xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision e59325b74ca0760391c4b4d3acd8d3294ffc521a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright 2015 RackTop Systems.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /*
30  * Pool import support functions.
31  *
32  * To import a pool, we rely on reading the configuration information from the
33  * ZFS label of each device.  If we successfully read the label, then we
34  * organize the configuration information in the following hierarchy:
35  *
36  *	pool guid -> toplevel vdev guid -> label txg
37  *
38  * Duplicate entries matching this same tuple will be discarded.  Once we have
39  * examined every device, we pick the best label txg config for each toplevel
40  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41  * update any paths that have changed.  Finally, we attempt to import the pool
42  * using our derived config, and record the results.
43  */
44 
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
60 
61 #include <sys/vdev_impl.h>
62 
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65 
66 /*
67  * Intermediate structures used to gather configuration information.
68  */
69 typedef struct config_entry {
70 	uint64_t		ce_txg;
71 	nvlist_t		*ce_config;
72 	struct config_entry	*ce_next;
73 } config_entry_t;
74 
75 typedef struct vdev_entry {
76 	uint64_t		ve_guid;
77 	config_entry_t		*ve_configs;
78 	struct vdev_entry	*ve_next;
79 } vdev_entry_t;
80 
81 typedef struct pool_entry {
82 	uint64_t		pe_guid;
83 	vdev_entry_t		*pe_vdevs;
84 	struct pool_entry	*pe_next;
85 } pool_entry_t;
86 
87 typedef struct name_entry {
88 	char			*ne_name;
89 	uint64_t		ne_guid;
90 	struct name_entry	*ne_next;
91 } name_entry_t;
92 
93 typedef struct pool_list {
94 	pool_entry_t		*pools;
95 	name_entry_t		*names;
96 } pool_list_t;
97 
98 /*
99  * Go through and fix up any path and/or devid information for the given vdev
100  * configuration.
101  */
102 static int
103 fix_paths(nvlist_t *nv, name_entry_t *names)
104 {
105 	nvlist_t **child;
106 	uint_t c, children;
107 	uint64_t guid;
108 	name_entry_t *ne, *best;
109 	char *path, *devid;
110 	int matched;
111 
112 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113 	    &child, &children) == 0) {
114 		for (c = 0; c < children; c++)
115 			if (fix_paths(child[c], names) != 0)
116 				return (-1);
117 		return (0);
118 	}
119 
120 	/*
121 	 * This is a leaf (file or disk) vdev.  In either case, go through
122 	 * the name list and see if we find a matching guid.  If so, replace
123 	 * the path and see if we can calculate a new devid.
124 	 *
125 	 * There may be multiple names associated with a particular guid, in
126 	 * which case we have overlapping slices or multiple paths to the same
127 	 * disk.  If this is the case, then we want to pick the path that is
128 	 * the most similar to the original, where "most similar" is the number
129 	 * of matching characters starting from the end of the path.  This will
130 	 * preserve slice numbers even if the disks have been reorganized, and
131 	 * will also catch preferred disk names if multiple paths exist.
132 	 */
133 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
134 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
135 		path = NULL;
136 
137 	matched = 0;
138 	best = NULL;
139 	for (ne = names; ne != NULL; ne = ne->ne_next) {
140 		if (ne->ne_guid == guid) {
141 			const char *src, *dst;
142 			int count;
143 
144 			if (path == NULL) {
145 				best = ne;
146 				break;
147 			}
148 
149 			src = ne->ne_name + strlen(ne->ne_name) - 1;
150 			dst = path + strlen(path) - 1;
151 			for (count = 0; src >= ne->ne_name && dst >= path;
152 			    src--, dst--, count++)
153 				if (*src != *dst)
154 					break;
155 
156 			/*
157 			 * At this point, 'count' is the number of characters
158 			 * matched from the end.
159 			 */
160 			if (count > matched || best == NULL) {
161 				best = ne;
162 				matched = count;
163 			}
164 		}
165 	}
166 
167 	if (best == NULL)
168 		return (0);
169 
170 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
171 		return (-1);
172 
173 	if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
174 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
175 	} else {
176 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
177 			devid_str_free(devid);
178 			return (-1);
179 		}
180 		devid_str_free(devid);
181 	}
182 
183 	return (0);
184 }
185 
186 /*
187  * Add the given configuration to the list of known devices.
188  */
189 static int
190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
191     nvlist_t *config)
192 {
193 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
194 	pool_entry_t *pe;
195 	vdev_entry_t *ve;
196 	config_entry_t *ce;
197 	name_entry_t *ne;
198 
199 	/*
200 	 * If this is a hot spare not currently in use or level 2 cache
201 	 * device, add it to the list of names to translate, but don't do
202 	 * anything else.
203 	 */
204 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
205 	    &state) == 0 &&
206 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
207 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
208 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
209 			return (-1);
210 
211 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
212 			free(ne);
213 			return (-1);
214 		}
215 
216 		ne->ne_guid = vdev_guid;
217 		ne->ne_next = pl->names;
218 		pl->names = ne;
219 
220 		return (0);
221 	}
222 
223 	/*
224 	 * If we have a valid config but cannot read any of these fields, then
225 	 * it means we have a half-initialized label.  In vdev_label_init()
226 	 * we write a label with txg == 0 so that we can identify the device
227 	 * in case the user refers to the same disk later on.  If we fail to
228 	 * create the pool, we'll be left with a label in this state
229 	 * which should not be considered part of a valid pool.
230 	 */
231 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
232 	    &pool_guid) != 0 ||
233 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
234 	    &vdev_guid) != 0 ||
235 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
236 	    &top_guid) != 0 ||
237 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
238 	    &txg) != 0 || txg == 0) {
239 		return (0);
240 	}
241 
242 	/*
243 	 * First, see if we know about this pool.  If not, then add it to the
244 	 * list of known pools.
245 	 */
246 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
247 		if (pe->pe_guid == pool_guid)
248 			break;
249 	}
250 
251 	if (pe == NULL) {
252 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
253 			return (-1);
254 		}
255 		pe->pe_guid = pool_guid;
256 		pe->pe_next = pl->pools;
257 		pl->pools = pe;
258 	}
259 
260 	/*
261 	 * Second, see if we know about this toplevel vdev.  Add it if its
262 	 * missing.
