1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <sys/vtoc.h> 57 #include <sys/dktp/fdisk.h> 58 #include <sys/efi_partition.h> 59 #include <thread_pool.h> 60 61 #include <sys/vdev_impl.h> 62 63 #include "libzfs.h" 64 #include "libzfs_impl.h" 65 66 /* 67 * Intermediate structures used to gather configuration information. 68 */ 69 typedef struct config_entry { 70 uint64_t ce_txg; 71 nvlist_t *ce_config; 72 struct config_entry *ce_next; 73 } config_entry_t; 74 75 typedef struct vdev_entry { 76 uint64_t ve_guid; 77 config_entry_t *ve_configs; 78 struct vdev_entry *ve_next; 79 } vdev_entry_t; 80 81 typedef struct pool_entry { 82 uint64_t pe_guid; 83 vdev_entry_t *pe_vdevs; 84 struct pool_entry *pe_next; 85 } pool_entry_t; 86 87 typedef struct name_entry { 88 char *ne_name; 89 uint64_t ne_guid; 90 struct name_entry *ne_next; 91 } name_entry_t; 92 93 typedef struct pool_list { 94 pool_entry_t *pools; 95 name_entry_t *names; 96 } pool_list_t; 97 98 /* 99 * Go through and fix up any path and/or devid information for the given vdev 100 * configuration. 101 */ 102 static int 103 fix_paths(nvlist_t *nv, name_entry_t *names) 104 { 105 nvlist_t **child; 106 uint_t c, children; 107 uint64_t guid; 108 name_entry_t *ne, *best; 109 char *path, *devid; 110 int matched; 111 112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 113 &child, &children) == 0) { 114 for (c = 0; c < children; c++) 115 if (fix_paths(child[c], names) != 0) 116 return (-1); 117 return (0); 118 } 119 120 /* 121 * This is a leaf (file or disk) vdev. In either case, go through 122 * the name list and see if we find a matching guid. If so, replace 123 * the path and see if we can calculate a new devid. 124 * 125 * There may be multiple names associated with a particular guid, in 126 * which case we have overlapping slices or multiple paths to the same 127 * disk. If this is the case, then we want to pick the path that is 128 * the most similar to the original, where "most similar" is the number 129 * of matching characters starting from the end of the path. This will 130 * preserve slice numbers even if the disks have been reorganized, and 131 * will also catch preferred disk names if multiple paths exist. 132 */ 133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 135 path = NULL; 136 137 matched = 0; 138 best = NULL; 139 for (ne = names; ne != NULL; ne = ne->ne_next) { 140 if (ne->ne_guid == guid) { 141 const char *src, *dst; 142 int count; 143 144 if (path == NULL) { 145 best = ne; 146 break; 147 } 148 149 src = ne->ne_name + strlen(ne->ne_name) - 1; 150 dst = path + strlen(path) - 1; 151 for (count = 0; src >= ne->ne_name && dst >= path; 152 src--, dst--, count++) 153 if (*src != *dst) 154 break; 155 156 /* 157 * At this point, 'count' is the number of characters 158 * matched from the end. 159 */ 160 if (count > matched || best == NULL) { 161 best = ne; 162 matched = count; 163 } 164 } 165 } 166 167 if (best == NULL) 168 return (0); 169 170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 171 return (-1); 172 173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) { 174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 175 } else { 176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 177 devid_str_free(devid); 178 return (-1); 179 } 180 devid_str_free(devid); 181 } 182 183 return (0); 184 } 185 186 /* 187 * Add the given configuration to the list of known devices. 188 */ 189 static int 190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 191 nvlist_t *config) 192 { 193 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 194 pool_entry_t *pe; 195 vdev_entry_t *ve; 196 config_entry_t *ce; 197 name_entry_t *ne; 198 199 /* 200 * If this is a hot spare not currently in use or level 2 cache 201 * device, add it to the list of names to translate, but don't do 202 * anything else. 203 */ 204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 205 &state) == 0 && 206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 209 return (-1); 210 211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 212 free(ne); 213 return (-1); 214 } 215 216 ne->ne_guid = vdev_guid; 217 ne->ne_next = pl->names; 218 pl->names = ne; 219 220 nvlist_free(config); 221 return (0); 222 } 223 224 /* 225 * If we have a valid config but cannot read any of these fields, then 226 * it means we have a half-initialized label. In vdev_label_init() 227 * we write a label with txg == 0 so that we can identify the device 228 * in case the user refers to the same disk later on. If we fail to 229 * create the pool, we'll be left with a label in this state 230 * which should not be considered part of a valid pool. 231 */ 232 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 233 &pool_guid) != 0 || 234 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 235 &vdev_guid) != 0 || 236 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 237 &top_guid) != 0 || 238 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 239 &txg) != 0 || txg == 0) { 240 nvlist_free(config); 241 return (0); 242 } 243 244 /* 245 * First, see if we know about this pool. If not, then add it to the 246 * list of known pools. 