1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2015 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 */ 28 29 /* 30 * Routines to manage ZFS mounts. We separate all the nasty routines that have 31 * to deal with the OS. The following functions are the main entry points -- 32 * they are used by mount and unmount and when changing a filesystem's 33 * mountpoint. 34 * 35 * zfs_is_mounted() 36 * zfs_mount() 37 * zfs_unmount() 38 * zfs_unmountall() 39 * 40 * This file also contains the functions used to manage sharing filesystems via 41 * NFS and iSCSI: 42 * 43 * zfs_is_shared() 44 * zfs_share() 45 * zfs_unshare() 46 * 47 * zfs_is_shared_nfs() 48 * zfs_is_shared_smb() 49 * zfs_share_proto() 50 * zfs_shareall(); 51 * zfs_unshare_nfs() 52 * zfs_unshare_smb() 53 * zfs_unshareall_nfs() 54 * zfs_unshareall_smb() 55 * zfs_unshareall() 56 * zfs_unshareall_bypath() 57 * 58 * The following functions are available for pool consumers, and will 59 * mount/unmount and share/unshare all datasets within pool: 60 * 61 * zpool_enable_datasets() 62 * zpool_disable_datasets() 63 */ 64 65 #include <dirent.h> 66 #include <dlfcn.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libgen.h> 70 #include <libintl.h> 71 #include <stdio.h> 72 #include <stdlib.h> 73 #include <strings.h> 74 #include <unistd.h> 75 #include <zone.h> 76 #include <sys/mntent.h> 77 #include <sys/mount.h> 78 #include <sys/stat.h> 79 #include <sys/statvfs.h> 80 81 #include <libzfs.h> 82 83 #include "libzfs_impl.h" 84 85 #include <libshare.h> 86 #include <sys/systeminfo.h> 87 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 88 89 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 90 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 91 zfs_share_proto_t); 92 93 /* 94 * The share protocols table must be in the same order as the zfs_share_prot_t 95 * enum in libzfs_impl.h 96 */ 97 typedef struct { 98 zfs_prop_t p_prop; 99 char *p_name; 100 int p_share_err; 101 int p_unshare_err; 102 } proto_table_t; 103 104 proto_table_t proto_table[PROTO_END] = { 105 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 106 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 107 }; 108 109 zfs_share_proto_t nfs_only[] = { 110 PROTO_NFS, 111 PROTO_END 112 }; 113 114 zfs_share_proto_t smb_only[] = { 115 PROTO_SMB, 116 PROTO_END 117 }; 118 zfs_share_proto_t share_all_proto[] = { 119 PROTO_NFS, 120 PROTO_SMB, 121 PROTO_END 122 }; 123 124 /* 125 * Search the sharetab for the given mountpoint and protocol, returning 126 * a zfs_share_type_t value. 127 */ 128 static zfs_share_type_t 129 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 130 { 131 char buf[MAXPATHLEN], *tab; 132 char *ptr; 133 134 if (hdl->libzfs_sharetab == NULL) 135 return (SHARED_NOT_SHARED); 136 137 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 138 139 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 140 141 /* the mountpoint is the first entry on each line */ 142 if ((tab = strchr(buf, '\t')) == NULL) 143 continue; 144 145 *tab = '\0'; 146 if (strcmp(buf, mountpoint) == 0) { 147 /* 148 * the protocol field is the third field 149 * skip over second field 150 */ 151 ptr = ++tab; 152 if ((tab = strchr(ptr, '\t')) == NULL) 153 continue; 154 ptr = ++tab; 155 if ((tab = strchr(ptr, '\t')) == NULL) 156 continue; 157 *tab = '\0'; 158 if (strcmp(ptr, 159 proto_table[proto].p_name) == 0) { 160 switch (proto) { 161 case PROTO_NFS: 162 return (SHARED_NFS); 163 case PROTO_SMB: 164 return (SHARED_SMB); 165 default: 166 return (0); 167 } 168 } 169 } 170 } 171 172 return (SHARED_NOT_SHARED); 173 } 174 175 static boolean_t 176 dir_is_empty_stat(const char *dirname) 177 { 178 struct stat st; 179 180 /* 181 * We only want to return false if the given path is a non empty 182 * directory, all other errors are handled elsewhere. 183 */ 184 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 185 return (B_TRUE); 186 } 187 188 /* 189 * An empty directory will still have two entries in it, one 190 * entry for each of "." and "..". 191 */ 192 if (st.st_size > 2) { 193 return (B_FALSE); 194 } 195 196 return (B_TRUE); 197 } 198 199 static boolean_t 200 dir_is_empty_readdir(const char *dirname) 201 { 202 DIR *dirp; 203 struct dirent64 *dp; 204 int dirfd; 205 206 if ((dirfd = openat(AT_FDCWD, dirname, 207 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 208 return (B_TRUE); 209 } 210 211 if ((dirp = fdopendir(dirfd)) == NULL) { 212 return (B_TRUE); 213 } 214 215 while ((dp = readdir64(dirp)) != NULL) { 216 217 if (strcmp(dp->d_name, ".") == 0 || 218 strcmp(dp->d_name, "..") == 0) 219 continue; 220 221 (void) closedir(dirp); 222 return (B_FALSE); 223 } 224 225 (void) closedir(dirp); 226 return (B_TRUE); 227 } 228 229 /* 230 * Returns true if the specified directory is empty. If we can't open the 231 * directory at all, return true so that the mount can fail with a more 232 * informative error message. 