1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2016 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <sys/vtoc.h> 57 #include <sys/dktp/fdisk.h> 58 #include <sys/efi_partition.h> 59 #include <thread_pool.h> 60 61 #include <sys/vdev_impl.h> 62 63 #include "libzfs.h" 64 #include "libzfs_impl.h" 65 66 /* 67 * Intermediate structures used to gather configuration information. 68 */ 69 typedef struct config_entry { 70 uint64_t ce_txg; 71 nvlist_t *ce_config; 72 struct config_entry *ce_next; 73 } config_entry_t; 74 75 typedef struct vdev_entry { 76 uint64_t ve_guid; 77 config_entry_t *ve_configs; 78 struct vdev_entry *ve_next; 79 } vdev_entry_t; 80 81 typedef struct pool_entry { 82 uint64_t pe_guid; 83 vdev_entry_t *pe_vdevs; 84 struct pool_entry *pe_next; 85 } pool_entry_t; 86 87 typedef struct name_entry { 88 char *ne_name; 89 uint64_t ne_guid; 90 struct name_entry *ne_next; 91 } name_entry_t; 92 93 typedef struct pool_list { 94 pool_entry_t *pools; 95 name_entry_t *names; 96 } pool_list_t; 97 98 static char * 99 get_devid(const char *path) 100 { 101 int fd; 102 ddi_devid_t devid; 103 char *minor, *ret; 104 105 if ((fd = open(path, O_RDONLY)) < 0) 106 return (NULL); 107 108 minor = NULL; 109 ret = NULL; 110 if (devid_get(fd, &devid) == 0) { 111 if (devid_get_minor_name(fd, &minor) == 0) 112 ret = devid_str_encode(devid, minor); 113 if (minor != NULL) 114 devid_str_free(minor); 115 devid_free(devid); 116 } 117 (void) close(fd); 118 119 return (ret); 120 } 121 122 123 /* 124 * Go through and fix up any path and/or devid information for the given vdev 125 * configuration. 126 */ 127 static int 128 fix_paths(nvlist_t *nv, name_entry_t *names) 129 { 130 nvlist_t **child; 131 uint_t c, children; 132 uint64_t guid; 133 name_entry_t *ne, *best; 134 char *path, *devid; 135 int matched; 136 137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 138 &child, &children) == 0) { 139 for (c = 0; c < children; c++) 140 if (fix_paths(child[c], names) != 0) 141 return (-1); 142 return (0); 143 } 144 145 /* 146 * This is a leaf (file or disk) vdev. In either case, go through 147 * the name list and see if we find a matching guid. If so, replace 148 * the path and see if we can calculate a new devid. 149 * 150 * There may be multiple names associated with a particular guid, in 151 * which case we have overlapping slices or multiple paths to the same 152 * disk. If this is the case, then we want to pick the path that is 153 * the most similar to the original, where "most similar" is the number 154 * of matching characters starting from the end of the path. This will 155 * preserve slice numbers even if the disks have been reorganized, and 156 * will also catch preferred disk names if multiple paths exist. 157 */ 158 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 159 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 160 path = NULL; 161 162 matched = 0; 163 best = NULL; 164 for (ne = names; ne != NULL; ne = ne->ne_next) { 165 if (ne->ne_guid == guid) { 166 const char *src, *dst; 167 int count; 168 169 if (path == NULL) { 170 best = ne; 171 break; 172 } 173 174 src = ne->ne_name + strlen(ne->ne_name) - 1; 175 dst = path + strlen(path) - 1; 176 for (count = 0; src >= ne->ne_name && dst >= path; 177 src--, dst--, count++) 178 if (*src != *dst) 179 break; 180 181 /* 182 * At this point, 'count' is the number of characters 183 * matched from the end. 184 */ 185 if (count > matched || best == NULL) { 186 best = ne; 187 matched = count; 188 } 189 } 190 } 191 192 if (best == NULL) 193 return (0); 194 195 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 196 return (-1); 197 198 if ((devid = get_devid(best->ne_name)) == NULL) { 199 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 200 } else { 201 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 202 devid_str_free(devid); 203 return (-1); 204 } 205 devid_str_free(devid); 206 } 207 208 return (0); 209 } 210 211 /* 212 * Add the given configuration to the list of known devices. 213 */ 214 static int 215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 216 nvlist_t *config) 217 { 218 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 219 pool_entry_t *pe; 220 vdev_entry_t *ve; 221 config_entry_t *ce; 222 name_entry_t *ne; 223 224 /* 225 * If this is a hot spare not currently in use or level 2 cache 226 * device, add it to the list of names to translate, but don't do 227 * anything else. 228 */ 229 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 230 &state) == 0 && 231 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 232 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 233 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 234 return (-1); 235 236 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 237 free(ne); 238 return (-1); 239 } 240 241 ne->ne_guid = vdev_guid; 242 ne->ne_next = pl->names; 243 pl->names = ne; 244 245 nvlist_free(config); 246 return (0); 247 } 248 249 /* 250 * If we have a valid config but cannot read any of these fields, then 251 * it means we have a half-initialized label. In vdev_label_init() 252 * we write a label with txg == 0 so that we can identify the device 253 * in case the user refers to the same disk later on. If we fail to 254 * create the pool, we'll be left with a label in this state 255 * which should not be considered part of a valid pool. 256 */ 257 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 258 &pool_guid) != 0 || 259 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 260 &vdev_guid) != 0 || 261 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 262 &top_guid) != 0 || 263 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 264 &txg) != 0 || txg == 0) { 265 nvlist_free(config); 266 return (0); 267 } 268 269 /* 270 * First, see if we know about this pool. If not, then add it to the 271 * list of known pools. 