263 	 */
264 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
265 		if (ve->ve_guid == top_guid)
266 			break;
267 	}
268 
269 	if (ve == NULL) {
270 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
271 			return (-1);
272 		}
273 		ve->ve_guid = top_guid;
274 		ve->ve_next = pe->pe_vdevs;
275 		pe->pe_vdevs = ve;
276 	}
277 
278 	/*
279 	 * Third, see if we have a config with a matching transaction group.  If
280 	 * so, then we do nothing.  Otherwise, add it to the list of known
281 	 * configs.
282 	 */
283 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
284 		if (ce->ce_txg == txg)
285 			break;
286 	}
287 
288 	if (ce == NULL) {
289 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
290 			return (-1);
291 		}
292 		ce->ce_txg = txg;
293 		ce->ce_config = fnvlist_dup(config);
294 		ce->ce_next = ve->ve_configs;
295 		ve->ve_configs = ce;
296 	}
297 
298 	/*
299 	 * At this point we've successfully added our config to the list of
300 	 * known configs.  The last thing to do is add the vdev guid -> path
301 	 * mappings so that we can fix up the configuration as necessary before
302 	 * doing the import.
303 	 */
304 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
305 		return (-1);
306 
307 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
308 		free(ne);
309 		return (-1);
310 	}
311 
312 	ne->ne_guid = vdev_guid;
313 	ne->ne_next = pl->names;
314 	pl->names = ne;
315 
316 	return (0);
317 }
318 
319 /*
320  * Returns true if the named pool matches the given GUID.
321  */
322 static int
323 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
324     boolean_t *isactive)
325 {
326 	zpool_handle_t *zhp;
327 	uint64_t theguid;
328 
329 	if (zpool_open_silent(hdl, name, &zhp) != 0)
330 		return (-1);
331 
332 	if (zhp == NULL) {
333 		*isactive = B_FALSE;
334 		return (0);
335 	}
336 
337 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
338 	    &theguid) == 0);
339 
340 	zpool_close(zhp);
341 
342 	*isactive = (theguid == guid);
343 	return (0);
344 }
345 
346 static nvlist_t *
347 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
348 {
349 	nvlist_t *nvl;
350 	zfs_cmd_t zc = { 0 };
351 	int err, dstbuf_size;
352 
353 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
354 		return (NULL);
355 
356 	dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
357 
358 	if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
359 		zcmd_free_nvlists(&zc);
360 		return (NULL);
361 	}
362 
363 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
364 	    &zc)) != 0 && errno == ENOMEM) {
365 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
366 			zcmd_free_nvlists(&zc);
367 			return (NULL);
368 		}
369 	}
370 
371 	if (err) {
372 		zcmd_free_nvlists(&zc);
373 		return (NULL);
374 	}
375 
376 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
377 		zcmd_free_nvlists(&zc);
378 		return (NULL);
379 	}
380 
381 	zcmd_free_nvlists(&zc);
382 	return (nvl);
383 }
384 
385 /*
386  * Determine if the vdev id is a hole in the namespace.
387  */
388 boolean_t
389 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
390 {
391 	for (int c = 0; c < holes; c++) {
392 
393 		/* Top-level is a hole */
394 		if (hole_array[c] == id)
395 			return (B_TRUE);
396 	}
397 	return (B_FALSE);
398 }
399 
400 /*
401  * Convert our list of pools into the definitive set of configurations.  We
402  * start by picking the best config for each toplevel vdev.  Once that's done,
403  * we assemble the toplevel vdevs into a full config for the pool.  We make a
404  * pass to fix up any incorrect paths, and then add it to the main list to
405  * return to the user.
406  */
407 static nvlist_t *
408 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
409     nvlist_t *policy)
410 {
411 	pool_entry_t *pe;
412 	vdev_entry_t *ve;
413 	config_entry_t *ce;
414 	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
415 	nvlist_t **spares, **l2cache;
416 	uint_t i, nspares, nl2cache;
417 	boolean_t config_seen;
418 	uint64_t best_txg;
419 	char *name, *hostname = NULL;
420 	uint64_t guid;
421 	uint_t children = 0;
422 	nvlist_t **child = NULL;
423 	uint_t holes;
424 	uint64_t *hole_array, max_id;
425 	uint_t c;
426 	boolean_t isactive;
427 	uint64_t hostid;
428 	nvlist_t *nvl;
429 	boolean_t found_one = B_FALSE;
430 	boolean_t valid_top_config = B_FALSE;
431 
432 	if (nvlist_alloc(&ret, 0, 0) != 0)
433 		goto nomem;
434 
435 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
436 		uint64_t id, max_txg = 0;
437 
438 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
439 			goto nomem;
440 		config_seen = B_FALSE;
441 
442 		/*
443 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
444 		 * from the first one we find, and then go through the rest and
445 		 * add them as necessary to the 'vdevs' member of the config.
446 		 */
447 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
448 
449 			/*
450 			 * Determine the best configuration for this vdev by
451 			 * selecting the config with the latest transaction
452 			 * group.
453 			 */
454 			best_txg = 0;
455 			for (ce = ve->ve_configs; ce != NULL;
456 			    ce = ce->ce_next) {
457 
458 				if (ce->ce_txg > best_txg) {
459 					tmp = ce->ce_config;
460 					best_txg = ce->ce_txg;
461 				}
462 			}
463 
464 			/*
465 			 * We rely on the fact that the max txg for the
466 			 * pool will contain the most up-to-date information
467 			 * about the valid top-levels in the vdev namespace.
