xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_mount.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27  * Copyright 2017 Joyent, Inc.
28  * Copyright 2017 RackTop Systems.
29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 /*
33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
34  * to deal with the OS.  The following functions are the main entry points --
35  * they are used by mount and unmount and when changing a filesystem's
36  * mountpoint.
37  *
38  *	zfs_is_mounted()
39  *	zfs_mount()
40  *	zfs_unmount()
41  *	zfs_unmountall()
42  *
43  * This file also contains the functions used to manage sharing filesystems via
44  * NFS and iSCSI:
45  *
46  *	zfs_is_shared()
47  *	zfs_share()
48  *	zfs_unshare()
49  *
50  *	zfs_is_shared_nfs()
51  *	zfs_is_shared_smb()
52  *	zfs_share_proto()
53  *	zfs_shareall();
54  *	zfs_unshare_nfs()
55  *	zfs_unshare_smb()
56  *	zfs_unshareall_nfs()
57  *	zfs_unshareall_smb()
58  *	zfs_unshareall()
59  *	zfs_unshareall_bypath()
60  *
61  * The following functions are available for pool consumers, and will
62  * mount/unmount and share/unshare all datasets within pool:
63  *
64  *	zpool_enable_datasets()
65  *	zpool_disable_datasets()
66  */
67 
68 #include <dirent.h>
69 #include <dlfcn.h>
70 #include <errno.h>
71 #include <fcntl.h>
72 #include <libgen.h>
73 #include <libintl.h>
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <strings.h>
77 #include <unistd.h>
78 #include <zone.h>
79 #include <sys/mntent.h>
80 #include <sys/mount.h>
81 #include <sys/stat.h>
82 #include <sys/statvfs.h>
83 #include <sys/dsl_crypt.h>
84 
85 #include <libzfs.h>
86 
87 #include "libzfs_impl.h"
88 #include "libzfs_taskq.h"
89 
90 #include <libshare.h>
91 #include <sys/systeminfo.h>
92 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
93 
94 static int mount_tq_nthr = 512;	/* taskq threads for multi-threaded mounting */
95 
96 static void zfs_mount_task(void *);
97 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
99     zfs_share_proto_t);
100 
101 /*
102  * The share protocols table must be in the same order as the zfs_share_proto_t
103  * enum in libzfs_impl.h
104  */
105 typedef struct {
106 	zfs_prop_t p_prop;
107 	char *p_name;
108 	int p_share_err;
109 	int p_unshare_err;
110 } proto_table_t;
111 
112 proto_table_t proto_table[PROTO_END] = {
113 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
114 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
115 };
116 
117 zfs_share_proto_t nfs_only[] = {
118 	PROTO_NFS,
119 	PROTO_END
120 };
121 
122 zfs_share_proto_t smb_only[] = {
123 	PROTO_SMB,
124 	PROTO_END
125 };
126 zfs_share_proto_t share_all_proto[] = {
127 	PROTO_NFS,
128 	PROTO_SMB,
129 	PROTO_END
130 };
131 
132 /*
133  * Search the sharetab for the given mountpoint and protocol, returning
134  * a zfs_share_type_t value.
135  */
136 static zfs_share_type_t
137 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
138 {
139 	char buf[MAXPATHLEN], *tab;
140 	char *ptr;
141 
142 	if (hdl->libzfs_sharetab == NULL)
143 		return (SHARED_NOT_SHARED);
144 
145 	(void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
146 
147 	while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
148 
149 		/* the mountpoint is the first entry on each line */
150 		if ((tab = strchr(buf, '\t')) == NULL)
151 			continue;
152 
153 		*tab = '\0';
154 		if (strcmp(buf, mountpoint) == 0) {
155 			/*
156 			 * the protocol field is the third field
157 			 * skip over second field
158 			 */
159 			ptr = ++tab;
160 			if ((tab = strchr(ptr, '\t')) == NULL)
161 				continue;
162 			ptr = ++tab;
163 			if ((tab = strchr(ptr, '\t')) == NULL)
164 				continue;
165 			*tab = '\0';
166 			if (strcmp(ptr,
167 			    proto_table[proto].p_name) == 0) {
168 				switch (proto) {
169 				case PROTO_NFS:
170 					return (SHARED_NFS);
171 				case PROTO_SMB:
172 					return (SHARED_SMB);
173 				default:
174 					return (0);
175 				}
176 			}
177 		}
178 	}
179 
180 	return (SHARED_NOT_SHARED);
181 }
182 
183 static boolean_t
184 dir_is_empty_stat(const char *dirname)
185 {
186 	struct stat st;
187 
188 	/*
189 	 * We only want to return false if the given path is a non empty
190 	 * directory, all other errors are handled elsewhere.
191 	 */
192 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
193 		return (B_TRUE);
194 	}
195 
196 	/*
197 	 * An empty directory will still have two entries in it, one
198 	 * entry for each of "." and "..".
199 	 */
200 	if (st.st_size > 2) {
201 		return (B_FALSE);
202 	}
203 
204 	return (B_TRUE);
205 }
206 
207 static boolean_t
208 dir_is_empty_readdir(const char *dirname)
209 {
210 	DIR *dirp;
211 	struct dirent64 *dp;
212 	int dirfd;
213 
214 	if ((dirfd = openat(AT_FDCWD, dirname,
215 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
216 		return (B_TRUE);
217 	}
218 
219 	if ((dirp = fdopendir(dirfd)) == NULL) {
220 		(void) close(dirfd);
221 		return (B_TRUE);
222 	}
223 
224 	while ((dp = readdir64(dirp)) != NULL) {
225 
226 		if (strcmp(dp->d_name, ".") == 0 ||
227 		    strcmp(dp->d_name, "..") == 0)
228 			continue;
229 
230 		(void) closedir(dirp);
231 		return (B_FALSE);
232 	}
233 
234 	(void) closedir(dirp);
235 	return (B_TRUE);
236 }
237 
238 /*
239  * Returns true if the specified directory is empty.  If we can't open the
240  * directory at all, return true so that the mount can fail with a more
241  * informative error message.
242  */
243 static boolean_t
244 dir_is_empty(const char *dirname)
245 {
246 	struct statvfs64 st;
247 
248 	/*
249 	 * If the statvfs call fails or the filesystem is not a ZFS
250 	 * filesystem, fall back to the slow path which uses readdir.