272 */ 273 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 274 if (pe->pe_guid == pool_guid) 275 break; 276 } 277 278 if (pe == NULL) { 279 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 280 nvlist_free(config); 281 return (-1); 282 } 283 pe->pe_guid = pool_guid; 284 pe->pe_next = pl->pools; 285 pl->pools = pe; 286 } 287 288 /* 289 * Second, see if we know about this toplevel vdev. Add it if its 290 * missing. 291 */ 292 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 293 if (ve->ve_guid == top_guid) 294 break; 295 } 296 297 if (ve == NULL) { 298 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 299 nvlist_free(config); 300 return (-1); 301 } 302 ve->ve_guid = top_guid; 303 ve->ve_next = pe->pe_vdevs; 304 pe->pe_vdevs = ve; 305 } 306 307 /* 308 * Third, see if we have a config with a matching transaction group. If 309 * so, then we do nothing. Otherwise, add it to the list of known 310 * configs. 311 */ 312 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 313 if (ce->ce_txg == txg) 314 break; 315 } 316 317 if (ce == NULL) { 318 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 319 nvlist_free(config); 320 return (-1); 321 } 322 ce->ce_txg = txg; 323 ce->ce_config = config; 324 ce->ce_next = ve->ve_configs; 325 ve->ve_configs = ce; 326 } else { 327 nvlist_free(config); 328 } 329 330 /* 331 * At this point we've successfully added our config to the list of 332 * known configs. The last thing to do is add the vdev guid -> path 333 * mappings so that we can fix up the configuration as necessary before 334 * doing the import. 335 */ 336 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 337 return (-1); 338 339 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 340 free(ne); 341 return (-1); 342 } 343 344 ne->ne_guid = vdev_guid; 345 ne->ne_next = pl->names; 346 pl->names = ne; 347 348 return (0); 349 } 350 351 /* 352 * Returns true if the named pool matches the given GUID. 353 */ 354 static int 355 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 356 boolean_t *isactive) 357 { 358 zpool_handle_t *zhp; 359 uint64_t theguid; 360 361 if (zpool_open_silent(hdl, name, &zhp) != 0) 362 return (-1); 363 364 if (zhp == NULL) { 365 *isactive = B_FALSE; 366 return (0); 367 } 368 369 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 370 &theguid) == 0); 371 372 zpool_close(zhp); 373 374 *isactive = (theguid == guid); 375 return (0); 376 } 377 378 static nvlist_t * 379 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 380 { 381 nvlist_t *nvl; 382 zfs_cmd_t zc = { 0 }; 383 int err, dstbuf_size; 384 385 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 386 return (NULL); 387 388 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4); 389 390 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) { 391 zcmd_free_nvlists(&zc); 392 return (NULL); 393 } 394 395 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 396 &zc)) != 0 && errno == ENOMEM) { 397 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 398 zcmd_free_nvlists(&zc); 399 return (NULL); 400 } 401 } 402 403 if (err) { 404 zcmd_free_nvlists(&zc); 405 return (NULL); 406 } 407 408 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 409 zcmd_free_nvlists(&zc); 410 return (NULL); 411 } 412 413 zcmd_free_nvlists(&zc); 414 return (nvl); 415 } 416 417 /* 418 * Determine if the vdev id is a hole in the namespace. 419 */ 420 boolean_t 421 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 422 { 423 for (int c = 0; c < holes; c++) { 424 425 /* Top-level is a hole */ 426 if (hole_array[c] == id) 427 return (B_TRUE); 428 } 429 return (B_FALSE); 430 } 431 432 /* 433 * Convert our list of pools into the definitive set of configurations. We 434 * start by picking the best config for each toplevel vdev. Once that's done, 435 * we assemble the toplevel vdevs into a full config for the pool. We make a 436 * pass to fix up any incorrect paths, and then add it to the main list to 437 * return to the user. 438 */ 439 static nvlist_t * 440 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 441 { 442 pool_entry_t *pe; 443 vdev_entry_t *ve; 444 config_entry_t *ce; 445 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 446 nvlist_t **spares, **l2cache; 447 uint_t i, nspares, nl2cache; 448 boolean_t config_seen; 449 uint64_t best_txg; 450 char *name, *hostname = NULL; 451 uint64_t guid; 452 uint_t children = 0; 453 nvlist_t **child = NULL; 454 uint_t holes; 455 uint64_t *hole_array, max_id; 456 uint_t c; 457 boolean_t isactive; 458 uint64_t hostid; 459 nvlist_t *nvl; 460 boolean_t found_one = B_FALSE; 461 boolean_t valid_top_config = B_FALSE; 462 463 if (nvlist_alloc(&ret, 0, 0) != 0) 464 goto nomem; 465 466 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 467 uint64_t id, max_txg = 0; 468 469 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 470 goto nomem; 471 config_seen = B_FALSE; 472 473 /* 474 * Iterate over all toplevel vdevs. Grab the pool configuration 475 * from the first one we find, and then go through the rest and 476 * add them as necessary to the 'vdevs' member of the config. 