468 			 */
469 			if (best_txg > max_txg) {
470 				(void) nvlist_remove(config,
471 				    ZPOOL_CONFIG_VDEV_CHILDREN,
472 				    DATA_TYPE_UINT64);
473 				(void) nvlist_remove(config,
474 				    ZPOOL_CONFIG_HOLE_ARRAY,
475 				    DATA_TYPE_UINT64_ARRAY);
476 
477 				max_txg = best_txg;
478 				hole_array = NULL;
479 				holes = 0;
480 				max_id = 0;
481 				valid_top_config = B_FALSE;
482 
483 				if (nvlist_lookup_uint64(tmp,
484 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
485 					verify(nvlist_add_uint64(config,
486 					    ZPOOL_CONFIG_VDEV_CHILDREN,
487 					    max_id) == 0);
488 					valid_top_config = B_TRUE;
489 				}
490 
491 				if (nvlist_lookup_uint64_array(tmp,
492 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
493 				    &holes) == 0) {
494 					verify(nvlist_add_uint64_array(config,
495 					    ZPOOL_CONFIG_HOLE_ARRAY,
496 					    hole_array, holes) == 0);
497 				}
498 			}
499 
500 			if (!config_seen) {
501 				/*
502 				 * Copy the relevant pieces of data to the pool
503 				 * configuration:
504 				 *
505 				 *	version
506 				 *	pool guid
507 				 *	name
508 				 *	comment (if available)
509 				 *	pool state
510 				 *	hostid (if available)
511 				 *	hostname (if available)
512 				 */
513 				uint64_t state, version;
514 				char *comment = NULL;
515 
516 				version = fnvlist_lookup_uint64(tmp,
517 				    ZPOOL_CONFIG_VERSION);
518 				fnvlist_add_uint64(config,
519 				    ZPOOL_CONFIG_VERSION, version);
520 				guid = fnvlist_lookup_uint64(tmp,
521 				    ZPOOL_CONFIG_POOL_GUID);
522 				fnvlist_add_uint64(config,
523 				    ZPOOL_CONFIG_POOL_GUID, guid);
524 				name = fnvlist_lookup_string(tmp,
525 				    ZPOOL_CONFIG_POOL_NAME);
526 				fnvlist_add_string(config,
527 				    ZPOOL_CONFIG_POOL_NAME, name);
528 
529 				if (nvlist_lookup_string(tmp,
530 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
531 					fnvlist_add_string(config,
532 					    ZPOOL_CONFIG_COMMENT, comment);
533 
534 				state = fnvlist_lookup_uint64(tmp,
535 				    ZPOOL_CONFIG_POOL_STATE);
536 				fnvlist_add_uint64(config,
537 				    ZPOOL_CONFIG_POOL_STATE, state);
538 
539 				hostid = 0;
540 				if (nvlist_lookup_uint64(tmp,
541 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
542 					fnvlist_add_uint64(config,
543 					    ZPOOL_CONFIG_HOSTID, hostid);
544 					hostname = fnvlist_lookup_string(tmp,
545 					    ZPOOL_CONFIG_HOSTNAME);
546 					fnvlist_add_string(config,
547 					    ZPOOL_CONFIG_HOSTNAME, hostname);
548 				}
549 
550 				config_seen = B_TRUE;
551 			}
552 
553 			/*
554 			 * Add this top-level vdev to the child array.
555 			 */
556 			verify(nvlist_lookup_nvlist(tmp,
557 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
558 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
559 			    &id) == 0);
560 
561 			if (id >= children) {
562 				nvlist_t **newchild;
563 
564 				newchild = zfs_alloc(hdl, (id + 1) *
565 				    sizeof (nvlist_t *));
566 				if (newchild == NULL)
567 					goto nomem;
568 
569 				for (c = 0; c < children; c++)
570 					newchild[c] = child[c];
571 
572 				free(child);
573 				child = newchild;
574 				children = id + 1;
575 			}
576 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
577 				goto nomem;
578 
579 		}
580 
581 		/*
582 		 * If we have information about all the top-levels then
583 		 * clean up the nvlist which we've constructed. This
584 		 * means removing any extraneous devices that are
585 		 * beyond the valid range or adding devices to the end
586 		 * of our array which appear to be missing.
587 		 */
588 		if (valid_top_config) {
589 			if (max_id < children) {
590 				for (c = max_id; c < children; c++)
591 					nvlist_free(child[c]);
592 				children = max_id;
593 			} else if (max_id > children) {
594 				nvlist_t **newchild;
595 
596 				newchild = zfs_alloc(hdl, (max_id) *
597 				    sizeof (nvlist_t *));
598 				if (newchild == NULL)
599 					goto nomem;
600 
601 				for (c = 0; c < children; c++)
602 					newchild[c] = child[c];
603 
604 				free(child);
605 				child = newchild;
606 				children = max_id;
607 			}
608 		}
609 
610 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
611 		    &guid) == 0);
612 
613 		/*
614 		 * The vdev namespace may contain holes as a result of
615 		 * device removal. We must add them back into the vdev
616 		 * tree before we process any missing devices.
617 		 */
618 		if (holes > 0) {
619 			ASSERT(valid_top_config);
620 
621 			for (c = 0; c < children; c++) {
622 				nvlist_t *holey;
623 
624 				if (child[c] != NULL ||
625 				    !vdev_is_hole(hole_array, holes, c))
626 					continue;
627 
628 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
629 				    0) != 0)
630 					goto nomem;
631 
632 				/*
633 				 * Holes in the namespace are treated as
634 				 * "hole" top-level vdevs and have a
635 				 * special flag set on them.
636 				 */
637 				if (nvlist_add_string(holey,
638 				    ZPOOL_CONFIG_TYPE,
639 				    VDEV_TYPE_HOLE) != 0 ||
640 				    nvlist_add_uint64(holey,
641 				    ZPOOL_CONFIG_ID, c) != 0 ||
642 				    nvlist_add_uint64(holey,
643 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
644 					nvlist_free(holey);
645 					goto nomem;
646 				}
647 				child[c] = holey;
648 			}
649 		}
650 
651 		/*
652 		 * Look for any missing top-level vdevs.  If this is the case,
653 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
654 		 * simply compress the child array, because the kernel performs
655 		 * certain checks to make sure the vdev IDs match their location
656 		 * in the configuration.
657 		 */
658 		for (c = 0; c < children; c++) {
659 			if (child[c] == NULL) {
660 				nvlist_t *missing;
661 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
662 				    0) != 0)
663 					goto nomem;
664 				if (nvlist_add_string(missing,
665 				    ZPOOL_CONFIG_TYPE,
666 				    VDEV_TYPE_MISSING) != 0 ||
667 				    nvlist_add_uint64(missing,
668 				    ZPOOL_CONFIG_ID, c) != 0 ||
669 				    nvlist_add_uint64(missing,
670 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
671 					nvlist_free(missing);
672 					goto nomem;
673 				}
674 				child[c] = missing;
675 			}
676 		}
677 
678 		/*
679 		 * Put all of this pool's top-level vdevs into a root vdev.
