xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_mount.c (revision 4220fdc152e5dfec9a1dd51452175295f3684689)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27  */
28 
29 /*
30  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
31  * to deal with the OS.  The following functions are the main entry points --
32  * they are used by mount and unmount and when changing a filesystem's
33  * mountpoint.
34  *
35  * 	zfs_is_mounted()
36  * 	zfs_mount()
37  * 	zfs_unmount()
38  * 	zfs_unmountall()
39  *
40  * This file also contains the functions used to manage sharing filesystems via
41  * NFS and iSCSI:
42  *
43  * 	zfs_is_shared()
44  * 	zfs_share()
45  * 	zfs_unshare()
46  *
47  * 	zfs_is_shared_nfs()
48  * 	zfs_is_shared_smb()
49  * 	zfs_share_proto()
50  * 	zfs_shareall();
51  * 	zfs_unshare_nfs()
52  * 	zfs_unshare_smb()
53  * 	zfs_unshareall_nfs()
54  *	zfs_unshareall_smb()
55  *	zfs_unshareall()
56  *	zfs_unshareall_bypath()
57  *
58  * The following functions are available for pool consumers, and will
59  * mount/unmount and share/unshare all datasets within pool:
60  *
61  * 	zpool_enable_datasets()
62  * 	zpool_disable_datasets()
63  */
64 
65 #include <dirent.h>
66 #include <dlfcn.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libgen.h>
70 #include <libintl.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <strings.h>
74 #include <unistd.h>
75 #include <zone.h>
76 #include <sys/mntent.h>
77 #include <sys/mount.h>
78 #include <sys/stat.h>
79 #include <sys/statvfs.h>
80 
81 #include <libzfs.h>
82 
83 #include "libzfs_impl.h"
84 
85 #include <libshare.h>
86 #include <sys/systeminfo.h>
87 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
88 
89 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
90 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
91     zfs_share_proto_t);
92 
93 /*
94  * The share protocols table must be in the same order as the zfs_share_prot_t
95  * enum in libzfs_impl.h
96  */
97 typedef struct {
98 	zfs_prop_t p_prop;
99 	char *p_name;
100 	int p_share_err;
101 	int p_unshare_err;
102 } proto_table_t;
103 
104 proto_table_t proto_table[PROTO_END] = {
105 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
106 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
107 };
108 
109 zfs_share_proto_t nfs_only[] = {
110 	PROTO_NFS,
111 	PROTO_END
112 };
113 
114 zfs_share_proto_t smb_only[] = {
115 	PROTO_SMB,
116 	PROTO_END
117 };
118 zfs_share_proto_t share_all_proto[] = {
119 	PROTO_NFS,
120 	PROTO_SMB,
121 	PROTO_END
122 };
123 
124 /*
125  * Search the sharetab for the given mountpoint and protocol, returning
126  * a zfs_share_type_t value.
127  */
128 static zfs_share_type_t
129 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
130 {
131 	char buf[MAXPATHLEN], *tab;
132 	char *ptr;
133 
134 	if (hdl->libzfs_sharetab == NULL)
135 		return (SHARED_NOT_SHARED);
136 
137 	(void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
138 
139 	while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
140 
141 		/* the mountpoint is the first entry on each line */
142 		if ((tab = strchr(buf, '\t')) == NULL)
143 			continue;
144 
145 		*tab = '\0';
146 		if (strcmp(buf, mountpoint) == 0) {
147 			/*
148 			 * the protocol field is the third field
149 			 * skip over second field
150 			 */
151 			ptr = ++tab;
152 			if ((tab = strchr(ptr, '\t')) == NULL)
153 				continue;
154 			ptr = ++tab;
155 			if ((tab = strchr(ptr, '\t')) == NULL)
156 				continue;
157 			*tab = '\0';
158 			if (strcmp(ptr,
159 			    proto_table[proto].p_name) == 0) {
160 				switch (proto) {
161 				case PROTO_NFS:
162 					return (SHARED_NFS);
163 				case PROTO_SMB:
164 					return (SHARED_SMB);
165 				default:
166 					return (0);
167 				}
168 			}
169 		}
170 	}
171 
172 	return (SHARED_NOT_SHARED);
173 }
174 
175 static boolean_t
176 dir_is_empty_stat(const char *dirname)
177 {
178 	struct stat st;
179 
180 	/*
181 	 * We only want to return false if the given path is a non empty
182 	 * directory, all other errors are handled elsewhere.
183 	 */
184 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
185 		return (B_TRUE);
186 	}
187 
188 	/*
189 	 * An empty directory will still have two entries in it, one
190 	 * entry for each of "." and "..".
