xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision b89e420ae1290e425c29db875ec0c0546006eec7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 /*
28  * Pool import support functions.
29  *
30  * To import a pool, we rely on reading the configuration information from the
31  * ZFS label of each device.  If we successfully read the label, then we
32  * organize the configuration information in the following hierarchy:
33  *
34  * 	pool guid -> toplevel vdev guid -> label txg
35  *
36  * Duplicate entries matching this same tuple will be discarded.  Once we have
37  * examined every device, we pick the best label txg config for each toplevel
38  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39  * update any paths that have changed.  Finally, we attempt to import the pool
40  * using our derived config, and record the results.
41  */
42 
43 #include <ctype.h>
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/stat.h>
52 #include <unistd.h>
53 #include <fcntl.h>
54 #include <sys/vtoc.h>
55 #include <sys/dktp/fdisk.h>
56 #include <sys/efi_partition.h>
57 #include <thread_pool.h>
58 
59 #include <sys/vdev_impl.h>
60 
61 #include "libzfs.h"
62 #include "libzfs_impl.h"
63 
64 /*
65  * Intermediate structures used to gather configuration information.
66  */
67 typedef struct config_entry {
68 	uint64_t		ce_txg;
69 	nvlist_t		*ce_config;
70 	struct config_entry	*ce_next;
71 } config_entry_t;
72 
73 typedef struct vdev_entry {
74 	uint64_t		ve_guid;
75 	config_entry_t		*ve_configs;
76 	struct vdev_entry	*ve_next;
77 } vdev_entry_t;
78 
79 typedef struct pool_entry {
80 	uint64_t		pe_guid;
81 	vdev_entry_t		*pe_vdevs;
82 	struct pool_entry	*pe_next;
83 } pool_entry_t;
84 
85 typedef struct name_entry {
86 	char			*ne_name;
87 	uint64_t		ne_guid;
88 	struct name_entry	*ne_next;
89 } name_entry_t;
90 
91 typedef struct pool_list {
92 	pool_entry_t		*pools;
93 	name_entry_t		*names;
94 } pool_list_t;
95 
96 static char *
97 get_devid(const char *path)
98 {
99 	int fd;
100 	ddi_devid_t devid;
101 	char *minor, *ret;
102 
103 	if ((fd = open(path, O_RDONLY)) < 0)
104 		return (NULL);
105 
106 	minor = NULL;
107 	ret = NULL;
108 	if (devid_get(fd, &devid) == 0) {
109 		if (devid_get_minor_name(fd, &minor) == 0)
110 			ret = devid_str_encode(devid, minor);
111 		if (minor != NULL)
112 			devid_str_free(minor);
113 		devid_free(devid);
114 	}
115 	(void) close(fd);
116 
117 	return (ret);
118 }
119 
120 
121 /*
122  * Go through and fix up any path and/or devid information for the given vdev
123  * configuration.
124  */
125 static int
126 fix_paths(nvlist_t *nv, name_entry_t *names)
127 {
128 	nvlist_t **child;
129 	uint_t c, children;
130 	uint64_t guid;
131 	name_entry_t *ne, *best;
132 	char *path, *devid;
133 	int matched;
134 
135 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
136 	    &child, &children) == 0) {
137 		for (c = 0; c < children; c++)
138 			if (fix_paths(child[c], names) != 0)
139 				return (-1);
140 		return (0);
141 	}
142 
143 	/*
144 	 * This is a leaf (file or disk) vdev.  In either case, go through
145 	 * the name list and see if we find a matching guid.  If so, replace
146 	 * the path and see if we can calculate a new devid.
147 	 *
148 	 * There may be multiple names associated with a particular guid, in
149 	 * which case we have overlapping slices or multiple paths to the same
150 	 * disk.  If this is the case, then we want to pick the path that is
151 	 * the most similar to the original, where "most similar" is the number
152 	 * of matching characters starting from the end of the path.  This will
153 	 * preserve slice numbers even if the disks have been reorganized, and
154 	 * will also catch preferred disk names if multiple paths exist.
155 	 */
156 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
157 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
158 		path = NULL;
159 
160 	matched = 0;
161 	best = NULL;
162 	for (ne = names; ne != NULL; ne = ne->ne_next) {
163 		if (ne->ne_guid == guid) {
164 			const char *src, *dst;
165 			int count;
166 
167 			if (path == NULL) {
168 				best = ne;
169 				break;
170 			}
171 
172 			src = ne->ne_name + strlen(ne->ne_name) - 1;
173 			dst = path + strlen(path) - 1;
174 			for (count = 0; src >= ne->ne_name && dst >= path;
175 			    src--, dst--, count++)
176 				if (*src != *dst)
177 					break;
178 
179 			/*
180 			 * At this point, 'count' is the number of characters
181 			 * matched from the end.
182 			 */
183 			if (count > matched || best == NULL) {
184 				best = ne;
185 				matched = count;
186 			}
187 		}
188 	}
189 
190 	if (best == NULL)
191 		return (0);
192 
193 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
194 		return (-1);
195 
196 	if ((devid = get_devid(best->ne_name)) == NULL) {
197 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
198 	} else {
199 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
200 			return (-1);
201 		devid_str_free(devid);
202 	}
203 
204 	return (0);
205 }
206 
207 /*
208  * Add the given configuration to the list of known devices.
209  */
210 static int
211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
212     nvlist_t *config)
213 {
214 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
215 	pool_entry_t *pe;
216 	vdev_entry_t *ve;
217 	config_entry_t *ce;
218 	name_entry_t *ne;
219 
220 	/*
221 	 * If this is a hot spare not currently in use or level 2 cache
222 	 * device, add it to the list of names to translate, but don't do
223 	 * anything else.
224 	 */
225 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
226 	    &state) == 0 &&
227 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
228 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
229 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
230 			return (-1);
231 
232 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
233 			free(ne);
234 			return (-1);
235 		}
236 		ne->ne_guid = vdev_guid;
237 		ne->ne_next = pl->names;
238 		pl->names = ne;
239 		return (0);
240 	}
241 
242 	/*
243 	 * If we have a valid config but cannot read any of these fields, then
244 	 * it means we have a half-initialized label.  In vdev_label_init()
245 	 * we write a label with txg == 0 so that we can identify the device
246 	 * in case the user refers to the same disk later on.  If we fail to
247 	 * create the pool, we'll be left with a label in this state
248 	 * which should not be considered part of a valid pool.