247 */ 248 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 249 if (pe->pe_guid == pool_guid) 250 break; 251 } 252 253 if (pe == NULL) { 254 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 255 nvlist_free(config); 256 return (-1); 257 } 258 pe->pe_guid = pool_guid; 259 pe->pe_next = pl->pools; 260 pl->pools = pe; 261 } 262 263 /* 264 * Second, see if we know about this toplevel vdev. Add it if its 265 * missing. 266 */ 267 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 268 if (ve->ve_guid == top_guid) 269 break; 270 } 271 272 if (ve == NULL) { 273 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 274 nvlist_free(config); 275 return (-1); 276 } 277 ve->ve_guid = top_guid; 278 ve->ve_next = pe->pe_vdevs; 279 pe->pe_vdevs = ve; 280 } 281 282 /* 283 * Third, see if we have a config with a matching transaction group. If 284 * so, then we do nothing. Otherwise, add it to the list of known 285 * configs. 286 */ 287 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 288 if (ce->ce_txg == txg) 289 break; 290 } 291 292 if (ce == NULL) { 293 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 294 nvlist_free(config); 295 return (-1); 296 } 297 ce->ce_txg = txg; 298 ce->ce_config = config; 299 ce->ce_next = ve->ve_configs; 300 ve->ve_configs = ce; 301 } else { 302 nvlist_free(config); 303 } 304 305 /* 306 * At this point we've successfully added our config to the list of 307 * known configs. The last thing to do is add the vdev guid -> path 308 * mappings so that we can fix up the configuration as necessary before 309 * doing the import. 310 */ 311 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 312 return (-1); 313 314 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 315 free(ne); 316 return (-1); 317 } 318 319 ne->ne_guid = vdev_guid; 320 ne->ne_next = pl->names; 321 pl->names = ne; 322 323 return (0); 324 } 325 326 /* 327 * Returns true if the named pool matches the given GUID. 328 */ 329 static int 330 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 331 boolean_t *isactive) 332 { 333 zpool_handle_t *zhp; 334 uint64_t theguid; 335 336 if (zpool_open_silent(hdl, name, &zhp) != 0) 337 return (-1); 338 339 if (zhp == NULL) { 340 *isactive = B_FALSE; 341 return (0); 342 } 343 344 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 345 &theguid) == 0); 346 347 zpool_close(zhp); 348 349 *isactive = (theguid == guid); 350 return (0); 351 } 352 353 static nvlist_t * 354 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 355 { 356 nvlist_t *nvl; 357 zfs_cmd_t zc = { 0 }; 358 int err, dstbuf_size; 359 360 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 361 return (NULL); 362 363 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4); 364 365 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) { 366 zcmd_free_nvlists(&zc); 367 return (NULL); 368 } 369 370 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 371 &zc)) != 0 && errno == ENOMEM) { 372 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 373 zcmd_free_nvlists(&zc); 374 return (NULL); 375 } 376 } 377 378 if (err) { 379 zcmd_free_nvlists(&zc); 380 return (NULL); 381 } 382 383 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 384 zcmd_free_nvlists(&zc); 385 return (NULL); 386 } 387 388 zcmd_free_nvlists(&zc); 389 return (nvl); 390 } 391 392 /* 393 * Determine if the vdev id is a hole in the namespace. 394 */ 395 boolean_t 396 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 397 { 398 for (int c = 0; c < holes; c++) { 399 400 /* Top-level is a hole */ 401 if (hole_array[c] == id) 402 return (B_TRUE); 403 } 404 return (B_FALSE); 405 } 406 407 /* 408 * Convert our list of pools into the definitive set of configurations. We 409 * start by picking the best config for each toplevel vdev. Once that's done, 410 * we assemble the toplevel vdevs into a full config for the pool. We make a 411 * pass to fix up any incorrect paths, and then add it to the main list to 412 * return to the user. 413 */ 414 static nvlist_t * 415 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 416 { 417 pool_entry_t *pe; 418 vdev_entry_t *ve; 419 config_entry_t *ce; 420 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 421 nvlist_t **spares, **l2cache; 422 uint_t i, nspares, nl2cache; 423 boolean_t config_seen; 424 uint64_t best_txg; 425 char *name, *hostname = NULL; 426 uint64_t guid; 427 uint_t children = 0; 428 nvlist_t **child = NULL; 429 uint_t holes; 430 uint64_t *hole_array, max_id; 431 uint_t c; 432 boolean_t isactive; 433 uint64_t hostid; 434 nvlist_t *nvl; 435 boolean_t found_one = B_FALSE; 436 boolean_t valid_top_config = B_FALSE; 437 438 if (nvlist_alloc(&ret, 0, 0) != 0) 439 goto nomem; 440 441 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 442 uint64_t id, max_txg = 0; 443 444 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 445 goto nomem; 446 config_seen = B_FALSE; 447 448 /* 449 * Iterate over all toplevel vdevs. Grab the pool configuration 450 * from the first one we find, and then go through the rest and 451 * add them as necessary to the 'vdevs' member of the config. 452 */ 453 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 454 455 /* 456 * Determine the best configuration for this vdev by 457 * selecting the config with the latest transaction 458 * group. 