477 */ 478 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 479 480 /* 481 * Determine the best configuration for this vdev by 482 * selecting the config with the latest transaction 483 * group. 484 */ 485 best_txg = 0; 486 for (ce = ve->ve_configs; ce != NULL; 487 ce = ce->ce_next) { 488 489 if (ce->ce_txg > best_txg) { 490 tmp = ce->ce_config; 491 best_txg = ce->ce_txg; 492 } 493 } 494 495 /* 496 * We rely on the fact that the max txg for the 497 * pool will contain the most up-to-date information 498 * about the valid top-levels in the vdev namespace. 499 */ 500 if (best_txg > max_txg) { 501 (void) nvlist_remove(config, 502 ZPOOL_CONFIG_VDEV_CHILDREN, 503 DATA_TYPE_UINT64); 504 (void) nvlist_remove(config, 505 ZPOOL_CONFIG_HOLE_ARRAY, 506 DATA_TYPE_UINT64_ARRAY); 507 508 max_txg = best_txg; 509 hole_array = NULL; 510 holes = 0; 511 max_id = 0; 512 valid_top_config = B_FALSE; 513 514 if (nvlist_lookup_uint64(tmp, 515 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 516 verify(nvlist_add_uint64(config, 517 ZPOOL_CONFIG_VDEV_CHILDREN, 518 max_id) == 0); 519 valid_top_config = B_TRUE; 520 } 521 522 if (nvlist_lookup_uint64_array(tmp, 523 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 524 &holes) == 0) { 525 verify(nvlist_add_uint64_array(config, 526 ZPOOL_CONFIG_HOLE_ARRAY, 527 hole_array, holes) == 0); 528 } 529 } 530 531 if (!config_seen) { 532 /* 533 * Copy the relevant pieces of data to the pool 534 * configuration: 535 * 536 * version 537 * pool guid 538 * name 539 * comment (if available) 540 * pool state 541 * hostid (if available) 542 * hostname (if available) 543 */ 544 uint64_t state, version; 545 char *comment = NULL; 546 547 version = fnvlist_lookup_uint64(tmp, 548 ZPOOL_CONFIG_VERSION); 549 fnvlist_add_uint64(config, 550 ZPOOL_CONFIG_VERSION, version); 551 guid = fnvlist_lookup_uint64(tmp, 552 ZPOOL_CONFIG_POOL_GUID); 553 fnvlist_add_uint64(config, 554 ZPOOL_CONFIG_POOL_GUID, guid); 555 name = fnvlist_lookup_string(tmp, 556 ZPOOL_CONFIG_POOL_NAME); 557 fnvlist_add_string(config, 558 ZPOOL_CONFIG_POOL_NAME, name); 559 560 if (nvlist_lookup_string(tmp, 561 ZPOOL_CONFIG_COMMENT, &comment) == 0) 562 fnvlist_add_string(config, 563 ZPOOL_CONFIG_COMMENT, comment); 564 565 state = fnvlist_lookup_uint64(tmp, 566 ZPOOL_CONFIG_POOL_STATE); 567 fnvlist_add_uint64(config, 568 ZPOOL_CONFIG_POOL_STATE, state); 569 570 hostid = 0; 571 if (nvlist_lookup_uint64(tmp, 572 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 573 fnvlist_add_uint64(config, 574 ZPOOL_CONFIG_HOSTID, hostid); 575 hostname = fnvlist_lookup_string(tmp, 576 ZPOOL_CONFIG_HOSTNAME); 577 fnvlist_add_string(config, 578 ZPOOL_CONFIG_HOSTNAME, hostname); 579 } 580 581 config_seen = B_TRUE; 582 } 583 584 /* 585 * Add this top-level vdev to the child array. 586 */ 587 verify(nvlist_lookup_nvlist(tmp, 588 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 589 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 590 &id) == 0); 591 592 if (id >= children) { 593 nvlist_t **newchild; 594 595 newchild = zfs_alloc(hdl, (id + 1) * 596 sizeof (nvlist_t *)); 597 if (newchild == NULL) 598 goto nomem; 599 600 for (c = 0; c < children; c++) 601 newchild[c] = child[c]; 602 603 free(child); 604 child = newchild; 605 children = id + 1; 606 } 607 if (nvlist_dup(nvtop, &child[id], 0) != 0) 608 goto nomem; 609 610 } 611 612 /* 613 * If we have information about all the top-levels then 614 * clean up the nvlist which we've constructed. This 615 * means removing any extraneous devices that are 616 * beyond the valid range or adding devices to the end 617 * of our array which appear to be missing. 618 */ 619 if (valid_top_config) { 620 if (max_id < children) { 621 for (c = max_id; c < children; c++) 622 nvlist_free(child[c]); 623 children = max_id; 624 } else if (max_id > children) { 625 nvlist_t **newchild; 626 627 newchild = zfs_alloc(hdl, (max_id) * 628 sizeof (nvlist_t *)); 629 if (newchild == NULL) 630 goto nomem; 631 632 for (c = 0; c < children; c++) 633 newchild[c] = child[c]; 634 635 free(child); 636 child = newchild; 637 children = max_id; 638 } 639 } 640 641 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 642 &guid) == 0); 643 644 /* 645 * The vdev namespace may contain holes as a result of 646 * device removal. We must add them back into the vdev 647 * tree before we process any missing devices. 648 */ 649 if (holes > 0) { 650 ASSERT(valid_top_config); 651 652 for (c = 0; c < children; c++) { 653 nvlist_t *holey; 654 655 if (child[c] != NULL || 656 !vdev_is_hole(hole_array, holes, c)) 657 continue; 658 659 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 660 0) != 0) 661 goto nomem; 662 663 /* 664 * Holes in the namespace are treated as 665 * "hole" top-level vdevs and have a 666 * special flag set on them. 667 */ 668 if (nvlist_add_string(holey, 669 ZPOOL_CONFIG_TYPE, 670 VDEV_TYPE_HOLE) != 0 || 671 nvlist_add_uint64(holey, 672 ZPOOL_CONFIG_ID, c) != 0 || 673 nvlist_add_uint64(holey, 674 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 675 nvlist_free(holey); 676 goto nomem; 677 } 678 child[c] = holey; 679 } 680 } 681 682 /* 683 * Look for any missing top-level vdevs. If this is the case, 684 * create a faked up 'missing' vdev as a placeholder. We cannot 685 * simply compress the child array, because the kernel performs 686 * certain checks to make sure the vdev IDs match their location 687 * in the configuration. 