249 	 */
250 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
251 	    &pool_guid) != 0 ||
252 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
253 	    &vdev_guid) != 0 ||
254 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
255 	    &top_guid) != 0 ||
256 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
257 	    &txg) != 0 || txg == 0) {
258 		nvlist_free(config);
259 		return (0);
260 	}
261 
262 	/*
263 	 * First, see if we know about this pool.  If not, then add it to the
264 	 * list of known pools.
265 	 */
266 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
267 		if (pe->pe_guid == pool_guid)
268 			break;
269 	}
270 
271 	if (pe == NULL) {
272 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
273 			nvlist_free(config);
274 			return (-1);
275 		}
276 		pe->pe_guid = pool_guid;
277 		pe->pe_next = pl->pools;
278 		pl->pools = pe;
279 	}
280 
281 	/*
282 	 * Second, see if we know about this toplevel vdev.  Add it if its
283 	 * missing.
284 	 */
285 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
286 		if (ve->ve_guid == top_guid)
287 			break;
288 	}
289 
290 	if (ve == NULL) {
291 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
292 			nvlist_free(config);
293 			return (-1);
294 		}
295 		ve->ve_guid = top_guid;
296 		ve->ve_next = pe->pe_vdevs;
297 		pe->pe_vdevs = ve;
298 	}
299 
300 	/*
301 	 * Third, see if we have a config with a matching transaction group.  If
302 	 * so, then we do nothing.  Otherwise, add it to the list of known
303 	 * configs.
304 	 */
305 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
306 		if (ce->ce_txg == txg)
307 			break;
308 	}
309 
310 	if (ce == NULL) {
311 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
312 			nvlist_free(config);
313 			return (-1);
314 		}
315 		ce->ce_txg = txg;
316 		ce->ce_config = config;
317 		ce->ce_next = ve->ve_configs;
318 		ve->ve_configs = ce;
319 	} else {
320 		nvlist_free(config);
321 	}
322 
323 	/*
324 	 * At this point we've successfully added our config to the list of
325 	 * known configs.  The last thing to do is add the vdev guid -> path
326 	 * mappings so that we can fix up the configuration as necessary before
327 	 * doing the import.
328 	 */
329 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
330 		return (-1);
331 
332 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
333 		free(ne);
334 		return (-1);
335 	}
336 
337 	ne->ne_guid = vdev_guid;
338 	ne->ne_next = pl->names;
339 	pl->names = ne;
340 
341 	return (0);
342 }
343 
344 /*
345  * Returns true if the named pool matches the given GUID.
346  */
347 static int
348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
349     boolean_t *isactive)
350 {
351 	zpool_handle_t *zhp;
352 	uint64_t theguid;
353 
354 	if (zpool_open_silent(hdl, name, &zhp) != 0)
355 		return (-1);
356 
357 	if (zhp == NULL) {
358 		*isactive = B_FALSE;
359 		return (0);
360 	}
361 
362 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
363 	    &theguid) == 0);
364 
365 	zpool_close(zhp);
366 
367 	*isactive = (theguid == guid);
368 	return (0);
369 }
370 
371 static nvlist_t *
372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
373 {
374 	nvlist_t *nvl;
375 	zfs_cmd_t zc = { 0 };
376 	int err;
377 
378 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
379 		return (NULL);
380 
381 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
382 	    zc.zc_nvlist_conf_size * 2) != 0) {
383 		zcmd_free_nvlists(&zc);
384 		return (NULL);
385 	}
386 
387 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
388 	    &zc)) != 0 && errno == ENOMEM) {
389 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
390 			zcmd_free_nvlists(&zc);
391 			return (NULL);
392 		}
393 	}
394 
395 	if (err) {
396 		zcmd_free_nvlists(&zc);
397 		return (NULL);
398 	}
399 
400 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
401 		zcmd_free_nvlists(&zc);
402 		return (NULL);
403 	}
404 
405 	zcmd_free_nvlists(&zc);
406 	return (nvl);
407 }
408 
409 /*
410  * Determine if the vdev id is a hole in the namespace.
411  */
412 boolean_t
413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
414 {
415 	for (int c = 0; c < holes; c++) {
416 
417 		/* Top-level is a hole */
418 		if (hole_array[c] == id)
419 			return (B_TRUE);
420 	}
421 	return (B_FALSE);
422 }
423 
424 /*
425  * Convert our list of pools into the definitive set of configurations.  We
426  * start by picking the best config for each toplevel vdev.  Once that's done,
427  * we assemble the toplevel vdevs into a full config for the pool.  We make a
428  * pass to fix up any incorrect paths, and then add it to the main list to
429  * return to the user.
430  */
431 static nvlist_t *
432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
433 {
434 	pool_entry_t *pe;
435 	vdev_entry_t *ve;
436 	config_entry_t *ce;
437 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
438 	nvlist_t **spares, **l2cache;
439 	uint_t i, nspares, nl2cache;
440 	boolean_t config_seen;
441 	uint64_t best_txg;
442 	char *name, *hostname;
443 	uint64_t guid;
444 	uint_t children = 0;
445 	nvlist_t **child = NULL;
446 	uint_t holes;
447 	uint64_t *hole_array, max_id;
448 	uint_t c;
449 	boolean_t isactive;
450 	uint64_t hostid;
451 	nvlist_t *nvl;
452 	boolean_t found_one = B_FALSE;
453 	boolean_t valid_top_config = B_FALSE;
454 
455 	if (nvlist_alloc(&ret, 0, 0) != 0)
456 		goto nomem;
457 
458 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
459 		uint64_t id, max_txg = 0;
460 
461 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
462 			goto nomem;
463 		config_seen = B_FALSE;
464 
465 		/*
466 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
467 		 * from the first one we find, and then go through the rest and
468 		 * add them as necessary to the 'vdevs' member of the config.
469 		 */
470 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
471 
472 			/*
473 			 * Determine the best configuration for this vdev by
474 			 * selecting the config with the latest transaction
475 			 * group.