233 */ 234 static boolean_t 235 dir_is_empty(const char *dirname) 236 { 237 struct statvfs64 st; 238 239 /* 240 * If the statvfs call fails or the filesystem is not a ZFS 241 * filesystem, fall back to the slow path which uses readdir. 242 */ 243 if ((statvfs64(dirname, &st) != 0) || 244 (strcmp(st.f_basetype, "zfs") != 0)) { 245 return (dir_is_empty_readdir(dirname)); 246 } 247 248 /* 249 * At this point, we know the provided path is on a ZFS 250 * filesystem, so we can use stat instead of readdir to 251 * determine if the directory is empty or not. We try to avoid 252 * using readdir because that requires opening "dirname"; this 253 * open file descriptor can potentially end up in a child 254 * process if there's a concurrent fork, thus preventing the 255 * zfs_mount() from otherwise succeeding (the open file 256 * descriptor inherited by the child process will cause the 257 * parent's mount to fail with EBUSY). The performance 258 * implications of replacing the open, read, and close with a 259 * single stat is nice; but is not the main motivation for the 260 * added complexity. 261 */ 262 return (dir_is_empty_stat(dirname)); 263 } 264 265 /* 266 * Checks to see if the mount is active. If the filesystem is mounted, we fill 267 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 268 * 0. 269 */ 270 boolean_t 271 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 272 { 273 struct mnttab entry; 274 275 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 276 return (B_FALSE); 277 278 if (where != NULL) 279 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 280 281 return (B_TRUE); 282 } 283 284 boolean_t 285 zfs_is_mounted(zfs_handle_t *zhp, char **where) 286 { 287 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 288 } 289 290 /* 291 * Returns true if the given dataset is mountable, false otherwise. Returns the 292 * mountpoint in 'buf'. 293 */ 294 static boolean_t 295 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 296 zprop_source_t *source) 297 { 298 char sourceloc[MAXNAMELEN]; 299 zprop_source_t sourcetype; 300 301 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 302 return (B_FALSE); 303 304 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 305 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 306 307 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 308 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 309 return (B_FALSE); 310 311 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 312 return (B_FALSE); 313 314 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 315 getzoneid() == GLOBAL_ZONEID) 316 return (B_FALSE); 317 318 if (source) 319 *source = sourcetype; 320 321 return (B_TRUE); 322 } 323 324 /* 325 * Mount the given filesystem. 326 */ 327 int 328 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 329 { 330 struct stat buf; 331 char mountpoint[ZFS_MAXPROPLEN]; 332 char mntopts[MNT_LINE_MAX]; 333 libzfs_handle_t *hdl = zhp->zfs_hdl; 334 335 if (options == NULL) 336 mntopts[0] = '\0'; 337 else 338 (void) strlcpy(mntopts, options, sizeof (mntopts)); 339 340 /* 341 * If the pool is imported read-only then all mounts must be read-only 342 */ 343 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 344 flags |= MS_RDONLY; 345 346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 347 return (0); 348 349 /* Create the directory if it doesn't already exist */ 350 if (lstat(mountpoint, &buf) != 0) { 351 if (mkdirp(mountpoint, 0755) != 0) { 352 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 353 "failed to create mountpoint")); 354 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 355 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 356 mountpoint)); 357 } 358 } 359 360 /* 361 * Determine if the mountpoint is empty. If so, refuse to perform the 362 * mount. We don't perform this check if MS_OVERLAY is specified, which 363 * would defeat the point. We also avoid this check if 'remount' is 364 * specified. 