191 	 */
192 	if (st.st_size > 2) {
193 		return (B_FALSE);
194 	}
195 
196 	return (B_TRUE);
197 }
198 
199 static boolean_t
200 dir_is_empty_readdir(const char *dirname)
201 {
202 	DIR *dirp;
203 	struct dirent64 *dp;
204 	int dirfd;
205 
206 	if ((dirfd = openat(AT_FDCWD, dirname,
207 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
208 		return (B_TRUE);
209 	}
210 
211 	if ((dirp = fdopendir(dirfd)) == NULL) {
212 		return (B_TRUE);
213 	}
214 
215 	while ((dp = readdir64(dirp)) != NULL) {
216 
217 		if (strcmp(dp->d_name, ".") == 0 ||
218 		    strcmp(dp->d_name, "..") == 0)
219 			continue;
220 
221 		(void) closedir(dirp);
222 		return (B_FALSE);
223 	}
224 
225 	(void) closedir(dirp);
226 	return (B_TRUE);
227 }
228 
229 /*
230  * Returns true if the specified directory is empty.  If we can't open the
231  * directory at all, return true so that the mount can fail with a more
232  * informative error message.
233  */
234 static boolean_t
235 dir_is_empty(const char *dirname)
236 {
237 	struct statvfs64 st;
238 
239 	/*
240 	 * If the statvfs call fails or the filesystem is not a ZFS
241 	 * filesystem, fall back to the slow path which uses readdir.
242 	 */
243 	if ((statvfs64(dirname, &st) != 0) ||
244 	    (strcmp(st.f_basetype, "zfs") != 0)) {
245 		return (dir_is_empty_readdir(dirname));
246 	}
247 
248 	/*
249 	 * At this point, we know the provided path is on a ZFS
250 	 * filesystem, so we can use stat instead of readdir to
251 	 * determine if the directory is empty or not. We try to avoid
252 	 * using readdir because that requires opening "dirname"; this
253 	 * open file descriptor can potentially end up in a child
254 	 * process if there's a concurrent fork, thus preventing the
255 	 * zfs_mount() from otherwise succeeding (the open file
256 	 * descriptor inherited by the child process will cause the
257 	 * parent's mount to fail with EBUSY). The performance
258 	 * implications of replacing the open, read, and close with a
259 	 * single stat is nice; but is not the main motivation for the
260 	 * added complexity.
261 	 */
262 	return (dir_is_empty_stat(dirname));
263 }
264 
265 /*
266  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
267  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
268  * 0.
269  */
270 boolean_t
271 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
272 {
273 	struct mnttab entry;
274 
275 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
276 		return (B_FALSE);
277 
278 	if (where != NULL)
279 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
280 
281 	return (B_TRUE);
282 }
283 
284 boolean_t
285 zfs_is_mounted(zfs_handle_t *zhp, char **where)
286 {
287 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
288 }
289 
290 /*
291  * Returns true if the given dataset is mountable, false otherwise.  Returns the
292  * mountpoint in 'buf'.
293  */
294 static boolean_t
295 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
296     zprop_source_t *source)
297 {
298 	char sourceloc[MAXNAMELEN];
299 	zprop_source_t sourcetype;
300 
301 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
302 		return (B_FALSE);
303 
304 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
305 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
306 
307 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
308 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
309 		return (B_FALSE);
310 
311 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
312 		return (B_FALSE);
313 
314 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
315 	    getzoneid() == GLOBAL_ZONEID)
316 		return (B_FALSE);
317 
318 	if (source)
319 		*source = sourcetype;
320 
321 	return (B_TRUE);
322 }
323 
324 /*
325  * Mount the given filesystem.
326  */
327 int
328 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
329 {
330 	struct stat buf;
331 	char mountpoint[ZFS_MAXPROPLEN];
332 	char mntopts[MNT_LINE_MAX];
333 	libzfs_handle_t *hdl = zhp->zfs_hdl;
334 
335 	if (options == NULL)
336 		mntopts[0] = '\0';
337 	else
338 		(void) strlcpy(mntopts, options, sizeof (mntopts));
339 
340 	/*
341 	 * If the pool is imported read-only then all mounts must be read-only
342 	 */
343 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
344 		flags |= MS_RDONLY;
345 
346 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
347 		return (0);
348 
349 	/* Create the directory if it doesn't already exist */
350 	if (lstat(mountpoint, &buf) != 0) {
351 		if (mkdirp(mountpoint, 0755) != 0) {
352 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
353 			    "failed to create mountpoint"));
354 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
355 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
356 			    mountpoint));
357 		}
358 	}
359 
360 	/*
361 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
362 	 * mount.  We don't perform this check if MS_OVERLAY is specified, which
363 	 * would defeat the point.  We also avoid this check if 'remount' is
364 	 * specified.
365 	 */
366 	if ((flags & MS_OVERLAY) == 0 &&
367 	    strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
368 	    !dir_is_empty(mountpoint)) {
369 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
370 		    "directory is not empty"));
371 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
372 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
373 	}
374 
375 	/* perform the mount */
376 	if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
377 	    MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
378 		/*
379 		 * Generic errors are nasty, but there are just way too many
380 		 * from mount(), and they're well-understood.  We pick a few
381 		 * common ones to improve upon.
