; 1254 libzfs_handle_t *hdl = zhp->zpool_hdl; 1255 int i; 1256 int ret = -1; 1257 int flags = (force ? MS_FORCE : 0); 1258 sa_init_selective_arg_t sharearg; 1259 1260 namelen = strlen(zhp->zpool_name); 1261 1262 rewind(hdl->libzfs_mnttab); 1263 used = alloc = 0; 1264 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1265 /* 1266 * Ignore non-ZFS entries. 1267 */ 1268 if (entry.mnt_fstype == NULL || 1269 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1270 continue; 1271 1272 /* 1273 * Ignore filesystems not within this pool. 1274 */ 1275 if (entry.mnt_mountp == NULL || 1276 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1277 (entry.mnt_special[namelen] != '/' && 1278 entry.mnt_special[namelen] != '\0')) 1279 continue; 1280 1281 /* 1282 * At this point we've found a filesystem within our pool. Add 1283 * it to our growing list. 1284 */ 1285 if (used == alloc) { 1286 if (alloc == 0) { 1287 if ((mountpoints = zfs_alloc(hdl, 1288 8 * sizeof (void *))) == NULL) 1289 goto out; 1290 1291 if ((datasets = zfs_alloc(hdl, 1292 8 * sizeof (void *))) == NULL) 1293 goto out; 1294 1295 alloc = 8; 1296 } else { 1297 void *ptr; 1298 1299 if ((ptr = zfs_realloc(hdl, mountpoints, 1300 alloc * sizeof (void *), 1301 alloc * 2 * sizeof (void *))) == NULL) 1302 goto out; 1303 mountpoints = ptr; 1304 1305 if ((ptr = zfs_realloc(hdl, datasets, 1306 alloc * sizeof (void *), 1307 alloc * 2 * sizeof (void *))) == NULL) 1308 goto out; 1309 datasets = ptr; 1310 1311 alloc *= 2; 1312 } 1313 } 1314 1315 if ((mountpoints[used] = zfs_strdup(hdl, 1316 entry.mnt_mountp)) == NULL) 1317 goto out; 1318 1319 /* 1320 * This is allowed to fail, in case there is some I/O error. It 1321 * is only used to determine if we need to remove the underlying 1322 * mountpoint, so failure is not fatal. 1323 */ 1324 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1325 1326 used++; 1327 } 1328 1329 /* 1330 * At this point, we have the entire list of filesystems, so sort it by 1331 * mountpoint. 1332 */ 1333 sharearg.zhandle_arr = datasets; 1334 sharearg.zhandle_len = used; 1335 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1336 &sharearg); 1337 if (ret != 0) 1338 goto out; 1339 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1340 1341 /* 1342 * Walk through and first unshare everything. 1343 */ 1344 for (i = 0; i < used; i++) { 1345 zfs_share_proto_t *curr_proto; 1346 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1347 curr_proto++) { 1348 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1349 unshare_one(hdl, mountpoints[i], 1350 mountpoints[i], *curr_proto) != 0) 1351 goto out; 1352 } 1353 } 1354 1355 /* 1356 * Now unmount everything, removing the underlying directories as 1357 * appropriate. 1358 */ 1359 for (i = 0; i < used; i++) { 1360 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1361 goto out; 1362 } 1363 1364 for (i = 0; i < used; i++) { 1365 if (datasets[i]) 1366 remove_mountpoint(datasets[i]); 1367 } 1368 1369 ret = 0; 1370 out: 1371 for (i = 0; i < used; i++) { 1372 if (datasets[i]) 1373 zfs_close(datasets[i]); 1374 free(mountpoints[i]); 1375 } 1376 free(datasets); 1377 free(mountpoints); 1378 1379 return (ret); 1380 } 1381