476 			 */
477 			best_txg = 0;
478 			for (ce = ve->ve_configs; ce != NULL;
479 			    ce = ce->ce_next) {
480 
481 				if (ce->ce_txg > best_txg) {
482 					tmp = ce->ce_config;
483 					best_txg = ce->ce_txg;
484 				}
485 			}
486 
487 			/*
488 			 * We rely on the fact that the max txg for the
489 			 * pool will contain the most up-to-date information
490 			 * about the valid top-levels in the vdev namespace.
491 			 */
492 			if (best_txg > max_txg) {
493 				(void) nvlist_remove(config,
494 				    ZPOOL_CONFIG_VDEV_CHILDREN,
495 				    DATA_TYPE_UINT64);
496 				(void) nvlist_remove(config,
497 				    ZPOOL_CONFIG_HOLE_ARRAY,
498 				    DATA_TYPE_UINT64_ARRAY);
499 
500 				max_txg = best_txg;
501 				hole_array = NULL;
502 				holes = 0;
503 				max_id = 0;
504 				valid_top_config = B_FALSE;
505 
506 				if (nvlist_lookup_uint64(tmp,
507 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
508 					verify(nvlist_add_uint64(config,
509 					    ZPOOL_CONFIG_VDEV_CHILDREN,
510 					    max_id) == 0);
511 					valid_top_config = B_TRUE;
512 				}
513 
514 				if (nvlist_lookup_uint64_array(tmp,
515 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
516 				    &holes) == 0) {
517 					verify(nvlist_add_uint64_array(config,
518 					    ZPOOL_CONFIG_HOLE_ARRAY,
519 					    hole_array, holes) == 0);
520 				}
521 			}
522 
523 			if (!config_seen) {
524 				/*
525 				 * Copy the relevant pieces of data to the pool
526 				 * configuration:
527 				 *
528 				 *	version
529 				 *	pool guid
530 				 *	name
531 				 *	comment (if available)
532 				 *	pool state
533 				 *	hostid (if available)
534 				 *	hostname (if available)
535 				 */
536 				uint64_t state, version;
537 				char *comment = NULL;
538 
539 				version = fnvlist_lookup_uint64(tmp,
540 				    ZPOOL_CONFIG_VERSION);
541 				fnvlist_add_uint64(config,
542 				    ZPOOL_CONFIG_VERSION, version);
543 				guid = fnvlist_lookup_uint64(tmp,
544 				    ZPOOL_CONFIG_POOL_GUID);
545 				fnvlist_add_uint64(config,
546 				    ZPOOL_CONFIG_POOL_GUID, guid);
547 				name = fnvlist_lookup_string(tmp,
548 				    ZPOOL_CONFIG_POOL_NAME);
549 				fnvlist_add_string(config,
550 				    ZPOOL_CONFIG_POOL_NAME, name);
551 
552 				if (nvlist_lookup_string(tmp,
553 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
554 					fnvlist_add_string(config,
555 					    ZPOOL_CONFIG_COMMENT, comment);
556 
557 				state = fnvlist_lookup_uint64(tmp,
558 				    ZPOOL_CONFIG_POOL_STATE);
559 				fnvlist_add_uint64(config,
560 				    ZPOOL_CONFIG_POOL_STATE, state);
561 
562 				hostid = 0;
563 				if (nvlist_lookup_uint64(tmp,
564 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
565 					fnvlist_add_uint64(config,
566 					    ZPOOL_CONFIG_HOSTID, hostid);
567 					hostname = fnvlist_lookup_string(tmp,
568 					    ZPOOL_CONFIG_HOSTNAME);
569 					fnvlist_add_string(config,
570 					    ZPOOL_CONFIG_HOSTNAME, hostname);
571 				}
572 
573 				config_seen = B_TRUE;
574 			}
575 
576 			/*
577 			 * Add this top-level vdev to the child array.
578 			 */
579 			verify(nvlist_lookup_nvlist(tmp,
580 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
581 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
582 			    &id) == 0);
583 
584 			if (id >= children) {
585 				nvlist_t **newchild;
586 
587 				newchild = zfs_alloc(hdl, (id + 1) *
588 				    sizeof (nvlist_t *));
589 				if (newchild == NULL)
590 					goto nomem;
591 
592 				for (c = 0; c < children; c++)
593 					newchild[c] = child[c];
594 
595 				free(child);
596 				child = newchild;
597 				children = id + 1;
598 			}
599 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
600 				goto nomem;
601 
602 		}
603 
604 		/*
605 		 * If we have information about all the top-levels then
606 		 * clean up the nvlist which we've constructed. This
607 		 * means removing any extraneous devices that are
608 		 * beyond the valid range or adding devices to the end
609 		 * of our array which appear to be missing.
610 		 */
611 		if (valid_top_config) {
612 			if (max_id < children) {
613 				for (c = max_id; c < children; c++)
614 					nvlist_free(child[c]);
615 				children = max_id;
616 			} else if (max_id > children) {
617 				nvlist_t **newchild;
618 
619 				newchild = zfs_alloc(hdl, (max_id) *
620 				    sizeof (nvlist_t *));
621 				if (newchild == NULL)
622 					goto nomem;
623 
624 				for (c = 0; c < children; c++)
625 					newchild[c] = child[c];
626 
627 				free(child);
628 				child = newchild;
629 				children = max_id;
630 			}
631 		}
632 
633 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
634 		    &guid) == 0);
635 
636 		/*
637 		 * The vdev namespace may contain holes as a result of
638 		 * device removal. We must add them back into the vdev
639 		 * tree before we process any missing devices.
640 		 */
641 		if (holes > 0) {
642 			ASSERT(valid_top_config);
643 
644 			for (c = 0; c < children; c++) {
645 				nvlist_t *holey;
646 
647 				if (child[c] != NULL ||
648 				    !vdev_is_hole(hole_array, holes, c))
649 					continue;
650 
651 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
652 				    0) != 0)
653 					goto nomem;
654 
655 				/*
656 				 * Holes in the namespace are treated as
657 				 * "hole" top-level vdevs and have a
658 				 * special flag set on them.