251 	 */
252 	if ((statvfs64(dirname, &st) != 0) ||
253 	    (strcmp(st.f_basetype, "zfs") != 0)) {
254 		return (dir_is_empty_readdir(dirname));
255 	}
256 
257 	/*
258 	 * At this point, we know the provided path is on a ZFS
259 	 * filesystem, so we can use stat instead of readdir to
260 	 * determine if the directory is empty or not. We try to avoid
261 	 * using readdir because that requires opening "dirname"; this
262 	 * open file descriptor can potentially end up in a child
263 	 * process if there's a concurrent fork, thus preventing the
264 	 * zfs_mount() from otherwise succeeding (the open file
265 	 * descriptor inherited by the child process will cause the
266 	 * parent's mount to fail with EBUSY). The performance
267 	 * implications of replacing the open, read, and close with a
268 	 * single stat is nice; but is not the main motivation for the
269 	 * added complexity.
270 	 */
271 	return (dir_is_empty_stat(dirname));
272 }
273 
274 /*
275  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
276  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
277  * 0.
278  */
279 boolean_t
280 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
281 {
282 	struct mnttab entry;
283 
284 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
285 		return (B_FALSE);
286 
287 	if (where != NULL)
288 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
289 
290 	return (B_TRUE);
291 }
292 
293 boolean_t
294 zfs_is_mounted(zfs_handle_t *zhp, char **where)
295 {
296 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
297 }
298 
299 /*
300  * Returns true if the given dataset is mountable, false otherwise.  Returns the
301  * mountpoint in 'buf'.
302  */
303 static boolean_t
304 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
305     zprop_source_t *source)
306 {
307 	char sourceloc[MAXNAMELEN];
308 	zprop_source_t sourcetype;
309 
310 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
311 		return (B_FALSE);
312 
313 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
314 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
315 
316 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
317 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
318 		return (B_FALSE);
319 
320 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
321 		return (B_FALSE);
322 
323 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
324 	    getzoneid() == GLOBAL_ZONEID)
325 		return (B_FALSE);
326 
327 	if (source)
328 		*source = sourcetype;
329 
330 	return (B_TRUE);
331 }
332 
333 /*
334  * Mount the given filesystem.
335  */
336 int
337 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
338 {
339 	struct stat buf;
340 	char mountpoint[ZFS_MAXPROPLEN];
341 	char mntopts[MNT_LINE_MAX];
342 	libzfs_handle_t *hdl = zhp->zfs_hdl;
343 	uint64_t keystatus;
344 	int rc;
345 
346 	if (options == NULL)
347 		mntopts[0] = '\0';
348 	else
349 		(void) strlcpy(mntopts, options, sizeof (mntopts));
350 
351 	/*
352 	 * If the pool is imported read-only then all mounts must be read-only
353 	 */
354 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
355 		flags |= MS_RDONLY;
356 
357 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
358 		return (0);
359 
360 	/*
361 	 * If the filesystem is encrypted the key must be loaded  in order to
362 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
363 	 * or not we attempt to load the keys. Note: we must call
364 	 * zfs_refresh_properties() here since some callers of this function
365 	 * (most notably zpool_enable_datasets()) may implicitly load our key
366 	 * by loading the parent's key first.
367 	 */
368 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
369 		zfs_refresh_properties(zhp);
370 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
371 
372 		/*
373 		 * If the key is unavailable and MS_CRYPT is set give the
374 		 * user a chance to enter the key. Otherwise just fail
375 		 * immediately.
376 		 */
377 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
378 			if (flags & MS_CRYPT) {
379 				rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
380 				if (rc != 0)
381 					return (rc);
382 			} else {
383 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
384 				    "encryption key not loaded"));
385 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
386 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
387 				    mountpoint));
388 			}
389 		}
390 
391 	}
392 
393 	/* Create the directory if it doesn't already exist */
394 	if (lstat(mountpoint, &buf) != 0) {
395 		if (mkdirp(mountpoint, 0755) != 0) {
396 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
397 			    "failed to create mountpoint"));
398 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
399 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
400 			    mountpoint));
401 		}
402 	}
403 
404 	/*
405 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
406 	 * mount.  We don't perform this check if MS_OVERLAY is specified, which
407 	 * would defeat the point.  We also avoid this check if 'remount' is
408 	 * specified.
409 	 */
410 	if ((flags & MS_OVERLAY) == 0 &&
411 	    strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
412 	    !dir_is_empty(mountpoint)) {
413 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
414 		    "directory is not empty"));
415 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
416 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
417 	}
418 
419 	/* perform the mount */
420 	if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
421 	    MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
422 		/*
423 		 * Generic errors are nasty, but there are just way too many
424 		 * from mount(), and they're well-understood.  We pick a few
425 		 * common ones to improve upon.
426 		 */
427 		if (errno == EBUSY) {
428 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
429 			    "mountpoint or dataset is busy"));
430 		} else if (errno == EPERM) {
431 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
432 			    "Insufficient privileges"));
433 		} else if (errno == ENOTSUP) {
434 			char buf[256];
435 			int spa_version;
436 
437 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
438 			(void) snprintf(buf, sizeof (buf),
439 			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
440 			    "file system on a version %d pool. Pool must be"
441 			    " upgraded to mount this file system."),
442 			    (u_longlong_t)zfs_prop_get_int(zhp,
443 			    ZFS_PROP_VERSION), spa_version);
444 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
445 		} else {
446 			zfs_error_aux(hdl, strerror(errno));
447 		}
448 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
449 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
450 		    zhp->zfs_name));
451 	}
452 
453 	/* add the mounted entry into our cache */
454 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
455 	    mntopts);
456 	return (0);
457 }
458 
459 /*
460  * Unmount a single filesystem.
461  */
462 static int
463 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
464 {
465 	if (umount2(mountpoint, flags) != 0) {
466 		zfs_error_aux(hdl, strerror(errno));
467 		return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
468 		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
469 		    mountpoint));
470 	}
471 
472 	return (0);
473 }
474 
475 /*
476  * Unmount the given filesystem.
