1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2016 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <sys/vtoc.h> 57 #include <sys/dktp/fdisk.h> 58 #include <sys/efi_partition.h> 59 #include <thread_pool.h> 60 61 #include <sys/vdev_impl.h> 62 63 #include "libzfs.h" 64 #include "libzfs_impl.h" 65 66 /* 67 * Intermediate structures used to gather configuration information. 68 */ 69 typedef struct config_entry { 70 uint64_t ce_txg; 71 nvlist_t *ce_config; 72 struct config_entry *ce_next; 73 } config_entry_t; 74 75 typedef struct vdev_entry { 76 uint64_t ve_guid; 77 config_entry_t *ve_configs; 78 struct vdev_entry *ve_next; 79 } vdev_entry_t; 80 81 typedef struct pool_entry { 82 uint64_t pe_guid; 83 vdev_entry_t *pe_vdevs; 84 struct pool_entry *pe_next; 85 } pool_entry_t; 86 87 typedef struct name_entry { 88 char *ne_name; 89 uint64_t ne_guid; 90 struct name_entry *ne_next; 91 } name_entry_t; 92 93 typedef struct pool_list { 94 pool_entry_t *pools; 95 name_entry_t *names; 96 } pool_list_t; 97 98 static char * 99 get_devid(const char *path) 100 { 101 int fd; 102 ddi_devid_t devid; 103 char *minor, *ret; 104 105 if ((fd = open(path, O_RDONLY)) < 0) 106 return (NULL); 107 108 minor = NULL; 109 ret = NULL; 110 if (devid_get(fd, &devid) == 0) { 111 if (devid_get_minor_name(fd, &minor) == 0) 112 ret = devid_str_encode(devid, minor); 113 if (minor != NULL) 114 devid_str_free(minor); 115 devid_free(devid); 116 } 117 (void) close(fd); 118 119 return (ret); 120 } 121 122 123 /* 124 * Go through and fix up any path and/or devid information for the given vdev 125 * configuration. 126 */ 127 static int 128 fix_paths(nvlist_t *nv, name_entry_t *names) 129 { 130 nvlist_t **child; 131 uint_t c, children; 132 uint64_t guid; 133 name_entry_t *ne, *best; 134 char *path, *devid; 135 int matched; 136 137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 138 &child, &children) == 0) { 139 for (c = 0; c < children; c++) 140 if (fix_paths(child[c], names) != 0) 141 return (-1); 142 return (0); 143 } 144 145 /* 146 * This is a leaf (file or disk) vdev. In either case, go through 147 * the name list and see if we find a matching guid. If so, replace 148 * the path and see if we can calculate a new devid. 149 * 150 * There may be multiple names associated with a particular guid, in 151 * which case we have overlapping slices or multiple paths to the same 152 * disk. If this is the case, then we want to pick the path that is 153 * the most similar to the original, where "most similar" is the number 154 * of matching characters starting from the end of the path. This will 155 * preserve slice numbers even if the disks have been reorganized, and 156 * will also catch preferred disk names if multiple paths exist. 157 */ 158 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 159 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 160 path = NULL; 161 162 matched = 0; 163 best = NULL; 164 for (ne = names; ne != NULL; ne = ne->ne_next) { 165 if (ne->ne_guid == guid) { 166 const char *src, *dst; 167 int count; 168 169 if (path == NULL) { 170 best = ne; 171 break; 172 } 173 174 src = ne->ne_name + strlen(ne->ne_name) - 1; 175 dst = path + strlen(path) - 1; 176 for (count = 0; src >= ne->ne_name && dst >= path; 177 src--, dst--, count++) 178 if (*src != *dst) 179 break; 180 181 /* 182 * At this point, 'count' is the number of characters 183 * matched from the end. 184 */ 185 if (count > matched || best == NULL) { 186 best = ne; 187 matched = count; 188 } 189 } 190 } 191 192 if (best == NULL) 193 return (0); 194 195 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 196 return (-1); 197 198 if ((devid = get_devid(best->ne_name)) == NULL) { 199 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 200 } else { 201 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 202 devid_str_free(devid); 203 return (-1); 204 } 205 devid_str_free(devid); 206 } 207 208 return (0); 209 } 210 211 /* 212 * Add the given configuration to the list of known devices. 213 */ 214 static int 215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 216 nvlist_t *config) 217 { 218 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 219 pool_entry_t *pe; 220 vdev_entry_t *ve; 221 config_entry_t *ce; 222 name_entry_t *ne; 223 224 /* 225 * If this is a hot spare not currently in use or level 2 cache 226 * device, add it to the list of names to translate, but don't do 227 * anything else. 228 */ 229 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 230 &state) == 0 && 231 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 232 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 233 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 234 return (-1); 235 236 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 237 free(ne); 238 return (-1); 239 } 240 ne->ne_guid = vdev_guid; 241 ne->ne_next = pl->names; 242 pl->names = ne; 243 return (0); 244 } 245 246 /* 247 * If we have a valid config but cannot read any of these fields, then 248 * it means we have a half-initialized label. In vdev_label_init() 249 * we write a label with txg == 0 so that we can identify the device 250 * in case the user refers to the same disk later on. If we fail to 251 * create the pool, we'll be left with a label in this state 252 * which should not be considered part of a valid pool. 253 */ 254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 255 &pool_guid) != 0 || 256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 257 &vdev_guid) != 0 || 258 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 259 &top_guid) != 0 || 260 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 261 &txg) != 0 || txg == 0) { 262 nvlist_free(config); 263 return (0); 264 } 265 266 /* 267 * First, see if we know about this pool. If not, then add it to the 268 * list of known pools. 