659 				 */
660 				if (nvlist_add_string(holey,
661 				    ZPOOL_CONFIG_TYPE,
662 				    VDEV_TYPE_HOLE) != 0 ||
663 				    nvlist_add_uint64(holey,
664 				    ZPOOL_CONFIG_ID, c) != 0 ||
665 				    nvlist_add_uint64(holey,
666 				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
667 					goto nomem;
668 				child[c] = holey;
669 			}
670 		}
671 
672 		/*
673 		 * Look for any missing top-level vdevs.  If this is the case,
674 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
675 		 * simply compress the child array, because the kernel performs
676 		 * certain checks to make sure the vdev IDs match their location
677 		 * in the configuration.
678 		 */
679 		for (c = 0; c < children; c++) {
680 			if (child[c] == NULL) {
681 				nvlist_t *missing;
682 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
683 				    0) != 0)
684 					goto nomem;
685 				if (nvlist_add_string(missing,
686 				    ZPOOL_CONFIG_TYPE,
687 				    VDEV_TYPE_MISSING) != 0 ||
688 				    nvlist_add_uint64(missing,
689 				    ZPOOL_CONFIG_ID, c) != 0 ||
690 				    nvlist_add_uint64(missing,
691 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
692 					nvlist_free(missing);
693 					goto nomem;
694 				}
695 				child[c] = missing;
696 			}
697 		}
698 
699 		/*
700 		 * Put all of this pool's top-level vdevs into a root vdev.
701 		 */
702 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
703 			goto nomem;
704 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
705 		    VDEV_TYPE_ROOT) != 0 ||
706 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
707 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
708 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
709 		    child, children) != 0) {
710 			nvlist_free(nvroot);
711 			goto nomem;
712 		}
713 
714 		for (c = 0; c < children; c++)
715 			nvlist_free(child[c]);
716 		free(child);
717 		children = 0;
718 		child = NULL;
719 
720 		/*
721 		 * Go through and fix up any paths and/or devids based on our
722 		 * known list of vdev GUID -> path mappings.
723 		 */
724 		if (fix_paths(nvroot, pl->names) != 0) {
725 			nvlist_free(nvroot);
726 			goto nomem;
727 		}
728 
729 		/*
730 		 * Add the root vdev to this pool's configuration.
731 		 */
732 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
733 		    nvroot) != 0) {
734 			nvlist_free(nvroot);
735 			goto nomem;
736 		}
737 		nvlist_free(nvroot);
738 
739 		/*
740 		 * zdb uses this path to report on active pools that were
741 		 * imported or created using -R.
742 		 */
743 		if (active_ok)
744 			goto add_pool;
745 
746 		/*
747 		 * Determine if this pool is currently active, in which case we
748 		 * can't actually import it.
749 		 */
750 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
751 		    &name) == 0);
752 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
753 		    &guid) == 0);
754 
755 		if (pool_active(hdl, name, guid, &isactive) != 0)
756 			goto error;
757 
758 		if (isactive) {
759 			nvlist_free(config);
760 			config = NULL;
761 			continue;
762 		}
763 
764 		if ((nvl = refresh_config(hdl, config)) == NULL) {
765 			nvlist_free(config);
766 			config = NULL;
767 			continue;
768 		}
769 
770 		nvlist_free(config);
771 		config = nvl;
772 
773 		/*
774 		 * Go through and update the paths for spares, now that we have
775 		 * them.
776 		 */
777 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
778 		    &nvroot) == 0);
779 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
780 		    &spares, &nspares) == 0) {
781 			for (i = 0; i < nspares; i++) {
782 				if (fix_paths(spares[i], pl->names) != 0)
783 					goto nomem;
784 			}
785 		}
786 
787 		/*
788 		 * Update the paths for l2cache devices.
789 		 */
790 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
791 		    &l2cache, &nl2cache) == 0) {
792 			for (i = 0; i < nl2cache; i++) {
793 				if (fix_paths(l2cache[i], pl->names) != 0)
794 					goto nomem;
795 			}
796 		}
797 
798 		/*
799 		 * Restore the original information read from the actual label.
800 		 */
801 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
802 		    DATA_TYPE_UINT64);
803 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
804 		    DATA_TYPE_STRING);
805 		if (hostid != 0) {
806 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
807 			    hostid) == 0);
808 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
809 			    hostname) == 0);
810 		}
811 
812 add_pool:
813 		/*
814 		 * Add this pool to the list of configs.
815 		 */
816 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
817 		    &name) == 0);
818 		if (nvlist_add_nvlist(ret, name, config) != 0)
819 			goto nomem;
820 
821 		found_one = B_TRUE;
822 		nvlist_free(config);
823 		config = NULL;
824 	}
825 
826 	if (!found_one) {
827 		nvlist_free(ret);
828 		ret = NULL;
829 	}
830 
831 	return (ret);
832 
833 nomem:
834 	(void) no_memory(hdl);
835 error:
836 	nvlist_free(config);
837 	nvlist_free(ret);
838 	for (c = 0; c < children; c++)
839 		nvlist_free(child[c]);
840 	free(child);
841 
842 	return (NULL);
843 }
844 
845 /*
846  * Return the offset of the given label.
847  */
848 static uint64_t
849 label_offset(uint64_t size, int l)
850 {
851 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
852 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
853 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
854 }
855 
856 /*
857  * Given a file descriptor, read the label information and return an nvlist
858  * describing the configuration, if there is one.