477  */
478 int
479 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
480 {
481 	libzfs_handle_t *hdl = zhp->zfs_hdl;
482 	struct mnttab entry;
483 	char *mntpt = NULL;
484 
485 	/* check to see if we need to unmount the filesystem */
486 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
487 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
488 		/*
489 		 * mountpoint may have come from a call to
490 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
491 		 * we know it comes from libzfs_mnttab_find which can
492 		 * then get freed later. We strdup it to play it safe.
493 		 */
494 		if (mountpoint == NULL)
495 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
496 		else
497 			mntpt = zfs_strdup(hdl, mountpoint);
498 
499 		/*
500 		 * Unshare and unmount the filesystem
501 		 */
502 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
503 			return (-1);
504 
505 		if (unmount_one(hdl, mntpt, flags) != 0) {
506 			free(mntpt);
507 			(void) zfs_shareall(zhp);
508 			return (-1);
509 		}
510 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
511 		free(mntpt);
512 	}
513 
514 	return (0);
515 }
516 
517 /*
518  * Unmount this filesystem and any children inheriting the mountpoint property.
519  * To do this, just act like we're changing the mountpoint property, but don't
520  * remount the filesystems afterwards.
521  */
522 int
523 zfs_unmountall(zfs_handle_t *zhp, int flags)
524 {
525 	prop_changelist_t *clp;
526 	int ret;
527 
528 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
529 	if (clp == NULL)
530 		return (-1);
531 
532 	ret = changelist_prefix(clp);
533 	changelist_free(clp);
534 
535 	return (ret);
536 }
537 
538 boolean_t
539 zfs_is_shared(zfs_handle_t *zhp)
540 {
541 	zfs_share_type_t rc = 0;
542 	zfs_share_proto_t *curr_proto;
543 
544 	if (ZFS_IS_VOLUME(zhp))
545 		return (B_FALSE);
546 
547 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
548 	    curr_proto++)
549 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
550 
551 	return (rc ? B_TRUE : B_FALSE);
552 }
553 
554 int
555 zfs_share(zfs_handle_t *zhp)
556 {
557 	assert(!ZFS_IS_VOLUME(zhp));
558 	return (zfs_share_proto(zhp, share_all_proto));
559 }
560 
561 int
562 zfs_unshare(zfs_handle_t *zhp)
563 {
564 	assert(!ZFS_IS_VOLUME(zhp));
565 	return (zfs_unshareall(zhp));
566 }
567 
568 /*
569  * Check to see if the filesystem is currently shared.
570  */
571 zfs_share_type_t
572 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
573 {
574 	char *mountpoint;
575 	zfs_share_type_t rc;
576 
577 	if (!zfs_is_mounted(zhp, &mountpoint))
578 		return (SHARED_NOT_SHARED);
579 
580 	if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
581 	    != SHARED_NOT_SHARED) {
582 		if (where != NULL)
583 			*where = mountpoint;
584 		else
585 			free(mountpoint);
586 		return (rc);
587 	} else {
588 		free(mountpoint);
589 		return (SHARED_NOT_SHARED);
590 	}
591 }
592 
593 boolean_t
594 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
595 {
596 	return (zfs_is_shared_proto(zhp, where,
597 	    PROTO_NFS) != SHARED_NOT_SHARED);
598 }
599 
600 boolean_t
601 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
602 {
603 	return (zfs_is_shared_proto(zhp, where,
604 	    PROTO_SMB) != SHARED_NOT_SHARED);
605 }
606 
607 /*
608  * Make sure things will work if libshare isn't installed by using
609  * wrapper functions that check to see that the pointers to functions
610  * initialized in _zfs_init_libshare() are actually present.
611  */
612 
613 static sa_handle_t (*_sa_init)(int);
614 static sa_handle_t (*_sa_init_arg)(int, void *);
615 static void (*_sa_fini)(sa_handle_t);
616 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
617 static int (*_sa_enable_share)(sa_share_t, char *);
618 static int (*_sa_disable_share)(sa_share_t, char *);
619 static char *(*_sa_errorstr)(int);
620 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
621 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
622 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
623 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t,
624     char *, char *, zprop_source_t, char *, char *, char *);
625 static void (*_sa_update_sharetab_ts)(sa_handle_t);
626 
627 /*
628  * _zfs_init_libshare()
629  *
630  * Find the libshare.so.1 entry points that we use here and save the
631  * values to be used later. This is triggered by the runtime loader.
632  * Make sure the correct ISA version is loaded.
633  */
634 
635 #pragma init(_zfs_init_libshare)
636 static void
637 _zfs_init_libshare(void)
638 {
639 	void *libshare;
640 	char path[MAXPATHLEN];
641 	char isa[MAXISALEN];
642 
643 #if defined(_LP64)
644 	if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
645 		isa[0] = '\0';
646 #else
647 	isa[0] = '\0';
648 #endif
649 	(void) snprintf(path, MAXPATHLEN,
650 	    "/usr/lib/%s/libshare.so.1", isa);
651 
652 	if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
653 		_sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
654 		_sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
655 		    "sa_init_arg");
656 		_sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
657 		_sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
658 		    dlsym(libshare, "sa_find_share");
659 		_sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
660 		    "sa_enable_share");
661 		_sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
662 		    "sa_disable_share");
663 		_sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
664 		_sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
665 		    dlsym(libshare, "sa_parse_legacy_options");
666 		_sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
667 		    dlsym(libshare, "sa_needs_refresh");
668 		_sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
669 		    dlsym(libshare, "sa_get_zfs_handle");
670 		_sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t,
671 		    sa_share_t, char *, char *, zprop_source_t, char *,
672 		    char *, char *))dlsym(libshare, "sa_zfs_process_share");
673 		_sa_update_sharetab_ts = (void (*)(sa_handle_t))
674 		    dlsym(libshare, "sa_update_sharetab_ts");
675 		if (_sa_init == NULL || _sa_init_arg == NULL ||
676 		    _sa_fini == NULL || _sa_find_share == NULL ||
677 		    _sa_enable_share == NULL || _sa_disable_share == NULL ||
678 		    _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
679 		    _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
680 		    _sa_zfs_process_share == NULL ||
681 		    _sa_update_sharetab_ts == NULL) {
682 			_sa_init = NULL;
683 			_sa_init_arg = NULL;
684 			_sa_fini = NULL;
685 			_sa_disable_share = NULL;
686 			_sa_enable_share = NULL;
687 			_sa_errorstr = NULL;
688 			_sa_parse_legacy_options = NULL;
689 			(void) dlclose(libshare);
690 			_sa_needs_refresh = NULL;
691 			_sa_get_zfs_handle = NULL;
692 			_sa_zfs_process_share = NULL;
693 			_sa_update_sharetab_ts = NULL;
694 		}
695 	}
696 }
697 
698 /*
699  * zfs_init_libshare(zhandle, service)
700  *
701  * Initialize the libshare API if it hasn't already been initialized.