269 */ 270 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 271 if (pe->pe_guid == pool_guid) 272 break; 273 } 274 275 if (pe == NULL) { 276 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 277 nvlist_free(config); 278 return (-1); 279 } 280 pe->pe_guid = pool_guid; 281 pe->pe_next = pl->pools; 282 pl->pools = pe; 283 } 284 285 /* 286 * Second, see if we know about this toplevel vdev. Add it if its 287 * missing. 288 */ 289 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 290 if (ve->ve_guid == top_guid) 291 break; 292 } 293 294 if (ve == NULL) { 295 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 296 nvlist_free(config); 297 return (-1); 298 } 299 ve->ve_guid = top_guid; 300 ve->ve_next = pe->pe_vdevs; 301 pe->pe_vdevs = ve; 302 } 303 304 /* 305 * Third, see if we have a config with a matching transaction group. If 306 * so, then we do nothing. Otherwise, add it to the list of known 307 * configs. 308 */ 309 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 310 if (ce->ce_txg == txg) 311 break; 312 } 313 314 if (ce == NULL) { 315 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 316 nvlist_free(config); 317 return (-1); 318 } 319 ce->ce_txg = txg; 320 ce->ce_config = config; 321 ce->ce_next = ve->ve_configs; 322 ve->ve_configs = ce; 323 } else { 324 nvlist_free(config); 325 } 326 327 /* 328 * At this point we've successfully added our config to the list of 329 * known configs. The last thing to do is add the vdev guid -> path 330 * mappings so that we can fix up the configuration as necessary before 331 * doing the import. 332 */ 333 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 334 return (-1); 335 336 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 337 free(ne); 338 return (-1); 339 } 340 341 ne->ne_guid = vdev_guid; 342 ne->ne_next = pl->names; 343 pl->names = ne; 344 345 return (0); 346 } 347 348 /* 349 * Returns true if the named pool matches the given GUID. 350 */ 351 static int 352 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 353 boolean_t *isactive) 354 { 355 zpool_handle_t *zhp; 356 uint64_t theguid; 357 358 if (zpool_open_silent(hdl, name, &zhp) != 0) 359 return (-1); 360 361 if (zhp == NULL) { 362 *isactive = B_FALSE; 363 return (0); 364 } 365 366 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 367 &theguid) == 0); 368 369 zpool_close(zhp); 370 371 *isactive = (theguid == guid); 372 return (0); 373 } 374 375 static nvlist_t * 376 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 377 { 378 nvlist_t *nvl; 379 zfs_cmd_t zc = { 0 }; 380 int err; 381 382 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 383 return (NULL); 384 385 if (zcmd_alloc_dst_nvlist(hdl, &zc, 386 zc.zc_nvlist_conf_size * 2) != 0) { 387 zcmd_free_nvlists(&zc); 388 return (NULL); 389 } 390 391 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 392 &zc)) != 0 && errno == ENOMEM) { 393 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 394 zcmd_free_nvlists(&zc); 395 return (NULL); 396 } 397 } 398 399 if (err) { 400 zcmd_free_nvlists(&zc); 401 return (NULL); 402 } 403 404 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 405 zcmd_free_nvlists(&zc); 406 return (NULL); 407 } 408 409 zcmd_free_nvlists(&zc); 410 return (nvl); 411 } 412 413 /* 414 * Determine if the vdev id is a hole in the namespace. 415 */ 416 boolean_t 417 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 418 { 419 for (int c = 0; c < holes; c++) { 420 421 /* Top-level is a hole */ 422 if (hole_array[c] == id) 423 return (B_TRUE); 424 } 425 return (B_FALSE); 426 } 427 428 /* 429 * Convert our list of pools into the definitive set of configurations. We 430 * start by picking the best config for each toplevel vdev. Once that's done, 431 * we assemble the toplevel vdevs into a full config for the pool. We make a 432 * pass to fix up any incorrect paths, and then add it to the main list to 433 * return to the user. 434 */ 435 static nvlist_t * 436 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 437 { 438 pool_entry_t *pe; 439 vdev_entry_t *ve; 440 config_entry_t *ce; 441 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 442 nvlist_t **spares, **l2cache; 443 uint_t i, nspares, nl2cache; 444 boolean_t config_seen; 445 uint64_t best_txg; 446 char *name, *hostname = NULL; 447 uint64_t guid; 448 uint_t children = 0; 449 nvlist_t **child = NULL; 450 uint_t holes; 451 uint64_t *hole_array, max_id; 452 uint_t c; 453 boolean_t isactive; 454 uint64_t hostid; 455 nvlist_t *nvl; 456 boolean_t found_one = B_FALSE; 457 boolean_t valid_top_config = B_FALSE; 458 459 if (nvlist_alloc(&ret, 0, 0) != 0) 460 goto nomem; 461 462 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 463 uint64_t id, max_txg = 0; 464 465 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 466 goto nomem; 467 config_seen = B_FALSE; 468 469 /* 470 * Iterate over all toplevel vdevs. Grab the pool configuration 471 * from the first one we find, and then go through the rest and 472 * add them as necessary to the 'vdevs' member of the config. 