365 */ 366 if ((flags & MS_OVERLAY) == 0 && 367 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 368 !dir_is_empty(mountpoint)) { 369 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 370 "directory is not empty")); 371 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 372 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 373 } 374 375 /* perform the mount */ 376 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 377 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 378 /* 379 * Generic errors are nasty, but there are just way too many 380 * from mount(), and they're well-understood. We pick a few 381 * common ones to improve upon. 382 */ 383 if (errno == EBUSY) { 384 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 385 "mountpoint or dataset is busy")); 386 } else if (errno == EPERM) { 387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 388 "Insufficient privileges")); 389 } else if (errno == ENOTSUP) { 390 char buf[256]; 391 int spa_version; 392 393 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 394 (void) snprintf(buf, sizeof (buf), 395 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 396 "file system on a version %d pool. Pool must be" 397 " upgraded to mount this file system."), 398 (u_longlong_t)zfs_prop_get_int(zhp, 399 ZFS_PROP_VERSION), spa_version); 400 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 401 } else { 402 zfs_error_aux(hdl, strerror(errno)); 403 } 404 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 405 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 406 zhp->zfs_name)); 407 } 408 409 /* add the mounted entry into our cache */ 410 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 411 mntopts); 412 return (0); 413 } 414 415 /* 416 * Unmount a single filesystem. 417 */ 418 static int 419 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 420 { 421 if (umount2(mountpoint, flags) != 0) { 422 zfs_error_aux(hdl, strerror(errno)); 423 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 424 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 425 mountpoint)); 426 } 427 428 return (0); 429 } 430 431 /* 432 * Unmount the given filesystem. 433 */ 434 int 435 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 436 { 437 libzfs_handle_t *hdl = zhp->zfs_hdl; 438 struct mnttab entry; 439 char *mntpt = NULL; 440 441 /* check to see if we need to unmount the filesystem */ 442 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 443 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 444 /* 445 * mountpoint may have come from a call to 446 * getmnt/getmntany if it isn't NULL. If it is NULL, 447 * we know it comes from libzfs_mnttab_find which can 448 * then get freed later. We strdup it to play it safe. 449 */ 450 if (mountpoint == NULL) 451 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 452 else 453 mntpt = zfs_strdup(hdl, mountpoint); 454 455 /* 456 * Unshare and unmount the filesystem 457 */ 458 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 459 return (-1); 460 461 if (unmount_one(hdl, mntpt, flags) != 0) { 462 free(mntpt); 463 (void) zfs_shareall(zhp); 464 return (-1); 465 } 466 libzfs_mnttab_remove(hdl, zhp->zfs_name); 467 free(mntpt); 468 } 469 470 return (0); 471 } 472 473 /* 474 * Unmount this filesystem and any children inheriting the mountpoint property. 475 * To do this, just act like we're changing the mountpoint property, but don't 476 * remount the filesystems afterwards. 477 */ 478 int 479 zfs_unmountall(zfs_handle_t *zhp, int flags) 480 { 481 prop_changelist_t *clp; 482 int ret; 483 484 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 485 if (clp == NULL) 486 return (-1); 487 488 ret = changelist_prefix(clp); 489 changelist_free(clp); 490 491 return (ret); 492 } 493 494 boolean_t 495 zfs_is_shared(zfs_handle_t *zhp) 496 { 497 zfs_share_type_t rc = 0; 498 zfs_share_proto_t *curr_proto; 499 500 if (ZFS_IS_VOLUME(zhp)) 501 return (B_FALSE); 502 503 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 504 curr_proto++) 505 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 506 507 return (rc ? B_TRUE : B_FALSE); 508 } 509 510 int 511 zfs_share(zfs_handle_t *zhp) 512 { 513 assert(!ZFS_IS_VOLUME(zhp)); 514 return (zfs_share_proto(zhp, share_all_proto)); 515 } 516 517 int 518 zfs_unshare(zfs_handle_t *zhp) 519 { 520 assert(!ZFS_IS_VOLUME(zhp)); 521 return (zfs_unshareall(zhp)); 522 } 523 524 /* 525 * Check to see if the filesystem is currently shared. 