382 		 */
383 		if (errno == EBUSY) {
384 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
385 			    "mountpoint or dataset is busy"));
386 		} else if (errno == EPERM) {
387 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
388 			    "Insufficient privileges"));
389 		} else if (errno == ENOTSUP) {
390 			char buf[256];
391 			int spa_version;
392 
393 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
394 			(void) snprintf(buf, sizeof (buf),
395 			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
396 			    "file system on a version %d pool. Pool must be"
397 			    " upgraded to mount this file system."),
398 			    (u_longlong_t)zfs_prop_get_int(zhp,
399 			    ZFS_PROP_VERSION), spa_version);
400 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
401 		} else {
402 			zfs_error_aux(hdl, strerror(errno));
403 		}
404 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
405 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
406 		    zhp->zfs_name));
407 	}
408 
409 	/* add the mounted entry into our cache */
410 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
411 	    mntopts);
412 	return (0);
413 }
414 
415 /*
416  * Unmount a single filesystem.
417  */
418 static int
419 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
420 {
421 	if (umount2(mountpoint, flags) != 0) {
422 		zfs_error_aux(hdl, strerror(errno));
423 		return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
424 		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
425 		    mountpoint));
426 	}
427 
428 	return (0);
429 }
430 
431 /*
432  * Unmount the given filesystem.
433  */
434 int
435 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
436 {
437 	libzfs_handle_t *hdl = zhp->zfs_hdl;
438 	struct mnttab entry;
439 	char *mntpt = NULL;
440 
441 	/* check to see if we need to unmount the filesystem */
442 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
443 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
444 		/*
445 		 * mountpoint may have come from a call to
446 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
447 		 * we know it comes from libzfs_mnttab_find which can
448 		 * then get freed later. We strdup it to play it safe.
449 		 */
450 		if (mountpoint == NULL)
451 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
452 		else
453 			mntpt = zfs_strdup(hdl, mountpoint);
454 
455 		/*
456 		 * Unshare and unmount the filesystem
457 		 */
458 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
459 			return (-1);
460 
461 		if (unmount_one(hdl, mntpt, flags) != 0) {
462 			free(mntpt);
463 			(void) zfs_shareall(zhp);
464 			return (-1);
465 		}
466 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
467 		free(mntpt);
468 	}
469 
470 	return (0);
471 }
472 
473 /*
474  * Unmount this filesystem and any children inheriting the mountpoint property.
475  * To do this, just act like we're changing the mountpoint property, but don't
476  * remount the filesystems afterwards.
477  */
478 int
479 zfs_unmountall(zfs_handle_t *zhp, int flags)
480 {
481 	prop_changelist_t *clp;
482 	int ret;
483 
484 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
485 	if (clp == NULL)
486 		return (-1);
487 
488 	ret = changelist_prefix(clp);
489 	changelist_free(clp);
490 
491 	return (ret);
492 }
493 
494 boolean_t
495 zfs_is_shared(zfs_handle_t *zhp)
496 {
497 	zfs_share_type_t rc = 0;
498 	zfs_share_proto_t *curr_proto;
499 
500 	if (ZFS_IS_VOLUME(zhp))
501 		return (B_FALSE);
502 
503 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
504 	    curr_proto++)
505 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
506 
507 	return (rc ? B_TRUE : B_FALSE);
508 }
509 
510 int
511 zfs_share(zfs_handle_t *zhp)
512 {
513 	assert(!ZFS_IS_VOLUME(zhp));
514 	return (zfs_share_proto(zhp, share_all_proto));
515 }
516 
517 int
518 zfs_unshare(zfs_handle_t *zhp)
519 {
520 	assert(!ZFS_IS_VOLUME(zhp));
521 	return (zfs_unshareall(zhp));
522 }
523 
524 /*
525  * Check to see if the filesystem is currently shared.
526  */
527 zfs_share_type_t
528 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
529 {
530 	char *mountpoint;
531 	zfs_share_type_t rc;
532 
533 	if (!zfs_is_mounted(zhp, &mountpoint))
534 		return (SHARED_NOT_SHARED);
535 
536 	if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
537 	    != SHARED_NOT_SHARED) {
538 		if (where != NULL)
539 			*where = mountpoint;
540 		else
541 			free(mountpoint);
542 		return (rc);
543 	} else {
544 		free(mountpoint);
545 		return (SHARED_NOT_SHARED);
546 	}
547 }
548 
549 boolean_t
550 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
551 {
552 	return (zfs_is_shared_proto(zhp, where,
553 	    PROTO_NFS) != SHARED_NOT_SHARED);
554 }
555 
556 boolean_t
557 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
558 {
559 	return (zfs_is_shared_proto(zhp, where,
560 	    PROTO_SMB) != SHARED_NOT_SHARED);
561 }
562 
563 /*
564  * Make sure things will work if libshare isn't installed by using
565  * wrapper functions that check to see that the pointers to functions
566  * initialized in _zfs_init_libshare() are actually present.