688 */ 689 for (c = 0; c < children; c++) { 690 if (child[c] == NULL) { 691 nvlist_t *missing; 692 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 693 0) != 0) 694 goto nomem; 695 if (nvlist_add_string(missing, 696 ZPOOL_CONFIG_TYPE, 697 VDEV_TYPE_MISSING) != 0 || 698 nvlist_add_uint64(missing, 699 ZPOOL_CONFIG_ID, c) != 0 || 700 nvlist_add_uint64(missing, 701 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 702 nvlist_free(missing); 703 goto nomem; 704 } 705 child[c] = missing; 706 } 707 } 708 709 /* 710 * Put all of this pool's top-level vdevs into a root vdev. 711 */ 712 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 713 goto nomem; 714 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 715 VDEV_TYPE_ROOT) != 0 || 716 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 717 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 718 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 719 child, children) != 0) { 720 nvlist_free(nvroot); 721 goto nomem; 722 } 723 724 for (c = 0; c < children; c++) 725 nvlist_free(child[c]); 726 free(child); 727 children = 0; 728 child = NULL; 729 730 /* 731 * Go through and fix up any paths and/or devids based on our 732 * known list of vdev GUID -> path mappings. 733 */ 734 if (fix_paths(nvroot, pl->names) != 0) { 735 nvlist_free(nvroot); 736 goto nomem; 737 } 738 739 /* 740 * Add the root vdev to this pool's configuration. 741 */ 742 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 743 nvroot) != 0) { 744 nvlist_free(nvroot); 745 goto nomem; 746 } 747 nvlist_free(nvroot); 748 749 /* 750 * zdb uses this path to report on active pools that were 751 * imported or created using -R. 752 */ 753 if (active_ok) 754 goto add_pool; 755 756 /* 757 * Determine if this pool is currently active, in which case we 758 * can't actually import it. 759 */ 760 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 761 &name) == 0); 762 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 763 &guid) == 0); 764 765 if (pool_active(hdl, name, guid, &isactive) != 0) 766 goto error; 767 768 if (isactive) { 769 nvlist_free(config); 770 config = NULL; 771 continue; 772 } 773 774 if ((nvl = refresh_config(hdl, config)) == NULL) { 775 nvlist_free(config); 776 config = NULL; 777 continue; 778 } 779 780 nvlist_free(config); 781 config = nvl; 782 783 /* 784 * Go through and update the paths for spares, now that we have 785 * them. 786 */ 787 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 788 &nvroot) == 0); 789 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 790 &spares, &nspares) == 0) { 791 for (i = 0; i < nspares; i++) { 792 if (fix_paths(spares[i], pl->names) != 0) 793 goto nomem; 794 } 795 } 796 797 /* 798 * Update the paths for l2cache devices. 799 */ 800 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 801 &l2cache, &nl2cache) == 0) { 802 for (i = 0; i < nl2cache; i++) { 803 if (fix_paths(l2cache[i], pl->names) != 0) 804 goto nomem; 805 } 806 } 807 808 /* 809 * Restore the original information read from the actual label. 810 */ 811 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 812 DATA_TYPE_UINT64); 813 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 814 DATA_TYPE_STRING); 815 if (hostid != 0) { 816 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 817 hostid) == 0); 818 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 819 hostname) == 0); 820 } 821 822 add_pool: 823 /* 824 * Add this pool to the list of configs. 825 */ 826 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 827 &name) == 0); 828 if (nvlist_add_nvlist(ret, name, config) != 0) 829 goto nomem; 830 831 found_one = B_TRUE; 832 nvlist_free(config); 833 config = NULL; 834 } 835 836 if (!found_one) { 837 nvlist_free(ret); 838 ret = NULL; 839 } 840 841 return (ret); 842 843 nomem: 844 (void) no_memory(hdl); 845 error: 846 nvlist_free(config); 847 nvlist_free(ret); 848 for (c = 0; c < children; c++) 849 nvlist_free(child[c]); 850 free(child); 851 852 return (NULL); 853 } 854 855 /* 856 * Return the offset of the given label. 857 */ 858 static uint64_t 859 label_offset(uint64_t size, int l) 860 { 861 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 862 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 863 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 864 } 865 866 /* 867 * Given a file descriptor, read the label information and return an nvlist 868 * describing the configuration, if there is one. 869 */ 870 int 871 zpool_read_label(int fd, nvlist_t **config) 872 { 873 struct stat64 statbuf; 874 int l; 875 vdev_label_t *label; 876 uint64_t state, txg, size; 877 878 *config = NULL; 879 880 if (fstat64(fd, &statbuf) == -1) 881 return (0); 882 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 883 884 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 885 return (-1); 886 887 for (l = 0; l < VDEV_LABELS; l++) { 888 if (pread64(fd, label, sizeof (vdev_label_t), 889 label_offset(size, l)) != sizeof (vdev_label_t)) 890 continue; 891 892 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 893 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 894 continue; 895 896 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 897 &state) != 