680 		 */
681 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
682 			goto nomem;
683 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
684 		    VDEV_TYPE_ROOT) != 0 ||
685 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
686 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
687 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
688 		    child, children) != 0) {
689 			nvlist_free(nvroot);
690 			goto nomem;
691 		}
692 
693 		for (c = 0; c < children; c++)
694 			nvlist_free(child[c]);
695 		free(child);
696 		children = 0;
697 		child = NULL;
698 
699 		/*
700 		 * Go through and fix up any paths and/or devids based on our
701 		 * known list of vdev GUID -> path mappings.
702 		 */
703 		if (fix_paths(nvroot, pl->names) != 0) {
704 			nvlist_free(nvroot);
705 			goto nomem;
706 		}
707 
708 		/*
709 		 * Add the root vdev to this pool's configuration.
710 		 */
711 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
712 		    nvroot) != 0) {
713 			nvlist_free(nvroot);
714 			goto nomem;
715 		}
716 		nvlist_free(nvroot);
717 
718 		/*
719 		 * zdb uses this path to report on active pools that were
720 		 * imported or created using -R.
721 		 */
722 		if (active_ok)
723 			goto add_pool;
724 
725 		/*
726 		 * Determine if this pool is currently active, in which case we
727 		 * can't actually import it.
728 		 */
729 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
730 		    &name) == 0);
731 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
732 		    &guid) == 0);
733 
734 		if (pool_active(hdl, name, guid, &isactive) != 0)
735 			goto error;
736 
737 		if (isactive) {
738 			nvlist_free(config);
739 			config = NULL;
740 			continue;
741 		}
742 
743 		if (policy != NULL) {
744 			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
745 			    policy) != 0)
746 				goto nomem;
747 		}
748 
749 		if ((nvl = refresh_config(hdl, config)) == NULL) {
750 			nvlist_free(config);
751 			config = NULL;
752 			continue;
753 		}
754 
755 		nvlist_free(config);
756 		config = nvl;
757 
758 		/*
759 		 * Go through and update the paths for spares, now that we have
760 		 * them.
761 		 */
762 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
763 		    &nvroot) == 0);
764 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
765 		    &spares, &nspares) == 0) {
766 			for (i = 0; i < nspares; i++) {
767 				if (fix_paths(spares[i], pl->names) != 0)
768 					goto nomem;
769 			}
770 		}
771 
772 		/*
773 		 * Update the paths for l2cache devices.
774 		 */
775 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
776 		    &l2cache, &nl2cache) == 0) {
777 			for (i = 0; i < nl2cache; i++) {
778 				if (fix_paths(l2cache[i], pl->names) != 0)
779 					goto nomem;
780 			}
781 		}
782 
783 		/*
784 		 * Restore the original information read from the actual label.
785 		 */
786 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
787 		    DATA_TYPE_UINT64);
788 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
789 		    DATA_TYPE_STRING);
790 		if (hostid != 0) {
791 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
792 			    hostid) == 0);
793 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
794 			    hostname) == 0);
795 		}
796 
797 add_pool:
798 		/*
799 		 * Add this pool to the list of configs.
800 		 */
801 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
802 		    &name) == 0);
803 		if (nvlist_add_nvlist(ret, name, config) != 0)
804 			goto nomem;
805 
806 		found_one = B_TRUE;
807 		nvlist_free(config);
808 		config = NULL;
809 	}
810 
811 	if (!found_one) {
812 		nvlist_free(ret);
813 		ret = NULL;
814 	}
815 
816 	return (ret);
817 
818 nomem:
819 	(void) no_memory(hdl);
820 error:
821 	nvlist_free(config);
822 	nvlist_free(ret);
823 	for (c = 0; c < children; c++)
824 		nvlist_free(child[c]);
825 	free(child);
826 
827 	return (NULL);
828 }
829 
830 /*
831  * Return the offset of the given label.
832  */
833 static uint64_t
834 label_offset(uint64_t size, int l)
835 {
836 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
837 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
838 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
839 }
840 
841 /*
842  * Given a file descriptor, read the label information and return an nvlist
843  * describing the configuration, if there is one.
844  * Return 0 on success, or -1 on failure
845  */
846 int
847 zpool_read_label(int fd, nvlist_t **config)
848 {
849 	struct stat64 statbuf;
850 	int l;
851 	vdev_label_t *label;
852 	uint64_t state, txg, size;
853 
854 	*config = NULL;
855 
856 	if (fstat64(fd, &statbuf) == -1)
857 		return (-1);
858 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
859 
860 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
861 		return (-1);
862 
863 	for (l = 0; l < VDEV_LABELS; l++) {
864 		if (pread64(fd, label, sizeof (vdev_label_t),
865 		    label_offset(size, l)) != sizeof (vdev_label_t))
866 			continue;
867 
868 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
869 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
870 			continue;
871 
872 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
873 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
874 			nvlist_free(*config);
875 			continue;
876 		}
877 
878 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
879 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
880 		    &txg) != 0 || txg == 0)) {
881 			nvlist_free(*config);
882 			continue;
883 		}
884 
885 		free(label);
886 		return (0);
887 	}
888 
889 	free(label);
890 	*config = NULL;
891 	errno = ENOENT;
892 	return (-1);
893 }
894 
895 typedef struct rdsk_node {
896 	char *rn_name;
897 	int rn_dfd;
898 	libzfs_handle_t *rn_hdl;
899 	nvlist_t *rn_config;
900 	avl_tree_t *rn_avl;
901 	avl_node_t rn_node;
902 	boolean_t rn_nozpool;
903 } rdsk_node_t;
904 
905 static int
906 slice_cache_compare(const void *arg1, const void *arg2)
907 {
908 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
909 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
910 	char *nm1slice, *nm2slice;
911 	int rv;
912 
913 	/*
914 	 * slices zero and two are the most likely to provide results,