567  */
568 
569 static sa_handle_t (*_sa_init)(int);
570 static void (*_sa_fini)(sa_handle_t);
571 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
572 static int (*_sa_enable_share)(sa_share_t, char *);
573 static int (*_sa_disable_share)(sa_share_t, char *);
574 static char *(*_sa_errorstr)(int);
575 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
576 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
577 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
578 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t,
579     char *, char *, zprop_source_t, char *, char *, char *);
580 static void (*_sa_update_sharetab_ts)(sa_handle_t);
581 
582 /*
583  * _zfs_init_libshare()
584  *
585  * Find the libshare.so.1 entry points that we use here and save the
586  * values to be used later. This is triggered by the runtime loader.
587  * Make sure the correct ISA version is loaded.
588  */
589 
590 #pragma init(_zfs_init_libshare)
591 static void
592 _zfs_init_libshare(void)
593 {
594 	void *libshare;
595 	char path[MAXPATHLEN];
596 	char isa[MAXISALEN];
597 
598 #if defined(_LP64)
599 	if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
600 		isa[0] = '\0';
601 #else
602 	isa[0] = '\0';
603 #endif
604 	(void) snprintf(path, MAXPATHLEN,
605 	    "/usr/lib/%s/libshare.so.1", isa);
606 
607 	if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
608 		_sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
609 		_sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
610 		_sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
611 		    dlsym(libshare, "sa_find_share");
612 		_sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
613 		    "sa_enable_share");
614 		_sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
615 		    "sa_disable_share");
616 		_sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
617 		_sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
618 		    dlsym(libshare, "sa_parse_legacy_options");
619 		_sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
620 		    dlsym(libshare, "sa_needs_refresh");
621 		_sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
622 		    dlsym(libshare, "sa_get_zfs_handle");
623 		_sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t,
624 		    sa_share_t, char *, char *, zprop_source_t, char *,
625 		    char *, char *))dlsym(libshare, "sa_zfs_process_share");
626 		_sa_update_sharetab_ts = (void (*)(sa_handle_t))
627 		    dlsym(libshare, "sa_update_sharetab_ts");
628 		if (_sa_init == NULL || _sa_fini == NULL ||
629 		    _sa_find_share == NULL || _sa_enable_share == NULL ||
630 		    _sa_disable_share == NULL || _sa_errorstr == NULL ||
631 		    _sa_parse_legacy_options == NULL ||
632 		    _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
633 		    _sa_zfs_process_share == NULL ||
634 		    _sa_update_sharetab_ts == NULL) {
635 			_sa_init = NULL;
636 			_sa_fini = NULL;
637 			_sa_disable_share = NULL;
638 			_sa_enable_share = NULL;
639 			_sa_errorstr = NULL;
640 			_sa_parse_legacy_options = NULL;
641 			(void) dlclose(libshare);
642 			_sa_needs_refresh = NULL;
643 			_sa_get_zfs_handle = NULL;
644 			_sa_zfs_process_share = NULL;
645 			_sa_update_sharetab_ts = NULL;
646 		}
647 	}
648 }
649 
650 /*
651  * zfs_init_libshare(zhandle, service)
652  *
653  * Initialize the libshare API if it hasn't already been initialized.
654  * In all cases it returns 0 if it succeeded and an error if not. The
655  * service value is which part(s) of the API to initialize and is a
656  * direct map to the libshare sa_init(service) interface.
657  */
658 int
659 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
660 {
661 	int ret = SA_OK;
662 
663 	if (_sa_init == NULL)
664 		ret = SA_CONFIG_ERR;
665 
666 	if (ret == SA_OK && zhandle->libzfs_shareflags & ZFSSHARE_MISS) {
667 		/*
668 		 * We had a cache miss. Most likely it is a new ZFS
669 		 * dataset that was just created. We want to make sure
670 		 * so check timestamps to see if a different process
671 		 * has updated any of the configuration. If there was
672 		 * some non-ZFS change, we need to re-initialize the
673 		 * internal cache.
674 		 */
675 		zhandle->libzfs_shareflags &= ~ZFSSHARE_MISS;
676 		if (_sa_needs_refresh != NULL &&
677 		    _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
678 			zfs_uninit_libshare(zhandle);
679 			zhandle->libzfs_sharehdl = _sa_init(service);
680 		}
681 	}
682 
683 	if (ret == SA_OK && zhandle && zhandle->libzfs_sharehdl == NULL)
684 		zhandle->libzfs_sharehdl = _sa_init(service);
685 
686 	if (ret == SA_OK && zhandle->libzfs_sharehdl == NULL)
687 		ret = SA_NO_MEMORY;
688 
689 	return (ret);
690 }
691 
692 /*
693  * zfs_uninit_libshare(zhandle)
694  *
695  * Uninitialize the libshare API if it hasn't already been
696  * uninitialized. It is OK to call multiple times.