526 */ 527 zfs_share_type_t 528 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 529 { 530 char *mountpoint; 531 zfs_share_type_t rc; 532 533 if (!zfs_is_mounted(zhp, &mountpoint)) 534 return (SHARED_NOT_SHARED); 535 536 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 537 != SHARED_NOT_SHARED) { 538 if (where != NULL) 539 *where = mountpoint; 540 else 541 free(mountpoint); 542 return (rc); 543 } else { 544 free(mountpoint); 545 return (SHARED_NOT_SHARED); 546 } 547 } 548 549 boolean_t 550 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 551 { 552 return (zfs_is_shared_proto(zhp, where, 553 PROTO_NFS) != SHARED_NOT_SHARED); 554 } 555 556 boolean_t 557 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 558 { 559 return (zfs_is_shared_proto(zhp, where, 560 PROTO_SMB) != SHARED_NOT_SHARED); 561 } 562 563 /* 564 * Make sure things will work if libshare isn't installed by using 565 * wrapper functions that check to see that the pointers to functions 566 * initialized in _zfs_init_libshare() are actually present. 567 */ 568 569 static sa_handle_t (*_sa_init)(int); 570 static void (*_sa_fini)(sa_handle_t); 571 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 572 static int (*_sa_enable_share)(sa_share_t, char *); 573 static int (*_sa_disable_share)(sa_share_t, char *); 574 static char *(*_sa_errorstr)(int); 575 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 576 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 577 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 578 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 579 char *, char *, zprop_source_t, char *, char *, char *); 580 static void (*_sa_update_sharetab_ts)(sa_handle_t); 581 582 /* 583 * _zfs_init_libshare() 584 * 585 * Find the libshare.so.1 entry points that we use here and save the 586 * values to be used later. This is triggered by the runtime loader. 587 * Make sure the correct ISA version is loaded. 588 */ 589 590 #pragma init(_zfs_init_libshare) 591 static void 592 _zfs_init_libshare(void) 593 { 594 void *libshare; 595 char path[MAXPATHLEN]; 596 char isa[MAXISALEN]; 597 598 #if defined(_LP64) 599 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 600 isa[0] = '\0'; 601 #else 602 isa[0] = '\0'; 603 #endif 604 (void) snprintf(path, MAXPATHLEN, 605 "/usr/lib/%s/libshare.so.1", isa); 606 607 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 608 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 609 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 610 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 611 dlsym(libshare, "sa_find_share"); 612 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 613 "sa_enable_share"); 614 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 615 "sa_disable_share"); 616 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 617 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 618 dlsym(libshare, "sa_parse_legacy_options"); 619 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 620 dlsym(libshare, "sa_needs_refresh"); 621 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 622 dlsym(libshare, "sa_get_zfs_handle"); 623 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 624 sa_share_t, char *, char *, zprop_source_t, char *, 625 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 626 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 627 dlsym(libshare, "sa_update_sharetab_ts"); 628 if (_sa_init == NULL || _sa_fini == NULL || 629 _sa_find_share == NULL || _sa_enable_share == NULL || 630 _sa_disable_share == NULL || _sa_errorstr == NULL || 631 _sa_parse_legacy_options == NULL || 632 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 633 _sa_zfs_process_share == NULL || 634 _sa_update_sharetab_ts == NULL) { 635 _sa_init = NULL; 636 _sa_fini = NULL; 637 _sa_disable_share = NULL; 638 _sa_enable_share = NULL; 639 _sa_errorstr = NULL; 640 _sa_parse_legacy_options = NULL; 641 (void) dlclose(libshare); 642 _sa_needs_refresh = NULL; 643 _sa_get_zfs_handle = NULL; 644 _sa_zfs_process_share = NULL; 645 _sa_update_sharetab_ts = NULL; 646 } 647 } 648 } 649 650 /* 651 * zfs_init_libshare(zhandle, service) 652 * 653 * Initialize the libshare API if it hasn't already been initialized. 654 * In all cases it returns 0 if it succeeded and an error if not. The 655 * service value is which part(s) of the API to initialize and is a 656 * direct map to the libshare sa_init(service) interface. 657 */ 658 int 659 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 660 { 661 int ret = SA_OK; 662 663 if (_sa_init == NULL) 664 ret = SA_CONFIG_ERR; 665 666 if (ret == SA_OK && zhandle->libzfs_shareflags & ZFSSHARE_MISS) { 667 /* 668 * We had a cache miss. Most likely it is a new ZFS 669 * dataset that was just created. We want to make sure 670 * so check timestamps to see if a different process 671 * has updated any of the configuration. If there was 672 * some non-ZFS change, we need to re-initialize the 673 * internal cache. 