459 */ 460 best_txg = 0; 461 for (ce = ve->ve_configs; ce != NULL; 462 ce = ce->ce_next) { 463 464 if (ce->ce_txg > best_txg) { 465 tmp = ce->ce_config; 466 best_txg = ce->ce_txg; 467 } 468 } 469 470 /* 471 * We rely on the fact that the max txg for the 472 * pool will contain the most up-to-date information 473 * about the valid top-levels in the vdev namespace. 474 */ 475 if (best_txg > max_txg) { 476 (void) nvlist_remove(config, 477 ZPOOL_CONFIG_VDEV_CHILDREN, 478 DATA_TYPE_UINT64); 479 (void) nvlist_remove(config, 480 ZPOOL_CONFIG_HOLE_ARRAY, 481 DATA_TYPE_UINT64_ARRAY); 482 483 max_txg = best_txg; 484 hole_array = NULL; 485 holes = 0; 486 max_id = 0; 487 valid_top_config = B_FALSE; 488 489 if (nvlist_lookup_uint64(tmp, 490 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 491 verify(nvlist_add_uint64(config, 492 ZPOOL_CONFIG_VDEV_CHILDREN, 493 max_id) == 0); 494 valid_top_config = B_TRUE; 495 } 496 497 if (nvlist_lookup_uint64_array(tmp, 498 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 499 &holes) == 0) { 500 verify(nvlist_add_uint64_array(config, 501 ZPOOL_CONFIG_HOLE_ARRAY, 502 hole_array, holes) == 0); 503 } 504 } 505 506 if (!config_seen) { 507 /* 508 * Copy the relevant pieces of data to the pool 509 * configuration: 510 * 511 * version 512 * pool guid 513 * name 514 * comment (if available) 515 * pool state 516 * hostid (if available) 517 * hostname (if available) 518 */ 519 uint64_t state, version; 520 char *comment = NULL; 521 522 version = fnvlist_lookup_uint64(tmp, 523 ZPOOL_CONFIG_VERSION); 524 fnvlist_add_uint64(config, 525 ZPOOL_CONFIG_VERSION, version); 526 guid = fnvlist_lookup_uint64(tmp, 527 ZPOOL_CONFIG_POOL_GUID); 528 fnvlist_add_uint64(config, 529 ZPOOL_CONFIG_POOL_GUID, guid); 530 name = fnvlist_lookup_string(tmp, 531 ZPOOL_CONFIG_POOL_NAME); 532 fnvlist_add_string(config, 533 ZPOOL_CONFIG_POOL_NAME, name); 534 535 if (nvlist_lookup_string(tmp, 536 ZPOOL_CONFIG_COMMENT, &comment) == 0) 537 fnvlist_add_string(config, 538 ZPOOL_CONFIG_COMMENT, comment); 539 540 state = fnvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_POOL_STATE); 542 fnvlist_add_uint64(config, 543 ZPOOL_CONFIG_POOL_STATE, state); 544 545 hostid = 0; 546 if (nvlist_lookup_uint64(tmp, 547 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 548 fnvlist_add_uint64(config, 549 ZPOOL_CONFIG_HOSTID, hostid); 550 hostname = fnvlist_lookup_string(tmp, 551 ZPOOL_CONFIG_HOSTNAME); 552 fnvlist_add_string(config, 553 ZPOOL_CONFIG_HOSTNAME, hostname); 554 } 555 556 config_seen = B_TRUE; 557 } 558 559 /* 560 * Add this top-level vdev to the child array. 561 */ 562 verify(nvlist_lookup_nvlist(tmp, 563 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 564 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 565 &id) == 0); 566 567 if (id >= children) { 568 nvlist_t **newchild; 569 570 newchild = zfs_alloc(hdl, (id + 1) * 571 sizeof (nvlist_t *)); 572 if (newchild == NULL) 573 goto nomem; 574 575 for (c = 0; c < children; c++) 576 newchild[c] = child[c]; 577 578 free(child); 579 child = newchild; 580 children = id + 1; 581 } 582 if (nvlist_dup(nvtop, &child[id], 0) != 0) 583 goto nomem; 584 585 } 586 587 /* 588 * If we have information about all the top-levels then 589 * clean up the nvlist which we've constructed. This 590 * means removing any extraneous devices that are 591 * beyond the valid range or adding devices to the end 592 * of our array which appear to be missing. 593 */ 594 if (valid_top_config) { 595 if (max_id < children) { 596 for (c = max_id; c < children; c++) 597 nvlist_free(child[c]); 598 children = max_id; 599 } else if (max_id > children) { 600 nvlist_t **newchild; 601 602 newchild = zfs_alloc(hdl, (max_id) * 603 sizeof (nvlist_t *)); 604 if (newchild == NULL) 605 goto nomem; 606 607 for (c = 0; c < children; c++) 608 newchild[c] = child[c]; 609 610 free(child); 611 child = newchild; 612 children = max_id; 613 } 614 } 615 616 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 617 &guid) == 0); 618 619 /* 620 * The vdev namespace may contain holes as a result of 621 * device removal. We must add them back into the vdev 622 * tree before we process any missing devices. 623 */ 624 if (holes > 0) { 625 ASSERT(valid_top_config); 626 627 for (c = 0; c < children; c++) { 628 nvlist_t *holey; 629 630 if (child[c] != NULL || 631 !vdev_is_hole(hole_array, holes, c)) 632 continue; 633 634 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 635 0) != 0) 636 goto nomem; 637 638 /* 639 * Holes in the namespace are treated as 640 * "hole" top-level vdevs and have a 641 * special flag set on them. 642 */ 643 if (nvlist_add_string(holey, 644 ZPOOL_CONFIG_TYPE, 645 VDEV_TYPE_HOLE) != 0 || 646 nvlist_add_uint64(holey, 647 ZPOOL_CONFIG_ID, c) != 0 || 648 nvlist_add_uint64(holey, 649 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 650 nvlist_free(holey); 651 goto nomem; 652 } 653 child[c] = holey; 654 } 655 } 656 657 /* 658 * Look for any missing top-level vdevs. If this is the case, 659 * create a faked up 'missing' vdev as a placeholder. We cannot 660 * simply compress the child array, because the kernel performs 661 * certain checks to make sure the vdev IDs match their location 662 * in the configuration. 