697  */
698 void
699 zfs_uninit_libshare(libzfs_handle_t *zhandle)
700 {
701 	if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
702 		if (_sa_fini != NULL)
703 			_sa_fini(zhandle->libzfs_sharehdl);
704 		zhandle->libzfs_sharehdl = NULL;
705 	}
706 }
707 
708 /*
709  * zfs_parse_options(options, proto)
710  *
711  * Call the legacy parse interface to get the protocol specific
712  * options using the NULL arg to indicate that this is a "parse" only.
713  */
714 int
715 zfs_parse_options(char *options, zfs_share_proto_t proto)
716 {
717 	if (_sa_parse_legacy_options != NULL) {
718 		return (_sa_parse_legacy_options(NULL, options,
719 		    proto_table[proto].p_name));
720 	}
721 	return (SA_CONFIG_ERR);
722 }
723 
724 /*
725  * zfs_sa_find_share(handle, path)
726  *
727  * wrapper around sa_find_share to find a share path in the
728  * configuration.
729  */
730 static sa_share_t
731 zfs_sa_find_share(sa_handle_t handle, char *path)
732 {
733 	if (_sa_find_share != NULL)
734 		return (_sa_find_share(handle, path));
735 	return (NULL);
736 }
737 
738 /*
739  * zfs_sa_enable_share(share, proto)
740  *
741  * Wrapper for sa_enable_share which enables a share for a specified
742  * protocol.
743  */
744 static int
745 zfs_sa_enable_share(sa_share_t share, char *proto)
746 {
747 	if (_sa_enable_share != NULL)
748 		return (_sa_enable_share(share, proto));
749 	return (SA_CONFIG_ERR);
750 }
751 
752 /*
753  * zfs_sa_disable_share(share, proto)
754  *
755  * Wrapper for sa_enable_share which disables a share for a specified
756  * protocol.
757  */
758 static int
759 zfs_sa_disable_share(sa_share_t share, char *proto)
760 {
761 	if (_sa_disable_share != NULL)
762 		return (_sa_disable_share(share, proto));
763 	return (SA_CONFIG_ERR);
764 }
765 
766 /*
767  * Share the given filesystem according to the options in the specified
768  * protocol specific properties (sharenfs, sharesmb).  We rely
769  * on "libshare" to the dirty work for us.
770  */
771 static int
772 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
773 {
774 	char mountpoint[ZFS_MAXPROPLEN];
775 	char shareopts[ZFS_MAXPROPLEN];
776 	char sourcestr[ZFS_MAXPROPLEN];
777 	libzfs_handle_t *hdl = zhp->zfs_hdl;
778 	sa_share_t share;
779 	zfs_share_proto_t *curr_proto;
780 	zprop_source_t sourcetype;
781 	int ret;
782 
783 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
784 		return (0);
785 
786 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
787 		/*
788 		 * Return success if there are no share options.
789 		 */
790 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
791 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
792 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
793 		    strcmp(shareopts, "off") == 0)
794 			continue;
795 
796 		ret = zfs_init_libshare(hdl, SA_INIT_SHARE_API);
797 		if (ret != SA_OK) {
798 			(void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
799 			    dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
800 			    zfs_get_name(zhp), _sa_errorstr != NULL ?
801 			    _sa_errorstr(ret) : "");
802 			return (-1);
803 		}
804 
805 		/*
806 		 * If the 'zoned' property is set, then zfs_is_mountable()
807 		 * will have already bailed out if we are in the global zone.
808 		 * But local zones cannot be NFS servers, so we ignore it for
809 		 * local zones as well.
810 		 */
811 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
812 			continue;
813 
814 		share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
815 		if (share == NULL) {
816 			/*
817 			 * This may be a new file system that was just
818 			 * created so isn't in the internal cache
819 			 * (second time through). Rather than
820 			 * reloading the entire configuration, we can
821 			 * assume ZFS has done the checking and it is
822 			 * safe to add this to the internal
823 			 * configuration.