702  * In all cases it returns 0 if it succeeded and an error if not. The
703  * service value is which part(s) of the API to initialize and is a
704  * direct map to the libshare sa_init(service) interface.
705  */
706 static int
707 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
708 {
709 	/*
710 	 * libshare is either not installed or we're in a branded zone. The
711 	 * rest of the wrapper functions around the libshare calls already
712 	 * handle NULL function pointers, but we don't want the callers of
713 	 * zfs_init_libshare() to fail prematurely if libshare is not available.
714 	 */
715 	if (_sa_init == NULL)
716 		return (SA_OK);
717 
718 	/*
719 	 * Attempt to refresh libshare. This is necessary if there was a cache
720 	 * miss for a new ZFS dataset that was just created, or if state of the
721 	 * sharetab file has changed since libshare was last initialized. We
722 	 * want to make sure so check timestamps to see if a different process
723 	 * has updated any of the configuration. If there was some non-ZFS
724 	 * change, we need to re-initialize the internal cache.
725 	 */
726 	if (_sa_needs_refresh != NULL &&
727 	    _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
728 		zfs_uninit_libshare(zhandle);
729 		zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
730 	}
731 
732 	if (zhandle && zhandle->libzfs_sharehdl == NULL)
733 		zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
734 
735 	if (zhandle->libzfs_sharehdl == NULL)
736 		return (SA_NO_MEMORY);
737 
738 	return (SA_OK);
739 }
740 int
741 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
742 {
743 	return (zfs_init_libshare_impl(zhandle, service, NULL));
744 }
745 
746 int
747 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
748 {
749 	return (zfs_init_libshare_impl(zhandle, service, arg));
750 }
751 
752 
753 /*
754  * zfs_uninit_libshare(zhandle)
755  *
756  * Uninitialize the libshare API if it hasn't already been
757  * uninitialized. It is OK to call multiple times.
758  */
759 void
760 zfs_uninit_libshare(libzfs_handle_t *zhandle)
761 {
762 	if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
763 		if (_sa_fini != NULL)
764 			_sa_fini(zhandle->libzfs_sharehdl);
765 		zhandle->libzfs_sharehdl = NULL;
766 	}
767 }
768 
769 /*
770  * zfs_parse_options(options, proto)
771  *
772  * Call the legacy parse interface to get the protocol specific
773  * options using the NULL arg to indicate that this is a "parse" only.
774  */
775 int
776 zfs_parse_options(char *options, zfs_share_proto_t proto)
777 {
778 	if (_sa_parse_legacy_options != NULL) {
779 		return (_sa_parse_legacy_options(NULL, options,
780 		    proto_table[proto].p_name));
781 	}
782 	return (SA_CONFIG_ERR);
783 }
784 
785 /*
786  * zfs_sa_find_share(handle, path)
787  *
788  * wrapper around sa_find_share to find a share path in the
789  * configuration.
790  */
791 static sa_share_t
792 zfs_sa_find_share(sa_handle_t handle, char *path)
793 {
794 	if (_sa_find_share != NULL)
795 		return (_sa_find_share(handle, path));
796 	return (NULL);
797 }
798 
799 /*
800  * zfs_sa_enable_share(share, proto)
801  *
802  * Wrapper for sa_enable_share which enables a share for a specified
803  * protocol.
804  */
805 static int
806 zfs_sa_enable_share(sa_share_t share, char *proto)
807 {
808 	if (_sa_enable_share != NULL)
809 		return (_sa_enable_share(share, proto));
810 	return (SA_CONFIG_ERR);
811 }
812 
813 /*
814  * zfs_sa_disable_share(share, proto)
815  *
816  * Wrapper for sa_enable_share which disables a share for a specified
817  * protocol.
818  */
819 static int
820 zfs_sa_disable_share(sa_share_t share, char *proto)
821 {
822 	if (_sa_disable_share != NULL)
823 		return (_sa_disable_share(share, proto));
824 	return (SA_CONFIG_ERR);
825 }
826 
827 /*
828  * Share the given filesystem according to the options in the specified
829  * protocol specific properties (sharenfs, sharesmb).  We rely
830  * on "libshare" to the dirty work for us.
831  */
832 static int
833 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
834 {
835 	char mountpoint[ZFS_MAXPROPLEN];
836 	char shareopts[ZFS_MAXPROPLEN];
837 	char sourcestr[ZFS_MAXPROPLEN];
838 	libzfs_handle_t *hdl = zhp->zfs_hdl;
839 	sa_share_t share;
840 	zfs_share_proto_t *curr_proto;
841 	zprop_source_t sourcetype;
842 	int ret;
843 
844 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
845 		return (0);
846 
847 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
848 		/*
849 		 * Return success if there are no share options.
850 		 */
851 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
852 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
853 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
854 		    strcmp(shareopts, "off") == 0)
855 			continue;
856 		ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE,
857 		    zhp);
858 		if (ret != SA_OK) {
859 			(void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
860 			    dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
861 			    zfs_get_name(zhp), _sa_errorstr != NULL ?
862 			    _sa_errorstr(ret) : "");
863 			return (-1);
864 		}
865 
866 		/*
867 		 * If the 'zoned' property is set, then zfs_is_mountable()
868 		 * will have already bailed out if we are in the global zone.
869 		 * But local zones cannot be NFS servers, so we ignore it for
870 		 * local zones as well.
871 		 */
872 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
873 			continue;
874 
875 		share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
876 		if (share == NULL) {
877 			/*
878 			 * This may be a new file system that was just
879 			 * created so isn't in the internal cache
880 			 * (second time through). Rather than
881 			 * reloading the entire configuration, we can
882 			 * assume ZFS has done the checking and it is
883 			 * safe to add this to the internal
884 			 * configuration.
