xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision ab2e2ee8084b5368a6eff4d96fbad03a661c8ace)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 RackTop Systems.
26  * Copyright 2016 Nexenta Systems, Inc.
27  */
28 
29 /*
30  * Pool import support functions.
31  *
32  * To import a pool, we rely on reading the configuration information from the
33  * ZFS label of each device.  If we successfully read the label, then we
34  * organize the configuration information in the following hierarchy:
35  *
36  * 	pool guid -> toplevel vdev guid -> label txg
37  *
38  * Duplicate entries matching this same tuple will be discarded.  Once we have
39  * examined every device, we pick the best label txg config for each toplevel
40  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41  * update any paths that have changed.  Finally, we attempt to import the pool
42  * using our derived config, and record the results.
43  */
44 
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
60 
61 #include <sys/vdev_impl.h>
62 
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65 
66 /*
67  * Intermediate structures used to gather configuration information.
68  */
69 typedef struct config_entry {
70 	uint64_t		ce_txg;
71 	nvlist_t		*ce_config;
72 	struct config_entry	*ce_next;
73 } config_entry_t;
74 
75 typedef struct vdev_entry {
76 	uint64_t		ve_guid;
77 	config_entry_t		*ve_configs;
78 	struct vdev_entry	*ve_next;
79 } vdev_entry_t;
80 
81 typedef struct pool_entry {
82 	uint64_t		pe_guid;
83 	vdev_entry_t		*pe_vdevs;
84 	struct pool_entry	*pe_next;
85 } pool_entry_t;
86 
87 typedef struct name_entry {
88 	char			*ne_name;
89 	uint64_t		ne_guid;
90 	struct name_entry	*ne_next;
91 } name_entry_t;
92 
93 typedef struct pool_list {
94 	pool_entry_t		*pools;
95 	name_entry_t		*names;
96 } pool_list_t;
97 
98 static char *
99 get_devid(const char *path)
100 {
101 	int fd;
102 	ddi_devid_t devid;
103 	char *minor, *ret;
104 
105 	if ((fd = open(path, O_RDONLY)) < 0)
106 		return (NULL);
107 
108 	minor = NULL;
109 	ret = NULL;
110 	if (devid_get(fd, &devid) == 0) {
111 		if (devid_get_minor_name(fd, &minor) == 0)
112 			ret = devid_str_encode(devid, minor);
113 		if (minor != NULL)
114 			devid_str_free(minor);
115 		devid_free(devid);
116 	}
117 	(void) close(fd);
118 
119 	return (ret);
120 }
121 
122 
123 /*
124  * Go through and fix up any path and/or devid information for the given vdev
125  * configuration.
126  */
127 static int
128 fix_paths(nvlist_t *nv, name_entry_t *names)
129 {
130 	nvlist_t **child;
131 	uint_t c, children;
132 	uint64_t guid;
133 	name_entry_t *ne, *best;
134 	char *path, *devid;
135 	int matched;
136 
137 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138 	    &child, &children) == 0) {
139 		for (c = 0; c < children; c++)
140 			if (fix_paths(child[c], names) != 0)
141 				return (-1);
142 		return (0);
143 	}
144 
145 	/*
146 	 * This is a leaf (file or disk) vdev.  In either case, go through
147 	 * the name list and see if we find a matching guid.  If so, replace
148 	 * the path and see if we can calculate a new devid.
149 	 *
150 	 * There may be multiple names associated with a particular guid, in
151 	 * which case we have overlapping slices or multiple paths to the same
152 	 * disk.  If this is the case, then we want to pick the path that is
153 	 * the most similar to the original, where "most similar" is the number
154 	 * of matching characters starting from the end of the path.  This will
155 	 * preserve slice numbers even if the disks have been reorganized, and
156 	 * will also catch preferred disk names if multiple paths exist.
157 	 */
158 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 		path = NULL;
161 
162 	matched = 0;
163 	best = NULL;
164 	for (ne = names; ne != NULL; ne = ne->ne_next) {
165 		if (ne->ne_guid == guid) {
166 			const char *src, *dst;
167 			int count;
168 
169 			if (path == NULL) {
170 				best = ne;
171 				break;
172 			}
173 
174 			src = ne->ne_name + strlen(ne->ne_name) - 1;
175 			dst = path + strlen(path) - 1;
176 			for (count = 0; src >= ne->ne_name && dst >= path;
177 			    src--, dst--, count++)
178 				if (*src != *dst)
179 					break;
180 
181 			/*
182 			 * At this point, 'count' is the number of characters
183 			 * matched from the end.
184 			 */
185 			if (count > matched || best == NULL) {
186 				best = ne;
187 				matched = count;
188 			}
189 		}
190 	}
191 
192 	if (best == NULL)
193 		return (0);
194 
195 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196 		return (-1);
197 
198 	if ((devid = get_devid(best->ne_name)) == NULL) {
199 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200 	} else {
201 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
202 			devid_str_free(devid);
203 			return (-1);
204 		}
205 		devid_str_free(devid);
206 	}
207 
208 	return (0);
209 }
210 
211 /*
212  * Add the given configuration to the list of known devices.
213  */
214 static int
215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
216     nvlist_t *config)
217 {
218 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219 	pool_entry_t *pe;
220 	vdev_entry_t *ve;
221 	config_entry_t *ce;
222 	name_entry_t *ne;
223 
224 	/*
225 	 * If this is a hot spare not currently in use or level 2 cache
226 	 * device, add it to the list of names to translate, but don't do
227 	 * anything else.
228 	 */
229 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
230 	    &state) == 0 &&
231 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
232 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
233 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
234 			return (-1);
235 
236 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
237 			free(ne);
238 			return (-1);
239 		}
240 
241 		ne->ne_guid = vdev_guid;
242 		ne->ne_next = pl->names;
243 		pl->names = ne;
244 
245 		nvlist_free(config);
246 		return (0);
247 	}
248 
249 	/*
250 	 * If we have a valid config but cannot read any of these fields, then
251 	 * it means we have a half-initialized label.  In vdev_label_init()
252 	 * we write a label with txg == 0 so that we can identify the device
253 	 * in case the user refers to the same disk later on.  If we fail to
254 	 * create the pool, we'll be left with a label in this state
255 	 * which should not be considered part of a valid pool.