915 	 * so put those first
916 	 */
917 	nm1slice = strstr(nm1, "s0");
918 	nm2slice = strstr(nm2, "s0");
919 	if (nm1slice && !nm2slice) {
920 		return (-1);
921 	}
922 	if (!nm1slice && nm2slice) {
923 		return (1);
924 	}
925 	nm1slice = strstr(nm1, "s2");
926 	nm2slice = strstr(nm2, "s2");
927 	if (nm1slice && !nm2slice) {
928 		return (-1);
929 	}
930 	if (!nm1slice && nm2slice) {
931 		return (1);
932 	}
933 
934 	rv = strcmp(nm1, nm2);
935 	if (rv == 0)
936 		return (0);
937 	return (rv > 0 ? 1 : -1);
938 }
939 
940 static void
941 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
942     diskaddr_t size, uint_t blksz)
943 {
944 	rdsk_node_t tmpnode;
945 	rdsk_node_t *node;
946 	char sname[MAXNAMELEN];
947 
948 	tmpnode.rn_name = &sname[0];
949 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
950 	    diskname, partno);
951 	/*
952 	 * protect against division by zero for disk labels that
953 	 * contain a bogus sector size
954 	 */
955 	if (blksz == 0)
956 		blksz = DEV_BSIZE;
957 	/* too small to contain a zpool? */
958 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
959 	    (node = avl_find(r, &tmpnode, NULL)))
960 		node->rn_nozpool = B_TRUE;
961 }
962 
963 static void
964 nozpool_all_slices(avl_tree_t *r, const char *sname)
965 {
966 	char diskname[MAXNAMELEN];
967 	char *ptr;
968 	int i;
969 
970 	(void) strncpy(diskname, sname, MAXNAMELEN);
971 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
972 	    ((ptr = strrchr(diskname, 'p')) == NULL))
973 		return;
974 	ptr[0] = 's';
975 	ptr[1] = '\0';
976 	for (i = 0; i < NDKMAP; i++)
977 		check_one_slice(r, diskname, i, 0, 1);
978 	ptr[0] = 'p';
979 	for (i = 0; i <= FD_NUMPART; i++)
980 		check_one_slice(r, diskname, i, 0, 1);
981 }
982 
983 static void
984 check_slices(avl_tree_t *r, int fd, const char *sname)
985 {
986 	struct extvtoc vtoc;
987 	struct dk_gpt *gpt;
988 	char diskname[MAXNAMELEN];
989 	char *ptr;
990 	int i;
991 
992 	(void) strncpy(diskname, sname, MAXNAMELEN);
993 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
994 		return;
995 	ptr[1] = '\0';
996 
997 	if (read_extvtoc(fd, &vtoc) >= 0) {
998 		for (i = 0; i < NDKMAP; i++)
999 			check_one_slice(r, diskname, i,
1000 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1001 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1002 		/*
1003 		 * on x86 we'll still have leftover links that point
1004 		 * to slices s[9-15], so use NDKMAP instead
1005 		 */
1006 		for (i = 0; i < NDKMAP; i++)
1007 			check_one_slice(r, diskname, i,
1008 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1009 		/* nodes p[1-4] are never used with EFI labels */
1010 		ptr[0] = 'p';
1011 		for (i = 1; i <= FD_NUMPART; i++)
1012 			check_one_slice(r, diskname, i, 0, 1);
1013 		efi_free(gpt);
1014 	}
1015 }
1016 
1017 static void
1018 zpool_open_func(void *arg)
1019 {
1020 	rdsk_node_t *rn = arg;
1021 	struct stat64 statbuf;
1022 	nvlist_t *config;
1023 	int fd;
1024 
1025 	if (rn->rn_nozpool)
1026 		return;
1027 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1028 		/* symlink to a device that's no longer there */
1029 		if (errno == ENOENT)
1030 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1031 		return;
1032 	}
1033 	/*
1034 	 * Ignore failed stats.  We only want regular
1035 	 * files, character devs and block devs.
1036 	 */
1037 	if (fstat64(fd, &statbuf) != 0 ||
1038 	    (!S_ISREG(statbuf.st_mode) &&
1039 	    !S_ISCHR(statbuf.st_mode) &&
1040 	    !S_ISBLK(statbuf.st_mode))) {
1041 		(void) close(fd);
1042 		return;
1043 	}
1044 	/* this file is too small to hold a zpool */
1045 	if (S_ISREG(statbuf.st_mode) &&
1046 	    statbuf.st_size < SPA_MINDEVSIZE) {
1047 		(void) close(fd);
1048 		return;
1049 	} else if (!S_ISREG(statbuf.st_mode)) {
1050 		/*
1051 		 * Try to read the disk label first so we don't have to
1052 		 * open a bunch of minor nodes that can't have a zpool.
1053 		 */
1054 		check_slices(rn->rn_avl, fd, rn->rn_name);
1055 	}
1056 
1057 	if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1058 		(void) close(fd);
1059 		(void) no_memory(rn->rn_hdl);
1060 		return;
1061 	}
1062 	(void) close(fd);
1063 
1064 	rn->rn_config = config;
1065 }
1066 
1067 /*
1068  * Given a file descriptor, clear (zero) the label information.
1069  */
1070 int
1071 zpool_clear_label(int fd)
1072 {
1073 	struct stat64 statbuf;
1074 	int l;
1075 	vdev_label_t *label;
1076 	uint64_t size;
1077 
1078 	if (fstat64(fd, &statbuf) == -1)
1079 		return (0);
1080 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1081 
1082 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1083 		return (-1);
1084 
1085 	for (l = 0; l < VDEV_LABELS; l++) {
1086 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1087 		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1088 			free(label);
1089 			return (-1);
1090 		}
1091 	}
1092 
1093 	free(label);
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Given a list of directories to search, find all pools stored on disk.  This
1099  * includes partial pools which are not available to import.  If no args are
1100  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1101  * poolname or guid (but not both) are provided by the caller when trying
1102  * to import a specific pool.
1103  */
1104 static nvlist_t *
1105 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1106 {
1107 	int i, dirs = iarg->paths;
1108 	struct dirent64 *dp;
1109 	char path[MAXPATHLEN];
1110 	char *end, **dir = iarg->path;
1111 	size_t pathleft;
1112 	nvlist_t *ret = NULL;
1113 	static char *default_dir = ZFS_DISK_ROOT;
1114 	pool_list_t pools = { 0 };
1115 	pool_entry_t *pe, *penext;
1116 	vdev_entry_t *ve, *venext;
1117 	config_entry_t *ce, *cenext;
1118 	name_entry_t *ne, *nenext;
1119 	avl_tree_t slice_cache;
1120 	rdsk_node_t *slice;
1121 	void *cookie;
1122 
1123 	if (dirs == 0) {
1124 		dirs = 1;
1125 		dir = &default_dir;
1126 	}
1127 
1128 	/*
1129 	 * Go through and read the label configuration information from every
1130 	 * possible device, organizing the information according to pool GUID
1131 	 * and toplevel GUID.