473 */ 474 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 475 476 /* 477 * Determine the best configuration for this vdev by 478 * selecting the config with the latest transaction 479 * group. 480 */ 481 best_txg = 0; 482 for (ce = ve->ve_configs; ce != NULL; 483 ce = ce->ce_next) { 484 485 if (ce->ce_txg > best_txg) { 486 tmp = ce->ce_config; 487 best_txg = ce->ce_txg; 488 } 489 } 490 491 /* 492 * We rely on the fact that the max txg for the 493 * pool will contain the most up-to-date information 494 * about the valid top-levels in the vdev namespace. 495 */ 496 if (best_txg > max_txg) { 497 (void) nvlist_remove(config, 498 ZPOOL_CONFIG_VDEV_CHILDREN, 499 DATA_TYPE_UINT64); 500 (void) nvlist_remove(config, 501 ZPOOL_CONFIG_HOLE_ARRAY, 502 DATA_TYPE_UINT64_ARRAY); 503 504 max_txg = best_txg; 505 hole_array = NULL; 506 holes = 0; 507 max_id = 0; 508 valid_top_config = B_FALSE; 509 510 if (nvlist_lookup_uint64(tmp, 511 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 512 verify(nvlist_add_uint64(config, 513 ZPOOL_CONFIG_VDEV_CHILDREN, 514 max_id) == 0); 515 valid_top_config = B_TRUE; 516 } 517 518 if (nvlist_lookup_uint64_array(tmp, 519 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 520 &holes) == 0) { 521 verify(nvlist_add_uint64_array(config, 522 ZPOOL_CONFIG_HOLE_ARRAY, 523 hole_array, holes) == 0); 524 } 525 } 526 527 if (!config_seen) { 528 /* 529 * Copy the relevant pieces of data to the pool 530 * configuration: 531 * 532 * version 533 * pool guid 534 * name 535 * comment (if available) 536 * pool state 537 * hostid (if available) 538 * hostname (if available) 539 */ 540 uint64_t state, version; 541 char *comment = NULL; 542 543 version = fnvlist_lookup_uint64(tmp, 544 ZPOOL_CONFIG_VERSION); 545 fnvlist_add_uint64(config, 546 ZPOOL_CONFIG_VERSION, version); 547 guid = fnvlist_lookup_uint64(tmp, 548 ZPOOL_CONFIG_POOL_GUID); 549 fnvlist_add_uint64(config, 550 ZPOOL_CONFIG_POOL_GUID, guid); 551 name = fnvlist_lookup_string(tmp, 552 ZPOOL_CONFIG_POOL_NAME); 553 fnvlist_add_string(config, 554 ZPOOL_CONFIG_POOL_NAME, name); 555 556 if (nvlist_lookup_string(tmp, 557 ZPOOL_CONFIG_COMMENT, &comment) == 0) 558 fnvlist_add_string(config, 559 ZPOOL_CONFIG_COMMENT, comment); 560 561 state = fnvlist_lookup_uint64(tmp, 562 ZPOOL_CONFIG_POOL_STATE); 563 fnvlist_add_uint64(config, 564 ZPOOL_CONFIG_POOL_STATE, state); 565 566 hostid = 0; 567 if (nvlist_lookup_uint64(tmp, 568 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 569 fnvlist_add_uint64(config, 570 ZPOOL_CONFIG_HOSTID, hostid); 571 hostname = fnvlist_lookup_string(tmp, 572 ZPOOL_CONFIG_HOSTNAME); 573 fnvlist_add_string(config, 574 ZPOOL_CONFIG_HOSTNAME, hostname); 575 } 576 577 config_seen = B_TRUE; 578 } 579 580 /* 581 * Add this top-level vdev to the child array. 582 */ 583 verify(nvlist_lookup_nvlist(tmp, 584 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 585 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 586 &id) == 0); 587 588 if (id >= children) { 589 nvlist_t **newchild; 590 591 newchild = zfs_alloc(hdl, (id + 1) * 592 sizeof (nvlist_t *)); 593 if (newchild == NULL) 594 goto nomem; 595 596 for (c = 0; c < children; c++) 597 newchild[c] = child[c]; 598 599 free(child); 600 child = newchild; 601 children = id + 1; 602 } 603 if (nvlist_dup(nvtop, &child[id], 0) != 0) 604 goto nomem; 605 606 } 607 608 /* 609 * If we have information about all the top-levels then 610 * clean up the nvlist which we've constructed. This 611 * means removing any extraneous devices that are 612 * beyond the valid range or adding devices to the end 613 * of our array which appear to be missing. 614 */ 615 if (valid_top_config) { 616 if (max_id < children) { 617 for (c = max_id; c < children; c++) 618 nvlist_free(child[c]); 619 children = max_id; 620 } else if (max_id > children) { 621 nvlist_t **newchild; 622 623 newchild = zfs_alloc(hdl, (max_id) * 624 sizeof (nvlist_t *)); 625 if (newchild == NULL) 626 goto nomem; 627 628 for (c = 0; c < children; c++) 629 newchild[c] = child[c]; 630 631 free(child); 632 child = newchild; 633 children = max_id; 634 } 635 } 636 637 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 638 &guid) == 0); 639 640 /* 641 * The vdev namespace may contain holes as a result of 642 * device removal. We must add them back into the vdev 643 * tree before we process any missing devices. 644 */ 645 if (holes > 0) { 646 ASSERT(valid_top_config); 647 648 for (c = 0; c < children; c++) { 649 nvlist_t *holey; 650 651 if (child[c] != NULL || 652 !vdev_is_hole(hole_array, holes, c)) 653 continue; 654 655 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 656 0) != 0) 657 goto nomem; 658 659 /* 660 * Holes in the namespace are treated as 661 * "hole" top-level vdevs and have a 662 * special flag set on them. 663 */ 664 if (nvlist_add_string(holey, 665 ZPOOL_CONFIG_TYPE, 666 VDEV_TYPE_HOLE) != 0 || 667 nvlist_add_uint64(holey, 668 ZPOOL_CONFIG_ID, c) != 0 || 669 nvlist_add_uint64(holey, 670 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 671 nvlist_free(holey); 672 goto nomem; 673 } 674 child[c] = holey; 675 } 676 } 677 678 /* 679 * Look for any missing top-level vdevs. If this is the case, 680 * create a faked up 'missing' vdev as a placeholder. We cannot 681 * simply compress the child array, because the kernel performs 682 * certain checks to make sure the vdev IDs match their location 683 * in the configuration. 