1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <sys/vtoc.h> 57 #include <sys/dktp/fdisk.h> 58 #include <sys/efi_partition.h> 59 #include <thread_pool.h> 60 61 #include <sys/vdev_impl.h> 62 63 #include "libzfs.h" 64 #include "libzfs_impl.h" 65 66 /* 67 * Intermediate structures used to gather configuration information. 68 */ 69 typedef struct config_entry { 70 uint64_t ce_txg; 71 nvlist_t *ce_config; 72 struct config_entry *ce_next; 73 } config_entry_t; 74 75 typedef struct vdev_entry { 76 uint64_t ve_guid; 77 config_entry_t *ve_configs; 78 struct vdev_entry *ve_next; 79 } vdev_entry_t; 80 81 typedef struct pool_entry { 82 uint64_t pe_guid; 83 vdev_entry_t *pe_vdevs; 84 struct pool_entry *pe_next; 85 } pool_entry_t; 86 87 typedef struct name_entry { 88 char *ne_name; 89 uint64_t ne_guid; 90 struct name_entry *ne_next; 91 } name_entry_t; 92 93 typedef struct pool_list { 94 pool_entry_t *pools; 95 name_entry_t *names; 96 } pool_list_t; 97 98 /* 99 * Go through and fix up any path and/or devid information for the given vdev 100 * configuration. 101 */ 102 static int 103 fix_paths(nvlist_t *nv, name_entry_t *names) 104 { 105 nvlist_t **child; 106 uint_t c, children; 107 uint64_t guid; 108 name_entry_t *ne, *best; 109 char *path, *devid; 110 int matched; 111 112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 113 &child, &children) == 0) { 114 for (c = 0; c < children; c++) 115 if (fix_paths(child[c], names) != 0) 116 return (-1); 117 return (0); 118 } 119 120 /* 121 * This is a leaf (file or disk) vdev. In either case, go through 122 * the name list and see if we find a matching guid. If so, replace 123 * the path and see if we can calculate a new devid. 124 * 125 * There may be multiple names associated with a particular guid, in 126 * which case we have overlapping slices or multiple paths to the same 127 * disk. If this is the case, then we want to pick the path that is 128 * the most similar to the original, where "most similar" is the number 129 * of matching characters starting from the end of the path. This will 130 * preserve slice numbers even if the disks have been reorganized, and 131 * will also catch preferred disk names if multiple paths exist. 132 */ 133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 135 path = NULL; 136 137 matched = 0; 138 best = NULL; 139 for (ne = names; ne != NULL; ne = ne->ne_next) { 140 if (ne->ne_guid == guid) { 141 const char *src, *dst; 142 int count; 143 144 if (path == NULL) { 145 best = ne; 146 break; 147 } 148 149 src = ne->ne_name + strlen(ne->ne_name) - 1; 150 dst = path + strlen(path) - 1; 151 for (count = 0; src >= ne->ne_name && dst >= path; 152 src--, dst--, count++) 153 if (*src != *dst) 154 break; 155 156 /* 157 * At this point, 'count' is the number of characters 158 * matched from the end. 159 */ 160 if (count > matched || best == NULL) { 161 best = ne; 162 matched = count; 163 } 164 } 165 } 166 167 if (best == NULL) 168 return (0); 169 170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 171 return (-1); 172 173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) { 174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 175 } else { 176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 177 devid_str_free(devid); 178 return (-1); 179 } 180 devid_str_free(devid); 181 } 182 183 return (0); 184 } 185 186 /* 187 * Add the given configuration to the list of known devices. 188 */ 189 static int 190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 191 nvlist_t *config) 192 { 193 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 194 pool_entry_t *pe; 195 vdev_entry_t *ve; 196 config_entry_t *ce; 197 name_entry_t *ne; 198 199 /* 200 * If this is a hot spare not currently in use or level 2 cache 201 * device, add it to the list of names to translate, but don't do 202 * anything else. 203 */ 204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 205 &state) == 0 && 206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 209 return (-1); 210 211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 