0 || state > POOL_STATE_L2CACHE) { 898 nvlist_free(*config); 899 continue; 900 } 901 902 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 903 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 904 &txg) != 0 || txg == 0)) { 905 nvlist_free(*config); 906 continue; 907 } 908 909 free(label); 910 return (0); 911 } 912 913 free(label); 914 *config = NULL; 915 return (0); 916 } 917 918 typedef struct rdsk_node { 919 char *rn_name; 920 int rn_dfd; 921 libzfs_handle_t *rn_hdl; 922 nvlist_t *rn_config; 923 avl_tree_t *rn_avl; 924 avl_node_t rn_node; 925 boolean_t rn_nozpool; 926 } rdsk_node_t; 927 928 static int 929 slice_cache_compare(const void *arg1, const void *arg2) 930 { 931 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 932 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 933 char *nm1slice, *nm2slice; 934 int rv; 935 936 /* 937 * slices zero and two are the most likely to provide results, 938 * so put those first 939 */ 940 nm1slice = strstr(nm1, "s0"); 941 nm2slice = strstr(nm2, "s0"); 942 if (nm1slice && !nm2slice) { 943 return (-1); 944 } 945 if (!nm1slice && nm2slice) { 946 return (1); 947 } 948 nm1slice = strstr(nm1, "s2"); 949 nm2slice = strstr(nm2, "s2"); 950 if (nm1slice && !nm2slice) { 951 return (-1); 952 } 953 if (!nm1slice && nm2slice) { 954 return (1); 955 } 956 957 rv = strcmp(nm1, nm2); 958 if (rv == 0) 959 return (0); 960 return (rv > 0 ? 1 : -1); 961 } 962 963 static void 964 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 965 diskaddr_t size, uint_t blksz) 966 { 967 rdsk_node_t tmpnode; 968 rdsk_node_t *node; 969 char sname[MAXNAMELEN]; 970 971 tmpnode.rn_name = &sname[0]; 972 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 973 diskname, partno); 974 /* 975 * protect against division by zero for disk labels that 976 * contain a bogus sector size 977 */ 978 if (blksz == 0) 979 blksz = DEV_BSIZE; 980 /* too small to contain a zpool? */ 981 if ((size < (SPA_MINDEVSIZE / blksz)) && 982 (node = avl_find(r, &tmpnode, NULL))) 983 node->rn_nozpool = B_TRUE; 984 } 985 986 static void 987 nozpool_all_slices(avl_tree_t *r, const char *sname) 988 { 989 char diskname[MAXNAMELEN]; 990 char *ptr; 991 int i; 992 993 (void) strncpy(diskname, sname, MAXNAMELEN); 994 if (((ptr = strrchr(diskname, 's')) == NULL) && 995 ((ptr = strrchr(diskname, 'p')) == NULL)) 996 return; 997 ptr[0] = 's'; 998 ptr[1] = '\0'; 999 for (i = 0; i < NDKMAP; i++) 1000 check_one_slice(r, diskname, i, 0, 1); 1001 ptr[0] = 'p'; 1002 for (i = 0; i <= FD_NUMPART; i++) 1003 check_one_slice(r, diskname, i, 0, 1); 1004 } 1005 1006 static void 1007 check_slices(avl_tree_t *r, int fd, const char *sname) 1008 { 1009 struct extvtoc vtoc; 1010 struct dk_gpt *gpt; 1011 char diskname[MAXNAMELEN]; 1012 char *ptr; 1013 int i; 1014 1015 (void) strncpy(diskname, sname, MAXNAMELEN); 1016 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1017 return; 1018 ptr[1] = '\0'; 1019 1020 if (read_extvtoc(fd, &vtoc) >= 0) { 1021 for (i = 0; i < NDKMAP; i++) 1022 check_one_slice(r, diskname, i, 1023 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1024 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1025 /* 1026 * on x86 we'll still have leftover links that point 1027 * to slices s[9-15], so use NDKMAP instead 1028 */ 1029 for (i = 0; i < NDKMAP; i++) 1030 check_one_slice(r, diskname, i, 1031 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1032 /* nodes p[1-4] are never used with EFI labels */ 1033 ptr[0] = 'p'; 1034 for (i = 1; i <= FD_NUMPART; i++) 1035 check_one_slice(r, diskname, i, 0, 1); 1036 efi_free(gpt); 1037 } 1038 } 1039 1040 static void 1041 zpool_open_func(void *arg) 1042 { 1043 rdsk_node_t *rn = arg; 1044 struct stat64 statbuf; 1045 nvlist_t *config; 1046 int fd; 1047 1048 if (rn->rn_nozpool) 1049 return; 1050 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1051 /* symlink to a device that's no longer there */ 1052 if (errno == ENOENT) 1053 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1054 return; 1055 } 1056 /* 1057 * Ignore failed stats. We only want regular 1058 * files, character devs and block devs. 1059 */ 1060 if (fstat64(fd, &statbuf) != 0 || 1061 (!S_ISREG(statbuf.st_mode) && 1062 !S_ISCHR(statbuf.st_mode) && 1063 !S_ISBLK(statbuf.st_mode))) { 1064 (void) close(fd); 1065 return; 1066 } 1067 /* this file is too small to hold a zpool */ 1068 if (S_ISREG(statbuf.st_mode) && 1069 statbuf.st_size < SPA_MINDEVSIZE) { 1070 (void) close(fd); 1071 return; 1072 } else if (!S_ISREG(statbuf.st_mode)) { 1073 /* 1074 * Try to read the disk label first so we don't have to 1075 * open a bunch of minor nodes that can't have a zpool. 1076 */ 1077 check_slices(rn->rn_avl, fd, rn->rn_name); 1078 } 1079 1080 if ((zpool_read_label(fd, &config)) != 0) { 1081 (void) close(fd); 1082 (void) no_memory(rn->rn_hdl); 1083 return; 1084 } 1085 (void) close(fd); 1086 1087 rn->rn_config = config; 1088 } 1089 1090 /* 1091 * Given a file descriptor, clear (zero) the label information. 