674 */ 675 zhandle->libzfs_shareflags &= ~ZFSSHARE_MISS; 676 if (_sa_needs_refresh != NULL && 677 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 678 zfs_uninit_libshare(zhandle); 679 zhandle->libzfs_sharehdl = _sa_init(service); 680 } 681 } 682 683 if (ret == SA_OK && zhandle && zhandle->libzfs_sharehdl == NULL) 684 zhandle->libzfs_sharehdl = _sa_init(service); 685 686 if (ret == SA_OK && zhandle->libzfs_sharehdl == NULL) 687 ret = SA_NO_MEMORY; 688 689 return (ret); 690 } 691 692 /* 693 * zfs_uninit_libshare(zhandle) 694 * 695 * Uninitialize the libshare API if it hasn't already been 696 * uninitialized. It is OK to call multiple times. 697 */ 698 void 699 zfs_uninit_libshare(libzfs_handle_t *zhandle) 700 { 701 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 702 if (_sa_fini != NULL) 703 _sa_fini(zhandle->libzfs_sharehdl); 704 zhandle->libzfs_sharehdl = NULL; 705 } 706 } 707 708 /* 709 * zfs_parse_options(options, proto) 710 * 711 * Call the legacy parse interface to get the protocol specific 712 * options using the NULL arg to indicate that this is a "parse" only. 713 */ 714 int 715 zfs_parse_options(char *options, zfs_share_proto_t proto) 716 { 717 if (_sa_parse_legacy_options != NULL) { 718 return (_sa_parse_legacy_options(NULL, options, 719 proto_table[proto].p_name)); 720 } 721 return (SA_CONFIG_ERR); 722 } 723 724 /* 725 * zfs_sa_find_share(handle, path) 726 * 727 * wrapper around sa_find_share to find a share path in the 728 * configuration. 729 */ 730 static sa_share_t 731 zfs_sa_find_share(sa_handle_t handle, char *path) 732 { 733 if (_sa_find_share != NULL) 734 return (_sa_find_share(handle, path)); 735 return (NULL); 736 } 737 738 /* 739 * zfs_sa_enable_share(share, proto) 740 * 741 * Wrapper for sa_enable_share which enables a share for a specified 742 * protocol. 743 */ 744 static int 745 zfs_sa_enable_share(sa_share_t share, char *proto) 746 { 747 if (_sa_enable_share != NULL) 748 return (_sa_enable_share(share, proto)); 749 return (SA_CONFIG_ERR); 750 } 751 752 /* 753 * zfs_sa_disable_share(share, proto) 754 * 755 * Wrapper for sa_enable_share which disables a share for a specified 756 * protocol. 757 */ 758 static int 759 zfs_sa_disable_share(sa_share_t share, char *proto) 760 { 761 if (_sa_disable_share != NULL) 762 return (_sa_disable_share(share, proto)); 763 return (SA_CONFIG_ERR); 764 } 765 766 /* 767 * Share the given filesystem according to the options in the specified 768 * protocol specific properties (sharenfs, sharesmb). We rely 769 * on "libshare" to the dirty work for us. 770 */ 771 static int 772 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 773 { 774 char mountpoint[ZFS_MAXPROPLEN]; 775 char shareopts[ZFS_MAXPROPLEN]; 776 char sourcestr[ZFS_MAXPROPLEN]; 777 libzfs_handle_t *hdl = zhp->zfs_hdl; 778 sa_share_t share; 779 zfs_share_proto_t *curr_proto; 780 zprop_source_t sourcetype; 781 int ret; 782 783 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 784 return (0); 785 786 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 787 /* 788 * Return success if there are no share options. 789 */ 790 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 791 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 792 ZFS_MAXPROPLEN, B_FALSE) != 0 || 793 strcmp(shareopts, "off") == 0) 794 continue; 795 796 ret = zfs_init_libshare(hdl, SA_INIT_SHARE_API); 797 if (ret != SA_OK) { 798 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 799 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 800 zfs_get_name(zhp), _sa_errorstr != NULL ? 801 _sa_errorstr(ret) : ""); 802 return (-1); 803 } 804 805 /* 806 * If the 'zoned' property is set, then zfs_is_mountable() 807 * will have already bailed out if we are in the global zone. 808 * But local zones cannot be NFS servers, so we ignore it for 809 * local zones as well. 810 */ 811 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 812 continue; 813 814 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 815 if (share == NULL) { 816 /* 817 * This may be a new file system that was just 818 * created so isn't in the internal cache 819 * (second time through). Rather than 820 * reloading the entire configuration, we can 821 * assume ZFS has done the checking and it is 822 * safe to add this to the internal 823 * configuration. 