212 free(ne); 213 return (-1); 214 } 215 216 ne->ne_guid = vdev_guid; 217 ne->ne_next = pl->names; 218 pl->names = ne; 219 220 nvlist_free(config); 221 return (0); 222 } 223 224 /* 225 * If we have a valid config but cannot read any of these fields, then 226 * it means we have a half-initialized label. In vdev_label_init() 227 * we write a label with txg == 0 so that we can identify the device 228 * in case the user refers to the same disk later on. If we fail to 229 * create the pool, we'll be left with a label in this state 230 * which should not be considered part of a valid pool. 231 */ 232 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 233 &pool_guid) != 0 || 234 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 235 &vdev_guid) != 0 || 236 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 237 &top_guid) != 0 || 238 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 239 &txg) != 0 || txg == 0) { 240 nvlist_free(config); 241 return (0); 242 } 243 244 /* 245 * First, see if we know about this pool. If not, then add it to the 246 * list of known pools. 247 */ 248 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 249 if (pe->pe_guid == pool_guid) 250 break; 251 } 252 253 if (pe == NULL) { 254 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 255 nvlist_free(config); 256 return (-1); 257 } 258 pe->pe_guid = pool_guid; 259 pe->pe_next = pl->pools; 260 pl->pools = pe; 261 } 262 263 /* 264 * Second, see if we know about this toplevel vdev. Add it if its 265 * missing. 266 */ 267 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 268 if (ve->ve_guid == top_guid) 269 break; 270 } 271 272 if (ve == NULL) { 273 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 274 nvlist_free(config); 275 return (-1); 276 } 277 ve->ve_guid = top_guid; 278 ve->ve_next = pe->pe_vdevs; 279 pe->pe_vdevs = ve; 280 } 281 282 /* 283 * Third, see if we have a config with a matching transaction group. If 284 * so, then we do nothing. Otherwise, add it to the list of known 285 * configs. 286 */ 287 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 288 if (ce->ce_txg == txg) 289 break; 290 } 291 292 if (ce == NULL) { 293 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 294 nvlist_free(config); 295 return (-1); 296 } 297 ce->ce_txg = txg; 298 ce->ce_config = config; 299 ce->ce_next = ve->ve_configs; 300 ve->ve_configs = ce; 301 } else { 302 nvlist_free(config); 303 } 304 305 /* 306 * At this point we've successfully added our config to the list of 307 * known configs. The last thing to do is add the vdev guid -> path 308 * mappings so that we can fix up the configuration as necessary before 309 * doing the import. 310 */ 311 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 312 return (-1); 313 314 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 315 free(ne); 316 return (-1); 317 } 318 319 ne->ne_guid = vdev_guid; 320 ne->ne_next = pl->names; 321 pl->names = ne; 322 323 return (0); 324 } 325 326 /* 327 * Returns true if the named pool matches the given GUID. 328 */ 329 static int 330 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 331 boolean_t *isactive) 332 { 333 zpool_handle_t *zhp; 334 uint64_t theguid; 335 336 if (zpool_open_silent(hdl, name, &zhp) != 0) 337 return (-1); 338 339 if (zhp == NULL) { 340 *isactive = B_FALSE; 341 return (0); 342 } 343 344 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 345 &theguid) == 0); 346 347 zpool_close(zhp); 348 349 *isactive = (theguid == guid); 350 return (0); 351 } 352 353 static nvlist_t * 354 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 355 { 356 nvlist_t *nvl; 357 zfs_cmd_t zc = { 0 }; 358 int err, dstbuf_size; 359 360 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 361 return (NULL); 362 363 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4); 364 365 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) { 366 zcmd_free_nvlists(&zc); 367 return (NULL); 368 } 369 370 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 371 &zc)) != 0 && errno == ENOMEM) { 372 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 373 zcmd_free_nvlists(&zc); 374 return (NULL); 375 } 376 } 377 378 if (err) { 379 zcmd_free_nvlists(&zc); 380 return (NULL); 381 } 382 383 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 384 zcmd_free_nvlists(&zc); 385 return (NULL); 386 } 387 388 zcmd_free_nvlists(&zc); 389 return (nvl); 390 } 391 392 /* 393 * Determine if the vdev id is a hole in the namespace. 