1132 	 */
1133 	for (i = 0; i < dirs; i++) {
1134 		tpool_t *t;
1135 		char rdsk[MAXPATHLEN];
1136 		int dfd;
1137 		boolean_t config_failed = B_FALSE;
1138 		DIR *dirp;
1139 
1140 		/* use realpath to normalize the path */
1141 		if (realpath(dir[i], path) == 0) {
1142 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1143 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1144 			goto error;
1145 		}
1146 		end = &path[strlen(path)];
1147 		*end++ = '/';
1148 		*end = 0;
1149 		pathleft = &path[sizeof (path)] - end;
1150 
1151 		/*
1152 		 * Using raw devices instead of block devices when we're
1153 		 * reading the labels skips a bunch of slow operations during
1154 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1155 		 */
1156 		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1157 			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1158 		else
1159 			(void) strlcpy(rdsk, path, sizeof (rdsk));
1160 
1161 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1162 		    (dirp = fdopendir(dfd)) == NULL) {
1163 			if (dfd >= 0)
1164 				(void) close(dfd);
1165 			zfs_error_aux(hdl, strerror(errno));
1166 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1167 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1168 			    rdsk);
1169 			goto error;
1170 		}
1171 
1172 		avl_create(&slice_cache, slice_cache_compare,
1173 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1174 		/*
1175 		 * This is not MT-safe, but we have no MT consumers of libzfs
1176 		 */
1177 		while ((dp = readdir64(dirp)) != NULL) {
1178 			const char *name = dp->d_name;
1179 			if (name[0] == '.' &&
1180 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1181 				continue;
1182 
1183 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1184 			slice->rn_name = zfs_strdup(hdl, name);
1185 			slice->rn_avl = &slice_cache;
1186 			slice->rn_dfd = dfd;
1187 			slice->rn_hdl = hdl;
1188 			slice->rn_nozpool = B_FALSE;
1189 			avl_add(&slice_cache, slice);
1190 		}
1191 		/*
1192 		 * create a thread pool to do all of this in parallel;
1193 		 * rn_nozpool is not protected, so this is racy in that
1194 		 * multiple tasks could decide that the same slice can
1195 		 * not hold a zpool, which is benign.  Also choose
1196 		 * double the number of processors; we hold a lot of
1197 		 * locks in the kernel, so going beyond this doesn't
1198 		 * buy us much.
1199 		 */
1200 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1201 		    0, NULL);
1202 		for (slice = avl_first(&slice_cache); slice;
1203 		    (slice = avl_walk(&slice_cache, slice,
1204 		    AVL_AFTER)))
1205 			(void) tpool_dispatch(t, zpool_open_func, slice);
1206 		tpool_wait(t);
1207 		tpool_destroy(t);
1208 
1209 		cookie = NULL;
1210 		while ((slice = avl_destroy_nodes(&slice_cache,
1211 		    &cookie)) != NULL) {
1212 			if (slice->rn_config != NULL && !config_failed) {
1213 				nvlist_t *config = slice->rn_config;
1214 				boolean_t matched = B_TRUE;
1215 
1216 				if (iarg->poolname != NULL) {
1217 					char *pname;
1218 
1219 					matched = nvlist_lookup_string(config,
1220 					    ZPOOL_CONFIG_POOL_NAME,
1221 					    &pname) == 0 &&
1222 					    strcmp(iarg->poolname, pname) == 0;
1223 				} else if (iarg->guid != 0) {
1224 					uint64_t this_guid;
1225 
1226 					matched = nvlist_lookup_uint64(config,
1227 					    ZPOOL_CONFIG_POOL_GUID,
1228 					    &this_guid) == 0 &&
1229 					    iarg->guid == this_guid;
1230 				}
1231 				if (matched) {
1232 					/*
1233 					 * use the non-raw path for the config
1234 					 */
1235 					(void) strlcpy(end, slice->rn_name,
1236 					    pathleft);
1237 					if (add_config(hdl, &pools, path,
1238 					    config) != 0)
1239 						config_failed = B_TRUE;
1240 				}
1241 				nvlist_free(config);
1242 			}
1243 			free(slice->rn_name);
1244 			free(slice);
1245 		}
1246 		avl_destroy(&slice_cache);
1247 
1248 		(void) closedir(dirp);
1249 
1250 		if (config_failed)
1251 			goto error;
1252 	}
1253 
1254 	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1255 
1256 error:
1257 	for (pe = pools.pools; pe != NULL; pe = penext) {
1258 		penext = pe->pe_next;
1259 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1260 			venext = ve->ve_next;
1261 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1262 				cenext = ce->ce_next;
1263 				nvlist_free(ce->ce_config);
1264 				free(ce);
1265 			}
1266 			free(ve);
1267 		}
1268 		free(pe);
1269 	}
1270 
1271 	for (ne = pools.names; ne != NULL; ne = nenext) {
1272 		nenext = ne->ne_next;
1273 		free(ne->ne_name);
1274 		free(ne);
1275 	}
1276 
1277 	return (ret);
1278 }
1279 
1280 nvlist_t *
1281 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1282 {
1283 	importargs_t iarg = { 0 };
1284 
1285 	iarg.paths = argc;
1286 	iarg.path = argv;
1287 
1288 	return (zpool_find_import_impl(hdl, &iarg));
1289 }
1290 
1291 /*
1292  * Given a cache file, return the contents as a list of importable pools.
1293  * poolname or guid (but not both) are provided by the caller when trying
1294  * to import a specific pool.