824 			 */
825 			if (_sa_zfs_process_share(hdl->libzfs_sharehdl,
826 			    NULL, NULL, mountpoint,
827 			    proto_table[*curr_proto].p_name, sourcetype,
828 			    shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
829 				(void) zfs_error_fmt(hdl,
830 				    proto_table[*curr_proto].p_share_err,
831 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
832 				    zfs_get_name(zhp));
833 				return (-1);
834 			}
835 			hdl->libzfs_shareflags |= ZFSSHARE_MISS;
836 			share = zfs_sa_find_share(hdl->libzfs_sharehdl,
837 			    mountpoint);
838 		}
839 		if (share != NULL) {
840 			int err;
841 			err = zfs_sa_enable_share(share,
842 			    proto_table[*curr_proto].p_name);
843 			if (err != SA_OK) {
844 				(void) zfs_error_fmt(hdl,
845 				    proto_table[*curr_proto].p_share_err,
846 				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
847 				    zfs_get_name(zhp));
848 				return (-1);
849 			}
850 		} else {
851 			(void) zfs_error_fmt(hdl,
852 			    proto_table[*curr_proto].p_share_err,
853 			    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
854 			    zfs_get_name(zhp));
855 			return (-1);
856 		}
857 
858 	}
859 	return (0);
860 }
861 
862 
863 int
864 zfs_share_nfs(zfs_handle_t *zhp)
865 {
866 	return (zfs_share_proto(zhp, nfs_only));
867 }
868 
869 int
870 zfs_share_smb(zfs_handle_t *zhp)
871 {
872 	return (zfs_share_proto(zhp, smb_only));
873 }
874 
875 int
876 zfs_shareall(zfs_handle_t *zhp)
877 {
878 	return (zfs_share_proto(zhp, share_all_proto));
879 }
880 
881 /*
882  * Unshare a filesystem by mountpoint.
883  */
884 static int
885 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
886     zfs_share_proto_t proto)
887 {
888 	sa_share_t share;
889 	int err;
890 	char *mntpt;
891 	/*
892 	 * Mountpoint could get trashed if libshare calls getmntany
893 	 * which it does during API initialization, so strdup the
894 	 * value.
895 	 */
896 	mntpt = zfs_strdup(hdl, mountpoint);
897 
898 	/* make sure libshare initialized */
899 	if ((err = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) {
900 		free(mntpt);	/* don't need the copy anymore */
901 		return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
902 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
903 		    name, _sa_errorstr(err)));
904 	}
905 
906 	share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
907 	free(mntpt);	/* don't need the copy anymore */
908 
909 	if (share != NULL) {
910 		err = zfs_sa_disable_share(share, proto_table[proto].p_name);
911 		if (err != SA_OK) {
912 			return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
913 			    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
914 			    name, _sa_errorstr(err)));
915 		}
916 	} else {
917 		return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
918 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
919 		    name));
920 	}
921 	return (0);
922 }
923 
924 /*
925  * Unshare the given filesystem.
926  */
927 int
928 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
929     zfs_share_proto_t *proto)
930 {
931 	libzfs_handle_t *hdl = zhp->zfs_hdl;
932 	struct mnttab entry;
933 	char *mntpt = NULL;
934 
935 	/* check to see if need to unmount the filesystem */
936 	rewind(zhp->zfs_hdl->libzfs_mnttab);
937 	if (mountpoint != NULL)
938 		mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
939 
940 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
941 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
942 		zfs_share_proto_t *curr_proto;
943 
944 		if (mountpoint == NULL)
945 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
946 
947 		for (curr_proto = proto; *curr_proto != PROTO_END;
948 		    curr_proto++) {
949 
950 			if (is_shared(hdl, mntpt, *curr_proto) &&
951 			    unshare_one(hdl, zhp->zfs_name,
952 			    mntpt, *curr_proto) != 0) {
953 				if (mntpt != NULL)
954 					free(mntpt);
955 				return (-1);
956 			}
957 		}
958 	}
959 	if (mntpt != NULL)
960 		free(mntpt);
961 
962 	return (0);
963 }
964 
965 int
966 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
967 {
968 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
969 }
970 
971 int
972 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
973 {
974 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
975 }
976 
977 /*
978  * Same as zfs_unmountall(), but for NFS and SMB unshares.
979  */
980 int
981 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
982 {
983 	prop_changelist_t *clp;
984 	int ret;
985 
986 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
987 	if (clp == NULL)
988 		return (-1);
989 
990 	ret = changelist_unshare(clp, proto);
991 	changelist_free(clp);
992 
993 	return (ret);
994 }
995 
996 int
997 zfs_unshareall_nfs(zfs_handle_t *zhp)
998 {
999 	return (zfs_unshareall_proto(zhp, nfs_only));
1000 }
1001 
1002 int
1003 zfs_unshareall_smb(zfs_handle_t *zhp)
1004 {
1005 	return (zfs_unshareall_proto(zhp, smb_only));
1006 }
1007 
1008 int
1009 zfs_unshareall(zfs_handle_t *zhp)
1010 {
1011 	return (zfs_unshareall_proto(zhp, share_all_proto));
1012 }
1013 
1014 int
1015 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1016 {
1017 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1018 }
1019 
1020 /*
1021  * Remove the mountpoint associated with the current dataset, if necessary.
1022  * We only remove the underlying directory if:
1023  *
1024  *	- The mountpoint is not 'none' or 'legacy'
1025  *	- The mountpoint is non-empty
1026  *	- The mountpoint is the default or inherited
1027  *	- The 'zoned' property is set, or we're in a local zone
1028  *
1029  * Any other directories we leave alone.