394 */ 395 boolean_t 396 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 397 { 398 for (int c = 0; c < holes; c++) { 399 400 /* Top-level is a hole */ 401 if (hole_array[c] == id) 402 return (B_TRUE); 403 } 404 return (B_FALSE); 405 } 406 407 /* 408 * Convert our list of pools into the definitive set of configurations. We 409 * start by picking the best config for each toplevel vdev. Once that's done, 410 * we assemble the toplevel vdevs into a full config for the pool. We make a 411 * pass to fix up any incorrect paths, and then add it to the main list to 412 * return to the user. 413 */ 414 static nvlist_t * 415 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 416 nvlist_t *policy) 417 { 418 pool_entry_t *pe; 419 vdev_entry_t *ve; 420 config_entry_t *ce; 421 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 422 nvlist_t **spares, **l2cache; 423 uint_t i, nspares, nl2cache; 424 boolean_t config_seen; 425 uint64_t best_txg; 426 char *name, *hostname = NULL; 427 uint64_t guid; 428 uint_t children = 0; 429 nvlist_t **child = NULL; 430 uint_t holes; 431 uint64_t *hole_array, max_id; 432 uint_t c; 433 boolean_t isactive; 434 uint64_t hostid; 435 nvlist_t *nvl; 436 boolean_t found_one = B_FALSE; 437 boolean_t valid_top_config = B_FALSE; 438 439 if (nvlist_alloc(&ret, 0, 0) != 0) 440 goto nomem; 441 442 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 443 uint64_t id, max_txg = 0; 444 445 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 446 goto nomem; 447 config_seen = B_FALSE; 448 449 /* 450 * Iterate over all toplevel vdevs. Grab the pool configuration 451 * from the first one we find, and then go through the rest and 452 * add them as necessary to the 'vdevs' member of the config. 453 */ 454 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 455 456 /* 457 * Determine the best configuration for this vdev by 458 * selecting the config with the latest transaction 459 * group. 460 */ 461 best_txg = 0; 462 for (ce = ve->ve_configs; ce != NULL; 463 ce = ce->ce_next) { 464 465 if (ce->ce_txg > best_txg) { 466 tmp = ce->ce_config; 467 best_txg = ce->ce_txg; 468 } 469 } 470 471 /* 472 * We rely on the fact that the max txg for the 473 * pool will contain the most up-to-date information 474 * about the valid top-levels in the vdev namespace. 475 */ 476 if (best_txg > max_txg) { 477 (void) nvlist_remove(config, 478 ZPOOL_CONFIG_VDEV_CHILDREN, 479 DATA_TYPE_UINT64); 480 (void) nvlist_remove(config, 481 ZPOOL_CONFIG_HOLE_ARRAY, 482 DATA_TYPE_UINT64_ARRAY); 483 484 max_txg = best_txg; 485 hole_array = NULL; 486 holes = 0; 487 max_id = 0; 488 valid_top_config = B_FALSE; 489 490 if (nvlist_lookup_uint64(tmp, 491 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 492 verify(nvlist_add_uint64(config, 493 ZPOOL_CONFIG_VDEV_CHILDREN, 494 max_id) == 0); 495 valid_top_config = B_TRUE; 496 } 497 498 if (nvlist_lookup_uint64_array(tmp, 499 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 500 &holes) == 0) { 501 verify(nvlist_add_uint64_array(config, 502 ZPOOL_CONFIG_HOLE_ARRAY, 503 hole_array, holes) == 0); 504 } 505 } 506 507 if (!config_seen) { 508 /* 509 * Copy the relevant pieces of data to the pool 510 * configuration: 511 * 512 * version 513 * pool guid 514 * name 515 * comment (if available) 516 * pool state 517 * hostid (if available) 518 * hostname (if available) 519 */ 520 uint64_t state, version; 521 char *comment = NULL; 522 523 version = fnvlist_lookup_uint64(tmp, 524 ZPOOL_CONFIG_VERSION); 525 fnvlist_add_uint64(config, 526 ZPOOL_CONFIG_VERSION, version); 527 guid = fnvlist_lookup_uint64(tmp, 528 ZPOOL_CONFIG_POOL_GUID); 