885 			 */
886 			if (_sa_zfs_process_share(hdl->libzfs_sharehdl,
887 			    NULL, NULL, mountpoint,
888 			    proto_table[*curr_proto].p_name, sourcetype,
889 			    shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
890 				(void) zfs_error_fmt(hdl,
891 				    proto_table[*curr_proto].p_share_err,
892 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
893 				    zfs_get_name(zhp));
894 				return (-1);
895 			}
896 			share = zfs_sa_find_share(hdl->libzfs_sharehdl,
897 			    mountpoint);
898 		}
899 		if (share != NULL) {
900 			int err;
901 			err = zfs_sa_enable_share(share,
902 			    proto_table[*curr_proto].p_name);
903 			if (err != SA_OK) {
904 				(void) zfs_error_fmt(hdl,
905 				    proto_table[*curr_proto].p_share_err,
906 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
907 				    zfs_get_name(zhp));
908 				return (-1);
909 			}
910 		} else {
911 			(void) zfs_error_fmt(hdl,
912 			    proto_table[*curr_proto].p_share_err,
913 			    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
914 			    zfs_get_name(zhp));
915 			return (-1);
916 		}
917 
918 	}
919 	return (0);
920 }
921 
922 
923 int
924 zfs_share_nfs(zfs_handle_t *zhp)
925 {
926 	return (zfs_share_proto(zhp, nfs_only));
927 }
928 
929 int
930 zfs_share_smb(zfs_handle_t *zhp)
931 {
932 	return (zfs_share_proto(zhp, smb_only));
933 }
934 
935 int
936 zfs_shareall(zfs_handle_t *zhp)
937 {
938 	return (zfs_share_proto(zhp, share_all_proto));
939 }
940 
941 /*
942  * Unshare a filesystem by mountpoint.
943  */
944 static int
945 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
946     zfs_share_proto_t proto)
947 {
948 	sa_share_t share;
949 	int err;
950 	char *mntpt;
951 
952 	/*
953 	 * Mountpoint could get trashed if libshare calls getmntany
954 	 * which it does during API initialization, so strdup the
955 	 * value.
956 	 */
957 	mntpt = zfs_strdup(hdl, mountpoint);
958 
959 	/*
960 	 * make sure libshare initialized, initialize everything because we
961 	 * don't know what other unsharing may happen later. Functions up the
962 	 * stack are allowed to initialize instead a subset of shares at the
963 	 * time the set is known.
964 	 */
965 	if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME,
966 	    (void *)name)) != SA_OK) {
967 		free(mntpt);	/* don't need the copy anymore */
968 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
969 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
970 		    name, _sa_errorstr(err)));
971 	}
972 
973 	share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
974 	free(mntpt);	/* don't need the copy anymore */
975 
976 	if (share != NULL) {
977 		err = zfs_sa_disable_share(share, proto_table[proto].p_name);
978 		if (err != SA_OK) {
979 			return (zfs_error_fmt(hdl,
980 			    proto_table[proto].p_unshare_err,
981 			    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
982 			    name, _sa_errorstr(err)));
983 		}
984 	} else {
985 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
986 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
987 		    name));
988 	}
989 	return (0);
990 }
991 
992 /*
993  * Unshare the given filesystem.
994  */
995 int
996 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
997     zfs_share_proto_t *proto)
998 {
999 	libzfs_handle_t *hdl = zhp->zfs_hdl;
1000 	struct mnttab entry;
1001 	char *mntpt = NULL;
1002 
1003 	/* check to see if need to unmount the filesystem */
1004 	rewind(zhp->zfs_hdl->libzfs_mnttab);
1005 	if (mountpoint != NULL)
1006 		mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
1007 
1008 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
1009 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
1010 		zfs_share_proto_t *curr_proto;
1011 
1012 		if (mountpoint == NULL)
1013 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
1014 
1015 		for (curr_proto = proto; *curr_proto != PROTO_END;
1016 		    curr_proto++) {
1017 
1018 			if (is_shared(hdl, mntpt, *curr_proto) &&
1019 			    unshare_one(hdl, zhp->zfs_name,
1020 			    mntpt, *curr_proto) != 0) {
1021 				if (mntpt != NULL)
1022 					free(mntpt);
1023 				return (-1);
1024 			}
1025 		}
1026 	}
1027 	if (mntpt != NULL)
1028 		free(mntpt);
1029 
1030 	return (0);
1031 }
1032 
1033 int
1034 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
1035 {
1036 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1037 }
1038 
1039 int
1040 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
1041 {
1042 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1043 }
1044 
1045 /*
1046  * Same as zfs_unmountall(), but for NFS and SMB unshares.
1047  */
1048 int
1049 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
1050 {
1051 	prop_changelist_t *clp;
1052 	int ret;
1053 
1054 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1055 	if (clp == NULL)
1056 		return (-1);
1057 
1058 	ret = changelist_unshare(clp, proto);
1059 	changelist_free(clp);
1060 
1061 	return (ret);
1062 }
1063 
1064 int
1065 zfs_unshareall_nfs(zfs_handle_t *zhp)
1066 {
1067 	return (zfs_unshareall_proto(zhp, nfs_only));
1068 }
1069 
1070 int
1071 zfs_unshareall_smb(zfs_handle_t *zhp)
1072 {
1073 	return (zfs_unshareall_proto(zhp, smb_only));
1074 }
1075 
1076 int
1077 zfs_unshareall(zfs_handle_t *zhp)
1078 {
1079 	return (zfs_unshareall_proto(zhp, share_all_proto));
1080 }
1081 
1082 int
1083 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1084 {
1085 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1086 }
1087 
1088 /*
1089  * Remove the mountpoint associated with the current dataset, if necessary.
1090  * We only remove the underlying directory if:
1091  *
1092  *	- The mountpoint is not 'none' or 'legacy'
1093  *	- The mountpoint is non-empty
1094  *	- The mountpoint is the default or inherited
1095  *	- The 'zoned' property is set, or we're in a local zone
1096  *
1097  * Any other directories we leave alone.
1098  */
1099 void
1100 remove_mountpoint(zfs_handle_t *zhp)
1101 {
1102 	char mountpoint[ZFS_MAXPROPLEN];
1103 	zprop_source_t source;
1104 
1105 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1106 	    &source))
1107 		return;
1108 
1109 	if (source == ZPROP_SRC_DEFAULT ||
1110 	    source == ZPROP_SRC_INHERITED) {
1111 		/*
1112 		 * Try to remove the directory, silently ignoring any errors.