859  */
860 int
861 zpool_read_label(int fd, nvlist_t **config)
862 {
863 	struct stat64 statbuf;
864 	int l;
865 	vdev_label_t *label;
866 	uint64_t state, txg, size;
867 
868 	*config = NULL;
869 
870 	if (fstat64(fd, &statbuf) == -1)
871 		return (0);
872 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
873 
874 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
875 		return (-1);
876 
877 	for (l = 0; l < VDEV_LABELS; l++) {
878 		if (pread64(fd, label, sizeof (vdev_label_t),
879 		    label_offset(size, l)) != sizeof (vdev_label_t))
880 			continue;
881 
882 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
883 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
884 			continue;
885 
886 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
887 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
888 			nvlist_free(*config);
889 			continue;
890 		}
891 
892 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
893 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
894 		    &txg) != 0 || txg == 0)) {
895 			nvlist_free(*config);
896 			continue;
897 		}
898 
899 		free(label);
900 		return (0);
901 	}
902 
903 	free(label);
904 	*config = NULL;
905 	return (0);
906 }
907 
908 typedef struct rdsk_node {
909 	char *rn_name;
910 	int rn_dfd;
911 	libzfs_handle_t *rn_hdl;
912 	nvlist_t *rn_config;
913 	avl_tree_t *rn_avl;
914 	avl_node_t rn_node;
915 	boolean_t rn_nozpool;
916 } rdsk_node_t;
917 
918 static int
919 slice_cache_compare(const void *arg1, const void *arg2)
920 {
921 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
922 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
923 	char *nm1slice, *nm2slice;
924 	int rv;
925 
926 	/*
927 	 * slices zero and two are the most likely to provide results,
928 	 * so put those first
929 	 */
930 	nm1slice = strstr(nm1, "s0");
931 	nm2slice = strstr(nm2, "s0");
932 	if (nm1slice && !nm2slice) {
933 		return (-1);
934 	}
935 	if (!nm1slice && nm2slice) {
936 		return (1);
937 	}
938 	nm1slice = strstr(nm1, "s2");
939 	nm2slice = strstr(nm2, "s2");
940 	if (nm1slice && !nm2slice) {
941 		return (-1);
942 	}
943 	if (!nm1slice && nm2slice) {
944 		return (1);
945 	}
946 
947 	rv = strcmp(nm1, nm2);
948 	if (rv == 0)
949 		return (0);
950 	return (rv > 0 ? 1 : -1);
951 }
952 
953 static void
954 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
955     diskaddr_t size, uint_t blksz)
956 {
957 	rdsk_node_t tmpnode;
958 	rdsk_node_t *node;
959 	char sname[MAXNAMELEN];
960 
961 	tmpnode.rn_name = &sname[0];
962 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
963 	    diskname, partno);
964 	/*
965 	 * protect against division by zero for disk labels that
966 	 * contain a bogus sector size
967 	 */
968 	if (blksz == 0)
969 		blksz = DEV_BSIZE;
970 	/* too small to contain a zpool? */
971 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
972 	    (node = avl_find(r, &tmpnode, NULL)))
973 		node->rn_nozpool = B_TRUE;
974 }
975 
976 static void
977 nozpool_all_slices(avl_tree_t *r, const char *sname)
978 {
979 	char diskname[MAXNAMELEN];
980 	char *ptr;
981 	int i;
982 
983 	(void) strncpy(diskname, sname, MAXNAMELEN);
984 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
985 	    ((ptr = strrchr(diskname, 'p')) == NULL))
986 		return;
987 	ptr[0] = 's';
988 	ptr[1] = '\0';
989 	for (i = 0; i < NDKMAP; i++)
990 		check_one_slice(r, diskname, i, 0, 1);
991 	ptr[0] = 'p';
992 	for (i = 0; i <= FD_NUMPART; i++)
993 		check_one_slice(r, diskname, i, 0, 1);
994 }
995 
996 static void
997 check_slices(avl_tree_t *r, int fd, const char *sname)
998 {
999 	struct extvtoc vtoc;
1000 	struct dk_gpt *gpt;
1001 	char diskname[MAXNAMELEN];
1002 	char *ptr;
1003 	int i;
1004 
1005 	(void) strncpy(diskname, sname, MAXNAMELEN);
1006 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1007 		return;
1008 	ptr[1] = '\0';
1009 
1010 	if (read_extvtoc(fd, &vtoc) >= 0) {
1011 		for (i = 0; i < NDKMAP; i++)
1012 			check_one_slice(r, diskname, i,
1013 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1014 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1015 		/*
1016 		 * on x86 we'll still have leftover links that point
1017 		 * to slices s[9-15], so use NDKMAP instead
1018 		 */
1019 		for (i = 0; i < NDKMAP; i++)
1020 			check_one_slice(r, diskname, i,
1021 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1022 		/* nodes p[1-4] are never used with EFI labels */
1023 		ptr[0] = 'p';
1024 		for (i = 1; i <= FD_NUMPART; i++)
1025 			check_one_slice(r, diskname, i, 0, 1);
1026 		efi_free(gpt);
1027 	}
1028 }
1029 
1030 static void
1031 zpool_open_func(void *arg)
1032 {
1033 	rdsk_node_t *rn = arg;
1034 	struct stat64 statbuf;
1035 	nvlist_t *config;
1036 	int fd;
1037 
1038 	if (rn->rn_nozpool)
1039 		return;
1040 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1041 		/* symlink to a device that's no longer there */
1042 		if (errno == ENOENT)
1043 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1044 		return;
1045 	}
1046 	/*
1047 	 * Ignore failed stats.  We only want regular
1048 	 * files, character devs and block devs.
1049 	 */
1050 	if (fstat64(fd, &statbuf) != 0 ||
1051 	    (!S_ISREG(statbuf.st_mode) &&
1052 	    !S_ISCHR(statbuf.st_mode) &&
1053 	    !S_ISBLK(statbuf.st_mode))) {
1054 		(void) close(fd);
1055 		return;
1056 	}
1057 	/* this file is too small to hold a zpool */
1058 	if (S_ISREG(statbuf.st_mode) &&
1059 	    statbuf.st_size < SPA_MINDEVSIZE) {
1060 		(void) close(fd);
1061 		return;
1062 	} else if (!S_ISREG(statbuf.st_mode)) {
1063 		/*
1064 		 * Try to read the disk label first so we don't have to
1065 		 * open a bunch of minor nodes that can't have a zpool.
1066 		 */
1067 		check_slices(rn->rn_avl, fd, rn->rn_name);
1068 	}
1069 
1070 	if ((zpool_read_label(fd, &config)) != 0) {
1071 		(void) close(fd);
1072 		(void) no_memory(rn->rn_hdl);
1073 		return;
1074 	}
1075 	(void) close(fd);
1076 
1077 
1078 	rn->rn_config = config;
1079 	if (config != NULL) {
1080 		assert(rn->rn_nozpool == B_FALSE);
1081 	}
1082 }
1083 
1084 /*
1085  * Given a file descriptor, clear (zero) the label information.  This function
1086  * is currently only used in the appliance stack as part of the ZFS sysevent
1087  * module.