529 fnvlist_add_uint64(config, 530 ZPOOL_CONFIG_POOL_GUID, guid); 531 name = fnvlist_lookup_string(tmp, 532 ZPOOL_CONFIG_POOL_NAME); 533 fnvlist_add_string(config, 534 ZPOOL_CONFIG_POOL_NAME, name); 535 536 if (nvlist_lookup_string(tmp, 537 ZPOOL_CONFIG_COMMENT, &comment) == 0) 538 fnvlist_add_string(config, 539 ZPOOL_CONFIG_COMMENT, comment); 540 541 state = fnvlist_lookup_uint64(tmp, 542 ZPOOL_CONFIG_POOL_STATE); 543 fnvlist_add_uint64(config, 544 ZPOOL_CONFIG_POOL_STATE, state); 545 546 hostid = 0; 547 if (nvlist_lookup_uint64(tmp, 548 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 549 fnvlist_add_uint64(config, 550 ZPOOL_CONFIG_HOSTID, hostid); 551 hostname = fnvlist_lookup_string(tmp, 552 ZPOOL_CONFIG_HOSTNAME); 553 fnvlist_add_string(config, 554 ZPOOL_CONFIG_HOSTNAME, hostname); 555 } 556 557 config_seen = B_TRUE; 558 } 559 560 /* 561 * Add this top-level vdev to the child array. 562 */ 563 verify(nvlist_lookup_nvlist(tmp, 564 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 565 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 566 &id) == 0); 567 568 if (id >= children) { 569 nvlist_t **newchild; 570 571 newchild = zfs_alloc(hdl, (id + 1) * 572 sizeof (nvlist_t *)); 573 if (newchild == NULL) 574 goto nomem; 575 576 for (c = 0; c < children; c++) 577 newchild[c] = child[c]; 578 579 free(child); 580 child = newchild; 581 children = id + 1; 582 } 583 if (nvlist_dup(nvtop, &child[id], 0) != 0) 584 goto nomem; 585 586 } 587 588 /* 589 * If we have information about all the top-levels then 590 * clean up the nvlist which we've constructed. This 591 * means removing any extraneous devices that are 592 * beyond the valid range or adding devices to the end 593 * of our array which appear to be missing. 594 */ 595 if (valid_top_config) { 596 if (max_id < children) { 597 for (c = max_id; c < children; c++) 598 nvlist_free(child[c]); 599 children = max_id; 600 } else if (max_id > children) { 601 nvlist_t **newchild; 602 603 newchild = zfs_alloc(hdl, (max_id) * 604 sizeof (nvlist_t *)); 605 if (newchild == NULL) 606 goto nomem; 607 608 for (c = 0; c < children; c++) 609 newchild[c] = child[c]; 610 611 free(child); 612 child = newchild; 613 children = max_id; 614 } 615 } 616 617 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 618 &guid) == 0); 619 620 /* 621 * The vdev namespace may contain holes as a result of 622 * device removal. We must add them back into the vdev 623 * tree before we process any missing devices. 624 */ 625 if (holes > 0) { 626 ASSERT(valid_top_config); 627 628 for (c = 0; c < children; c++) { 629 nvlist_t *holey; 630 631 if (child[c] != NULL || 632 !vdev_is_hole(hole_array, holes, c)) 633 continue; 634 635 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 636 0) != 0) 637 goto nomem; 638 639 /* 640 * Holes in the namespace are treated as 641 * "hole" top-level vdevs and have a 642 * special flag set on them. 643 */ 644 if (nvlist_add_string(holey, 645 ZPOOL_CONFIG_TYPE, 646 VDEV_TYPE_HOLE) != 0 || 647 nvlist_add_uint64(holey, 648 ZPOOL_CONFIG_ID, c) != 0 || 649 nvlist_add_uint64(holey, 650 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 651 nvlist_free(holey); 652 goto nomem; 653 } 654 child[c] = holey; 655 } 656 } 657 658 /* 659 * Look for any missing top-level vdevs. If this is the case, 660 * create a faked up 'missing' vdev as a placeholder. We cannot 661 * simply compress the child array, because the kernel performs 662 * certain checks to make sure the vdev IDs match their location 663 * in the configuration. 