684 */ 685 for (c = 0; c < children; c++) { 686 if (child[c] == NULL) { 687 nvlist_t *missing; 688 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 689 0) != 0) 690 goto nomem; 691 if (nvlist_add_string(missing, 692 ZPOOL_CONFIG_TYPE, 693 VDEV_TYPE_MISSING) != 0 || 694 nvlist_add_uint64(missing, 695 ZPOOL_CONFIG_ID, c) != 0 || 696 nvlist_add_uint64(missing, 697 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 698 nvlist_free(missing); 699 goto nomem; 700 } 701 child[c] = missing; 702 } 703 } 704 705 /* 706 * Put all of this pool's top-level vdevs into a root vdev. 707 */ 708 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 709 goto nomem; 710 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 711 VDEV_TYPE_ROOT) != 0 || 712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 713 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 714 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 715 child, children) != 0) { 716 nvlist_free(nvroot); 717 goto nomem; 718 } 719 720 for (c = 0; c < children; c++) 721 nvlist_free(child[c]); 722 free(child); 723 children = 0; 724 child = NULL; 725 726 /* 727 * Go through and fix up any paths and/or devids based on our 728 * known list of vdev GUID -> path mappings. 729 */ 730 if (fix_paths(nvroot, pl->names) != 0) { 731 nvlist_free(nvroot); 732 goto nomem; 733 } 734 735 /* 736 * Add the root vdev to this pool's configuration. 737 */ 738 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 739 nvroot) != 0) { 740 nvlist_free(nvroot); 741 goto nomem; 742 } 743 nvlist_free(nvroot); 744 745 /* 746 * zdb uses this path to report on active pools that were 747 * imported or created using -R. 748 */ 749 if (active_ok) 750 goto add_pool; 751 752 /* 753 * Determine if this pool is currently active, in which case we 754 * can't actually import it. 755 */ 756 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 757 &name) == 0); 758 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 759 &guid) == 0); 760 761 if (pool_active(hdl, name, guid, &isactive) != 0) 762 goto error; 763 764 if (isactive) { 765 nvlist_free(config); 766 config = NULL; 767 continue; 768 } 769 770 if ((nvl = refresh_config(hdl, config)) == NULL) { 771 nvlist_free(config); 772 config = NULL; 773 continue; 774 } 775 776 nvlist_free(config); 777 config = nvl; 778 779 /* 780 * Go through and update the paths for spares, now that we have 781 * them. 782 */ 783 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 784 &nvroot) == 0); 785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 786 &spares, &nspares) == 0) { 787 for (i = 0; i < nspares; i++) { 788 if (fix_paths(spares[i], pl->names) != 0) 789 goto nomem; 790 } 791 } 792 793 /* 794 * Update the paths for l2cache devices. 795 */ 796 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 797 &l2cache, &nl2cache) == 0) { 798 for (i = 0; i < nl2cache; i++) { 799 if (fix_paths(l2cache[i], pl->names) != 0) 800 goto nomem; 801 } 802 } 803 804 /* 805 * Restore the original information read from the actual label. 806 */ 807 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 808 DATA_TYPE_UINT64); 809 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 810 DATA_TYPE_STRING); 811 if (hostid != 0) { 812 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 813 hostid) == 0); 814 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 815 hostname) == 0); 816 } 817 818 add_pool: 819 /* 820 * Add this pool to the list of configs. 821 */ 822 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 823 &name) == 0); 824 if (nvlist_add_nvlist(ret, name, config) != 0) 825 goto nomem; 826 827 found_one = B_TRUE; 828 nvlist_free(config); 829 config = NULL; 830 } 831 832 if (!found_one) { 833 nvlist_free(ret); 834 ret = NULL; 835 } 836 837 return (ret); 838 839 nomem: 840 (void) no_memory(hdl); 841 error: 842 nvlist_free(config); 843 nvlist_free(ret); 844 for (c = 0; c < children; c++) 845 nvlist_free(child[c]); 846 free(child); 847 848 return (NULL); 849 } 850 851 /* 852 * Return the offset of the given label. 853 */ 854 static uint64_t 855 label_offset(uint64_t size, int l) 856 { 857 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 858 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 859 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 860 } 861 862 /* 863 * Given a file descriptor, read the label information and return an nvlist 864 * describing the configuration, if there is one. 865 */ 866 int 867 zpool_read_label(int fd, nvlist_t **config) 868 { 869 struct stat64 statbuf; 870 int l; 871 vdev_label_t *label; 872 uint64_t state, txg, size; 873 874 *config = NULL; 875 876 if (fstat64(fd, &statbuf) == -1) 877 return (0); 878 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 879 880 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 881 return (-1); 882 883 for (l = 0; l < VDEV_LABELS; l++) { 884 if (pread64(fd, label, sizeof (vdev_label_t), 885 label_offset(size, l)) != sizeof (vdev_label_t)) 886 continue; 887 888 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 889 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 890 continue; 891 892 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 893 &state) != 0 || state > POOL_STATE_L2CACHE) { 894 