1030  */
1031 void
1032 remove_mountpoint(zfs_handle_t *zhp)
1033 {
1034 	char mountpoint[ZFS_MAXPROPLEN];
1035 	zprop_source_t source;
1036 
1037 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1038 	    &source))
1039 		return;
1040 
1041 	if (source == ZPROP_SRC_DEFAULT ||
1042 	    source == ZPROP_SRC_INHERITED) {
1043 		/*
1044 		 * Try to remove the directory, silently ignoring any errors.
1045 		 * The filesystem may have since been removed or moved around,
1046 		 * and this error isn't really useful to the administrator in
1047 		 * any way.
1048 		 */
1049 		(void) rmdir(mountpoint);
1050 	}
1051 }
1052 
1053 void
1054 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1055 {
1056 	if (cbp->cb_alloc == cbp->cb_used) {
1057 		size_t newsz;
1058 		void *ptr;
1059 
1060 		newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64;
1061 		ptr = zfs_realloc(zhp->zfs_hdl,
1062 		    cbp->cb_handles, cbp->cb_alloc * sizeof (void *),
1063 		    newsz * sizeof (void *));
1064 		cbp->cb_handles = ptr;
1065 		cbp->cb_alloc = newsz;
1066 	}
1067 	cbp->cb_handles[cbp->cb_used++] = zhp;
1068 }
1069 
1070 static int
1071 mount_cb(zfs_handle_t *zhp, void *data)
1072 {
1073 	get_all_cb_t *cbp = data;
1074 
1075 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1076 		zfs_close(zhp);
1077 		return (0);
1078 	}
1079 
1080 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1081 		zfs_close(zhp);
1082 		return (0);
1083 	}
1084 
1085 	/*
1086 	 * If this filesystem is inconsistent and has a receive resume
1087 	 * token, we can not mount it.
1088 	 */
1089 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1090 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1091 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1092 		zfs_close(zhp);
1093 		return (0);
1094 	}
1095 
1096 	libzfs_add_handle(cbp, zhp);
1097 	if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) {
1098 		zfs_close(zhp);
1099 		return (-1);
1100 	}
1101 	return (0);
1102 }
1103 
1104 int
1105 libzfs_dataset_cmp(const void *a, const void *b)
1106 {
1107 	zfs_handle_t **za = (zfs_handle_t **)a;
1108 	zfs_handle_t **zb = (zfs_handle_t **)b;
1109 	char mounta[MAXPATHLEN];
1110 	char mountb[MAXPATHLEN];
1111 	boolean_t gota, gotb;
1112 
1113 	if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0)
1114 		verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta,
1115 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1116 	if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0)
1117 		verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb,
1118 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1119 
1120 	if (gota && gotb)
1121 		return (strcmp(mounta, mountb));
1122 
1123 	if (gota)
1124 		return (-1);
1125 	if (gotb)
1126 		return (1);
1127 
1128 	return (strcmp(zfs_get_name(a), zfs_get_name(b)));
1129 }
1130 
1131 /*
1132  * Mount and share all datasets within the given pool.  This assumes that no
1133  * datasets within the pool are currently mounted.  Because users can create
1134  * complicated nested hierarchies of mountpoints, we first gather all the
1135  * datasets and mountpoints within the pool, and sort them by mountpoint.  Once
1136  * we have the list of all filesystems, we iterate over them in order and mount
1137  * and/or share each one.
1138  */
1139 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1140 int
1141 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1142 {
1143 	get_all_cb_t cb = { 0 };
1144 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1145 	zfs_handle_t *zfsp;
1146 	int i, ret = -1;
1147 	int *good;
1148 
1149 	/*
1150 	 * Gather all non-snap datasets within the pool.
1151 	 */
1152 	if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL)
1153 		goto out;
1154 
1155 	libzfs_add_handle(&cb, zfsp);
1156 	if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0)
1157 		goto out;
1158 	/*
1159 	 * Sort the datasets by mountpoint.
1160 	 */
1161 	qsort(cb.cb_handles, cb.cb_used, sizeof (void *),
1162 	    libzfs_dataset_cmp);
1163 
1164 	/*
1165 	 * And mount all the datasets, keeping track of which ones
1166 	 * succeeded or failed.
1167 	 */
1168 	if ((good = zfs_alloc(zhp->zpool_hdl,
1169 	    cb.cb_used * sizeof (int))) == NULL)
1170 		goto out;
1171 
1172 	ret = 0;
1173 	for (i = 0; i < cb.cb_used; i++) {
1174 		if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0)
1175 			ret = -1;
1176 		else
1177 			good[i] = 1;
1178 	}
1179 
1180 	/*
1181 	 * Then share all the ones that need to be shared. This needs
1182 	 * to be a separate pass in order to avoid excessive reloading
1183 	 * of the configuration. Good should never be NULL since
1184 	 * zfs_alloc is supposed to exit if memory isn't available.