256 	 */
257 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
258 	    &pool_guid) != 0 ||
259 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
260 	    &vdev_guid) != 0 ||
261 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
262 	    &top_guid) != 0 ||
263 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
264 	    &txg) != 0 || txg == 0) {
265 		nvlist_free(config);
266 		return (0);
267 	}
268 
269 	/*
270 	 * First, see if we know about this pool.  If not, then add it to the
271 	 * list of known pools.
272 	 */
273 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
274 		if (pe->pe_guid == pool_guid)
275 			break;
276 	}
277 
278 	if (pe == NULL) {
279 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
280 			nvlist_free(config);
281 			return (-1);
282 		}
283 		pe->pe_guid = pool_guid;
284 		pe->pe_next = pl->pools;
285 		pl->pools = pe;
286 	}
287 
288 	/*
289 	 * Second, see if we know about this toplevel vdev.  Add it if its
290 	 * missing.
291 	 */
292 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
293 		if (ve->ve_guid == top_guid)
294 			break;
295 	}
296 
297 	if (ve == NULL) {
298 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
299 			nvlist_free(config);
300 			return (-1);
301 		}
302 		ve->ve_guid = top_guid;
303 		ve->ve_next = pe->pe_vdevs;
304 		pe->pe_vdevs = ve;
305 	}
306 
307 	/*
308 	 * Third, see if we have a config with a matching transaction group.  If
309 	 * so, then we do nothing.  Otherwise, add it to the list of known
310 	 * configs.
311 	 */
312 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
313 		if (ce->ce_txg == txg)
314 			break;
315 	}
316 
317 	if (ce == NULL) {
318 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
319 			nvlist_free(config);
320 			return (-1);
321 		}
322 		ce->ce_txg = txg;
323 		ce->ce_config = config;
324 		ce->ce_next = ve->ve_configs;
325 		ve->ve_configs = ce;
326 	} else {
327 		nvlist_free(config);
328 	}
329 
330 	/*
331 	 * At this point we've successfully added our config to the list of
332 	 * known configs.  The last thing to do is add the vdev guid -> path
333 	 * mappings so that we can fix up the configuration as necessary before
334 	 * doing the import.
335 	 */
336 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
337 		return (-1);
338 
339 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
340 		free(ne);
341 		return (-1);
342 	}
343 
344 	ne->ne_guid = vdev_guid;
345 	ne->ne_next = pl->names;
346 	pl->names = ne;
347 
348 	return (0);
349 }
350 
351 /*
352  * Returns true if the named pool matches the given GUID.
353  */
354 static int
355 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
356     boolean_t *isactive)
357 {
358 	zpool_handle_t *zhp;
359 	uint64_t theguid;
360 
361 	if (zpool_open_silent(hdl, name, &zhp) != 0)
362 		return (-1);
363 
364 	if (zhp == NULL) {
365 		*isactive = B_FALSE;
366 		return (0);
367 	}
368 
369 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
370 	    &theguid) == 0);
371 
372 	zpool_close(zhp);
373 
374 	*isactive = (theguid == guid);
375 	return (0);
376 }
377 
378 static nvlist_t *
379 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
380 {
381 	nvlist_t *nvl;
382 	zfs_cmd_t zc = { 0 };
383 	int err;
384 
385 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
386 		return (NULL);
387 
388 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
389 	    zc.zc_nvlist_conf_size * 2) != 0) {
390 		zcmd_free_nvlists(&zc);
391 		return (NULL);
392 	}
393 
394 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
395 	    &zc)) != 0 && errno == ENOMEM) {
396 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
397 			zcmd_free_nvlists(&zc);
398 			return (NULL);
399 		}
400 	}
401 
402 	if (err) {
403 		zcmd_free_nvlists(&zc);
404 		return (NULL);
405 	}
406 
407 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
408 		zcmd_free_nvlists(&zc);
409 		return (NULL);
410 	}
411 
412 	zcmd_free_nvlists(&zc);
413 	return (nvl);
414 }
415 
416 /*
417  * Determine if the vdev id is a hole in the namespace.
418  */
419 boolean_t
420 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
421 {
422 	for (int c = 0; c < holes; c++) {
423 
424 		/* Top-level is a hole */
425 		if (hole_array[c] == id)
426 			return (B_TRUE);
427 	}
428 	return (B_FALSE);
429 }
430 
431 /*
432  * Convert our list of pools into the definitive set of configurations.  We
433  * start by picking the best config for each toplevel vdev.  Once that's done,
434  * we assemble the toplevel vdevs into a full config for the pool.  We make a
435  * pass to fix up any incorrect paths, and then add it to the main list to
436  * return to the user.
437  */
438 static nvlist_t *
439 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
440 {
441 	pool_entry_t *pe;
442 	vdev_entry_t *ve;
443 	config_entry_t *ce;
444 	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
445 	nvlist_t **spares, **l2cache;
446 	uint_t i, nspares, nl2cache;
447 	boolean_t config_seen;
448 	uint64_t best_txg;
449 	char *name, *hostname = NULL;
450 	uint64_t guid;
451 	uint_t children = 0;
452 	nvlist_t **child = NULL;
453 	uint_t holes;
454 	uint64_t *hole_array, max_id;
455 	uint_t c;
456 	boolean_t isactive;
457 	uint64_t hostid;
458 	nvlist_t *nvl;
459 	boolean_t found_one = B_FALSE;
460 	boolean_t valid_top_config = B_FALSE;
461 
462 	if (nvlist_alloc(&ret, 0, 0) != 0)
463 		goto nomem;
464 
465 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
466 		uint64_t id, max_txg = 0;
467 
468 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
469 			goto nomem;
470 		config_seen = B_FALSE;
471 
472 		/*
473 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
474 		 * from the first one we find, and then go through the rest and
475 		 * add them as necessary to the 'vdevs' member of the config.
476 		 */
477 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
478 
479 			/*
480 			 * Determine the best configuration for this vdev by
481 			 * selecting the config with the latest transaction
482 			 * group.