1092 */ 1093 int 1094 zpool_clear_label(int fd) 1095 { 1096 struct stat64 statbuf; 1097 int l; 1098 vdev_label_t *label; 1099 uint64_t size; 1100 1101 if (fstat64(fd, &statbuf) == -1) 1102 return (0); 1103 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1104 1105 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1106 return (-1); 1107 1108 for (l = 0; l < VDEV_LABELS; l++) { 1109 if (pwrite64(fd, label, sizeof (vdev_label_t), 1110 label_offset(size, l)) != sizeof (vdev_label_t)) { 1111 free(label); 1112 return (-1); 1113 } 1114 } 1115 1116 free(label); 1117 return (0); 1118 } 1119 1120 /* 1121 * Given a list of directories to search, find all pools stored on disk. This 1122 * includes partial pools which are not available to import. If no args are 1123 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1124 * poolname or guid (but not both) are provided by the caller when trying 1125 * to import a specific pool. 1126 */ 1127 static nvlist_t * 1128 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1129 { 1130 int i, dirs = iarg->paths; 1131 struct dirent64 *dp; 1132 char path[MAXPATHLEN]; 1133 char *end, **dir = iarg->path; 1134 size_t pathleft; 1135 nvlist_t *ret = NULL; 1136 static char *default_dir = ZFS_DISK_ROOT; 1137 pool_list_t pools = { 0 }; 1138 pool_entry_t *pe, *penext; 1139 vdev_entry_t *ve, *venext; 1140 config_entry_t *ce, *cenext; 1141 name_entry_t *ne, *nenext; 1142 avl_tree_t slice_cache; 1143 rdsk_node_t *slice; 1144 void *cookie; 1145 1146 if (dirs == 0) { 1147 dirs = 1; 1148 dir = &default_dir; 1149 } 1150 1151 /* 1152 * Go through and read the label configuration information from every 1153 * possible device, organizing the information according to pool GUID 1154 * and toplevel GUID. 1155 */ 1156 for (i = 0; i < dirs; i++) { 1157 tpool_t *t; 1158 char rdsk[MAXPATHLEN]; 1159 int dfd; 1160 boolean_t config_failed = B_FALSE; 1161 DIR *dirp; 1162 1163 /* use realpath to normalize the path */ 1164 if (realpath(dir[i], path) == 0) { 1165 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1166 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1167 goto error; 1168 } 1169 end = &path[strlen(path)]; 1170 *end++ = '/'; 1171 *end = 0; 1172 pathleft = &path[sizeof (path)] - end; 1173 1174 /* 1175 * Using raw devices instead of block devices when we're 1176 * reading the labels skips a bunch of slow operations during 1177 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1178 */ 1179 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1180 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1181 else 1182 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1183 1184 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1185 (dirp = fdopendir(dfd)) == NULL) { 1186 if (dfd >= 0) 1187 (void) close(dfd); 1188 zfs_error_aux(hdl, strerror(errno)); 1189 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1190 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1191 rdsk); 1192 goto error; 1193 } 1194 1195 avl_create(&slice_cache, slice_cache_compare, 1196 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1197 /* 1198 * This is not MT-safe, but we have no MT consumers of libzfs 1199 */ 1200 while ((dp = readdir64(dirp)) != NULL) { 1201 const char *name = dp->d_name; 1202 if (name[0] == '.' && 1203 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1204 continue; 1205 1206 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1207 slice->rn_name = zfs_strdup(hdl, name); 1208 slice->rn_avl = &slice_cache; 1209 slice->rn_dfd = dfd; 1210 slice->rn_hdl = hdl; 1211 slice->rn_nozpool = B_FALSE; 1212 avl_add(&slice_cache, slice); 1213 } 1214 /* 1215 * create a thread pool to do all of this in parallel; 1216 * rn_nozpool is not protected, so this is racy in that 1217 * multiple tasks could decide that the same slice can 1218 * not hold a zpool, which is benign. Also choose 1219 * double the number of processors; we hold a lot of 1220 * locks in the kernel, so going beyond this doesn't 1221 * buy us much. 1222 */ 1223 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1224 0, NULL); 1225 for (slice = avl_first(&slice_cache); slice; 1226 (slice = avl_walk(&slice_cache, slice, 1227 AVL_AFTER))) 1228 (void) tpool_dispatch(t, zpool_open_func, slice); 1229 tpool_wait(t); 1230 tpool_destroy(t); 1231 1232 cookie = NULL; 1233 while ((slice = avl_destroy_nodes(&slice_cache, 1234 &cookie)) != NULL) { 1235 if (slice->rn_config != NULL && !config_failed) { 1236 nvlist_t *config = slice->rn_config; 1237 boolean_t matched = B_TRUE; 1238 1239 if (iarg->poolname != NULL) { 1240 char *pname; 1241 1242 matched = nvlist_lookup_string(config, 1243 ZPOOL_CONFIG_POOL_NAME, 1244 &pname) == 0 && 1245 strcmp(iarg->poolname, pname) == 0; 1246 } else if (iarg->guid != 0) { 1247 uint64_t this_guid; 1248 1249 matched = nvlist_lookup_uint64(config, 1250 ZPOOL_CONFIG_POOL_GUID, 1251 &this_guid) == 0 && 1252 iarg->guid == this_guid; 1253 } 1254 if (!matched) { 1255 nvlist_free(config); 1256 } else { 1257 /* 1258 * use the non-raw path for the config 1259 */ 1260 (void) strlcpy(end, slice->rn_name, 1261 pathleft); 1262 if (add_config(hdl, &pools, path, 1263 config) != 0) 1264 config_failed = B_TRUE; 1265 } 1266 } 1267 free(slice->rn_name); 1268 free(slice); 1269 } 1270 avl_destroy(&slice_cache); 1271 1272 (void) closedir(dirp); 1273 1274 if (config_failed) 1275 goto error; 1276 } 1277 1278 ret = get_configs(hdl, &pools, iarg->can_be_active); 1279 1280 error: 1281 for (pe = pools.pools; pe != NULL; pe = penext) { 1282 penext = pe->pe_next; 1283 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1284 venext = ve->ve_next; 1285 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1286 cenext = ce->ce_next; 1287 nvlist_free(ce->ce_config); 1288 free(ce); 1289 } 1290 free(ve); 1291 } 1292 free(pe); 1293 } 1294 1295 for (ne = pools.names; ne != NULL; ne = nenext) { 1296 nenext = ne->ne_next; 1297 free(ne->ne_name); 1298 free(ne); 1299 } 1300 1301 return (ret); 1302 } 1303 1304 nvlist_t * 1305 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1306 { 1307 importargs_t iarg = { 0 }; 1308 1309 iarg.paths = argc; 1310 iarg.path = argv; 1311 1312 return (zpool_find_import_impl(hdl, &iarg)); 1313 } 1314 1315 /* 1316 * Given a cache file, return the contents as a list of importable pools. 