824 */ 825 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 826 NULL, NULL, mountpoint, 827 proto_table[*curr_proto].p_name, sourcetype, 828 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 829 (void) zfs_error_fmt(hdl, 830 proto_table[*curr_proto].p_share_err, 831 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 832 zfs_get_name(zhp)); 833 return (-1); 834 } 835 hdl->libzfs_shareflags |= ZFSSHARE_MISS; 836 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 837 mountpoint); 838 } 839 if (share != NULL) { 840 int err; 841 err = zfs_sa_enable_share(share, 842 proto_table[*curr_proto].p_name); 843 if (err != SA_OK) { 844 (void) zfs_error_fmt(hdl, 845 proto_table[*curr_proto].p_share_err, 846 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 847 zfs_get_name(zhp)); 848 return (-1); 849 } 850 } else { 851 (void) zfs_error_fmt(hdl, 852 proto_table[*curr_proto].p_share_err, 853 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 854 zfs_get_name(zhp)); 855 return (-1); 856 } 857 858 } 859 return (0); 860 } 861 862 863 int 864 zfs_share_nfs(zfs_handle_t *zhp) 865 { 866 return (zfs_share_proto(zhp, nfs_only)); 867 } 868 869 int 870 zfs_share_smb(zfs_handle_t *zhp) 871 { 872 return (zfs_share_proto(zhp, smb_only)); 873 } 874 875 int 876 zfs_shareall(zfs_handle_t *zhp) 877 { 878 return (zfs_share_proto(zhp, share_all_proto)); 879 } 880 881 /* 882 * Unshare a filesystem by mountpoint. 883 */ 884 static int 885 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 886 zfs_share_proto_t proto) 887 { 888 sa_share_t share; 889 int err; 890 char *mntpt; 891 /* 892 * Mountpoint could get trashed if libshare calls getmntany 893 * which it does during API initialization, so strdup the 894 * value. 895 */ 896 mntpt = zfs_strdup(hdl, mountpoint); 897 898 /* make sure libshare initialized */ 899 if ((err = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) { 900 free(mntpt); /* don't need the copy anymore */ 901 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 902 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 903 name, _sa_errorstr(err))); 904 } 905 906 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 907 free(mntpt); /* don't need the copy anymore */ 908 909 if (share != NULL) { 910 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 911 if (err != SA_OK) { 912 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 913 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 914 name, _sa_errorstr(err))); 915 } 916 } else { 917 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 918 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 919 name)); 920 } 921 return (0); 922 } 923 924 /* 925 * Unshare the given filesystem. 926 */ 927 int 928 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 929 zfs_share_proto_t *proto) 930 { 931 libzfs_handle_t *hdl = zhp->zfs_hdl; 932 struct mnttab entry; 933 char *mntpt = NULL; 934 935 /* check to see if need to unmount the filesystem */ 936 rewind(zhp->zfs_hdl->libzfs_mnttab); 937 if (mountpoint != NULL) 938 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 939 940 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 941 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 942 zfs_share_proto_t *curr_proto; 943 944 if (mountpoint == NULL) 945 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 946 947 for (curr_proto = proto; *curr_proto != PROTO_END; 948 curr_proto++) { 949 950 if (is_shared(hdl, mntpt, *curr_proto) && 951 unshare_one(hdl, zhp->zfs_name, 952 mntpt, *curr_proto) != 0) { 953 if (mntpt != NULL) 954 free(mntpt); 955 return (-1); 956 } 957 } 958 } 959 if (mntpt != NULL) 960 free(mntpt); 961 962 return (0); 963 } 964 965 int 966 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 967 { 968 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 969 } 970 971 int 972 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 973 { 974 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 975 } 976 977 /* 978 * Same as zfs_unmountall(), but for NFS and SMB unshares. 979 */ 980 int 981 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 982 { 983 prop_changelist_t *clp; 984 int ret; 985 986 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 987 if (clp == NULL) 988 return (-1); 989 990 ret = changelist_unshare(clp, proto); 991 changelist_free(clp); 992 993 return (ret); 994 } 995 996 int 997 zfs_unshareall_nfs(zfs_handle_t *zhp) 998 { 999 return (zfs_unshareall_proto(zhp, nfs_only)); 1000 } 1001 1002 int 1003 zfs_unshareall_smb(zfs_handle_t *zhp) 1004 { 1005 return (zfs_unshareall_proto(zhp, smb_only)); 1006 } 1007 1008 int 1009 zfs_unshareall(zfs_handle_t *zhp) 1010 { 1011 return (zfs_unshareall_proto(zhp, share_all_proto)); 1012 } 1013 1014 int 1015 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1016 { 1017 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1018 } 1019 1020 /* 1021 * Remove the mountpoint associated with the current dataset, if necessary. 