664 */ 665 for (c = 0; c < children; c++) { 666 if (child[c] == NULL) { 667 nvlist_t *missing; 668 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 669 0) != 0) 670 goto nomem; 671 if (nvlist_add_string(missing, 672 ZPOOL_CONFIG_TYPE, 673 VDEV_TYPE_MISSING) != 0 || 674 nvlist_add_uint64(missing, 675 ZPOOL_CONFIG_ID, c) != 0 || 676 nvlist_add_uint64(missing, 677 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 678 nvlist_free(missing); 679 goto nomem; 680 } 681 child[c] = missing; 682 } 683 } 684 685 /* 686 * Put all of this pool's top-level vdevs into a root vdev. 687 */ 688 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 689 goto nomem; 690 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 691 VDEV_TYPE_ROOT) != 0 || 692 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 693 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 694 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 695 child, children) != 0) { 696 nvlist_free(nvroot); 697 goto nomem; 698 } 699 700 for (c = 0; c < children; c++) 701 nvlist_free(child[c]); 702 free(child); 703 children = 0; 704 child = NULL; 705 706 /* 707 * Go through and fix up any paths and/or devids based on our 708 * known list of vdev GUID -> path mappings. 709 */ 710 if (fix_paths(nvroot, pl->names) != 0) { 711 nvlist_free(nvroot); 712 goto nomem; 713 } 714 715 /* 716 * Add the root vdev to this pool's configuration. 717 */ 718 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 719 nvroot) != 0) { 720 nvlist_free(nvroot); 721 goto nomem; 722 } 723 nvlist_free(nvroot); 724 725 /* 726 * zdb uses this path to report on active pools that were 727 * imported or created using -R. 728 */ 729 if (active_ok) 730 goto add_pool; 731 732 /* 733 * Determine if this pool is currently active, in which case we 734 * can't actually import it. 735 */ 736 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 737 &name) == 0); 738 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 739 &guid) == 0); 740 741 if (pool_active(hdl, name, guid, &isactive) != 0) 742 goto error; 743 744 if (isactive) { 745 nvlist_free(config); 746 config = NULL; 747 continue; 748 } 749 750 if (policy != NULL) { 751 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 752 policy) != 0) 753 goto nomem; 754 } 755 756 if ((nvl = refresh_config(hdl, config)) == NULL) { 757 nvlist_free(config); 758 config = NULL; 759 continue; 760 } 761 762 nvlist_free(config); 763 config = nvl; 764 765 /* 766 * Go through and update the paths for spares, now that we have 767 * them. 768 */ 769 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 770 &nvroot) == 0); 771 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 772 &spares, &nspares) == 0) { 773 for (i = 0; i < nspares; i++) { 774 if (fix_paths(spares[i], pl->names) != 0) 775 goto nomem; 776 } 777 } 778 779 /* 780 * Update the paths for l2cache devices. 781 */ 782 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 783 &l2cache, &nl2cache) == 0) { 784 for (i = 0; i < nl2cache; i++) { 785 if (fix_paths(l2cache[i], pl->names) != 0) 786 goto nomem; 787 } 788 } 789 790 /* 791 * Restore the original information read from the actual label. 792 */ 793 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 794 DATA_TYPE_UINT64); 795 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 796 DATA_TYPE_STRING); 797 if (hostid != 0) { 798 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 799 hostid) == 0); 800 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 801 hostname) == 0); 802 } 803 804 add_pool: 805 /* 806 * Add this pool to the list of configs. 807 */ 808 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 809 &name) == 0); 810 if (nvlist_add_nvlist(ret, name, config) != 0) 811 goto nomem; 812 813 found_one = B_TRUE; 814 nvlist_free(config); 815 config = NULL; 816 } 817 818 if (!found_one) { 819 nvlist_free(ret); 820 ret = NULL; 821 } 822 823 return (ret); 824 825 nomem: 826 (void) no_memory(hdl); 827 error: 828 nvlist_free(config); 829 nvlist_free(ret); 830 for (c = 0; c < children; c++) 831 nvlist_free(child[c]); 832 free(child); 833 834 return (NULL); 835 } 836 837 /* 838 * Return the offset of the given label. 