1088  */
1089 int
1090 zpool_clear_label(int fd)
1091 {
1092 	struct stat64 statbuf;
1093 	int l;
1094 	vdev_label_t *label;
1095 	uint64_t size;
1096 
1097 	if (fstat64(fd, &statbuf) == -1)
1098 		return (0);
1099 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1100 
1101 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1102 		return (-1);
1103 
1104 	for (l = 0; l < VDEV_LABELS; l++) {
1105 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1106 		    label_offset(size, l)) != sizeof (vdev_label_t))
1107 			return (-1);
1108 	}
1109 
1110 	free(label);
1111 	return (0);
1112 }
1113 
1114 /*
1115  * Given a list of directories to search, find all pools stored on disk.  This
1116  * includes partial pools which are not available to import.  If no args are
1117  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1118  * poolname or guid (but not both) are provided by the caller when trying
1119  * to import a specific pool.
1120  */
1121 static nvlist_t *
1122 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1123 {
1124 	int i, dirs = iarg->paths;
1125 	DIR *dirp = NULL;
1126 	struct dirent64 *dp;
1127 	char path[MAXPATHLEN];
1128 	char *end, **dir = iarg->path;
1129 	size_t pathleft;
1130 	nvlist_t *ret = NULL;
1131 	static char *default_dir = "/dev/dsk";
1132 	pool_list_t pools = { 0 };
1133 	pool_entry_t *pe, *penext;
1134 	vdev_entry_t *ve, *venext;
1135 	config_entry_t *ce, *cenext;
1136 	name_entry_t *ne, *nenext;
1137 	avl_tree_t slice_cache;
1138 	rdsk_node_t *slice;
1139 	void *cookie;
1140 
1141 	if (dirs == 0) {
1142 		dirs = 1;
1143 		dir = &default_dir;
1144 	}
1145 
1146 	/*
1147 	 * Go through and read the label configuration information from every
1148 	 * possible device, organizing the information according to pool GUID
1149 	 * and toplevel GUID.
1150 	 */
1151 	for (i = 0; i < dirs; i++) {
1152 		tpool_t *t;
1153 		char *rdsk;
1154 		int dfd;
1155 
1156 		/* use realpath to normalize the path */
1157 		if (realpath(dir[i], path) == 0) {
1158 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1159 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1160 			goto error;
1161 		}
1162 		end = &path[strlen(path)];
1163 		*end++ = '/';
1164 		*end = 0;
1165 		pathleft = &path[sizeof (path)] - end;
1166 
1167 		/*
1168 		 * Using raw devices instead of block devices when we're
1169 		 * reading the labels skips a bunch of slow operations during
1170 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1171 		 */
1172 		if (strcmp(path, "/dev/dsk/") == 0)
1173 			rdsk = "/dev/rdsk/";
1174 		else
1175 			rdsk = path;
1176 
1177 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1178 		    (dirp = fdopendir(dfd)) == NULL) {
1179 			zfs_error_aux(hdl, strerror(errno));
1180 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1181 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1182 			    rdsk);
1183 			goto error;
1184 		}
1185 
1186 		avl_create(&slice_cache, slice_cache_compare,
1187 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1188 		/*
1189 		 * This is not MT-safe, but we have no MT consumers of libzfs
1190 		 */
1191 		while ((dp = readdir64(dirp)) != NULL) {
1192 			const char *name = dp->d_name;
1193 			if (name[0] == '.' &&
1194 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1195 				continue;
1196 
1197 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1198 			slice->rn_name = zfs_strdup(hdl, name);
1199 			slice->rn_avl = &slice_cache;
1200 			slice->rn_dfd = dfd;
1201 			slice->rn_hdl = hdl;
1202 			slice->rn_nozpool = B_FALSE;
1203 			avl_add(&slice_cache, slice);
1204 		}
1205 		/*
1206 		 * create a thread pool to do all of this in parallel;
1207 		 * rn_nozpool is not protected, so this is racy in that
1208 		 * multiple tasks could decide that the same slice can
1209 		 * not hold a zpool, which is benign.  Also choose
1210 		 * double the number of processors; we hold a lot of
1211 		 * locks in the kernel, so going beyond this doesn't
1212 		 * buy us much.
1213 		 */
1214 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1215 		    0, NULL);
1216 		for (slice = avl_first(&slice_cache); slice;
1217 		    (slice = avl_walk(&slice_cache, slice,
1218 		    AVL_AFTER)))
1219 			(void) tpool_dispatch(t, zpool_open_func, slice);
1220 		tpool_wait(t);
1221 		tpool_destroy(t);
1222 
1223 		cookie = NULL;
1224 		while ((slice = avl_destroy_nodes(&slice_cache,
1225 		    &cookie)) != NULL) {
1226 			if (slice->rn_config != NULL) {
1227 				nvlist_t *config = slice->rn_config;
1228 				boolean_t matched = B_TRUE;
1229 
1230 				if (iarg->poolname != NULL) {
1231 					char *pname;
1232 
1233 					matched = nvlist_lookup_string(config,
1234 					    ZPOOL_CONFIG_POOL_NAME,
1235 					    &pname) == 0 &&
1236 					    strcmp(iarg->poolname, pname) == 0;
1237 				} else if (iarg->guid != 0) {
1238 					uint64_t this_guid;
1239 
1240 					matched = nvlist_lookup_uint64(config,
1241 					    ZPOOL_CONFIG_POOL_GUID,
1242 					    &this_guid) == 0 &&
1243 					    iarg->guid == this_guid;
1244 				}
1245 				if (!matched) {
1246 					nvlist_free(config);
1247 					config = NULL;
1248 					continue;
1249 				}
1250 				/* use the non-raw path for the config */
1251 				(void) strlcpy(end, slice->rn_name, pathleft);
1252 				if (add_config(hdl, &pools, path, config) != 0)
1253 					goto error;
1254 			}
1255 			free(slice->rn_name);
1256 			free(slice);
1257 		}
1258 		avl_destroy(&slice_cache);
1259 
1260 		(void) closedir(dirp);
1261 		dirp = NULL;
1262 	}
1263 
1264 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1265 
1266 error:
1267 	for (pe = pools.pools; pe != NULL; pe = penext) {
1268 		penext = pe->pe_next;
1269 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1270 			venext = ve->ve_next;
1271 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1272 				cenext = ce->ce_next;
1273 				if (ce->ce_config)
1274 					nvlist_free(ce->ce_config);
1275 				free(ce);
1276 			}
1277 			free(ve);
1278 		}
1279 		free(pe);
1280 	}
1281 
1282 	for (ne = pools.names; ne != NULL; ne = nenext) {
1283 		nenext = ne->ne_next;
1284 		if (ne->ne_name)
1285 			free(ne->ne_name);
1286 		free(ne);
1287 	}
1288 
1289 	if (dirp)
1290 		(void) closedir(dirp);
1291 
1292 	return (ret);
1293 }
1294 
1295 nvlist_t *
1296 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1297 {
1298 	importargs_t iarg = { 0 };
1299 
1300 	iarg.paths = argc;
1301 	iarg.path = argv;
1302 
1303 	return (zpool_find_import_impl(hdl, &iarg));
1304 }
1305 
1306 /*
1307  * Given a cache file, return the contents as a list of importable pools.