1022 * We only remove the underlying directory if: 1023 * 1024 * - The mountpoint is not 'none' or 'legacy' 1025 * - The mountpoint is non-empty 1026 * - The mountpoint is the default or inherited 1027 * - The 'zoned' property is set, or we're in a local zone 1028 * 1029 * Any other directories we leave alone. 1030 */ 1031 void 1032 remove_mountpoint(zfs_handle_t *zhp) 1033 { 1034 char mountpoint[ZFS_MAXPROPLEN]; 1035 zprop_source_t source; 1036 1037 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1038 &source)) 1039 return; 1040 1041 if (source == ZPROP_SRC_DEFAULT || 1042 source == ZPROP_SRC_INHERITED) { 1043 /* 1044 * Try to remove the directory, silently ignoring any errors. 1045 * The filesystem may have since been removed or moved around, 1046 * and this error isn't really useful to the administrator in 1047 * any way. 1048 */ 1049 (void) rmdir(mountpoint); 1050 } 1051 } 1052 1053 void 1054 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1055 { 1056 if (cbp->cb_alloc == cbp->cb_used) { 1057 size_t newsz; 1058 void *ptr; 1059 1060 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1061 ptr = zfs_realloc(zhp->zfs_hdl, 1062 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1063 newsz * sizeof (void *)); 1064 cbp->cb_handles = ptr; 1065 cbp->cb_alloc = newsz; 1066 } 1067 cbp->cb_handles[cbp->cb_used++] = zhp; 1068 } 1069 1070 static int 1071 mount_cb(zfs_handle_t *zhp, void *data) 1072 { 1073 get_all_cb_t *cbp = data; 1074 1075 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1076 zfs_close(zhp); 1077 return (0); 1078 } 1079 1080 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1081 zfs_close(zhp); 1082 return (0); 1083 } 1084 1085 /* 1086 * If this filesystem is inconsistent and has a receive resume 1087 * token, we can not mount it. 1088 */ 1089 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1090 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1091 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1092 zfs_close(zhp); 1093 return (0); 1094 } 1095 1096 libzfs_add_handle(cbp, zhp); 1097 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1098 zfs_close(zhp); 1099 return (-1); 1100 } 1101 return (0); 1102 } 1103 1104 int 1105 libzfs_dataset_cmp(const void *a, const void *b) 1106 { 1107 zfs_handle_t **za = (zfs_handle_t **)a; 1108 zfs_handle_t **zb = (zfs_handle_t **)b; 1109 char mounta[MAXPATHLEN]; 1110 char mountb[MAXPATHLEN]; 1111 boolean_t gota, gotb; 1112 1113 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1114 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1115 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1116 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1117 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1118 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1119 1120 if (gota && gotb) 1121 return (strcmp(mounta, mountb)); 1122 1123 if (gota) 1124 return (-1); 1125 if (gotb) 1126 return (1); 1127 1128 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1129 } 1130 1131 /* 1132 * Mount and share all datasets within the given pool. This assumes that no 1133 * datasets within the pool are currently mounted. Because users can create 1134 * complicated nested hierarchies of mountpoints, we first gather all the 1135 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1136 * we have the list of all filesystems, we iterate over them in order and mount 1137 * and/or share each one. 1138 */ 1139 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1140 int 1141 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1142 { 1143 get_all_cb_t cb = { 0 }; 1144 libzfs_handle_t *hdl = zhp->zpool_hdl; 1145 zfs_handle_t *zfsp; 1146 int i, ret = -1; 1147 int *good; 1148 1149 /* 1150 * Gather all non-snap datasets within the pool. 1151 */ 1152 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1153 goto out; 1154 1155 libzfs_add_handle(&cb, zfsp); 1156 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1157 goto out; 1158 /* 1159 * Sort the datasets by mountpoint. 1160 */ 1161 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1162 libzfs_dataset_cmp); 1163 1164 /* 1165 * And mount all the datasets, keeping track of which ones 1166 * succeeded or failed. 