663 */ 664 for (c = 0; c < children; c++) { 665 if (child[c] == NULL) { 666 nvlist_t *missing; 667 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 668 0) != 0) 669 goto nomem; 670 if (nvlist_add_string(missing, 671 ZPOOL_CONFIG_TYPE, 672 VDEV_TYPE_MISSING) != 0 || 673 nvlist_add_uint64(missing, 674 ZPOOL_CONFIG_ID, c) != 0 || 675 nvlist_add_uint64(missing, 676 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 677 nvlist_free(missing); 678 goto nomem; 679 } 680 child[c] = missing; 681 } 682 } 683 684 /* 685 * Put all of this pool's top-level vdevs into a root vdev. 686 */ 687 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 688 goto nomem; 689 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 690 VDEV_TYPE_ROOT) != 0 || 691 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 692 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 693 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 694 child, children) != 0) { 695 nvlist_free(nvroot); 696 goto nomem; 697 } 698 699 for (c = 0; c < children; c++) 700 nvlist_free(child[c]); 701 free(child); 702 children = 0; 703 child = NULL; 704 705 /* 706 * Go through and fix up any paths and/or devids based on our 707 * known list of vdev GUID -> path mappings. 708 */ 709 if (fix_paths(nvroot, pl->names) != 0) { 710 nvlist_free(nvroot); 711 goto nomem; 712 } 713 714 /* 715 * Add the root vdev to this pool's configuration. 716 */ 717 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 718 nvroot) != 0) { 719 nvlist_free(nvroot); 720 goto nomem; 721 } 722 nvlist_free(nvroot); 723 724 /* 725 * zdb uses this path to report on active pools that were 726 * imported or created using -R. 727 */ 728 if (active_ok) 729 goto add_pool; 730 731 /* 732 * Determine if this pool is currently active, in which case we 733 * can't actually import it. 734 */ 735 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 736 &name) == 0); 737 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 738 &guid) == 0); 739 740 if (pool_active(hdl, name, guid, &isactive) != 0) 741 goto error; 742 743 if (isactive) { 744 nvlist_free(config); 745 config = NULL; 746 continue; 747 } 748 749 if ((nvl = refresh_config(hdl, config)) == NULL) { 750 nvlist_free(config); 751 config = NULL; 752 continue; 753 } 754 755 nvlist_free(config); 756 config = nvl; 757 758 /* 759 * Go through and update the paths for spares, now that we have 760 * them. 761 */ 762 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 763 &nvroot) == 0); 764 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 765 &spares, &nspares) == 0) { 766 for (i = 0; i < nspares; i++) { 767 if (fix_paths(spares[i], pl->names) != 0) 768 goto nomem; 769 } 770 } 771 772 /* 773 * Update the paths for l2cache devices. 774 */ 775 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 776 &l2cache, &nl2cache) == 0) { 777 for (i = 0; i < nl2cache; i++) { 778 if (fix_paths(l2cache[i], pl->names) != 0) 779 goto nomem; 780 } 781 } 782 783 /* 784 * Restore the original information read from the actual label. 785 */ 786 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 787 DATA_TYPE_UINT64); 788 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 789 DATA_TYPE_STRING); 790 if (hostid != 0) { 791 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 792 hostid) == 0); 793 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 794 hostname) == 0); 795 } 796 797 add_pool: 798 /* 799 * Add this pool to the list of configs. 800 */ 801 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 802 &name) == 0); 803 if (nvlist_add_nvlist(ret, name, config) != 0) 804 goto nomem; 805 806 found_one = B_TRUE; 807 nvlist_free(config); 808 config = NULL; 809 } 810 811 if (!found_one) { 812 nvlist_free(ret); 813 ret = NULL; 814 } 815 816 return (ret); 817 818 nomem: 819 (void) no_memory(hdl); 820 error: 821 nvlist_free(config); 822 nvlist_free(ret); 823 for (c = 0; c < children; c++) 824 nvlist_free(child[c]); 825 free(child); 826 827 return (NULL); 828 } 829 830 /* 831 * Return the offset of the given label. 832 */ 833 static uint64_t 834 label_offset(uint64_t size, int l) 835 { 836 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 837 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 838 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 839 } 840 841 /* 842 * Given a file descriptor, read the label information and return an nvlist 843 * describing the configuration, if there is one. 844 */ 845 int 846 zpool_read_label(int fd, nvlist_t **config) 847 { 848 struct stat64 statbuf; 849 int l; 850 vdev_label_t *label; 851 uint64_t state, txg, size; 852 853 *config = NULL; 854 855 if (fstat64(fd, &statbuf) == -1) 856 return (0); 857 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 858 859 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 860 return (-1); 861 862 for (l = 0; l < VDEV_LABELS; l++) { 863 if (pread64(fd, label, sizeof (vdev_label_t), 864 label_offset(size, l)) != sizeof (vdev_label_t)) 865 continue; 866 867 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 868 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 869 continue; 870 871 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 872 &state) != 0 || state > POOL_STATE_L2CACHE) { 873 nvlist_free(*config); 874 continue; 875 } 876 877 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 878 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 879 &txg) != 0 || txg == 0)) { 880 nvlist_free(*config); 881 continue; 882 } 883 884 free(label); 885 return (0); 886 } 887 888 