nvlist_free(*config); 895 continue; 896 } 897 898 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 899 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 900 &txg) != 0 || txg == 0)) { 901 nvlist_free(*config); 902 continue; 903 } 904 905 free(label); 906 return (0); 907 } 908 909 free(label); 910 *config = NULL; 911 return (0); 912 } 913 914 typedef struct rdsk_node { 915 char *rn_name; 916 int rn_dfd; 917 libzfs_handle_t *rn_hdl; 918 nvlist_t *rn_config; 919 avl_tree_t *rn_avl; 920 avl_node_t rn_node; 921 boolean_t rn_nozpool; 922 } rdsk_node_t; 923 924 static int 925 slice_cache_compare(const void *arg1, const void *arg2) 926 { 927 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 928 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 929 char *nm1slice, *nm2slice; 930 int rv; 931 932 /* 933 * slices zero and two are the most likely to provide results, 934 * so put those first 935 */ 936 nm1slice = strstr(nm1, "s0"); 937 nm2slice = strstr(nm2, "s0"); 938 if (nm1slice && !nm2slice) { 939 return (-1); 940 } 941 if (!nm1slice && nm2slice) { 942 return (1); 943 } 944 nm1slice = strstr(nm1, "s2"); 945 nm2slice = strstr(nm2, "s2"); 946 if (nm1slice && !nm2slice) { 947 return (-1); 948 } 949 if (!nm1slice && nm2slice) { 950 return (1); 951 } 952 953 rv = strcmp(nm1, nm2); 954 if (rv == 0) 955 return (0); 956 return (rv > 0 ? 1 : -1); 957 } 958 959 static void 960 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 961 diskaddr_t size, uint_t blksz) 962 { 963 rdsk_node_t tmpnode; 964 rdsk_node_t *node; 965 char sname[MAXNAMELEN]; 966 967 tmpnode.rn_name = &sname[0]; 968 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 969 diskname, partno); 970 /* 971 * protect against division by zero for disk labels that 972 * contain a bogus sector size 973 */ 974 if (blksz == 0) 975 blksz = DEV_BSIZE; 976 /* too small to contain a zpool? */ 977 if ((size < (SPA_MINDEVSIZE / blksz)) && 978 (node = avl_find(r, &tmpnode, NULL))) 979 node->rn_nozpool = B_TRUE; 980 } 981 982 static void 983 nozpool_all_slices(avl_tree_t *r, const char *sname) 984 { 985 char diskname[MAXNAMELEN]; 986 char *ptr; 987 int i; 988 989 (void) strncpy(diskname, sname, MAXNAMELEN); 990 if (((ptr = strrchr(diskname, 's')) == NULL) && 991 ((ptr = strrchr(diskname, 'p')) == NULL)) 992 return; 993 ptr[0] = 's'; 994 ptr[1] = '\0'; 995 for (i = 0; i < NDKMAP; i++) 996 check_one_slice(r, diskname, i, 0, 1); 997 ptr[0] = 'p'; 998 for (i = 0; i <= FD_NUMPART; i++) 999 check_one_slice(r, diskname, i, 0, 1); 1000 } 1001 1002 static void 1003 check_slices(avl_tree_t *r, int fd, const char *sname) 1004 { 1005 struct extvtoc vtoc; 1006 struct dk_gpt *gpt; 1007 char diskname[MAXNAMELEN]; 1008 char *ptr; 1009 int i; 1010 1011 (void) strncpy(diskname, sname, MAXNAMELEN); 1012 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1013 return; 1014 ptr[1] = '\0'; 1015 1016 if (read_extvtoc(fd, &vtoc) >= 0) { 1017 for (i = 0; i < NDKMAP; i++) 1018 check_one_slice(r, diskname, i, 1019 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1020 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1021 /* 1022 * on x86 we'll still have leftover links that point 1023 * to slices s[9-15], so use NDKMAP instead 1024 */ 1025 for (i = 0; i < NDKMAP; i++) 1026 check_one_slice(r, diskname, i, 1027 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1028 /* nodes p[1-4] are never used with EFI labels */ 1029 ptr[0] = 'p'; 1030 for (i = 1; i <= FD_NUMPART; i++) 1031 check_one_slice(r, diskname, i, 0, 1); 1032 efi_free(gpt); 1033 } 1034 } 1035 1036 static void 1037 zpool_open_func(void *arg) 1038 { 1039 rdsk_node_t *rn = arg; 1040 struct stat64 statbuf; 1041 nvlist_t *config; 1042 int fd; 1043 1044 if (rn->rn_nozpool) 1045 return; 1046 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1047 /* symlink to a device that's no longer there */ 1048 if (errno == ENOENT) 1049 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1050 return; 1051 } 1052 /* 1053 * Ignore failed stats. We only want regular 1054 * files, character devs and block devs. 1055 */ 1056 if (fstat64(fd, &statbuf) != 0 || 1057 (!S_ISREG(statbuf.st_mode) && 1058 !S_ISCHR(statbuf.st_mode) && 1059 !S_ISBLK(statbuf.st_mode))) { 1060 (void) close(fd); 1061 return; 1062 } 1063 /* this file is too small to hold a zpool */ 1064 if (S_ISREG(statbuf.st_mode) && 1065 statbuf.st_size < SPA_MINDEVSIZE) { 1066 (void) close(fd); 1067 return; 1068 } else if (!S_ISREG(statbuf.st_mode)) { 1069 /* 1070 * Try to read the disk label first so we don't have to 1071 * open a bunch of minor nodes that can't have a zpool. 1072 */ 1073 check_slices(rn->rn_avl, fd, rn->rn_name); 1074 } 1075 1076 if ((zpool_read_label(fd, &config)) != 0) { 1077 (void) close(fd); 1078 (void) no_memory(rn->rn_hdl); 1079 return; 1080 } 1081 (void) close(fd); 1082 1083 rn->rn_config = config; 1084 } 1085 1086 /* 1087 * Given a file descriptor, clear (zero) the label information. 