1113 		 * The filesystem may have since been removed or moved around,
1114 		 * and this error isn't really useful to the administrator in
1115 		 * any way.
1116 		 */
1117 		(void) rmdir(mountpoint);
1118 	}
1119 }
1120 
1121 /*
1122  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1123  * the array if it is out of space.
1124  */
1125 void
1126 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1127 {
1128 	if (cbp->cb_alloc == cbp->cb_used) {
1129 		size_t newsz;
1130 		zfs_handle_t **newhandles;
1131 
1132 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1133 		newhandles = zfs_realloc(zhp->zfs_hdl,
1134 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1135 		    newsz * sizeof (zfs_handle_t *));
1136 		cbp->cb_handles = newhandles;
1137 		cbp->cb_alloc = newsz;
1138 	}
1139 	cbp->cb_handles[cbp->cb_used++] = zhp;
1140 }
1141 
1142 /*
1143  * Recursive helper function used during file system enumeration
1144  */
1145 static int
1146 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1147 {
1148 	get_all_cb_t *cbp = data;
1149 
1150 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1151 		zfs_close(zhp);
1152 		return (0);
1153 	}
1154 
1155 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1156 		zfs_close(zhp);
1157 		return (0);
1158 	}
1159 
1160 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1161 	    ZFS_KEYSTATUS_UNAVAILABLE) {
1162 		zfs_close(zhp);
1163 		return (0);
1164 	}
1165 
1166 	/*
1167 	 * If this filesystem is inconsistent and has a receive resume
1168 	 * token, we can not mount it.
1169 	 */
1170 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1171 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1172 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1173 		zfs_close(zhp);
1174 		return (0);
1175 	}
1176 
1177 	libzfs_add_handle(cbp, zhp);
1178 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1179 		zfs_close(zhp);
1180 		return (-1);
1181 	}
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Sort comparator that compares two mountpoint paths. We sort these paths so
1187  * that subdirectories immediately follow their parents. This means that we
1188  * effectively treat the '/' character as the lowest value non-nul char.
1189  * Since filesystems from non-global zones can have the same mountpoint
1190  * as other filesystems, the comparator sorts global zone filesystems to
1191  * the top of the list. This means that the global zone will traverse the
1192  * filesystem list in the correct order and can stop when it sees the
1193  * first zoned filesystem. In a non-global zone, only the delegated
1194  * filesystems are seen.
1195  *
1196  * An example sorted list using this comparator would look like:
1197  *
1198  * /foo
1199  * /foo/bar
1200  * /foo/bar/baz
1201  * /foo/baz
1202  * /foo.bar
1203  * /foo (NGZ1)
1204  * /foo (NGZ2)
1205  *
1206  * The mounting code depends on this ordering to deterministically iterate
1207  * over filesystems in order to spawn parallel mount tasks.
1208  */
1209 static int
1210 mountpoint_cmp(const void *arga, const void *argb)
1211 {
1212 	zfs_handle_t *const *zap = arga;
1213 	zfs_handle_t *za = *zap;
1214 	zfs_handle_t *const *zbp = argb;
1215 	zfs_handle_t *zb = *zbp;
1216 	char mounta[MAXPATHLEN];
1217 	char mountb[MAXPATHLEN];
1218 	const char *a = mounta;
1219 	const char *b = mountb;
1220 	boolean_t gota, gotb;
1221 	uint64_t zoneda, zonedb;
1222 
1223 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1224 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1225 	if (zoneda && !zonedb)
1226 		return (1);
1227 	if (!zoneda && zonedb)
1228 		return (-1);
1229 
1230 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1231 	if (gota) {
1232 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1233 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1234 	}
1235 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1236 	if (gotb) {
1237 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1238 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1239 	}
1240 
1241 	if (gota && gotb) {
1242 		while (*a != '\0' && (*a == *b)) {
1243 			a++;
1244 			b++;
1245 		}
1246 		if (*a == *b)
1247 			return (0);
1248 		if (*a == '\0')
1249 			return (-1);
1250 		if (*b == '\0')
1251 			return (1);
1252 		if (*a == '/')
1253 			return (-1);
1254 		if (*b == '/')
1255 			return (1);
1256 		return (*a < *b ? -1 : *a > *b);
1257 	}
1258 
1259 	if (gota)
1260 		return (-1);
1261 	if (gotb)
1262 		return (1);
1263 
1264 	/*
1265 	 * If neither filesystem has a mountpoint, revert to sorting by
1266 	 * dataset name.
1267 	 */
1268 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1269 }
1270 
1271 /*
1272  * Return true if path2 is a child of path1.
1273  */
1274 static boolean_t
1275 libzfs_path_contains(const char *path1, const char *path2)
1276 {
1277 	return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
1278 }
1279 
1280 /*
1281  * Given a mountpoint specified by idx in the handles array, find the first
1282  * non-descendent of that mountpoint and return its index. Descendant paths
1283  * start with the parent's path. This function relies on the ordering
1284  * enforced by mountpoint_cmp().
1285  */
1286 static int
1287 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1288 {
1289 	char parent[ZFS_MAXPROPLEN];
1290 	char child[ZFS_MAXPROPLEN];
1291 	int i;
1292 
1293 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1294 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1295 
1296 	for (i = idx + 1; i < num_handles; i++) {
1297 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1298 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1299 		if (!libzfs_path_contains(parent, child))
1300 			break;
1301 	}
1302 	return (i);
1303 }
1304 
1305 typedef struct mnt_param {
1306 	libzfs_handle_t	*mnt_hdl;
1307 	zfs_taskq_t	*mnt_tq;
1308 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1309 	size_t		mnt_num_handles;
1310 	int		mnt_idx;	/* Index of selected entry to mount */
1311 	zfs_iter_f	mnt_func;
1312 	void		*mnt_data;
1313 } mnt_param_t;
1314 
1315 /*
1316  * Allocate and populate the parameter struct for mount function, and
1317  * schedule mounting of the entry selected by idx.