1185 	 */
1186 	for (i = 0; i < cb.cb_used; i++) {
1187 		if (good[i] && zfs_share(cb.cb_handles[i]) != 0)
1188 			ret = -1;
1189 	}
1190 
1191 	free(good);
1192 
1193 out:
1194 	for (i = 0; i < cb.cb_used; i++)
1195 		zfs_close(cb.cb_handles[i]);
1196 	free(cb.cb_handles);
1197 
1198 	return (ret);
1199 }
1200 
1201 static int
1202 mountpoint_compare(const void *a, const void *b)
1203 {
1204 	const char *mounta = *((char **)a);
1205 	const char *mountb = *((char **)b);
1206 
1207 	return (strcmp(mountb, mounta));
1208 }
1209 
1210 /* alias for 2002/240 */
1211 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1212 /*
1213  * Unshare and unmount all datasets within the given pool.  We don't want to
1214  * rely on traversing the DSL to discover the filesystems within the pool,
1215  * because this may be expensive (if not all of them are mounted), and can fail
1216  * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mnttab and
1217  * gather all the filesystems that are currently mounted.
1218  */
1219 int
1220 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1221 {
1222 	int used, alloc;
1223 	struct mnttab entry;
1224 	size_t namelen;
1225 	char **mountpoints = NULL;
1226 	zfs_handle_t **datasets = NULL;
1227 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1228 	int i;
1229 	int ret = -1;
1230 	int flags = (force ? MS_FORCE : 0);
1231 
1232 	namelen = strlen(zhp->zpool_name);
1233 
1234 	rewind(hdl->libzfs_mnttab);
1235 	used = alloc = 0;
1236 	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1237 		/*
1238 		 * Ignore non-ZFS entries.
1239 		 */
1240 		if (entry.mnt_fstype == NULL ||
1241 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1242 			continue;
1243 
1244 		/*
1245 		 * Ignore filesystems not within this pool.
1246 		 */
1247 		if (entry.mnt_mountp == NULL ||
1248 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1249 		    (entry.mnt_special[namelen] != '/' &&
1250 		    entry.mnt_special[namelen] != '\0'))
1251 			continue;
1252 
1253 		/*
1254 		 * At this point we've found a filesystem within our pool.  Add
1255 		 * it to our growing list.
1256 		 */
1257 		if (used == alloc) {
1258 			if (alloc == 0) {
1259 				if ((mountpoints = zfs_alloc(hdl,
1260 				    8 * sizeof (void *))) == NULL)
1261 					goto out;
1262 
1263 				if ((datasets = zfs_alloc(hdl,
1264 				    8 * sizeof (void *))) == NULL)
1265 					goto out;
1266 
1267 				alloc = 8;
1268 			} else {
1269 				void *ptr;
1270 
1271 				if ((ptr = zfs_realloc(hdl, mountpoints,
1272 				    alloc * sizeof (void *),
1273 				    alloc * 2 * sizeof (void *))) == NULL)
1274 					goto out;
1275 				mountpoints = ptr;
1276 
1277 				if ((ptr = zfs_realloc(hdl, datasets,
1278 				    alloc * sizeof (void *),
1279 				    alloc * 2 * sizeof (void *))) == NULL)
1280 					goto out;
1281 				datasets = ptr;
1282 
1283 				alloc *= 2;
1284 			}
1285 		}
1286 
1287 		if ((mountpoints[used] = zfs_strdup(hdl,
1288 		    entry.mnt_mountp)) == NULL)
1289 			goto out;
1290 
1291 		/*
1292 		 * This is allowed to fail, in case there is some I/O error.  It
1293 		 * is only used to determine if we need to remove the underlying
1294 		 * mountpoint, so failure is not fatal.
1295 		 */
1296 		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1297 
1298 		used++;
1299 	}
1300 
1301 	/*
1302 	 * At this point, we have the entire list of filesystems, so sort it by
1303 	 * mountpoint.
1304 	 */
1305 	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1306 
1307 	/*
1308 	 * Walk through and first unshare everything.
1309 	 */
1310 	for (i = 0; i < used; i++) {
1311 		zfs_share_proto_t *curr_proto;
1312 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1313 		    curr_proto++) {
1314 			if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1315 			    unshare_one(hdl, mountpoints[i],
1316 			    mountpoints[i], *curr_proto) != 0)
1317 				goto out;
1318 		}
1319 	}
1320 
1321 	/*
1322 	 * Now unmount everything, removing the underlying directories as
1323 	 * appropriate.
1324 	 */
1325 	for (i = 0; i < used; i++) {
1326 		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1327 			goto out;
1328 	}
1329 
1330 	for (i = 0; i < used; i++) {
1331 		if (datasets[i])
1332 			remove_mountpoint(datasets[i]);
1333 	}
1334 
1335 	ret = 0;
1336 out:
1337 	for (i = 0; i < used; i++) {
1338 		if (datasets[i])
1339 			zfs_close(datasets[i]);
1340 		free(mountpoints[i]);
1341 	}
1342 	free(datasets);
1343 	free(mountpoints);
1344 
1345 	return (ret);
1346 }
1347