1088 */ 1089 int 1090 zpool_clear_label(int fd) 1091 { 1092 struct stat64 statbuf; 1093 int l; 1094 vdev_label_t *label; 1095 uint64_t size; 1096 1097 if (fstat64(fd, &statbuf) == -1) 1098 return (0); 1099 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1100 1101 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1102 return (-1); 1103 1104 for (l = 0; l < VDEV_LABELS; l++) { 1105 if (pwrite64(fd, label, sizeof (vdev_label_t), 1106 label_offset(size, l)) != sizeof (vdev_label_t)) { 1107 free(label); 1108 return (-1); 1109 } 1110 } 1111 1112 free(label); 1113 return (0); 1114 } 1115 1116 /* 1117 * Given a list of directories to search, find all pools stored on disk. This 1118 * includes partial pools which are not available to import. If no args are 1119 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1120 * poolname or guid (but not both) are provided by the caller when trying 1121 * to import a specific pool. 1122 */ 1123 static nvlist_t * 1124 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1125 { 1126 int i, dirs = iarg->paths; 1127 struct dirent64 *dp; 1128 char path[MAXPATHLEN]; 1129 char *end, **dir = iarg->path; 1130 size_t pathleft; 1131 nvlist_t *ret = NULL; 1132 static char *default_dir = ZFS_DISK_ROOT; 1133 pool_list_t pools = { 0 }; 1134 pool_entry_t *pe, *penext; 1135 vdev_entry_t *ve, *venext; 1136 config_entry_t *ce, *cenext; 1137 name_entry_t *ne, *nenext; 1138 avl_tree_t slice_cache; 1139 rdsk_node_t *slice; 1140 void *cookie; 1141 1142 if (dirs == 0) { 1143 dirs = 1; 1144 dir = &default_dir; 1145 } 1146 1147 /* 1148 * Go through and read the label configuration information from every 1149 * possible device, organizing the information according to pool GUID 1150 * and toplevel GUID. 1151 */ 1152 for (i = 0; i < dirs; i++) { 1153 tpool_t *t; 1154 char rdsk[MAXPATHLEN]; 1155 int dfd; 1156 boolean_t config_failed = B_FALSE; 1157 DIR *dirp; 1158 1159 /* use realpath to normalize the path */ 1160 if (realpath(dir[i], path) == 0) { 1161 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1162 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1163 goto error; 1164 } 1165 end = &path[strlen(path)]; 1166 *end++ = '/'; 1167 *end = 0; 1168 pathleft = &path[sizeof (path)] - end; 1169 1170 /* 1171 * Using raw devices instead of block devices when we're 1172 * reading the labels skips a bunch of slow operations during 1173 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1174 */ 1175 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1176 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1177 else 1178 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1179 1180 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1181 (dirp = fdopendir(dfd)) == NULL) { 1182 if (dfd >= 0) 1183 (void) close(dfd); 1184 zfs_error_aux(hdl, strerror(errno)); 1185 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1186 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1187 rdsk); 1188 goto error; 1189 } 1190 1191 avl_create(&slice_cache, slice_cache_compare, 1192 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1193 /* 1194 * This is not MT-safe, but we have no MT consumers of libzfs 1195 */ 1196 while ((dp = readdir64(dirp)) != NULL) { 1197 const char *name = dp->d_name; 1198 if (name[0] == '.' && 1199 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1200 continue; 1201 1202 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1203 slice->rn_name = zfs_strdup(hdl, name); 1204 slice->rn_avl = &slice_cache; 1205 slice->rn_dfd = dfd; 1206 slice->rn_hdl = hdl; 1207 slice->rn_nozpool = B_FALSE; 1208 avl_add(&slice_cache, slice); 1209 } 1210 /* 1211 * create a thread pool to do all of this in parallel; 1212 * rn_nozpool is not protected, so this is racy in that 1213 * multiple tasks could decide that the same slice can 1214 * not hold a zpool, which is benign. Also choose 1215 * double the number of processors; we hold a lot of 1216 * locks in the kernel, so going beyond this doesn't 1217 * buy us much. 1218 */ 1219 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1220 0, NULL); 1221 for (slice = avl_first(&slice_cache); slice; 1222 (slice = avl_walk(&slice_cache, slice, 1223 AVL_AFTER))) 1224 (void) tpool_dispatch(t, zpool_open_func, slice); 1225 tpool_wait(t); 1226 tpool_destroy(t); 1227 1228 cookie = NULL; 1229 while ((slice = avl_destroy_nodes(&slice_cache, 1230 &cookie)) != NULL) { 1231 if (slice->rn_config != NULL && !config_failed) { 1232 nvlist_t *config = slice->rn_config; 1233 boolean_t matched = B_TRUE; 1234 1235 if (iarg->poolname != NULL) { 1236 char *pname; 1237 1238 matched = nvlist_lookup_string(config, 1239 ZPOOL_CONFIG_POOL_NAME, 1240 &pname) == 0 && 1241 strcmp(iarg->poolname, pname) == 0; 1242 } else if (iarg->guid != 0) { 1243 uint64_t this_guid; 1244 1245 matched = nvlist_lookup_uint64(config, 1246 ZPOOL_CONFIG_POOL_GUID, 1247 &this_guid) == 0 && 1248 iarg->guid == this_guid; 1249 } 1250 if (!matched) { 1251 nvlist_free(config); 1252 } else { 1253 /* 1254 * use the non-raw path for the config 1255 */ 1256 (void) strlcpy(end, slice->rn_name, 1257 pathleft); 1258 if (add_config(hdl, &pools, path, 1259 config) != 0) 1260 config_failed = B_TRUE; 1261 } 1262 } 1263 free(slice->rn_name); 1264 free(slice); 1265 } 1266 avl_destroy(&slice_cache); 1267 1268 (void) closedir(dirp); 1269 1270 if (config_failed) 1271 goto error; 1272 } 1273 1274 ret = get_configs(hdl, &pools, iarg->can_be_active); 1275 1276 error: 1277 for (pe = pools.pools; pe != NULL; pe = penext) { 1278 penext = pe->pe_next; 1279 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1280 venext = ve->ve_next; 1281 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1282 cenext = ce->ce_next; 1283 nvlist_free(ce->ce_config); 1284 free(ce); 1285 } 1286 free(ve); 1287 } 1288 free(pe); 1289 } 1290 1291 for (ne = pools.names; ne != NULL; ne = nenext) { 1292 nenext = ne->ne_next; 1293 free(ne->ne_name); 1294 free(ne); 1295 } 1296 1297 return (ret); 1298 } 1299 1300 nvlist_t * 1301 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1302 { 1303 importargs_t iarg = { 0 }; 1304 1305 iarg.paths = argc; 1306 iarg.path = argv; 1307 1308 return (zpool_find_import_impl(hdl, &iarg)); 1309 } 1310 1311 /* 1312 * Given a cache file, return the contents as a list of importable pools. 