1318  */
1319 static void
1320 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1321     size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq)
1322 {
1323 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1324 
1325 	mnt_param->mnt_hdl = hdl;
1326 	mnt_param->mnt_tq = tq;
1327 	mnt_param->mnt_zhps = handles;
1328 	mnt_param->mnt_num_handles = num_handles;
1329 	mnt_param->mnt_idx = idx;
1330 	mnt_param->mnt_func = func;
1331 	mnt_param->mnt_data = data;
1332 
1333 	(void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1334 	    ZFS_TQ_SLEEP);
1335 }
1336 
1337 /*
1338  * This is the structure used to keep state of mounting or sharing operations
1339  * during a call to zpool_enable_datasets().
1340  */
1341 typedef struct mount_state {
1342 	/*
1343 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1344 	 * could update this variable concurrently, no synchronization is
1345 	 * needed as it's only ever set to -1.
1346 	 */
1347 	int		ms_mntstatus;
1348 	int		ms_mntflags;
1349 	const char	*ms_mntopts;
1350 } mount_state_t;
1351 
1352 static int
1353 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1354 {
1355 	mount_state_t *ms = arg;
1356 	int ret = 0;
1357 
1358 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1359 	    ZFS_KEYSTATUS_UNAVAILABLE)
1360 		return (0);
1361 
1362 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1363 		ret = ms->ms_mntstatus = -1;
1364 	return (ret);
1365 }
1366 
1367 static int
1368 zfs_share_one(zfs_handle_t *zhp, void *arg)
1369 {
1370 	mount_state_t *ms = arg;
1371 	int ret = 0;
1372 
1373 	if (zfs_share(zhp) != 0)
1374 		ret = ms->ms_mntstatus = -1;
1375 	return (ret);
1376 }
1377 
1378 /*
1379  * Task queue function to mount one file system. On completion, it finds and
1380  * schedules its children to be mounted. This depends on the sorting done in
1381  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1382  * each descending from the previous) will have no parallelism since we always
1383  * have to wait for the parent to finish mounting before we can schedule
1384  * its children.
1385  */
1386 static void
1387 zfs_mount_task(void *arg)
1388 {
1389 	mnt_param_t *mp = arg;
1390 	int idx = mp->mnt_idx;
1391 	zfs_handle_t **handles = mp->mnt_zhps;
1392 	size_t num_handles = mp->mnt_num_handles;
1393 	char mountpoint[ZFS_MAXPROPLEN];
1394 
1395 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1396 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1397 
1398 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1399 		return;
1400 
1401 	/*
1402 	 * We dispatch tasks to mount filesystems with mountpoints underneath
1403 	 * this one. We do this by dispatching the next filesystem with a
1404 	 * descendant mountpoint of the one we just mounted, then skip all of
1405 	 * its descendants, dispatch the next descendant mountpoint, and so on.
1406 	 * The non_descendant_idx() function skips over filesystems that are
1407 	 * descendants of the filesystem we just dispatched.
1408 	 */
1409 	for (int i = idx + 1; i < num_handles;
1410 	    i = non_descendant_idx(handles, num_handles, i)) {
1411 		char child[ZFS_MAXPROPLEN];
1412 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1413 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1414 
1415 		if (!libzfs_path_contains(mountpoint, child))
1416 			break; /* not a descendant, return */
1417 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1418 		    mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1419 	}
1420 	free(mp);
1421 }
1422 
1423 /*
1424  * Issue the func callback for each ZFS handle contained in the handles
1425  * array. This function is used to mount all datasets, and so this function
1426  * guarantees that filesystems for parent mountpoints are called before their
1427  * children. As such, before issuing any callbacks, we first sort the array
1428  * of handles by mountpoint.
1429  *
1430  * Callbacks are issued in one of two ways:
1431  *
1432  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1433  *    environment variable is set, then we issue callbacks sequentially.
1434  *
1435  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1436  *    environment variable is not set, then we use a taskq to dispatch threads
1437  *    to mount filesystems is parallel. This function dispatches tasks to mount
1438  *    the filesystems at the top-level mountpoints, and these tasks in turn
1439  *    are responsible for recursively mounting filesystems in their children
1440  *    mountpoints.
1441  */
1442 void
1443 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1444     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1445 {
1446 	zoneid_t zoneid = getzoneid();
1447 
1448 	/*
1449 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1450 	 * variable that can be used as a convenience to do a/b comparison
1451 	 * of serial vs. parallel mounting.
1452 	 */
1453 	boolean_t serial_mount = !parallel ||
1454 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1455 
1456 	/*
1457 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1458 	 * of how these are sorted.
1459 	 */
1460 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1461 
1462 	if (serial_mount) {
1463 		for (int i = 0; i < num_handles; i++) {
1464 			func(handles[i], data);
1465 		}
1466 		return;
1467 	}
1468 
1469 	/*
1470 	 * Issue the callback function for each dataset using a parallel
1471 	 * algorithm that uses a taskq to manage threads.
1472 	 */
1473 	zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0,
1474 	    mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE);
1475 
1476 	/*
1477 	 * There may be multiple "top level" mountpoints outside of the pool's
1478 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1479 	 * these.
1480 	 */
1481 	for (int i = 0; i < num_handles;
1482 	    i = non_descendant_idx(handles, num_handles, i)) {
1483 		/*
1484 		 * Since the mountpoints have been sorted so that the zoned
1485 		 * filesystems are at the end, a zoned filesystem seen from
1486 		 * the global zone means that we're done.
1487 		 */
1488 		if (zoneid == GLOBAL_ZONEID &&
1489 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1490 			break;
1491 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1492 		    tq);
1493 	}
1494 
1495 	zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */
1496 	zfs_taskq_destroy(tq);
1497 }
1498 
1499 /*
1500  * Mount and share all datasets within the given pool.  This assumes that no
1501  * datasets within the pool are currently mounted.
1502  */
1503 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1504 int
1505 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1506 {
1507 	get_all_cb_t cb = { 0 };
1508 	mount_state_t ms = { 0 };
1509 	zfs_handle_t *zfsp;
1510 	sa_init_selective_arg_t sharearg;
1511 	int ret = 0;
1512 
1513 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1514 	    ZFS_TYPE_DATASET)) == NULL)
1515 		goto out;
1516 
1517 
1518 	/*
1519 	 * Gather all non-snapshot datasets within the pool. Start by adding
1520 	 * the root filesystem for this pool to the list, and then iterate
1521 	 * over all child filesystems.