483 			 */
484 			best_txg = 0;
485 			for (ce = ve->ve_configs; ce != NULL;
486 			    ce = ce->ce_next) {
487 
488 				if (ce->ce_txg > best_txg) {
489 					tmp = ce->ce_config;
490 					best_txg = ce->ce_txg;
491 				}
492 			}
493 
494 			/*
495 			 * We rely on the fact that the max txg for the
496 			 * pool will contain the most up-to-date information
497 			 * about the valid top-levels in the vdev namespace.
498 			 */
499 			if (best_txg > max_txg) {
500 				(void) nvlist_remove(config,
501 				    ZPOOL_CONFIG_VDEV_CHILDREN,
502 				    DATA_TYPE_UINT64);
503 				(void) nvlist_remove(config,
504 				    ZPOOL_CONFIG_HOLE_ARRAY,
505 				    DATA_TYPE_UINT64_ARRAY);
506 
507 				max_txg = best_txg;
508 				hole_array = NULL;
509 				holes = 0;
510 				max_id = 0;
511 				valid_top_config = B_FALSE;
512 
513 				if (nvlist_lookup_uint64(tmp,
514 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
515 					verify(nvlist_add_uint64(config,
516 					    ZPOOL_CONFIG_VDEV_CHILDREN,
517 					    max_id) == 0);
518 					valid_top_config = B_TRUE;
519 				}
520 
521 				if (nvlist_lookup_uint64_array(tmp,
522 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
523 				    &holes) == 0) {
524 					verify(nvlist_add_uint64_array(config,
525 					    ZPOOL_CONFIG_HOLE_ARRAY,
526 					    hole_array, holes) == 0);
527 				}
528 			}
529 
530 			if (!config_seen) {
531 				/*
532 				 * Copy the relevant pieces of data to the pool
533 				 * configuration:
534 				 *
535 				 *	version
536 				 *	pool guid
537 				 *	name
538 				 *	comment (if available)
539 				 *	pool state
540 				 *	hostid (if available)
541 				 *	hostname (if available)
542 				 */
543 				uint64_t state, version;
544 				char *comment = NULL;
545 
546 				version = fnvlist_lookup_uint64(tmp,
547 				    ZPOOL_CONFIG_VERSION);
548 				fnvlist_add_uint64(config,
549 				    ZPOOL_CONFIG_VERSION, version);
550 				guid = fnvlist_lookup_uint64(tmp,
551 				    ZPOOL_CONFIG_POOL_GUID);
552 				fnvlist_add_uint64(config,
553 				    ZPOOL_CONFIG_POOL_GUID, guid);
554 				name = fnvlist_lookup_string(tmp,
555 				    ZPOOL_CONFIG_POOL_NAME);
556 				fnvlist_add_string(config,
557 				    ZPOOL_CONFIG_POOL_NAME, name);
558 
559 				if (nvlist_lookup_string(tmp,
560 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
561 					fnvlist_add_string(config,
562 					    ZPOOL_CONFIG_COMMENT, comment);
563 
564 				state = fnvlist_lookup_uint64(tmp,
565 				    ZPOOL_CONFIG_POOL_STATE);
566 				fnvlist_add_uint64(config,
567 				    ZPOOL_CONFIG_POOL_STATE, state);
568 
569 				hostid = 0;
570 				if (nvlist_lookup_uint64(tmp,
571 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
572 					fnvlist_add_uint64(config,
573 					    ZPOOL_CONFIG_HOSTID, hostid);
574 					hostname = fnvlist_lookup_string(tmp,
575 					    ZPOOL_CONFIG_HOSTNAME);
576 					fnvlist_add_string(config,
577 					    ZPOOL_CONFIG_HOSTNAME, hostname);
578 				}
579 
580 				config_seen = B_TRUE;
581 			}
582 
583 			/*
584 			 * Add this top-level vdev to the child array.
585 			 */
586 			verify(nvlist_lookup_nvlist(tmp,
587 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
588 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
589 			    &id) == 0);
590 
591 			if (id >= children) {
592 				nvlist_t **newchild;
593 
594 				newchild = zfs_alloc(hdl, (id + 1) *
595 				    sizeof (nvlist_t *));
596 				if (newchild == NULL)
597 					goto nomem;
598 
599 				for (c = 0; c < children; c++)
600 					newchild[c] = child[c];
601 
602 				free(child);
603 				child = newchild;
604 				children = id + 1;
605 			}
606 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
607 				goto nomem;
608 
609 		}
610 
611 		/*
612 		 * If we have information about all the top-levels then
613 		 * clean up the nvlist which we've constructed. This
614 		 * means removing any extraneous devices that are
615 		 * beyond the valid range or adding devices to the end
616 		 * of our array which appear to be missing.
617 		 */
618 		if (valid_top_config) {
619 			if (max_id < children) {
620 				for (c = max_id; c < children; c++)
621 					nvlist_free(child[c]);
622 				children = max_id;
623 			} else if (max_id > children) {
624 				nvlist_t **newchild;
625 
626 				newchild = zfs_alloc(hdl, (max_id) *
627 				    sizeof (nvlist_t *));
628 				if (newchild == NULL)
629 					goto nomem;
630 
631 				for (c = 0; c < children; c++)
632 					newchild[c] = child[c];
633 
634 				free(child);
635 				child = newchild;
636 				children = max_id;
637 			}
638 		}
639 
640 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
641 		    &guid) == 0);
642 
643 		/*
644 		 * The vdev namespace may contain holes as a result of
645 		 * device removal. We must add them back into the vdev
646 		 * tree before we process any missing devices.
647 		 */
648 		if (holes > 0) {
649 			ASSERT(valid_top_config);
650 
651 			for (c = 0; c < children; c++) {
652 				nvlist_t *holey;
653 
654 				if (child[c] != NULL ||
655 				    !vdev_is_hole(hole_array, holes, c))
656 					continue;
657 
658 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
659 				    0) != 0)
660 					goto nomem;
661 
662 				/*
663 				 * Holes in the namespace are treated as
664 				 * "hole" top-level vdevs and have a
665 				 * special flag set on them.