free(label); 889 *config = NULL; 890 return (0); 891 } 892 893 typedef struct rdsk_node { 894 char *rn_name; 895 int rn_dfd; 896 libzfs_handle_t *rn_hdl; 897 nvlist_t *rn_config; 898 avl_tree_t *rn_avl; 899 avl_node_t rn_node; 900 boolean_t rn_nozpool; 901 } rdsk_node_t; 902 903 static int 904 slice_cache_compare(const void *arg1, const void *arg2) 905 { 906 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 907 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 908 char *nm1slice, *nm2slice; 909 int rv; 910 911 /* 912 * slices zero and two are the most likely to provide results, 913 * so put those first 914 */ 915 nm1slice = strstr(nm1, "s0"); 916 nm2slice = strstr(nm2, "s0"); 917 if (nm1slice && !nm2slice) { 918 return (-1); 919 } 920 if (!nm1slice && nm2slice) { 921 return (1); 922 } 923 nm1slice = strstr(nm1, "s2"); 924 nm2slice = strstr(nm2, "s2"); 925 if (nm1slice && !nm2slice) { 926 return (-1); 927 } 928 if (!nm1slice && nm2slice) { 929 return (1); 930 } 931 932 rv = strcmp(nm1, nm2); 933 if (rv == 0) 934 return (0); 935 return (rv > 0 ? 1 : -1); 936 } 937 938 static void 939 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 940 diskaddr_t size, uint_t blksz) 941 { 942 rdsk_node_t tmpnode; 943 rdsk_node_t *node; 944 char sname[MAXNAMELEN]; 945 946 tmpnode.rn_name = &sname[0]; 947 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 948 diskname, partno); 949 /* 950 * protect against division by zero for disk labels that 951 * contain a bogus sector size 952 */ 953 if (blksz == 0) 954 blksz = DEV_BSIZE; 955 /* too small to contain a zpool? */ 956 if ((size < (SPA_MINDEVSIZE / blksz)) && 957 (node = avl_find(r, &tmpnode, NULL))) 958 node->rn_nozpool = B_TRUE; 959 } 960 961 static void 962 nozpool_all_slices(avl_tree_t *r, const char *sname) 963 { 964 char diskname[MAXNAMELEN]; 965 char *ptr; 966 int i; 967 968 (void) strncpy(diskname, sname, MAXNAMELEN); 969 if (((ptr = strrchr(diskname, 's')) == NULL) && 970 ((ptr = strrchr(diskname, 'p')) == NULL)) 971 return; 972 ptr[0] = 's'; 973 ptr[1] = '\0'; 974 for (i = 0; i < NDKMAP; i++) 975 check_one_slice(r, diskname, i, 0, 1); 976 ptr[0] = 'p'; 977 for (i = 0; i <= FD_NUMPART; i++) 978 check_one_slice(r, diskname, i, 0, 1); 979 } 980 981 static void 982 check_slices(avl_tree_t *r, int fd, const char *sname) 983 { 984 struct extvtoc vtoc; 985 struct dk_gpt *gpt; 986 char diskname[MAXNAMELEN]; 987 char *ptr; 988 int i; 989 990 (void) strncpy(diskname, sname, MAXNAMELEN); 991 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 992 return; 993 ptr[1] = '\0'; 994 995 if (read_extvtoc(fd, &vtoc) >= 0) { 996 for (i = 0; i < NDKMAP; i++) 997 check_one_slice(r, diskname, i, 998 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 999 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1000 /* 1001 * on x86 we'll still have leftover links that point 1002 * to slices s[9-15], so use NDKMAP instead 1003 */ 1004 for (i = 0; i < NDKMAP; i++) 1005 check_one_slice(r, diskname, i, 1006 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1007 /* nodes p[1-4] are never used with EFI labels */ 1008 ptr[0] = 'p'; 1009 for (i = 1; i <= FD_NUMPART; i++) 1010 check_one_slice(r, diskname, i, 0, 1); 1011 efi_free(gpt); 1012 } 1013 } 1014 1015 static void 1016 zpool_open_func(void *arg) 1017 { 1018 rdsk_node_t *rn = arg; 1019 struct stat64 statbuf; 1020 nvlist_t *config; 1021 int fd; 1022 1023 if (rn->rn_nozpool) 1024 return; 1025 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1026 /* symlink to a device that's no longer there */ 1027 if (errno == ENOENT) 1028 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1029 return; 1030 } 1031 /* 1032 * Ignore failed stats. We only want regular 1033 * files, character devs and block devs. 1034 */ 1035 if (fstat64(fd, &statbuf) != 0 || 1036 (!S_ISREG(statbuf.st_mode) && 1037 !S_ISCHR(statbuf.st_mode) && 1038 !S_ISBLK(statbuf.st_mode))) { 1039 (void) close(fd); 1040 return; 1041 } 1042 /* this file is too small to hold a zpool */ 1043 if (S_ISREG(statbuf.st_mode) && 1044 statbuf.st_size < SPA_MINDEVSIZE) { 1045 (void) close(fd); 1046 return; 1047 } else if (!S_ISREG(statbuf.st_mode)) { 1048 /* 1049 * Try to read the disk label first so we don't have to 1050 * open a bunch of minor nodes that can't have a zpool. 1051 */ 1052 check_slices(rn->rn_avl, fd, rn->rn_name); 1053 } 1054 1055 if ((zpool_read_label(fd, &config)) != 0) { 1056 (void) close(fd); 1057 (void) no_memory(rn->rn_hdl); 1058 return; 1059 } 1060 (void) close(fd); 1061 1062 rn->rn_config = config; 1063 } 1064 1065 /* 1066 * Given a file descriptor, clear (zero) the label information. 