1308  * poolname or guid (but not both) are provided by the caller when trying
1309  * to import a specific pool.
1310  */
1311 nvlist_t *
1312 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1313     char *poolname, uint64_t guid)
1314 {
1315 	char *buf;
1316 	int fd;
1317 	struct stat64 statbuf;
1318 	nvlist_t *raw, *src, *dst;
1319 	nvlist_t *pools;
1320 	nvpair_t *elem;
1321 	char *name;
1322 	uint64_t this_guid;
1323 	boolean_t active;
1324 
1325 	verify(poolname == NULL || guid == 0);
1326 
1327 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1328 		zfs_error_aux(hdl, "%s", strerror(errno));
1329 		(void) zfs_error(hdl, EZFS_BADCACHE,
1330 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1331 		return (NULL);
1332 	}
1333 
1334 	if (fstat64(fd, &statbuf) != 0) {
1335 		zfs_error_aux(hdl, "%s", strerror(errno));
1336 		(void) close(fd);
1337 		(void) zfs_error(hdl, EZFS_BADCACHE,
1338 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1339 		return (NULL);
1340 	}
1341 
1342 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1343 		(void) close(fd);
1344 		return (NULL);
1345 	}
1346 
1347 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1348 		(void) close(fd);
1349 		free(buf);
1350 		(void) zfs_error(hdl, EZFS_BADCACHE,
1351 		    dgettext(TEXT_DOMAIN,
1352 		    "failed to read cache file contents"));
1353 		return (NULL);
1354 	}
1355 
1356 	(void) close(fd);
1357 
1358 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1359 		free(buf);
1360 		(void) zfs_error(hdl, EZFS_BADCACHE,
1361 		    dgettext(TEXT_DOMAIN,
1362 		    "invalid or corrupt cache file contents"));
1363 		return (NULL);
1364 	}
1365 
1366 	free(buf);
1367 
1368 	/*
1369 	 * Go through and get the current state of the pools and refresh their
1370 	 * state.
1371 	 */
1372 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1373 		(void) no_memory(hdl);
1374 		nvlist_free(raw);
1375 		return (NULL);
1376 	}
1377 
1378 	elem = NULL;
1379 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1380 		verify(nvpair_value_nvlist(elem, &src) == 0);
1381 
1382 		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1383 		    &name) == 0);
1384 		if (poolname != NULL && strcmp(poolname, name) != 0)
1385 			continue;
1386 
1387 		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1388 		    &this_guid) == 0);
1389 		if (guid != 0) {
1390 			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1391 			    &this_guid) == 0);
1392 			if (guid != this_guid)
1393 				continue;
1394 		}
1395 
1396 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1397 			nvlist_free(raw);
1398 			nvlist_free(pools);
1399 			return (NULL);
1400 		}
1401 
1402 		if (active)
1403 			continue;
1404 
1405 		if ((dst = refresh_config(hdl, src)) == NULL) {
1406 			nvlist_free(raw);
1407 			nvlist_free(pools);
1408 			return (NULL);
1409 		}
1410 
1411 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1412 			(void) no_memory(hdl);
1413 			nvlist_free(dst);
1414 			nvlist_free(raw);
1415 			nvlist_free(pools);
1416 			return (NULL);
1417 		}
1418 		nvlist_free(dst);
1419 	}
1420 
1421 	nvlist_free(raw);
1422 	return (pools);
1423 }
1424 
1425 static int
1426 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1427 {
1428 	importargs_t *import = data;
1429 	int found = 0;
1430 
1431 	if (import->poolname != NULL) {
1432 		char *pool_name;
1433 
1434 		verify(nvlist_lookup_string(zhp->zpool_config,
1435 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1436 		if (strcmp(pool_name, import->poolname) == 0)
1437 			found = 1;
1438 	} else {
1439 		uint64_t pool_guid;
1440 
1441 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1442 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1443 		if (pool_guid == import->guid)
1444 			found = 1;
1445 	}
1446 
1447 	zpool_close(zhp);
1448 	return (found);
1449 }
1450 
1451 nvlist_t *
1452 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1453 {
1454 	verify(import->poolname == NULL || import->guid == 0);
1455 
1456 	if (import->unique)
1457 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1458 
1459 	if (import->cachefile != NULL)
1460 		return (zpool_find_import_cached(hdl, import->cachefile,
1461 		    import->poolname, import->guid));
1462 
1463 	return (zpool_find_import_impl(hdl, import));
1464 }
1465 
1466 boolean_t
1467 find_guid(nvlist_t *nv, uint64_t guid)
1468 {
1469 	uint64_t tmp;
1470 	nvlist_t **child;
1471 	uint_t c, children;
1472 
1473 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1474 	if (tmp == guid)
1475 		return (B_TRUE);
1476 
1477 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1478 	    &child, &children) == 0) {
1479 		for (c = 0; c < children; c++)
1480 			if (find_guid(child[c], guid))
1481 				return (B_TRUE);
1482 	}
1483 
1484 	return (B_FALSE);
1485 }
1486 
1487 typedef struct aux_cbdata {
1488 	const char	*cb_type;
1489 	uint64_t	cb_guid;
1490 	zpool_handle_t	*cb_zhp;
1491 } aux_cbdata_t;
1492 
1493 static int
1494 find_aux(zpool_handle_t *zhp, void *data)
1495 {
1496 	aux_cbdata_t *cbp = data;
1497 	nvlist_t **list;
1498 	uint_t i, count;
1499 	uint64_t guid;
1500 	nvlist_t *nvroot;
1501 
1502 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1503 	    &nvroot) == 0);
1504 
1505 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1506 	    &list, &count) == 0) {
1507 		for (i = 0; i < count; i++) {
1508 			verify(nvlist_lookup_uint64(list[i],
1509 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1510 			if (guid == cbp->cb_guid) {
1511 				cbp->cb_zhp = zhp;
1512 				return (1);
1513 			}
1514 		}
1515 	}
1516 
1517 	zpool_close(zhp);
1518 	return (0);
1519 }
1520 
1521 /*
1522  * Determines if the pool is in use.  If so, it returns true and the state of
1523  * the pool as well as the name of the pool.  Both strings are allocated and
1524  * must be freed by the caller.