1295  */
1296 nvlist_t *
1297 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1298     char *poolname, uint64_t guid)
1299 {
1300 	char *buf;
1301 	int fd;
1302 	struct stat64 statbuf;
1303 	nvlist_t *raw, *src, *dst;
1304 	nvlist_t *pools;
1305 	nvpair_t *elem;
1306 	char *name;
1307 	uint64_t this_guid;
1308 	boolean_t active;
1309 
1310 	verify(poolname == NULL || guid == 0);
1311 
1312 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1313 		zfs_error_aux(hdl, "%s", strerror(errno));
1314 		(void) zfs_error(hdl, EZFS_BADCACHE,
1315 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1316 		return (NULL);
1317 	}
1318 
1319 	if (fstat64(fd, &statbuf) != 0) {
1320 		zfs_error_aux(hdl, "%s", strerror(errno));
1321 		(void) close(fd);
1322 		(void) zfs_error(hdl, EZFS_BADCACHE,
1323 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1324 		return (NULL);
1325 	}
1326 
1327 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1328 		(void) close(fd);
1329 		return (NULL);
1330 	}
1331 
1332 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1333 		(void) close(fd);
1334 		free(buf);
1335 		(void) zfs_error(hdl, EZFS_BADCACHE,
1336 		    dgettext(TEXT_DOMAIN,
1337 		    "failed to read cache file contents"));
1338 		return (NULL);
1339 	}
1340 
1341 	(void) close(fd);
1342 
1343 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1344 		free(buf);
1345 		(void) zfs_error(hdl, EZFS_BADCACHE,
1346 		    dgettext(TEXT_DOMAIN,
1347 		    "invalid or corrupt cache file contents"));
1348 		return (NULL);
1349 	}
1350 
1351 	free(buf);
1352 
1353 	/*
1354 	 * Go through and get the current state of the pools and refresh their
1355 	 * state.
1356 	 */
1357 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1358 		(void) no_memory(hdl);
1359 		nvlist_free(raw);
1360 		return (NULL);
1361 	}
1362 
1363 	elem = NULL;
1364 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1365 		src = fnvpair_value_nvlist(elem);
1366 
1367 		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1368 		if (poolname != NULL && strcmp(poolname, name) != 0)
1369 			continue;
1370 
1371 		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1372 		if (guid != 0 && guid != this_guid)
1373 			continue;
1374 
1375 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1376 			nvlist_free(raw);
1377 			nvlist_free(pools);
1378 			return (NULL);
1379 		}
1380 
1381 		if (active)
1382 			continue;
1383 
1384 		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1385 		    cachefile) != 0) {
1386 			(void) no_memory(hdl);
1387 			nvlist_free(raw);
1388 			nvlist_free(pools);
1389 			return (NULL);
1390 		}
1391 
1392 		if ((dst = refresh_config(hdl, src)) == NULL) {
1393 			nvlist_free(raw);
1394 			nvlist_free(pools);
1395 			return (NULL);
1396 		}
1397 
1398 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1399 			(void) no_memory(hdl);
1400 			nvlist_free(dst);
1401 			nvlist_free(raw);
1402 			nvlist_free(pools);
1403 			return (NULL);
1404 		}
1405 		nvlist_free(dst);
1406 	}
1407 
1408 	nvlist_free(raw);
1409 	return (pools);
1410 }
1411 
1412 static int
1413 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1414 {
1415 	importargs_t *import = data;
1416 	int found = 0;
1417 
1418 	if (import->poolname != NULL) {
1419 		char *pool_name;
1420 
1421 		verify(nvlist_lookup_string(zhp->zpool_config,
1422 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1423 		if (strcmp(pool_name, import->poolname) == 0)
1424 			found = 1;
1425 	} else {
1426 		uint64_t pool_guid;
1427 
1428 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1429 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1430 		if (pool_guid == import->guid)
1431 			found = 1;
1432 	}
1433 
1434 	zpool_close(zhp);
1435 	return (found);
1436 }
1437 
1438 nvlist_t *
1439 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1440 {
1441 	nvlist_t *pools = NULL;
1442 
1443 	verify(import->poolname == NULL || import->guid == 0);
1444 
1445 	if (import->unique)
1446 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1447 
1448 	if (import->cachefile != NULL)
1449 		pools = zpool_find_import_cached(hdl, import->cachefile,
1450 		    import->poolname, import->guid);
1451 	else
1452 		pools = zpool_find_import_impl(hdl, import);
1453 
1454 	return (pools);
1455 }
1456 
1457 static boolean_t
1458 pool_match(nvlist_t *cfg, char *tgt)
1459 {
1460 	uint64_t v, guid = strtoull(tgt, NULL, 0);
1461 	char *s;
1462 
1463 	if (guid != 0) {
1464 		if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
1465 			return (v == guid);
1466 	} else {
1467 		if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
1468 			return (strcmp(s, tgt) == 0);
1469 	}
1470 	return (B_FALSE);
1471 }
1472 
1473 int
1474 zpool_tryimport(libzfs_handle_t *hdl, char *target, nvlist_t **configp,
1475     importargs_t *args)
1476 {
1477 	nvlist_t *pools;
1478 	nvlist_t *match = NULL;
1479 	nvlist_t *config = NULL;
1480 	char *sepp = NULL;
1481 	int count = 0;
1482 	char *targetdup = strdup(target);
1483 
1484 	*configp = NULL;
1485 
1486 	if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
1487 		*sepp = '\0';
1488 	}
1489 
1490 	pools = zpool_search_import(hdl, args);
1491 
1492 	if (pools != NULL) {
1493 		nvpair_t *elem = NULL;
1494 		while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
1495 			VERIFY0(nvpair_value_nvlist(elem, &config));
1496 			if (pool_match(config, targetdup)) {
1497 				count++;
1498 				if (match != NULL) {
1499 					/* multiple matches found */
1500 					continue;
1501 				} else {
1502 					match = config;
1503 				}
1504 			}
1505 		}
1506 	}
1507 
1508 	if (count == 0) {
1509 		free(targetdup);
1510 		return (ENOENT);
1511 	}
1512 
1513 	if (count > 1) {
1514 		free(targetdup);
1515 		return (EINVAL);
1516 	}
1517 
1518 	*configp = match;
1519 	free(targetdup);
1520 
1521 	return (0);
1522 }
1523 
1524 boolean_t
1525 find_guid(nvlist_t *nv, uint64_t guid)
1526 {
1527 	uint64_t tmp;
1528 	nvlist_t **child;
1529 	uint_t c, children;
1530 
1531 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1532 	if (tmp == guid)
1533 		return (B_TRUE);
1534 
1535 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1536 	    &child, &children) == 0) {
1537 		for (c = 0; c < children; c++)
1538 			if (find_guid(child[c], guid))
1539 				return (B_TRUE);
1540 	}
1541 
1542 	return (B_FALSE);
1543 }
1544 
1545 typedef struct aux_cbdata {
1546 	const char	*cb_type;
1547 	uint64_t	cb_guid;
1548 	zpool_handle_t	*cb_zhp;
1549 } aux_cbdata_t;
1550 
1551 static int
1552 find_aux(zpool_handle_t *zhp, void *data)
1553 {
1554 	aux_cbdata_t *cbp = data;
1555 	nvlist_t **list;
1556 	uint_t i, count;
1557 	uint64_t guid;
1558 	nvlist_t *nvroot;
1559 
1560 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1561 	    &nvroot) == 0);
1562 
1563 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1564 	    &list, &count) == 0) {
1565 		for (i = 0; i < count; i++) {
1566 			verify(nvlist_lookup_uint64(list[i],
1567 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1568 			if (guid == cbp->cb_guid) {
1569 				cbp->cb_zhp = zhp;
1570 				return (1);
1571 			}
1572 		}
1573 	}
1574 
1575 	zpool_close(zhp);
1576 	return (0);
1577 }
1578 
1579 /*
1580  * Determines if the pool is in use.  If so, it returns true and the state of
1581  * the pool as well as the name of the pool.  Both strings are allocated and
1582  * must be freed by the caller.