1317 * poolname or guid (but not both) are provided by the caller when trying 1318 * to import a specific pool. 1319 */ 1320 nvlist_t * 1321 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1322 char *poolname, uint64_t guid) 1323 { 1324 char *buf; 1325 int fd; 1326 struct stat64 statbuf; 1327 nvlist_t *raw, *src, *dst; 1328 nvlist_t *pools; 1329 nvpair_t *elem; 1330 char *name; 1331 uint64_t this_guid; 1332 boolean_t active; 1333 1334 verify(poolname == NULL || guid == 0); 1335 1336 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1337 zfs_error_aux(hdl, "%s", strerror(errno)); 1338 (void) zfs_error(hdl, EZFS_BADCACHE, 1339 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1340 return (NULL); 1341 } 1342 1343 if (fstat64(fd, &statbuf) != 0) { 1344 zfs_error_aux(hdl, "%s", strerror(errno)); 1345 (void) close(fd); 1346 (void) zfs_error(hdl, EZFS_BADCACHE, 1347 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1348 return (NULL); 1349 } 1350 1351 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1352 (void) close(fd); 1353 return (NULL); 1354 } 1355 1356 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1357 (void) close(fd); 1358 free(buf); 1359 (void) zfs_error(hdl, EZFS_BADCACHE, 1360 dgettext(TEXT_DOMAIN, 1361 "failed to read cache file contents")); 1362 return (NULL); 1363 } 1364 1365 (void) close(fd); 1366 1367 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1368 free(buf); 1369 (void) zfs_error(hdl, EZFS_BADCACHE, 1370 dgettext(TEXT_DOMAIN, 1371 "invalid or corrupt cache file contents")); 1372 return (NULL); 1373 } 1374 1375 free(buf); 1376 1377 /* 1378 * Go through and get the current state of the pools and refresh their 1379 * state. 1380 */ 1381 if (nvlist_alloc(&pools, 0, 0) != 0) { 1382 (void) no_memory(hdl); 1383 nvlist_free(raw); 1384 return (NULL); 1385 } 1386 1387 elem = NULL; 1388 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1389 src = fnvpair_value_nvlist(elem); 1390 1391 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1392 if (poolname != NULL && strcmp(poolname, name) != 0) 1393 continue; 1394 1395 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1396 if (guid != 0 && guid != this_guid) 1397 continue; 1398 1399 if (pool_active(hdl, name, this_guid, &active) != 0) { 1400 nvlist_free(raw); 1401 nvlist_free(pools); 1402 return (NULL); 1403 } 1404 1405 if (active) 1406 continue; 1407 1408 if ((dst = refresh_config(hdl, src)) == NULL) { 1409 nvlist_free(raw); 1410 nvlist_free(pools); 1411 return (NULL); 1412 } 1413 1414 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1415 (void) no_memory(hdl); 1416 nvlist_free(dst); 1417 nvlist_free(raw); 1418 nvlist_free(pools); 1419 return (NULL); 1420 } 1421 nvlist_free(dst); 1422 } 1423 1424 nvlist_free(raw); 1425 return (pools); 1426 } 1427 1428 static int 1429 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1430 { 1431 importargs_t *import = data; 1432 int found = 0; 1433 1434 if (import->poolname != NULL) { 1435 char *pool_name; 1436 1437 verify(nvlist_lookup_string(zhp->zpool_config, 1438 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1439 if (strcmp(pool_name, import->poolname) == 0) 1440 found = 1; 1441 } else { 1442 uint64_t pool_guid; 1443 1444 verify(nvlist_lookup_uint64(zhp->zpool_config, 1445 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1446 if (pool_guid == import->guid) 1447 found = 1; 1448 } 1449 1450 zpool_close(zhp); 1451 return (found); 1452 } 1453 1454 nvlist_t * 1455 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1456 { 1457 verify(import->poolname == NULL || import->guid == 0); 1458 1459 if (import->unique) 1460 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1461 1462 if (import->cachefile != NULL) 1463 return (zpool_find_import_cached(hdl, import->cachefile, 1464 import->poolname, import->guid)); 1465 1466 return (zpool_find_import_impl(hdl, import)); 1467 } 1468 1469 boolean_t 1470 find_guid(nvlist_t *nv, uint64_t guid) 1471 { 1472 uint64_t tmp; 1473 nvlist_t **child; 1474 uint_t c, children; 1475 1476 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1477 if (tmp == guid) 1478 return (B_TRUE); 1479 1480 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1481 &child, &children) == 0) { 1482 for (c = 0; c < children; c++) 1483 if (find_guid(child[c], guid)) 1484 return (B_TRUE); 1485 } 1486 1487 return (B_FALSE); 1488 } 1489 1490 typedef struct aux_cbdata { 1491 const char *cb_type; 1492 uint64_t cb_guid; 1493 zpool_handle_t *cb_zhp; 1494 } aux_cbdata_t; 1495 1496 static int 1497 find_aux(zpool_handle_t *zhp, void *data) 1498 { 1499 aux_cbdata_t *cbp = data; 1500 nvlist_t **list; 1501 uint_t i, count; 1502 uint64_t guid; 1503 nvlist_t *nvroot; 1504 1505 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1506 &nvroot) == 0); 1507 1508 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1509 &list, &count) == 0) { 1510 for (i = 0; i < count; i++) { 1511 verify(nvlist_lookup_uint64(list[i], 1512 ZPOOL_CONFIG_GUID, &guid) == 0); 1513 if (guid == cbp->cb_guid) { 1514 cbp->cb_zhp = zhp; 1515 return (1); 1516 } 1517 } 1518 } 1519 1520 zpool_close(zhp); 1521 return (0); 1522 } 1523 1524 /* 1525 * Determines if the pool is in use. If so, it returns true and the state of 1526 * the pool as well as the name of the pool. Both strings are allocated and 1527 * must be freed by the caller. 