1525  */
1526 int
1527 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1528     boolean_t *inuse)
1529 {
1530 	nvlist_t *config;
1531 	char *name;
1532 	boolean_t ret;
1533 	uint64_t guid, vdev_guid;
1534 	zpool_handle_t *zhp;
1535 	nvlist_t *pool_config;
1536 	uint64_t stateval, isspare;
1537 	aux_cbdata_t cb = { 0 };
1538 	boolean_t isactive;
1539 
1540 	*inuse = B_FALSE;
1541 
1542 	if (zpool_read_label(fd, &config) != 0) {
1543 		(void) no_memory(hdl);
1544 		return (-1);
1545 	}
1546 
1547 	if (config == NULL)
1548 		return (0);
1549 
1550 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1551 	    &stateval) == 0);
1552 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1553 	    &vdev_guid) == 0);
1554 
1555 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1556 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1557 		    &name) == 0);
1558 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1559 		    &guid) == 0);
1560 	}
1561 
1562 	switch (stateval) {
1563 	case POOL_STATE_EXPORTED:
1564 		/*
1565 		 * A pool with an exported state may in fact be imported
1566 		 * read-only, so check the in-core state to see if it's
1567 		 * active and imported read-only.  If it is, set
1568 		 * its state to active.
1569 		 */
1570 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1571 		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1572 			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1573 				stateval = POOL_STATE_ACTIVE;
1574 
1575 			/*
1576 			 * All we needed the zpool handle for is the
1577 			 * readonly prop check.
1578 			 */
1579 			zpool_close(zhp);
1580 		}
1581 
1582 		ret = B_TRUE;
1583 		break;
1584 
1585 	case POOL_STATE_ACTIVE:
1586 		/*
1587 		 * For an active pool, we have to determine if it's really part
1588 		 * of a currently active pool (in which case the pool will exist
1589 		 * and the guid will be the same), or whether it's part of an
1590 		 * active pool that was disconnected without being explicitly
1591 		 * exported.
1592 		 */
1593 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1594 			nvlist_free(config);
1595 			return (-1);
1596 		}
1597 
1598 		if (isactive) {
1599 			/*
1600 			 * Because the device may have been removed while
1601 			 * offlined, we only report it as active if the vdev is
1602 			 * still present in the config.  Otherwise, pretend like
1603 			 * it's not in use.
1604 			 */
1605 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1606 			    (pool_config = zpool_get_config(zhp, NULL))
1607 			    != NULL) {
1608 				nvlist_t *nvroot;
1609 
1610 				verify(nvlist_lookup_nvlist(pool_config,
1611 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1612 				ret = find_guid(nvroot, vdev_guid);
1613 			} else {
1614 				ret = B_FALSE;
1615 			}
1616 
1617 			/*
1618 			 * If this is an active spare within another pool, we
1619 			 * treat it like an unused hot spare.  This allows the
1620 			 * user to create a pool with a hot spare that currently
1621 			 * in use within another pool.  Since we return B_TRUE,
1622 			 * libdiskmgt will continue to prevent generic consumers
1623 			 * from using the device.
1624 			 */
1625 			if (ret && nvlist_lookup_uint64(config,
1626 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1627 				stateval = POOL_STATE_SPARE;
1628 
1629 			if (zhp != NULL)
1630 				zpool_close(zhp);
1631 		} else {
1632 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1633 			ret = B_TRUE;
1634 		}
1635 		break;
1636 
1637 	case POOL_STATE_SPARE:
1638 		/*
1639 		 * For a hot spare, it can be either definitively in use, or
1640 		 * potentially active.  To determine if it's in use, we iterate
1641 		 * over all pools in the system and search for one with a spare
1642 		 * with a matching guid.
1643 		 *
1644 		 * Due to the shared nature of spares, we don't actually report
1645 		 * the potentially active case as in use.  This means the user
1646 		 * can freely create pools on the hot spares of exported pools,
1647 		 * but to do otherwise makes the resulting code complicated, and
1648 		 * we end up having to deal with this case anyway.
1649 		 */
1650 		cb.cb_zhp = NULL;
1651 		cb.cb_guid = vdev_guid;
1652 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1653 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1654 			name = (char *)zpool_get_name(cb.cb_zhp);
1655 			ret = TRUE;
1656 		} else {
1657 			ret = FALSE;
1658 		}
1659 		break;
1660 
1661 	case POOL_STATE_L2CACHE:
1662 
1663 		/*
1664 		 * Check if any pool is currently using this l2cache device.
1665 		 */
1666 		cb.cb_zhp = NULL;
1667 		cb.cb_guid = vdev_guid;
1668 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1669 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1670 			name = (char *)zpool_get_name(cb.cb_zhp);
1671 			ret = TRUE;
1672 		} else {
1673 			ret = FALSE;
1674 		}
1675 		break;
1676 
1677 	default:
1678 		ret = B_FALSE;
1679 	}
1680 
1681 
1682 	if (ret) {
1683 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1684 			if (cb.cb_zhp)
1685 				zpool_close(cb.cb_zhp);
1686 			nvlist_free(config);
1687 			return (-1);
1688 		}
1689 		*state = (pool_state_t)stateval;
1690 	}
1691 
1692 	if (cb.cb_zhp)
1693 		zpool_close(cb.cb_zhp);
1694 
1695 	nvlist_free(config);
1696 	*inuse = ret;
1697 	return (0);
1698 }
1699