666 				 */
667 				if (nvlist_add_string(holey,
668 				    ZPOOL_CONFIG_TYPE,
669 				    VDEV_TYPE_HOLE) != 0 ||
670 				    nvlist_add_uint64(holey,
671 				    ZPOOL_CONFIG_ID, c) != 0 ||
672 				    nvlist_add_uint64(holey,
673 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
674 					nvlist_free(holey);
675 					goto nomem;
676 				}
677 				child[c] = holey;
678 			}
679 		}
680 
681 		/*
682 		 * Look for any missing top-level vdevs.  If this is the case,
683 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
684 		 * simply compress the child array, because the kernel performs
685 		 * certain checks to make sure the vdev IDs match their location
686 		 * in the configuration.
687 		 */
688 		for (c = 0; c < children; c++) {
689 			if (child[c] == NULL) {
690 				nvlist_t *missing;
691 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
692 				    0) != 0)
693 					goto nomem;
694 				if (nvlist_add_string(missing,
695 				    ZPOOL_CONFIG_TYPE,
696 				    VDEV_TYPE_MISSING) != 0 ||
697 				    nvlist_add_uint64(missing,
698 				    ZPOOL_CONFIG_ID, c) != 0 ||
699 				    nvlist_add_uint64(missing,
700 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
701 					nvlist_free(missing);
702 					goto nomem;
703 				}
704 				child[c] = missing;
705 			}
706 		}
707 
708 		/*
709 		 * Put all of this pool's top-level vdevs into a root vdev.
710 		 */
711 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
712 			goto nomem;
713 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
714 		    VDEV_TYPE_ROOT) != 0 ||
715 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
716 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
717 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
718 		    child, children) != 0) {
719 			nvlist_free(nvroot);
720 			goto nomem;
721 		}
722 
723 		for (c = 0; c < children; c++)
724 			nvlist_free(child[c]);
725 		free(child);
726 		children = 0;
727 		child = NULL;
728 
729 		/*
730 		 * Go through and fix up any paths and/or devids based on our
731 		 * known list of vdev GUID -> path mappings.
732 		 */
733 		if (fix_paths(nvroot, pl->names) != 0) {
734 			nvlist_free(nvroot);
735 			goto nomem;
736 		}
737 
738 		/*
739 		 * Add the root vdev to this pool's configuration.
740 		 */
741 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
742 		    nvroot) != 0) {
743 			nvlist_free(nvroot);
744 			goto nomem;
745 		}
746 		nvlist_free(nvroot);
747 
748 		/*
749 		 * zdb uses this path to report on active pools that were
750 		 * imported or created using -R.
751 		 */
752 		if (active_ok)
753 			goto add_pool;
754 
755 		/*
756 		 * Determine if this pool is currently active, in which case we
757 		 * can't actually import it.
758 		 */
759 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
760 		    &name) == 0);
761 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
762 		    &guid) == 0);
763 
764 		if (pool_active(hdl, name, guid, &isactive) != 0)
765 			goto error;
766 
767 		if (isactive) {
768 			nvlist_free(config);
769 			config = NULL;
770 			continue;
771 		}
772 
773 		if ((nvl = refresh_config(hdl, config)) == NULL) {
774 			nvlist_free(config);
775 			config = NULL;
776 			continue;
777 		}
778 
779 		nvlist_free(config);
780 		config = nvl;
781 
782 		/*
783 		 * Go through and update the paths for spares, now that we have
784 		 * them.
785 		 */
786 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
787 		    &nvroot) == 0);
788 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
789 		    &spares, &nspares) == 0) {
790 			for (i = 0; i < nspares; i++) {
791 				if (fix_paths(spares[i], pl->names) != 0)
792 					goto nomem;
793 			}
794 		}
795 
796 		/*
797 		 * Update the paths for l2cache devices.
798 		 */
799 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
800 		    &l2cache, &nl2cache) == 0) {
801 			for (i = 0; i < nl2cache; i++) {
802 				if (fix_paths(l2cache[i], pl->names) != 0)
803 					goto nomem;
804 			}
805 		}
806 
807 		/*
808 		 * Restore the original information read from the actual label.
809 		 */
810 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
811 		    DATA_TYPE_UINT64);
812 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
813 		    DATA_TYPE_STRING);
814 		if (hostid != 0) {
815 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
816 			    hostid) == 0);
817 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
818 			    hostname) == 0);
819 		}
820 
821 add_pool:
822 		/*
823 		 * Add this pool to the list of configs.
824 		 */
825 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
826 		    &name) == 0);
827 		if (nvlist_add_nvlist(ret, name, config) != 0)
828 			goto nomem;
829 
830 		found_one = B_TRUE;
831 		nvlist_free(config);
832 		config = NULL;
833 	}
834 
835 	if (!found_one) {
836 		nvlist_free(ret);
837 		ret = NULL;
838 	}
839 
840 	return (ret);
841 
842 nomem:
843 	(void) no_memory(hdl);
844 error:
845 	nvlist_free(config);
846 	nvlist_free(ret);
847 	for (c = 0; c < children; c++)
848 		nvlist_free(child[c]);
849 	free(child);
850 
851 	return (NULL);
852 }
853 
854 /*
855  * Return the offset of the given label.
856  */
857 static uint64_t
858 label_offset(uint64_t size, int l)
859 {
860 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
861 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
862 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
863 }
864 
865 /*
866  * Given a file descriptor, read the label information and return an nvlist
867  * describing the configuration, if there is one.