1313 * poolname or guid (but not both) are provided by the caller when trying 1314 * to import a specific pool. 1315 */ 1316 nvlist_t * 1317 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1318 char *poolname, uint64_t guid) 1319 { 1320 char *buf; 1321 int fd; 1322 struct stat64 statbuf; 1323 nvlist_t *raw, *src, *dst; 1324 nvlist_t *pools; 1325 nvpair_t *elem; 1326 char *name; 1327 uint64_t this_guid; 1328 boolean_t active; 1329 1330 verify(poolname == NULL || guid == 0); 1331 1332 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1333 zfs_error_aux(hdl, "%s", strerror(errno)); 1334 (void) zfs_error(hdl, EZFS_BADCACHE, 1335 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1336 return (NULL); 1337 } 1338 1339 if (fstat64(fd, &statbuf) != 0) { 1340 zfs_error_aux(hdl, "%s", strerror(errno)); 1341 (void) close(fd); 1342 (void) zfs_error(hdl, EZFS_BADCACHE, 1343 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1344 return (NULL); 1345 } 1346 1347 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1348 (void) close(fd); 1349 return (NULL); 1350 } 1351 1352 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1353 (void) close(fd); 1354 free(buf); 1355 (void) zfs_error(hdl, EZFS_BADCACHE, 1356 dgettext(TEXT_DOMAIN, 1357 "failed to read cache file contents")); 1358 return (NULL); 1359 } 1360 1361 (void) close(fd); 1362 1363 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1364 free(buf); 1365 (void) zfs_error(hdl, EZFS_BADCACHE, 1366 dgettext(TEXT_DOMAIN, 1367 "invalid or corrupt cache file contents")); 1368 return (NULL); 1369 } 1370 1371 free(buf); 1372 1373 /* 1374 * Go through and get the current state of the pools and refresh their 1375 * state. 1376 */ 1377 if (nvlist_alloc(&pools, 0, 0) != 0) { 1378 (void) no_memory(hdl); 1379 nvlist_free(raw); 1380 return (NULL); 1381 } 1382 1383 elem = NULL; 1384 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1385 src = fnvpair_value_nvlist(elem); 1386 1387 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1388 if (poolname != NULL && strcmp(poolname, name) != 0) 1389 continue; 1390 1391 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1392 if (guid != 0 && guid != this_guid) 1393 continue; 1394 1395 if (pool_active(hdl, name, this_guid, &active) != 0) { 1396 nvlist_free(raw); 1397 nvlist_free(pools); 1398 return (NULL); 1399 } 1400 1401 if (active) 1402 continue; 1403 1404 if ((dst = refresh_config(hdl, src)) == NULL) { 1405 nvlist_free(raw); 1406 nvlist_free(pools); 1407 return (NULL); 1408 } 1409 1410 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1411 (void) no_memory(hdl); 1412 nvlist_free(dst); 1413 nvlist_free(raw); 1414 nvlist_free(pools); 1415 return (NULL); 1416 } 1417 nvlist_free(dst); 1418 } 1419 1420 nvlist_free(raw); 1421 return (pools); 1422 } 1423 1424 static int 1425 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1426 { 1427 importargs_t *import = data; 1428 int found = 0; 1429 1430 if (import->poolname != NULL) { 1431 char *pool_name; 1432 1433 verify(nvlist_lookup_string(zhp->zpool_config, 1434 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1435 if (strcmp(pool_name, import->poolname) == 0) 1436 found = 1; 1437 } else { 1438 uint64_t pool_guid; 1439 1440 verify(nvlist_lookup_uint64(zhp->zpool_config, 1441 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1442 if (pool_guid == import->guid) 1443 found = 1; 1444 } 1445 1446 zpool_close(zhp); 1447 return (found); 1448 } 1449 1450 nvlist_t * 1451 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1452 { 1453 verify(import->poolname == NULL || import->guid == 0); 1454 1455 if (import->unique) 1456 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1457 1458 if (import->cachefile != NULL) 1459 return (zpool_find_import_cached(hdl, import->cachefile, 1460 import->poolname, import->guid)); 1461 1462 return (zpool_find_import_impl(hdl, import)); 1463 } 1464 1465 boolean_t 1466 find_guid(nvlist_t *nv, uint64_t guid) 1467 { 1468 uint64_t tmp; 1469 nvlist_t **child; 1470 uint_t c, children; 1471 1472 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1473 if (tmp == guid) 1474 return (B_TRUE); 1475 1476 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1477 &child, &children) == 0) { 1478 for (c = 0; c < children; c++) 1479 if (find_guid(child[c], guid)) 1480 return (B_TRUE); 1481 } 1482 1483 return (B_FALSE); 1484 } 1485 1486 typedef struct aux_cbdata { 1487 const char *cb_type; 1488 uint64_t cb_guid; 1489 zpool_handle_t *cb_zhp; 1490 } aux_cbdata_t; 1491 1492 static int 1493 find_aux(zpool_handle_t *zhp, void *data) 1494 { 1495 aux_cbdata_t *cbp = data; 1496 nvlist_t **list; 1497 uint_t i, count; 1498 uint64_t guid; 1499 nvlist_t *nvroot; 1500 1501 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1502 &nvroot) == 0); 1503 1504 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1505 &list, &count) == 0) { 1506 for (i = 0; i < count; i++) { 1507 verify(nvlist_lookup_uint64(list[i], 1508 ZPOOL_CONFIG_GUID, &guid) == 0); 1509 if (guid == cbp->cb_guid) { 1510 cbp->cb_zhp = zhp; 1511 return (1); 1512 } 1513 } 1514 } 1515 1516 zpool_close(zhp); 1517 return (0); 1518 } 1519 1520 /* 1521 * Determines if the pool is in use. If so, it returns true and the state of 1522 * the pool as well as the name of the pool. Both strings are allocated and 1523 * must be freed by the caller. 