1167 */ 1168 if ((good = zfs_alloc(zhp->zpool_hdl, 1169 cb.cb_used * sizeof (int))) == NULL) 1170 goto out; 1171 1172 ret = 0; 1173 for (i = 0; i < cb.cb_used; i++) { 1174 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1175 ret = -1; 1176 else 1177 good[i] = 1; 1178 } 1179 1180 /* 1181 * Then share all the ones that need to be shared. This needs 1182 * to be a separate pass in order to avoid excessive reloading 1183 * of the configuration. Good should never be NULL since 1184 * zfs_alloc is supposed to exit if memory isn't available. 1185 */ 1186 for (i = 0; i < cb.cb_used; i++) { 1187 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1188 ret = -1; 1189 } 1190 1191 free(good); 1192 1193 out: 1194 for (i = 0; i < cb.cb_used; i++) 1195 zfs_close(cb.cb_handles[i]); 1196 free(cb.cb_handles); 1197 1198 return (ret); 1199 } 1200 1201 static int 1202 mountpoint_compare(const void *a, const void *b) 1203 { 1204 const char *mounta = *((char **)a); 1205 const char *mountb = *((char **)b); 1206 1207 return (strcmp(mountb, mounta)); 1208 } 1209 1210 /* alias for 2002/240 */ 1211 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1212 /* 1213 * Unshare and unmount all datasets within the given pool. We don't want to 1214 * rely on traversing the DSL to discover the filesystems within the pool, 1215 * because this may be expensive (if not all of them are mounted), and can fail 1216 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1217 * gather all the filesystems that are currently mounted. 1218 */ 1219 int 1220 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1221 { 1222 int used, alloc; 1223 struct mnttab entry; 1224 size_t namelen; 1225 char **mountpoints = NULL; 1226 zfs_handle_t **datasets = NULL; 1227 libzfs_handle_t *hdl = zhp->zpool_hdl; 1228 int i; 1229 int ret = -1; 1230 int flags = (force ? MS_FORCE : 0); 1231 1232 namelen = strlen(zhp->zpool_name); 1233 1234 rewind(hdl->libzfs_mnttab); 1235 used = alloc = 0; 1236 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1237 /* 1238 * Ignore non-ZFS entries. 1239 */ 1240 if (entry.mnt_fstype == NULL || 1241 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1242 continue; 1243 1244 /* 1245 * Ignore filesystems not within this pool. 1246 */ 1247 if (entry.mnt_mountp == NULL || 1248 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1249 (entry.mnt_special[namelen] != '/' && 1250 entry.mnt_special[namelen] != '\0')) 1251 continue; 1252 1253 /* 1254 * At this point we've found a filesystem within our pool. Add 1255 * it to our growing list. 1256 */ 1257 if (used == alloc) { 1258 if (alloc == 0) { 1259 if ((mountpoints = zfs_alloc(hdl, 1260 8 * sizeof (void *))) == NULL) 1261 goto out; 1262 1263 if ((datasets = zfs_alloc(hdl, 1264 8 * sizeof (void *))) == NULL) 1265 goto out; 1266 1267 alloc = 8; 1268 } else { 1269 void *ptr; 1270 1271 if ((ptr = zfs_realloc(hdl, mountpoints, 1272 alloc * sizeof (void *), 1273 alloc * 2 * sizeof (void *))) == NULL) 1274 goto out; 1275 mountpoints = ptr; 1276 1277 if ((ptr = zfs_realloc(hdl, datasets, 1278 alloc * sizeof (void *), 1279 alloc * 2 * sizeof (void *))) == NULL) 1280 goto out; 1281 datasets = ptr; 1282 1283 alloc *= 2; 1284 } 1285 } 1286 1287 if ((mountpoints[used] = zfs_strdup(hdl, 1288 entry.mnt_mountp)) == NULL) 1289 goto out; 1290 1291 /* 1292 * This is allowed to fail, in case there is some I/O error. It 1293 * is only used to determine if we need to remove the underlying 1294 * mountpoint, so failure is not fatal. 1295 */ 1296 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1297 1298 used++; 1299 } 1300 1301 /* 1302 * At this point, we have the entire list of filesystems, so sort it by 1303 * mountpoint. 1304 */ 1305 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1306 1307 /* 1308 * Walk through and first unshare everything. 1309 */ 1310 for (i = 0; i < used; i++) { 1311 zfs_share_proto_t *curr_proto; 1312 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1313 curr_proto++) { 1314 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1315 unshare_one(hdl, mountpoints[i], 1316 mountpoints[i], *curr_proto) != 0) 1317 goto out; 1318 } 1319 } 1320 1321 /* 1322 * Now unmount everything, removing the underlying directories as 1323 * appropriate. 1324 */ 1325 for (i = 0; i < used; i++) { 1326 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1327 goto out; 1328 } 1329 1330 for (i = 0; i < used; i++) { 1331 if (datasets[i]) 1332 remove_mountpoint(datasets[i]); 1333 } 1334 1335 ret = 0; 1336 out: 1337 for (i = 0; i < used; i++) { 1338 if (datasets[i]) 1339 zfs_close(datasets[i]); 1340 free(mountpoints[i]); 1341 } 1342 free(datasets); 1343 free(mountpoints); 1344 1345 return (ret); 1346 } 1347