868  */
869 int
870 zpool_read_label(int fd, nvlist_t **config)
871 {
872 	struct stat64 statbuf;
873 	int l;
874 	vdev_label_t *label;
875 	uint64_t state, txg, size;
876 
877 	*config = NULL;
878 
879 	if (fstat64(fd, &statbuf) == -1)
880 		return (0);
881 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
882 
883 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
884 		return (-1);
885 
886 	for (l = 0; l < VDEV_LABELS; l++) {
887 		if (pread64(fd, label, sizeof (vdev_label_t),
888 		    label_offset(size, l)) != sizeof (vdev_label_t))
889 			continue;
890 
891 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
892 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
893 			continue;
894 
895 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
896 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
897 			nvlist_free(*config);
898 			continue;
899 		}
900 
901 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
902 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
903 		    &txg) != 0 || txg == 0)) {
904 			nvlist_free(*config);
905 			continue;
906 		}
907 
908 		free(label);
909 		return (0);
910 	}
911 
912 	free(label);
913 	*config = NULL;
914 	return (0);
915 }
916 
917 typedef struct rdsk_node {
918 	char *rn_name;
919 	int rn_dfd;
920 	libzfs_handle_t *rn_hdl;
921 	nvlist_t *rn_config;
922 	avl_tree_t *rn_avl;
923 	avl_node_t rn_node;
924 	boolean_t rn_nozpool;
925 } rdsk_node_t;
926 
927 static int
928 slice_cache_compare(const void *arg1, const void *arg2)
929 {
930 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
931 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
932 	char *nm1slice, *nm2slice;
933 	int rv;
934 
935 	/*
936 	 * slices zero and two are the most likely to provide results,
937 	 * so put those first
938 	 */
939 	nm1slice = strstr(nm1, "s0");
940 	nm2slice = strstr(nm2, "s0");
941 	if (nm1slice && !nm2slice) {
942 		return (-1);
943 	}
944 	if (!nm1slice && nm2slice) {
945 		return (1);
946 	}
947 	nm1slice = strstr(nm1, "s2");
948 	nm2slice = strstr(nm2, "s2");
949 	if (nm1slice && !nm2slice) {
950 		return (-1);
951 	}
952 	if (!nm1slice && nm2slice) {
953 		return (1);
954 	}
955 
956 	rv = strcmp(nm1, nm2);
957 	if (rv == 0)
958 		return (0);
959 	return (rv > 0 ? 1 : -1);
960 }
961 
962 static void
963 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
964     diskaddr_t size, uint_t blksz)
965 {
966 	rdsk_node_t tmpnode;
967 	rdsk_node_t *node;
968 	char sname[MAXNAMELEN];
969 
970 	tmpnode.rn_name = &sname[0];
971 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
972 	    diskname, partno);
973 	/*
974 	 * protect against division by zero for disk labels that
975 	 * contain a bogus sector size
976 	 */
977 	if (blksz == 0)
978 		blksz = DEV_BSIZE;
979 	/* too small to contain a zpool? */
980 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
981 	    (node = avl_find(r, &tmpnode, NULL)))
982 		node->rn_nozpool = B_TRUE;
983 }
984 
985 static void
986 nozpool_all_slices(avl_tree_t *r, const char *sname)
987 {
988 	char diskname[MAXNAMELEN];
989 	char *ptr;
990 	int i;
991 
992 	(void) strncpy(diskname, sname, MAXNAMELEN);
993 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
994 	    ((ptr = strrchr(diskname, 'p')) == NULL))
995 		return;
996 	ptr[0] = 's';
997 	ptr[1] = '\0';
998 	for (i = 0; i < NDKMAP; i++)
999 		check_one_slice(r, diskname, i, 0, 1);
1000 	ptr[0] = 'p';
1001 	for (i = 0; i <= FD_NUMPART; i++)
1002 		check_one_slice(r, diskname, i, 0, 1);
1003 }
1004 
1005 static void
1006 check_slices(avl_tree_t *r, int fd, const char *sname)
1007 {
1008 	struct extvtoc vtoc;
1009 	struct dk_gpt *gpt;
1010 	char diskname[MAXNAMELEN];
1011 	char *ptr;
1012 	int i;
1013 
1014 	(void) strncpy(diskname, sname, MAXNAMELEN);
1015 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1016 		return;
1017 	ptr[1] = '\0';
1018 
1019 	if (read_extvtoc(fd, &vtoc) >= 0) {
1020 		for (i = 0; i < NDKMAP; i++)
1021 			check_one_slice(r, diskname, i,
1022 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1023 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1024 		/*
1025 		 * on x86 we'll still have leftover links that point
1026 		 * to slices s[9-15], so use NDKMAP instead
1027 		 */
1028 		for (i = 0; i < NDKMAP; i++)
1029 			check_one_slice(r, diskname, i,
1030 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1031 		/* nodes p[1-4] are never used with EFI labels */
1032 		ptr[0] = 'p';
1033 		for (i = 1; i <= FD_NUMPART; i++)
1034 			check_one_slice(r, diskname, i, 0, 1);
1035 		efi_free(gpt);
1036 	}
1037 }
1038 
1039 static void
1040 zpool_open_func(void *arg)
1041 {
1042 	rdsk_node_t *rn = arg;
1043 	struct stat64 statbuf;
1044 	nvlist_t *config;
1045 	int fd;
1046 
1047 	if (rn->rn_nozpool)
1048 		return;
1049 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1050 		/* symlink to a device that's no longer there */
1051 		if (errno == ENOENT)
1052 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1053 		return;
1054 	}
1055 	/*
1056 	 * Ignore failed stats.  We only want regular
1057 	 * files, character devs and block devs.
1058 	 */
1059 	if (fstat64(fd, &statbuf) != 0 ||
1060 	    (!S_ISREG(statbuf.st_mode) &&
1061 	    !S_ISCHR(statbuf.st_mode) &&
1062 	    !S_ISBLK(statbuf.st_mode))) {
1063 		(void) close(fd);
1064 		return;
1065 	}
1066 	/* this file is too small to hold a zpool */
1067 	if (S_ISREG(statbuf.st_mode) &&
1068 	    statbuf.st_size < SPA_MINDEVSIZE) {
1069 		(void) close(fd);
1070 		return;
1071 	} else if (!S_ISREG(statbuf.st_mode)) {
1072 		/*
1073 		 * Try to read the disk label first so we don't have to
1074 		 * open a bunch of minor nodes that can't have a zpool.
1075 		 */
1076 		check_slices(rn->rn_avl, fd, rn->rn_name);
1077 	}
1078 
1079 	if ((zpool_read_label(fd, &config)) != 0) {
1080 		(void) close(fd);
1081 		(void) no_memory(rn->rn_hdl);
1082 		return;
1083 	}
1084 	(void) close(fd);
1085 
1086 	rn->rn_config = config;
1087 }
1088 
1089 /*
1090  * Given a file descriptor, clear (zero) the label information.