1524 */ 1525 int 1526 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1527 boolean_t *inuse) 1528 { 1529 nvlist_t *config; 1530 char *name; 1531 boolean_t ret; 1532 uint64_t guid, vdev_guid; 1533 zpool_handle_t *zhp; 1534 nvlist_t *pool_config; 1535 uint64_t stateval, isspare; 1536 aux_cbdata_t cb = { 0 }; 1537 boolean_t isactive; 1538 1539 *inuse = B_FALSE; 1540 1541 if (zpool_read_label(fd, &config) != 0) { 1542 (void) no_memory(hdl); 1543 return (-1); 1544 } 1545 1546 if (config == NULL) 1547 return (0); 1548 1549 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1550 &stateval) == 0); 1551 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1552 &vdev_guid) == 0); 1553 1554 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1555 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1556 &name) == 0); 1557 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1558 &guid) == 0); 1559 } 1560 1561 switch (stateval) { 1562 case POOL_STATE_EXPORTED: 1563 /* 1564 * A pool with an exported state may in fact be imported 1565 * read-only, so check the in-core state to see if it's 1566 * active and imported read-only. If it is, set 1567 * its state to active. 1568 */ 1569 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1570 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1571 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1572 stateval = POOL_STATE_ACTIVE; 1573 1574 /* 1575 * All we needed the zpool handle for is the 1576 * readonly prop check. 1577 */ 1578 zpool_close(zhp); 1579 } 1580 1581 ret = B_TRUE; 1582 break; 1583 1584 case POOL_STATE_ACTIVE: 1585 /* 1586 * For an active pool, we have to determine if it's really part 1587 * of a currently active pool (in which case the pool will exist 1588 * and the guid will be the same), or whether it's part of an 1589 * active pool that was disconnected without being explicitly 1590 * exported. 1591 */ 1592 if (pool_active(hdl, name, guid, &isactive) != 0) { 1593 nvlist_free(config); 1594 return (-1); 1595 } 1596 1597 if (isactive) { 1598 /* 1599 * Because the device may have been removed while 1600 * offlined, we only report it as active if the vdev is 1601 * still present in the config. Otherwise, pretend like 1602 * it's not in use. 1603 */ 1604 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1605 (pool_config = zpool_get_config(zhp, NULL)) 1606 != NULL) { 1607 nvlist_t *nvroot; 1608 1609 verify(nvlist_lookup_nvlist(pool_config, 1610 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1611 ret = find_guid(nvroot, vdev_guid); 1612 } else { 1613 ret = B_FALSE; 1614 } 1615 1616 /* 1617 * If this is an active spare within another pool, we 1618 * treat it like an unused hot spare. This allows the 1619 * user to create a pool with a hot spare that currently 1620 * in use within another pool. Since we return B_TRUE, 1621 * libdiskmgt will continue to prevent generic consumers 1622 * from using the device. 1623 */ 1624 if (ret && nvlist_lookup_uint64(config, 1625 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1626 stateval = POOL_STATE_SPARE; 1627 1628 if (zhp != NULL) 1629 zpool_close(zhp); 1630 } else { 1631 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1632 ret = B_TRUE; 1633 } 1634 break; 1635 1636 case POOL_STATE_SPARE: 1637 /* 1638 * For a hot spare, it can be either definitively in use, or 1639 * potentially active. To determine if it's in use, we iterate 1640 * over all pools in the system and search for one with a spare 1641 * with a matching guid. 1642 * 1643 * Due to the shared nature of spares, we don't actually report 1644 * the potentially active case as in use. This means the user 1645 * can freely create pools on the hot spares of exported pools, 1646 * but to do otherwise makes the resulting code complicated, and 1647 * we end up having to deal with this case anyway. 1648 */ 1649 cb.cb_zhp = NULL; 1650 cb.cb_guid = vdev_guid; 1651 cb.cb_type = ZPOOL_CONFIG_SPARES; 1652 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1653 name = (char *)zpool_get_name(cb.cb_zhp); 1654 ret = B_TRUE; 1655 } else { 1656 ret = B_FALSE; 1657 } 1658 break; 1659 1660 case POOL_STATE_L2CACHE: 1661 1662 /* 1663 * Check if any pool is currently using this l2cache device. 1664 */ 1665 cb.cb_zhp = NULL; 1666 cb.cb_guid = vdev_guid; 1667 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1668 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1669 name = (char *)zpool_get_name(cb.cb_zhp); 1670 ret = B_TRUE; 1671 } else { 1672 ret = B_FALSE; 1673 } 1674 break; 1675 1676 default: 1677 ret = B_FALSE; 1678 } 1679 1680 1681 if (ret) { 1682 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1683 if (cb.cb_zhp) 1684 zpool_close(cb.cb_zhp); 1685 nvlist_free(config); 1686 return (-1); 1687 } 1688 *state = (pool_state_t)stateval; 1689 } 1690 1691 if (cb.cb_zhp) 1692 zpool_close(cb.cb_zhp); 1693 1694 nvlist_free(config); 1695 *inuse = ret; 1696 return (0); 1697 } 1698