1067 */ 1068 int 1069 zpool_clear_label(int fd) 1070 { 1071 struct stat64 statbuf; 1072 int l; 1073 vdev_label_t *label; 1074 uint64_t size; 1075 1076 if (fstat64(fd, &statbuf) == -1) 1077 return (0); 1078 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1079 1080 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1081 return (-1); 1082 1083 for (l = 0; l < VDEV_LABELS; l++) { 1084 if (pwrite64(fd, label, sizeof (vdev_label_t), 1085 label_offset(size, l)) != sizeof (vdev_label_t)) { 1086 free(label); 1087 return (-1); 1088 } 1089 } 1090 1091 free(label); 1092 return (0); 1093 } 1094 1095 /* 1096 * Given a list of directories to search, find all pools stored on disk. This 1097 * includes partial pools which are not available to import. If no args are 1098 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1099 * poolname or guid (but not both) are provided by the caller when trying 1100 * to import a specific pool. 1101 */ 1102 static nvlist_t * 1103 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1104 { 1105 int i, dirs = iarg->paths; 1106 struct dirent64 *dp; 1107 char path[MAXPATHLEN]; 1108 char *end, **dir = iarg->path; 1109 size_t pathleft; 1110 nvlist_t *ret = NULL; 1111 static char *default_dir = ZFS_DISK_ROOT; 1112 pool_list_t pools = { 0 }; 1113 pool_entry_t *pe, *penext; 1114 vdev_entry_t *ve, *venext; 1115 config_entry_t *ce, *cenext; 1116 name_entry_t *ne, *nenext; 1117 avl_tree_t slice_cache; 1118 rdsk_node_t *slice; 1119 void *cookie; 1120 1121 if (dirs == 0) { 1122 dirs = 1; 1123 dir = &default_dir; 1124 } 1125 1126 /* 1127 * Go through and read the label configuration information from every 1128 * possible device, organizing the information according to pool GUID 1129 * and toplevel GUID. 1130 */ 1131 for (i = 0; i < dirs; i++) { 1132 tpool_t *t; 1133 char rdsk[MAXPATHLEN]; 1134 int dfd; 1135 boolean_t config_failed = B_FALSE; 1136 DIR *dirp; 1137 1138 /* use realpath to normalize the path */ 1139 if (realpath(dir[i], path) == 0) { 1140 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1141 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1142 goto error; 1143 } 1144 end = &path[strlen(path)]; 1145 *end++ = '/'; 1146 *end = 0; 1147 pathleft = &path[sizeof (path)] - end; 1148 1149 /* 1150 * Using raw devices instead of block devices when we're 1151 * reading the labels skips a bunch of slow operations during 1152 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1153 */ 1154 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1155 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1156 else 1157 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1158 1159 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1160 (dirp = fdopendir(dfd)) == NULL) { 1161 if (dfd >= 0) 1162 (void) close(dfd); 1163 zfs_error_aux(hdl, strerror(errno)); 1164 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1165 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1166 rdsk); 1167 goto error; 1168 } 1169 1170 avl_create(&slice_cache, slice_cache_compare, 1171 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1172 /* 1173 * This is not MT-safe, but we have no MT consumers of libzfs 1174 */ 1175 while ((dp = readdir64(dirp)) != NULL) { 1176 const char *name = dp->d_name; 1177 if (name[0] == '.' && 1178 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1179 continue; 1180 1181 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1182 slice->rn_name = zfs_strdup(hdl, name); 1183 slice->rn_avl = &slice_cache; 1184 slice->rn_dfd = dfd; 1185 slice->rn_hdl = hdl; 1186 slice->rn_nozpool = B_FALSE; 1187 avl_add(&slice_cache, slice); 1188 } 1189 /* 1190 * create a thread pool to do all of this in parallel; 1191 * rn_nozpool is not protected, so this is racy in that 1192 * multiple tasks could decide that the same slice can 1193 * not hold a zpool, which is benign. Also choose 1194 * double the number of processors; we hold a lot of 1195 * locks in the kernel, so going beyond this doesn't 1196 * buy us much. 1197 */ 1198 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1199 0, NULL); 1200 for (slice = avl_first(&slice_cache); slice; 1201 (slice = avl_walk(&slice_cache, slice, 1202 AVL_AFTER))) 1203 (void) tpool_dispatch(t, zpool_open_func, slice); 1204 tpool_wait(t); 1205 tpool_destroy(t); 1206 1207 cookie = NULL; 1208 while ((slice = avl_destroy_nodes(&slice_cache, 1209 &cookie)) != NULL) { 1210 if (slice->rn_config != NULL && !config_failed) { 1211 nvlist_t *config = slice->rn_config; 1212 boolean_t matched = B_TRUE; 1213 1214 if (iarg->poolname != NULL) { 1215 char *pname; 1216 1217 matched = nvlist_lookup_string(config, 1218 ZPOOL_CONFIG_POOL_NAME, 1219 &pname) == 0 && 1220 strcmp(iarg->poolname, pname) == 0; 1221 } else if (iarg->guid != 0) { 1222 uint64_t this_guid; 1223 1224 matched = nvlist_lookup_uint64(config, 1225 ZPOOL_CONFIG_POOL_GUID, 1226 &this_guid) == 0 && 1227 iarg->guid == this_guid; 1228 } 1229 if (!matched) { 1230 nvlist_free(config); 1231 } else { 1232 /* 1233 * use the non-raw path for the config 1234 */ 1235 (void) strlcpy(end, slice->rn_name, 1236 pathleft); 1237 if (add_config(hdl, &pools, path, 1238 config) != 0) 1239 config_failed = B_TRUE; 1240 } 1241 } 1242 free(slice->rn_name); 1243 free(slice); 1244 } 1245 avl_destroy(&slice_cache); 1246 1247 (void) closedir(dirp); 1248 1249 if (config_failed) 1250 goto error; 1251 } 1252 1253 ret = get_configs(hdl, &pools, iarg->can_be_active); 1254 1255 error: 1256 for (pe = pools.pools; pe != NULL; pe = penext) { 1257 penext = pe->pe_next; 1258 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1259 venext = ve->ve_next; 1260 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1261 cenext = ce->ce_next; 1262 nvlist_free(ce->ce_config); 1263 free(ce); 1264 } 1265 free(ve); 1266 } 1267 free(pe); 1268 } 1269 1270 for (ne = pools.names; ne != NULL; ne = nenext) { 1271 nenext = ne->ne_next; 1272 free(ne->ne_name); 1273 free(ne); 1274 } 1275 1276 return (ret); 1277 } 1278 1279 nvlist_t * 1280 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1281 { 1282 importargs_t iarg = { 0 }; 1283 1284 iarg.paths = argc; 1285 iarg.path = argv; 1286 1287 return (zpool_find_import_impl(hdl, &iarg)); 1288 } 1289 1290 /* 1291 * Given a cache file, return the contents as a list of importable pools. 