1091  */
1092 int
1093 zpool_clear_label(int fd)
1094 {
1095 	struct stat64 statbuf;
1096 	int l;
1097 	vdev_label_t *label;
1098 	uint64_t size;
1099 
1100 	if (fstat64(fd, &statbuf) == -1)
1101 		return (0);
1102 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1103 
1104 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1105 		return (-1);
1106 
1107 	for (l = 0; l < VDEV_LABELS; l++) {
1108 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1109 		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1110 			free(label);
1111 			return (-1);
1112 		}
1113 	}
1114 
1115 	free(label);
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Given a list of directories to search, find all pools stored on disk.  This
1121  * includes partial pools which are not available to import.  If no args are
1122  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1123  * poolname or guid (but not both) are provided by the caller when trying
1124  * to import a specific pool.
1125  */
1126 static nvlist_t *
1127 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1128 {
1129 	int i, dirs = iarg->paths;
1130 	struct dirent64 *dp;
1131 	char path[MAXPATHLEN];
1132 	char *end, **dir = iarg->path;
1133 	size_t pathleft;
1134 	nvlist_t *ret = NULL;
1135 	static char *default_dir = ZFS_DISK_ROOT;
1136 	pool_list_t pools = { 0 };
1137 	pool_entry_t *pe, *penext;
1138 	vdev_entry_t *ve, *venext;
1139 	config_entry_t *ce, *cenext;
1140 	name_entry_t *ne, *nenext;
1141 	avl_tree_t slice_cache;
1142 	rdsk_node_t *slice;
1143 	void *cookie;
1144 
1145 	if (dirs == 0) {
1146 		dirs = 1;
1147 		dir = &default_dir;
1148 	}
1149 
1150 	/*
1151 	 * Go through and read the label configuration information from every
1152 	 * possible device, organizing the information according to pool GUID
1153 	 * and toplevel GUID.
1154 	 */
1155 	for (i = 0; i < dirs; i++) {
1156 		tpool_t *t;
1157 		char rdsk[MAXPATHLEN];
1158 		int dfd;
1159 		boolean_t config_failed = B_FALSE;
1160 		DIR *dirp;
1161 
1162 		/* use realpath to normalize the path */
1163 		if (realpath(dir[i], path) == 0) {
1164 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1165 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1166 			goto error;
1167 		}
1168 		end = &path[strlen(path)];
1169 		*end++ = '/';
1170 		*end = 0;
1171 		pathleft = &path[sizeof (path)] - end;
1172 
1173 		/*
1174 		 * Using raw devices instead of block devices when we're
1175 		 * reading the labels skips a bunch of slow operations during
1176 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1177 		 */
1178 		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1179 			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1180 		else
1181 			(void) strlcpy(rdsk, path, sizeof (rdsk));
1182 
1183 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1184 		    (dirp = fdopendir(dfd)) == NULL) {
1185 			if (dfd >= 0)
1186 				(void) close(dfd);
1187 			zfs_error_aux(hdl, strerror(errno));
1188 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1189 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1190 			    rdsk);
1191 			goto error;
1192 		}
1193 
1194 		avl_create(&slice_cache, slice_cache_compare,
1195 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1196 		/*
1197 		 * This is not MT-safe, but we have no MT consumers of libzfs
1198 		 */
1199 		while ((dp = readdir64(dirp)) != NULL) {
1200 			const char *name = dp->d_name;
1201 			if (name[0] == '.' &&
1202 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1203 				continue;
1204 
1205 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1206 			slice->rn_name = zfs_strdup(hdl, name);
1207 			slice->rn_avl = &slice_cache;
1208 			slice->rn_dfd = dfd;
1209 			slice->rn_hdl = hdl;
1210 			slice->rn_nozpool = B_FALSE;
1211 			avl_add(&slice_cache, slice);
1212 		}
1213 		/*
1214 		 * create a thread pool to do all of this in parallel;
1215 		 * rn_nozpool is not protected, so this is racy in that
1216 		 * multiple tasks could decide that the same slice can
1217 		 * not hold a zpool, which is benign.  Also choose
1218 		 * double the number of processors; we hold a lot of
1219 		 * locks in the kernel, so going beyond this doesn't
1220 		 * buy us much.
1221 		 */
1222 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1223 		    0, NULL);
1224 		for (slice = avl_first(&slice_cache); slice;
1225 		    (slice = avl_walk(&slice_cache, slice,
1226 		    AVL_AFTER)))
1227 			(void) tpool_dispatch(t, zpool_open_func, slice);
1228 		tpool_wait(t);
1229 		tpool_destroy(t);
1230 
1231 		cookie = NULL;
1232 		while ((slice = avl_destroy_nodes(&slice_cache,
1233 		    &cookie)) != NULL) {
1234 			if (slice->rn_config != NULL && !config_failed) {
1235 				nvlist_t *config = slice->rn_config;
1236 				boolean_t matched = B_TRUE;
1237 
1238 				if (iarg->poolname != NULL) {
1239 					char *pname;
1240 
1241 					matched = nvlist_lookup_string(config,
1242 					    ZPOOL_CONFIG_POOL_NAME,
1243 					    &pname) == 0 &&
1244 					    strcmp(iarg->poolname, pname) == 0;
1245 				} else if (iarg->guid != 0) {
1246 					uint64_t this_guid;
1247 
1248 					matched = nvlist_lookup_uint64(config,
1249 					    ZPOOL_CONFIG_POOL_GUID,
1250 					    &this_guid) == 0 &&
1251 					    iarg->guid == this_guid;
1252 				}
1253 				if (!matched) {
1254 					nvlist_free(config);
1255 				} else {
1256 					/*
1257 					 * use the non-raw path for the config
1258 					 */
1259 					(void) strlcpy(end, slice->rn_name,
1260 					    pathleft);
1261 					if (add_config(hdl, &pools, path,
1262 					    config) != 0)
1263 						config_failed = B_TRUE;
1264 				}
1265 			}
1266 			free(slice->rn_name);
1267 			free(slice);
1268 		}
1269 		avl_destroy(&slice_cache);
1270 
1271 		(void) closedir(dirp);
1272 
1273 		if (config_failed)
1274 			goto error;
1275 	}
1276 
1277 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1278 
1279 error:
1280 	for (pe = pools.pools; pe != NULL; pe = penext) {
1281 		penext = pe->pe_next;
1282 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1283 			venext = ve->ve_next;
1284 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1285 				cenext = ce->ce_next;
1286 				nvlist_free(ce->ce_config);
1287 				free(ce);
1288 			}
1289 			free(ve);
1290 		}
1291 		free(pe);
1292 	}
1293 
1294 	for (ne = pools.names; ne != NULL; ne = nenext) {
1295 		nenext = ne->ne_next;
1296 		free(ne->ne_name);
1297 		free(ne);
1298 	}
1299 
1300 	return (ret);
1301 }
1302 
1303 nvlist_t *
1304 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1305 {
1306 	importargs_t iarg = { 0 };
1307 
1308 	iarg.paths = argc;
1309 	iarg.path = argv;
1310 
1311 	return (zpool_find_import_impl(hdl, &iarg));
1312 }
1313 
1314 /*
1315  * Given a cache file, return the contents as a list of importable pools.