1522 	 */
1523 	libzfs_add_handle(&cb, zfsp);
1524 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1525 		goto out;
1526 
1527 	ms.ms_mntopts = mntopts;
1528 	ms.ms_mntflags = flags;
1529 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1530 	    zfs_mount_one, &ms, B_TRUE);
1531 	if (ms.ms_mntstatus != 0)
1532 		ret = ms.ms_mntstatus;
1533 
1534 	/*
1535 	 * Share all filesystems that need to be shared. This needs to be
1536 	 * a separate pass because libshare is not mt-safe, and so we need
1537 	 * to share serially.
1538 	 */
1539 	sharearg.zhandle_arr = cb.cb_handles;
1540 	sharearg.zhandle_len = cb.cb_used;
1541 	if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl,
1542 	    SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0)
1543 		goto out;
1544 
1545 	ms.ms_mntstatus = 0;
1546 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1547 	    zfs_share_one, &ms, B_FALSE);
1548 	if (ms.ms_mntstatus != 0)
1549 		ret = ms.ms_mntstatus;
1550 
1551 out:
1552 	for (int i = 0; i < cb.cb_used; i++)
1553 		zfs_close(cb.cb_handles[i]);
1554 	free(cb.cb_handles);
1555 
1556 	return (ret);
1557 }
1558 
1559 static int
1560 mountpoint_compare(const void *a, const void *b)
1561 {
1562 	const char *mounta = *((char **)a);
1563 	const char *mountb = *((char **)b);
1564 
1565 	return (strcmp(mountb, mounta));
1566 }
1567 
1568 /* alias for 2002/240 */
1569 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1570 /*
1571  * Unshare and unmount all datasets within the given pool.  We don't want to
1572  * rely on traversing the DSL to discover the filesystems within the pool,
1573  * because this may be expensive (if not all of them are mounted), and can fail
1574  * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mnttab and
1575  * gather all the filesystems that are currently mounted.
1576  */
1577 int
1578 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1579 {
1580 	int used, alloc;
1581 	struct mnttab entry;
1582 	size_t namelen;
1583 	char **mountpoints = NULL;
1584 	zfs_handle_t **datasets = NULL;
1585 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1586 	int i;
1587 	int ret = -1;
1588 	int flags = (force ? MS_FORCE : 0);
1589 	sa_init_selective_arg_t sharearg;
1590 
1591 	namelen = strlen(zhp->zpool_name);
1592 
1593 	rewind(hdl->libzfs_mnttab);
1594 	used = alloc = 0;
1595 	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1596 		/*
1597 		 * Ignore non-ZFS entries.
1598 		 */
1599 		if (entry.mnt_fstype == NULL ||
1600 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1601 			continue;
1602 
1603 		/*
1604 		 * Ignore filesystems not within this pool.
1605 		 */
1606 		if (entry.mnt_mountp == NULL ||
1607 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1608 		    (entry.mnt_special[namelen] != '/' &&
1609 		    entry.mnt_special[namelen] != '\0'))
1610 			continue;
1611 
1612 		/*
1613 		 * At this point we've found a filesystem within our pool.  Add
1614 		 * it to our growing list.
1615 		 */
1616 		if (used == alloc) {
1617 			if (alloc == 0) {
1618 				if ((mountpoints = zfs_alloc(hdl,
1619 				    8 * sizeof (void *))) == NULL)
1620 					goto out;
1621 
1622 				if ((datasets = zfs_alloc(hdl,
1623 				    8 * sizeof (void *))) == NULL)
1624 					goto out;
1625 
1626 				alloc = 8;
1627 			} else {
1628 				void *ptr;
1629 
1630 				if ((ptr = zfs_realloc(hdl, mountpoints,
1631 				    alloc * sizeof (void *),
1632 				    alloc * 2 * sizeof (void *))) == NULL)
1633 					goto out;
1634 				mountpoints = ptr;
1635 
1636 				if ((ptr = zfs_realloc(hdl, datasets,
1637 				    alloc * sizeof (void *),
1638 				    alloc * 2 * sizeof (void *))) == NULL)
1639 					goto out;
1640 				datasets = ptr;
1641 
1642 				alloc *= 2;
1643 			}
1644 		}
1645 
1646 		if ((mountpoints[used] = zfs_strdup(hdl,
1647 		    entry.mnt_mountp)) == NULL)
1648 			goto out;
1649 
1650 		/*
1651 		 * This is allowed to fail, in case there is some I/O error.  It
1652 		 * is only used to determine if we need to remove the underlying
1653 		 * mountpoint, so failure is not fatal.
1654 		 */
1655 		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1656 
1657 		used++;
1658 	}
1659 
1660 	/*
1661 	 * At this point, we have the entire list of filesystems, so sort it by
1662 	 * mountpoint.
1663 	 */
1664 	sharearg.zhandle_arr = datasets;
1665 	sharearg.zhandle_len = used;
1666 	ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1667 	    &sharearg);
1668 	if (ret != 0)
1669 		goto out;
1670 	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1671 
1672 	/*
1673 	 * Walk through and first unshare everything.
1674 	 */
1675 	for (i = 0; i < used; i++) {
1676 		zfs_share_proto_t *curr_proto;
1677 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1678 		    curr_proto++) {
1679 			if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1680 			    unshare_one(hdl, mountpoints[i],
1681 			    mountpoints[i], *curr_proto) != 0)
1682 				goto out;
1683 		}
1684 	}
1685 
1686 	/*
1687 	 * Now unmount everything, removing the underlying directories as
1688 	 * appropriate.
1689 	 */
1690 	for (i = 0; i < used; i++) {
1691 		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1692 			goto out;
1693 	}
1694 
1695 	for (i = 0; i < used; i++) {
1696 		if (datasets[i])
1697 			remove_mountpoint(datasets[i]);
1698 	}
1699 
1700 	ret = 0;
1701 out:
1702 	for (i = 0; i < used; i++) {
1703 		if (datasets[i])
1704 			zfs_close(datasets[i]);
1705 		free(mountpoints[i]);
1706 	}
1707 	free(datasets);
1708 	free(mountpoints);
1709 
1710 	return (ret);
1711 }
1712