1292 * poolname or guid (but not both) are provided by the caller when trying 1293 * to import a specific pool. 1294 */ 1295 nvlist_t * 1296 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1297 char *poolname, uint64_t guid) 1298 { 1299 char *buf; 1300 int fd; 1301 struct stat64 statbuf; 1302 nvlist_t *raw, *src, *dst; 1303 nvlist_t *pools; 1304 nvpair_t *elem; 1305 char *name; 1306 uint64_t this_guid; 1307 boolean_t active; 1308 1309 verify(poolname == NULL || guid == 0); 1310 1311 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1312 zfs_error_aux(hdl, "%s", strerror(errno)); 1313 (void) zfs_error(hdl, EZFS_BADCACHE, 1314 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1315 return (NULL); 1316 } 1317 1318 if (fstat64(fd, &statbuf) != 0) { 1319 zfs_error_aux(hdl, "%s", strerror(errno)); 1320 (void) close(fd); 1321 (void) zfs_error(hdl, EZFS_BADCACHE, 1322 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1323 return (NULL); 1324 } 1325 1326 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1327 (void) close(fd); 1328 return (NULL); 1329 } 1330 1331 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1332 (void) close(fd); 1333 free(buf); 1334 (void) zfs_error(hdl, EZFS_BADCACHE, 1335 dgettext(TEXT_DOMAIN, 1336 "failed to read cache file contents")); 1337 return (NULL); 1338 } 1339 1340 (void) close(fd); 1341 1342 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1343 free(buf); 1344 (void) zfs_error(hdl, EZFS_BADCACHE, 1345 dgettext(TEXT_DOMAIN, 1346 "invalid or corrupt cache file contents")); 1347 return (NULL); 1348 } 1349 1350 free(buf); 1351 1352 /* 1353 * Go through and get the current state of the pools and refresh their 1354 * state. 1355 */ 1356 if (nvlist_alloc(&pools, 0, 0) != 0) { 1357 (void) no_memory(hdl); 1358 nvlist_free(raw); 1359 return (NULL); 1360 } 1361 1362 elem = NULL; 1363 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1364 src = fnvpair_value_nvlist(elem); 1365 1366 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1367 if (poolname != NULL && strcmp(poolname, name) != 0) 1368 continue; 1369 1370 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1371 if (guid != 0 && guid != this_guid) 1372 continue; 1373 1374 if (pool_active(hdl, name, this_guid, &active) != 0) { 1375 nvlist_free(raw); 1376 nvlist_free(pools); 1377 return (NULL); 1378 } 1379 1380 if (active) 1381 continue; 1382 1383 if ((dst = refresh_config(hdl, src)) == NULL) { 1384 nvlist_free(raw); 1385 nvlist_free(pools); 1386 return (NULL); 1387 } 1388 1389 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1390 (void) no_memory(hdl); 1391 nvlist_free(dst); 1392 nvlist_free(raw); 1393 nvlist_free(pools); 1394 return (NULL); 1395 } 1396 nvlist_free(dst); 1397 } 1398 1399 nvlist_free(raw); 1400 return (pools); 1401 } 1402 1403 static int 1404 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1405 { 1406 importargs_t *import = data; 1407 int found = 0; 1408 1409 if (import->poolname != NULL) { 1410 char *pool_name; 1411 1412 verify(nvlist_lookup_string(zhp->zpool_config, 1413 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1414 if (strcmp(pool_name, import->poolname) == 0) 1415 found = 1; 1416 } else { 1417 uint64_t pool_guid; 1418 1419 verify(nvlist_lookup_uint64(zhp->zpool_config, 1420 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1421 if (pool_guid == import->guid) 1422 found = 1; 1423 } 1424 1425 zpool_close(zhp); 1426 return (found); 1427 } 1428 1429 nvlist_t * 1430 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1431 { 1432 verify(import->poolname == NULL || import->guid == 0); 1433 1434 if (import->unique) 1435 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1436 1437 if (import->cachefile != NULL) 1438 return (zpool_find_import_cached(hdl, import->cachefile, 1439 import->poolname, import->guid)); 1440 1441 return (zpool_find_import_impl(hdl, import)); 1442 } 1443 1444 boolean_t 1445 find_guid(nvlist_t *nv, uint64_t guid) 1446 { 1447 uint64_t tmp; 1448 nvlist_t **child; 1449 uint_t c, children; 1450 1451 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1452 if (tmp == guid) 1453 return (B_TRUE); 1454 1455 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1456 &child, &children) == 0) { 1457 for (c = 0; c < children; c++) 1458 if (find_guid(child[c], guid)) 1459 return (B_TRUE); 1460 } 1461 1462 return (B_FALSE); 1463 } 1464 1465 typedef struct aux_cbdata { 1466 const char *cb_type; 1467 uint64_t cb_guid; 1468 zpool_handle_t *cb_zhp; 1469 } aux_cbdata_t; 1470 1471 static int 1472 find_aux(zpool_handle_t *zhp, void *data) 1473 { 1474 aux_cbdata_t *cbp = data; 1475 nvlist_t **list; 1476 uint_t i, count; 1477 uint64_t guid; 1478 nvlist_t *nvroot; 1479 1480 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1481 &nvroot) == 0); 1482 1483 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1484 &list, &count) == 0) { 1485 for (i = 0; i < count; i++) { 1486 verify(nvlist_lookup_uint64(list[i], 1487 ZPOOL_CONFIG_GUID, &guid) == 0); 1488 if (guid == cbp->cb_guid) { 1489 cbp->cb_zhp = zhp; 1490 return (1); 1491 } 1492 } 1493 } 1494 1495 zpool_close(zhp); 1496 return (0); 1497 } 1498 1499 /* 1500 * Determines if the pool is in use. If so, it returns true and the state of 1501 * the pool as well as the name of the pool. Both strings are allocated and 1502 * must be freed by the caller. 