1583  */
1584 int
1585 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1586     boolean_t *inuse)
1587 {
1588 	nvlist_t *config;
1589 	char *name;
1590 	boolean_t ret;
1591 	uint64_t guid, vdev_guid;
1592 	zpool_handle_t *zhp;
1593 	nvlist_t *pool_config;
1594 	uint64_t stateval, isspare;
1595 	aux_cbdata_t cb = { 0 };
1596 	boolean_t isactive;
1597 
1598 	*inuse = B_FALSE;
1599 
1600 	if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1601 		(void) no_memory(hdl);
1602 		return (-1);
1603 	}
1604 
1605 	if (config == NULL)
1606 		return (0);
1607 
1608 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1609 	    &stateval) == 0);
1610 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1611 	    &vdev_guid) == 0);
1612 
1613 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1614 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1615 		    &name) == 0);
1616 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1617 		    &guid) == 0);
1618 	}
1619 
1620 	switch (stateval) {
1621 	case POOL_STATE_EXPORTED:
1622 		/*
1623 		 * A pool with an exported state may in fact be imported
1624 		 * read-only, so check the in-core state to see if it's
1625 		 * active and imported read-only.  If it is, set
1626 		 * its state to active.
1627 		 */
1628 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1629 		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1630 			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1631 				stateval = POOL_STATE_ACTIVE;
1632 
1633 			/*
1634 			 * All we needed the zpool handle for is the
1635 			 * readonly prop check.
1636 			 */
1637 			zpool_close(zhp);
1638 		}
1639 
1640 		ret = B_TRUE;
1641 		break;
1642 
1643 	case POOL_STATE_ACTIVE:
1644 		/*
1645 		 * For an active pool, we have to determine if it's really part
1646 		 * of a currently active pool (in which case the pool will exist
1647 		 * and the guid will be the same), or whether it's part of an
1648 		 * active pool that was disconnected without being explicitly
1649 		 * exported.
1650 		 */
1651 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1652 			nvlist_free(config);
1653 			return (-1);
1654 		}
1655 
1656 		if (isactive) {
1657 			/*
1658 			 * Because the device may have been removed while
1659 			 * offlined, we only report it as active if the vdev is
1660 			 * still present in the config.  Otherwise, pretend like
1661 			 * it's not in use.
1662 			 */
1663 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1664 			    (pool_config = zpool_get_config(zhp, NULL))
1665 			    != NULL) {
1666 				nvlist_t *nvroot;
1667 
1668 				verify(nvlist_lookup_nvlist(pool_config,
1669 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1670 				ret = find_guid(nvroot, vdev_guid);
1671 			} else {
1672 				ret = B_FALSE;
1673 			}
1674 
1675 			/*
1676 			 * If this is an active spare within another pool, we
1677 			 * treat it like an unused hot spare.  This allows the
1678 			 * user to create a pool with a hot spare that currently
1679 			 * in use within another pool.  Since we return B_TRUE,
1680 			 * libdiskmgt will continue to prevent generic consumers
1681 			 * from using the device.
1682 			 */
1683 			if (ret && nvlist_lookup_uint64(config,
1684 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1685 				stateval = POOL_STATE_SPARE;
1686 
1687 			if (zhp != NULL)
1688 				zpool_close(zhp);
1689 		} else {
1690 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1691 			ret = B_TRUE;
1692 		}
1693 		break;
1694 
1695 	case POOL_STATE_SPARE:
1696 		/*
1697 		 * For a hot spare, it can be either definitively in use, or
1698 		 * potentially active.  To determine if it's in use, we iterate
1699 		 * over all pools in the system and search for one with a spare
1700 		 * with a matching guid.
1701 		 *
1702 		 * Due to the shared nature of spares, we don't actually report
1703 		 * the potentially active case as in use.  This means the user
1704 		 * can freely create pools on the hot spares of exported pools,
1705 		 * but to do otherwise makes the resulting code complicated, and
1706 		 * we end up having to deal with this case anyway.
1707 		 */
1708 		cb.cb_zhp = NULL;
1709 		cb.cb_guid = vdev_guid;
1710 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1711 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1712 			name = (char *)zpool_get_name(cb.cb_zhp);
1713 			ret = B_TRUE;
1714 		} else {
1715 			ret = B_FALSE;
1716 		}
1717 		break;
1718 
1719 	case POOL_STATE_L2CACHE:
1720 
1721 		/*
1722 		 * Check if any pool is currently using this l2cache device.
1723 		 */
1724 		cb.cb_zhp = NULL;
1725 		cb.cb_guid = vdev_guid;
1726 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1727 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1728 			name = (char *)zpool_get_name(cb.cb_zhp);
1729 			ret = B_TRUE;
1730 		} else {
1731 			ret = B_FALSE;
1732 		}
1733 		break;
1734 
1735 	default:
1736 		ret = B_FALSE;
1737 	}
1738 
1739 
1740 	if (ret) {
1741 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1742 			if (cb.cb_zhp)
1743 				zpool_close(cb.cb_zhp);
1744 			nvlist_free(config);
1745 			return (-1);
1746 		}
1747 		*state = (pool_state_t)stateval;
1748 	}
1749 
1750 	if (cb.cb_zhp)
1751 		zpool_close(cb.cb_zhp);
1752 
1753 	nvlist_free(config);
1754 	*inuse = ret;
1755 	return (0);
1756 }
1757