1316  * poolname or guid (but not both) are provided by the caller when trying
1317  * to import a specific pool.
1318  */
1319 nvlist_t *
1320 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1321     char *poolname, uint64_t guid)
1322 {
1323 	char *buf;
1324 	int fd;
1325 	struct stat64 statbuf;
1326 	nvlist_t *raw, *src, *dst;
1327 	nvlist_t *pools;
1328 	nvpair_t *elem;
1329 	char *name;
1330 	uint64_t this_guid;
1331 	boolean_t active;
1332 
1333 	verify(poolname == NULL || guid == 0);
1334 
1335 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1336 		zfs_error_aux(hdl, "%s", strerror(errno));
1337 		(void) zfs_error(hdl, EZFS_BADCACHE,
1338 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1339 		return (NULL);
1340 	}
1341 
1342 	if (fstat64(fd, &statbuf) != 0) {
1343 		zfs_error_aux(hdl, "%s", strerror(errno));
1344 		(void) close(fd);
1345 		(void) zfs_error(hdl, EZFS_BADCACHE,
1346 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1347 		return (NULL);
1348 	}
1349 
1350 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1351 		(void) close(fd);
1352 		return (NULL);
1353 	}
1354 
1355 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1356 		(void) close(fd);
1357 		free(buf);
1358 		(void) zfs_error(hdl, EZFS_BADCACHE,
1359 		    dgettext(TEXT_DOMAIN,
1360 		    "failed to read cache file contents"));
1361 		return (NULL);
1362 	}
1363 
1364 	(void) close(fd);
1365 
1366 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1367 		free(buf);
1368 		(void) zfs_error(hdl, EZFS_BADCACHE,
1369 		    dgettext(TEXT_DOMAIN,
1370 		    "invalid or corrupt cache file contents"));
1371 		return (NULL);
1372 	}
1373 
1374 	free(buf);
1375 
1376 	/*
1377 	 * Go through and get the current state of the pools and refresh their
1378 	 * state.
1379 	 */
1380 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1381 		(void) no_memory(hdl);
1382 		nvlist_free(raw);
1383 		return (NULL);
1384 	}
1385 
1386 	elem = NULL;
1387 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1388 		src = fnvpair_value_nvlist(elem);
1389 
1390 		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1391 		if (poolname != NULL && strcmp(poolname, name) != 0)
1392 			continue;
1393 
1394 		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1395 		if (guid != 0 && guid != this_guid)
1396 			continue;
1397 
1398 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1399 			nvlist_free(raw);
1400 			nvlist_free(pools);
1401 			return (NULL);
1402 		}
1403 
1404 		if (active)
1405 			continue;
1406 
1407 		if ((dst = refresh_config(hdl, src)) == NULL) {
1408 			nvlist_free(raw);
1409 			nvlist_free(pools);
1410 			return (NULL);
1411 		}
1412 
1413 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1414 			(void) no_memory(hdl);
1415 			nvlist_free(dst);
1416 			nvlist_free(raw);
1417 			nvlist_free(pools);
1418 			return (NULL);
1419 		}
1420 		nvlist_free(dst);
1421 	}
1422 
1423 	nvlist_free(raw);
1424 	return (pools);
1425 }
1426 
1427 static int
1428 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1429 {
1430 	importargs_t *import = data;
1431 	int found = 0;
1432 
1433 	if (import->poolname != NULL) {
1434 		char *pool_name;
1435 
1436 		verify(nvlist_lookup_string(zhp->zpool_config,
1437 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1438 		if (strcmp(pool_name, import->poolname) == 0)
1439 			found = 1;
1440 	} else {
1441 		uint64_t pool_guid;
1442 
1443 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1444 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1445 		if (pool_guid == import->guid)
1446 			found = 1;
1447 	}
1448 
1449 	zpool_close(zhp);
1450 	return (found);
1451 }
1452 
1453 nvlist_t *
1454 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1455 {
1456 	verify(import->poolname == NULL || import->guid == 0);
1457 
1458 	if (import->unique)
1459 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1460 
1461 	if (import->cachefile != NULL)
1462 		return (zpool_find_import_cached(hdl, import->cachefile,
1463 		    import->poolname, import->guid));
1464 
1465 	return (zpool_find_import_impl(hdl, import));
1466 }
1467 
1468 boolean_t
1469 find_guid(nvlist_t *nv, uint64_t guid)
1470 {
1471 	uint64_t tmp;
1472 	nvlist_t **child;
1473 	uint_t c, children;
1474 
1475 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1476 	if (tmp == guid)
1477 		return (B_TRUE);
1478 
1479 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1480 	    &child, &children) == 0) {
1481 		for (c = 0; c < children; c++)
1482 			if (find_guid(child[c], guid))
1483 				return (B_TRUE);
1484 	}
1485 
1486 	return (B_FALSE);
1487 }
1488 
1489 typedef struct aux_cbdata {
1490 	const char	*cb_type;
1491 	uint64_t	cb_guid;
1492 	zpool_handle_t	*cb_zhp;
1493 } aux_cbdata_t;
1494 
1495 static int
1496 find_aux(zpool_handle_t *zhp, void *data)
1497 {
1498 	aux_cbdata_t *cbp = data;
1499 	nvlist_t **list;
1500 	uint_t i, count;
1501 	uint64_t guid;
1502 	nvlist_t *nvroot;
1503 
1504 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1505 	    &nvroot) == 0);
1506 
1507 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1508 	    &list, &count) == 0) {
1509 		for (i = 0; i < count; i++) {
1510 			verify(nvlist_lookup_uint64(list[i],
1511 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1512 			if (guid == cbp->cb_guid) {
1513 				cbp->cb_zhp = zhp;
1514 				return (1);
1515 			}
1516 		}
1517 	}
1518 
1519 	zpool_close(zhp);
1520 	return (0);
1521 }
1522 
1523 /*
1524  * Determines if the pool is in use.  If so, it returns true and the state of
1525  * the pool as well as the name of the pool.  Both strings are allocated and
1526  * must be freed by the caller.