839 */ 840 static uint64_t 841 label_offset(uint64_t size, int l) 842 { 843 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 844 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 845 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 846 } 847 848 /* 849 * Given a file descriptor, read the label information and return an nvlist 850 * describing the configuration, if there is one. 851 * Return 0 on success, or -1 on failure 852 */ 853 int 854 zpool_read_label(int fd, nvlist_t **config) 855 { 856 struct stat64 statbuf; 857 int l; 858 vdev_label_t *label; 859 uint64_t state, txg, size; 860 861 *config = NULL; 862 863 if (fstat64(fd, &statbuf) == -1) 864 return (-1); 865 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 866 867 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 868 return (-1); 869 870 for (l = 0; l < VDEV_LABELS; l++) { 871 if (pread64(fd, label, sizeof (vdev_label_t), 872 label_offset(size, l)) != sizeof (vdev_label_t)) 873 continue; 874 875 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 876 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 877 continue; 878 879 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 880 &state) != 0 || state > POOL_STATE_L2CACHE) { 881 nvlist_free(*config); 882 continue; 883 } 884 885 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 886 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 887 &txg) != 0 || txg == 0)) { 888 nvlist_free(*config); 889 continue; 890 } 891 892 free(label); 893 return (0); 894 } 895 896 free(label); 897 *config = NULL; 898 errno = ENOENT; 899 return (-1); 900 } 901 902 typedef struct rdsk_node { 903 char *rn_name; 904 int rn_dfd; 905 libzfs_handle_t *rn_hdl; 906 nvlist_t *rn_config; 907 avl_tree_t *rn_avl; 908 avl_node_t rn_node; 909 boolean_t rn_nozpool; 910 } rdsk_node_t; 911 912 static int 913 slice_cache_compare(const void *arg1, const void *arg2) 914 { 915 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 916 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 917 char *nm1slice, *nm2slice; 918 int rv; 919 920 /* 921 * slices zero and two are the most likely to provide results, 922 * so put those first 923 */ 924 nm1slice = strstr(nm1, "s0"); 925 nm2slice = strstr(nm2, "s0"); 926 if (nm1slice && !nm2slice) { 927 return (-1); 928 } 929 if (!nm1slice && nm2slice) { 930 return (1); 931 } 932 nm1slice = strstr(nm1, "s2"); 933 nm2slice = strstr(nm2, "s2"); 934 if (nm1slice && !nm2slice) { 935 return (-1); 936 } 937 if (!nm1slice && nm2slice) { 938 return (1); 939 } 940 941 rv = strcmp(nm1, nm2); 942 if (rv == 0) 943 return (0); 944 return (rv > 0 ? 1 : -1); 945 } 946 947 static void 948 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 949 diskaddr_t size, uint_t blksz) 950 { 951 rdsk_node_t tmpnode; 952 rdsk_node_t *node; 953 char sname[MAXNAMELEN]; 954 955 tmpnode.rn_name = &sname[0]; 956 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 957 diskname, partno); 958 /* 959 * protect against division by zero for disk labels that 960 * contain a bogus sector size 961 */ 962 if (blksz == 0) 963 blksz = DEV_BSIZE; 964 /* too small to contain a zpool? */ 965 if ((size < (SPA_MINDEVSIZE / blksz)) && 966 (node = avl_find(r, &tmpnode, NULL))) 967 node->rn_nozpool = B_TRUE; 968 } 969 970 static void 971 nozpool_all_slices(avl_tree_t *r, const char *sname) 972 { 973 char diskname[MAXNAMELEN]; 974 char *ptr; 975 int i; 976 977 (void) strncpy(diskname, sname, MAXNAMELEN); 978 if (((ptr = strrchr(diskname, 's')) == NULL) && 979 ((ptr = strrchr(diskname, 'p')) == NULL)) 980 return; 981 ptr[0] = 's'; 982 ptr[1] = '\0'; 983 for (i = 0; i < NDKMAP; i++) 984 check_one_slice(r, diskname, i, 0, 1); 985 ptr[0] = 'p'; 986 for (i = 0; i <= FD_NUMPART; i++) 987 check_one_slice(r, diskname, i, 0, 1); 988 } 989 990 static void 991 check_slices(avl_tree_t *r, int fd, const char *sname) 992 { 993 struct extvtoc vtoc; 994 struct dk_gpt *gpt; 995 char diskname[MAXNAMELEN]; 996 char *ptr; 997 int i; 998 999 (void) strncpy(diskname, sname, MAXNAMELEN); 1000 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1001 return; 1002 ptr[1] = '\0'; 1003 1004 if (read_extvtoc(fd, &vtoc) >= 0) { 1005 for (i = 0; i < NDKMAP; i++) 1006 check_one_slice(r, diskname, i, 1007 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1008 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1009 /* 1010 * on x86 we'll still have leftover links that point 1011 * to