1503 */ 1504 int 1505 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1506 boolean_t *inuse) 1507 { 1508 nvlist_t *config; 1509 char *name; 1510 boolean_t ret; 1511 uint64_t guid, vdev_guid; 1512 zpool_handle_t *zhp; 1513 nvlist_t *pool_config; 1514 uint64_t stateval, isspare; 1515 aux_cbdata_t cb = { 0 }; 1516 boolean_t isactive; 1517 1518 *inuse = B_FALSE; 1519 1520 if (zpool_read_label(fd, &config) != 0) { 1521 (void) no_memory(hdl); 1522 return (-1); 1523 } 1524 1525 if (config == NULL) 1526 return (0); 1527 1528 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1529 &stateval) == 0); 1530 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1531 &vdev_guid) == 0); 1532 1533 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1534 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1535 &name) == 0); 1536 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1537 &guid) == 0); 1538 } 1539 1540 switch (stateval) { 1541 case POOL_STATE_EXPORTED: 1542 /* 1543 * A pool with an exported state may in fact be imported 1544 * read-only, so check the in-core state to see if it's 1545 * active and imported read-only. If it is, set 1546 * its state to active. 1547 */ 1548 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1549 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1550 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1551 stateval = POOL_STATE_ACTIVE; 1552 1553 /* 1554 * All we needed the zpool handle for is the 1555 * readonly prop check. 1556 */ 1557 zpool_close(zhp); 1558 } 1559 1560 ret = B_TRUE; 1561 break; 1562 1563 case POOL_STATE_ACTIVE: 1564 /* 1565 * For an active pool, we have to determine if it's really part 1566 * of a currently active pool (in which case the pool will exist 1567 * and the guid will be the same), or whether it's part of an 1568 * active pool that was disconnected without being explicitly 1569 * exported. 1570 */ 1571 if (pool_active(hdl, name, guid, &isactive) != 0) { 1572 nvlist_free(config); 1573 return (-1); 1574 } 1575 1576 if (isactive) { 1577 /* 1578 * Because the device may have been removed while 1579 * offlined, we only report it as active if the vdev is 1580 * still present in the config. Otherwise, pretend like 1581 * it's not in use. 1582 */ 1583 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1584 (pool_config = zpool_get_config(zhp, NULL)) 1585 != NULL) { 1586 nvlist_t *nvroot; 1587 1588 verify(nvlist_lookup_nvlist(pool_config, 1589 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1590 ret = find_guid(nvroot, vdev_guid); 1591 } else { 1592 ret = B_FALSE; 1593 } 1594 1595 /* 1596 * If this is an active spare within another pool, we 1597 * treat it like an unused hot spare. This allows the 1598 * user to create a pool with a hot spare that currently 1599 * in use within another pool. Since we return B_TRUE, 1600 * libdiskmgt will continue to prevent generic consumers 1601 * from using the device. 1602 */ 1603 if (ret && nvlist_lookup_uint64(config, 1604 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1605 stateval = POOL_STATE_SPARE; 1606 1607 if (zhp != NULL) 1608 zpool_close(zhp); 1609 } else { 1610 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1611 ret = B_TRUE; 1612 } 1613 break; 1614 1615 case POOL_STATE_SPARE: 1616 /* 1617 * For a hot spare, it can be either definitively in use, or 1618 * potentially active. To determine if it's in use, we iterate 1619 * over all pools in the system and search for one with a spare 1620 * with a matching guid. 1621 * 1622 * Due to the shared nature of spares, we don't actually report 1623 * the potentially active case as in use. This means the user 1624 * can freely create pools on the hot spares of exported pools, 1625 * but to do otherwise makes the resulting code complicated, and 1626 * we end up having to deal with this case anyway. 1627 */ 1628 cb.cb_zhp = NULL; 1629 cb.cb_guid = vdev_guid; 1630 cb.cb_type = ZPOOL_CONFIG_SPARES; 1631 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1632 name = (char *)zpool_get_name(cb.cb_zhp); 1633 ret = B_TRUE; 1634 } else { 1635 ret = B_FALSE; 1636 } 1637 break; 1638 1639 case POOL_STATE_L2CACHE: 1640 1641 /* 1642 * Check if any pool is currently using this l2cache device. 1643 */ 1644 cb.cb_zhp = NULL; 1645 cb.cb_guid = vdev_guid; 1646 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1647 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1648 name = (char *)zpool_get_name(cb.cb_zhp); 1649 ret = B_TRUE; 1650 } else { 1651 ret = B_FALSE; 1652 } 1653 break; 1654 1655 default: 1656 ret = B_FALSE; 1657 } 1658 1659 1660 if (ret) { 1661 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1662 if (cb.cb_zhp) 1663 zpool_close(cb.cb_zhp); 1664 nvlist_free(config); 1665 return (-1); 1666 } 1667 *state = (pool_state_t)stateval; 1668 } 1669 1670 if (cb.cb_zhp) 1671 zpool_close(cb.cb_zhp); 1672 1673 nvlist_free(config); 1674 *inuse = ret; 1675 return (0); 1676 } 1677