1527  */
1528 int
1529 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1530     boolean_t *inuse)
1531 {
1532 	nvlist_t *config;
1533 	char *name;
1534 	boolean_t ret;
1535 	uint64_t guid, vdev_guid;
1536 	zpool_handle_t *zhp;
1537 	nvlist_t *pool_config;
1538 	uint64_t stateval, isspare;
1539 	aux_cbdata_t cb = { 0 };
1540 	boolean_t isactive;
1541 
1542 	*inuse = B_FALSE;
1543 
1544 	if (zpool_read_label(fd, &config) != 0) {
1545 		(void) no_memory(hdl);
1546 		return (-1);
1547 	}
1548 
1549 	if (config == NULL)
1550 		return (0);
1551 
1552 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1553 	    &stateval) == 0);
1554 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1555 	    &vdev_guid) == 0);
1556 
1557 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1558 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1559 		    &name) == 0);
1560 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1561 		    &guid) == 0);
1562 	}
1563 
1564 	switch (stateval) {
1565 	case POOL_STATE_EXPORTED:
1566 		/*
1567 		 * A pool with an exported state may in fact be imported
1568 		 * read-only, so check the in-core state to see if it's
1569 		 * active and imported read-only.  If it is, set
1570 		 * its state to active.
1571 		 */
1572 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1573 		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1574 			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1575 				stateval = POOL_STATE_ACTIVE;
1576 
1577 			/*
1578 			 * All we needed the zpool handle for is the
1579 			 * readonly prop check.
1580 			 */
1581 			zpool_close(zhp);
1582 		}
1583 
1584 		ret = B_TRUE;
1585 		break;
1586 
1587 	case POOL_STATE_ACTIVE:
1588 		/*
1589 		 * For an active pool, we have to determine if it's really part
1590 		 * of a currently active pool (in which case the pool will exist
1591 		 * and the guid will be the same), or whether it's part of an
1592 		 * active pool that was disconnected without being explicitly
1593 		 * exported.
1594 		 */
1595 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1596 			nvlist_free(config);
1597 			return (-1);
1598 		}
1599 
1600 		if (isactive) {
1601 			/*
1602 			 * Because the device may have been removed while
1603 			 * offlined, we only report it as active if the vdev is
1604 			 * still present in the config.  Otherwise, pretend like
1605 			 * it's not in use.
1606 			 */
1607 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1608 			    (pool_config = zpool_get_config(zhp, NULL))
1609 			    != NULL) {
1610 				nvlist_t *nvroot;
1611 
1612 				verify(nvlist_lookup_nvlist(pool_config,
1613 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1614 				ret = find_guid(nvroot, vdev_guid);
1615 			} else {
1616 				ret = B_FALSE;
1617 			}
1618 
1619 			/*
1620 			 * If this is an active spare within another pool, we
1621 			 * treat it like an unused hot spare.  This allows the
1622 			 * user to create a pool with a hot spare that currently
1623 			 * in use within another pool.  Since we return B_TRUE,
1624 			 * libdiskmgt will continue to prevent generic consumers
1625 			 * from using the device.
1626 			 */
1627 			if (ret && nvlist_lookup_uint64(config,
1628 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1629 				stateval = POOL_STATE_SPARE;
1630 
1631 			if (zhp != NULL)
1632 				zpool_close(zhp);
1633 		} else {
1634 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1635 			ret = B_TRUE;
1636 		}
1637 		break;
1638 
1639 	case POOL_STATE_SPARE:
1640 		/*
1641 		 * For a hot spare, it can be either definitively in use, or
1642 		 * potentially active.  To determine if it's in use, we iterate
1643 		 * over all pools in the system and search for one with a spare
1644 		 * with a matching guid.
1645 		 *
1646 		 * Due to the shared nature of spares, we don't actually report
1647 		 * the potentially active case as in use.  This means the user
1648 		 * can freely create pools on the hot spares of exported pools,
1649 		 * but to do otherwise makes the resulting code complicated, and
1650 		 * we end up having to deal with this case anyway.
1651 		 */
1652 		cb.cb_zhp = NULL;
1653 		cb.cb_guid = vdev_guid;
1654 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1655 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1656 			name = (char *)zpool_get_name(cb.cb_zhp);
1657 			ret = B_TRUE;
1658 		} else {
1659 			ret = B_FALSE;
1660 		}
1661 		break;
1662 
1663 	case POOL_STATE_L2CACHE:
1664 
1665 		/*
1666 		 * Check if any pool is currently using this l2cache device.
1667 		 */
1668 		cb.cb_zhp = NULL;
1669 		cb.cb_guid = vdev_guid;
1670 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1671 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1672 			name = (char *)zpool_get_name(cb.cb_zhp);
1673 			ret = B_TRUE;
1674 		} else {
1675 			ret = B_FALSE;
1676 		}
1677 		break;
1678 
1679 	default:
1680 		ret = B_FALSE;
1681 	}
1682 
1683 
1684 	if (ret) {
1685 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1686 			if (cb.cb_zhp)
1687 				zpool_close(cb.cb_zhp);
1688 			nvlist_free(config);
1689 			return (-1);
1690 		}
1691 		*state = (pool_state_t)stateval;
1692 	}
1693 
1694 	if (cb.cb_zhp)
1695 		zpool_close(cb.cb_zhp);
1696 
1697 	nvlist_free(config);
1698 	*inuse = ret;
1699 	return (0);
1700 }
1701