1528 */ 1529 int 1530 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1531 boolean_t *inuse) 1532 { 1533 nvlist_t *config; 1534 char *name; 1535 boolean_t ret; 1536 uint64_t guid, vdev_guid; 1537 zpool_handle_t *zhp; 1538 nvlist_t *pool_config; 1539 uint64_t stateval, isspare; 1540 aux_cbdata_t cb = { 0 }; 1541 boolean_t isactive; 1542 1543 *inuse = B_FALSE; 1544 1545 if (zpool_read_label(fd, &config) != 0) { 1546 (void) no_memory(hdl); 1547 return (-1); 1548 } 1549 1550 if (config == NULL) 1551 return (0); 1552 1553 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1554 &stateval) == 0); 1555 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1556 &vdev_guid) == 0); 1557 1558 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1559 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1560 &name) == 0); 1561 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1562 &guid) == 0); 1563 } 1564 1565 switch (stateval) { 1566 case POOL_STATE_EXPORTED: 1567 /* 1568 * A pool with an exported state may in fact be imported 1569 * read-only, so check the in-core state to see if it's 1570 * active and imported read-only. If it is, set 1571 * its state to active. 1572 */ 1573 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1574 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1575 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1576 stateval = POOL_STATE_ACTIVE; 1577 1578 /* 1579 * All we needed the zpool handle for is the 1580 * readonly prop check. 1581 */ 1582 zpool_close(zhp); 1583 } 1584 1585 ret = B_TRUE; 1586 break; 1587 1588 case POOL_STATE_ACTIVE: 1589 /* 1590 * For an active pool, we have to determine if it's really part 1591 * of a currently active pool (in which case the pool will exist 1592 * and the guid will be the same), or whether it's part of an 1593 * active pool that was disconnected without being explicitly 1594 * exported. 1595 */ 1596 if (pool_active(hdl, name, guid, &isactive) != 0) { 1597 nvlist_free(config); 1598 return (-1); 1599 } 1600 1601 if (isactive) { 1602 /* 1603 * Because the device may have been removed while 1604 * offlined, we only report it as active if the vdev is 1605 * still present in the config. Otherwise, pretend like 1606 * it's not in use. 1607 */ 1608 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1609 (pool_config = zpool_get_config(zhp, NULL)) 1610 != NULL) { 1611 nvlist_t *nvroot; 1612 1613 verify(nvlist_lookup_nvlist(pool_config, 1614 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1615 ret = find_guid(nvroot, vdev_guid); 1616 } else { 1617 ret = B_FALSE; 1618 } 1619 1620 /* 1621 * If this is an active spare within another pool, we 1622 * treat it like an unused hot spare. This allows the 1623 * user to create a pool with a hot spare that currently 1624 * in use within another pool. Since we return B_TRUE, 1625 * libdiskmgt will continue to prevent generic consumers 1626 * from using the device. 1627 */ 1628 if (ret && nvlist_lookup_uint64(config, 1629 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1630 stateval = POOL_STATE_SPARE; 1631 1632 if (zhp != NULL) 1633 zpool_close(zhp); 1634 } else { 1635 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1636 ret = B_TRUE; 1637 } 1638 break; 1639 1640 case POOL_STATE_SPARE: 1641 /* 1642 * For a hot spare, it can be either definitively in use, or 1643 * potentially active. To determine if it's in use, we iterate 1644 * over all pools in the system and search for one with a spare 1645 * with a matching guid. 1646 * 1647 * Due to the shared nature of spares, we don't actually report 1648 * the potentially active case as in use. This means the user 1649 * can freely create pools on the hot spares of exported pools, 1650 * but to do otherwise makes the resulting code complicated, and 1651 * we end up having to deal with this case anyway. 1652 */ 1653 cb.cb_zhp = NULL; 1654 cb.cb_guid = vdev_guid; 1655 cb.cb_type = ZPOOL_CONFIG_SPARES; 1656 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1657 name = (char *)zpool_get_name(cb.cb_zhp); 1658 ret = B_TRUE; 1659 } else { 1660 ret = B_FALSE; 1661 } 1662 break; 1663 1664 case POOL_STATE_L2CACHE: 1665 1666 /* 1667 * Check if any pool is currently using this l2cache device. 1668 */ 1669 cb.cb_zhp = NULL; 1670 cb.cb_guid = vdev_guid; 1671 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1672 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1673 name = (char *)zpool_get_name(cb.cb_zhp); 1674 ret = B_TRUE; 1675 } else { 1676 ret = B_FALSE; 1677 } 1678 break; 1679 1680 default: 1681 ret = B_FALSE; 1682 } 1683 1684 1685 if (ret) { 1686 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1687 if (cb.cb_zhp) 1688 zpool_close(cb.cb_zhp); 1689 nvlist_free(config); 1690 return (-1); 1691 } 1692 *state = (pool_state_t)stateval; 1693 } 1694 1695 if (cb.cb_zhp) 1696 zpool_close(cb.cb_zhp); 1697 1698 nvlist_free(config); 1699 *inuse = ret; 1700 return (0); 1701 } 1702