slices s[9-15], so use NDKMAP instead 1012 */ 1013 for (i = 0; i < NDKMAP; i++) 1014 check_one_slice(r, diskname, i, 1015 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1016 /* nodes p[1-4] are never used with EFI labels */ 1017 ptr[0] = 'p'; 1018 for (i = 1; i <= FD_NUMPART; i++) 1019 check_one_slice(r, diskname, i, 0, 1); 1020 efi_free(gpt); 1021 } 1022 } 1023 1024 static void 1025 zpool_open_func(void *arg) 1026 { 1027 rdsk_node_t *rn = arg; 1028 struct stat64 statbuf; 1029 nvlist_t *config; 1030 int fd; 1031 1032 if (rn->rn_nozpool) 1033 return; 1034 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1035 /* symlink to a device that's no longer there */ 1036 if (errno == ENOENT) 1037 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1038 return; 1039 } 1040 /* 1041 * Ignore failed stats. We only want regular 1042 * files, character devs and block devs. 1043 */ 1044 if (fstat64(fd, &statbuf) != 0 || 1045 (!S_ISREG(statbuf.st_mode) && 1046 !S_ISCHR(statbuf.st_mode) && 1047 !S_ISBLK(statbuf.st_mode))) { 1048 (void) close(fd); 1049 return; 1050 } 1051 /* this file is too small to hold a zpool */ 1052 if (S_ISREG(statbuf.st_mode) && 1053 statbuf.st_size < SPA_MINDEVSIZE) { 1054 (void) close(fd); 1055 return; 1056 } else if (!S_ISREG(statbuf.st_mode)) { 1057 /* 1058 * Try to read the disk label first so we don't have to 1059 * open a bunch of minor nodes that can't have a zpool. 1060 */ 1061 check_slices(rn->rn_avl, fd, rn->rn_name); 1062 } 1063 1064 if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) { 1065 (void) close(fd); 1066 (void) no_memory(rn->rn_hdl); 1067 return; 1068 } 1069 (void) close(fd); 1070 1071 rn->rn_config = config; 1072 } 1073 1074 /* 1075 * Given a file descriptor, clear (zero) the label information. 1076 */ 1077 int 1078 zpool_clear_label(int fd) 1079 { 1080 struct stat64 statbuf; 1081 int l; 1082 vdev_label_t *label; 1083 uint64_t size; 1084 1085 if (fstat64(fd, &statbuf) == -1) 1086 return (0); 1087 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1088 1089 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1090 return (-1); 1091 1092 for (l = 0; l < VDEV_LABELS; l++) { 1093 if (pwrite64(fd, label, sizeof (vdev_label_t), 1094 label_offset(size, l)) != sizeof (vdev_label_t)) { 1095 free(label); 1096 return (-1); 1097 } 1098 } 1099 1100 free(label); 1101 return (0); 1102 } 1103 1104 /* 1105 * Given a list of directories to search, find all pools stored on disk. This 1106 * includes partial pools which are not available to import. If no args are 1107 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1108 * poolname or guid (but not both) are provided by the caller when trying 1109 * to import a specific pool. 1110 */ 1111 static nvlist_t * 1112 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1113 { 1114 int i, dirs = iarg->paths; 1115 struct dirent64 *dp; 1116 char path[MAXPATHLEN]; 1117 char *end, **dir = iarg->path; 1118 size_t pathleft; 1119 nvlist_t *ret = NULL; 1120 static char *default_dir = ZFS_DISK_ROOT; 1121 pool_list_t pools = { 0 }; 1122 pool_entry_t *pe, *penext; 1123 vdev_entry_t *ve, *venext; 1124 config_entry_t *ce, *cenext; 1125 name_entry_t *ne, *nenext; 1126 avl_tree_t slice_cache; 1127 rdsk_node_t *slice; 1128 void *cookie; 1129 1130 if (dirs == 0) { 1131 dirs = 1; 1132 dir = &default_dir; 1133 } 1134 1135 /* 1136 * Go through and read the label configuration information from every 1137 * possible device, organizing the information according to pool GUID 1138 * and toplevel GUID. 1139 */ 1140 for (i = 0; i < dirs; i++) { 1141 tpool_t *t; 1142 char rdsk[MAXPATHLEN]; 1143 int dfd; 1144 boolean_t config_failed = B_FALSE; 1145 DIR *dirp; 1146 1147 /* use realpath to normalize the path */ 1148 if (realpath(dir[i], path) == 0) { 1149 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1150 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1151 goto error; 1152 } 1153 end = &path[strlen(path)]; 1154 *end++ = '/'; 1155 *end = 0; 1156 pathleft = &path[sizeof (path)] - end; 1157 1158 /* 1159 * Using raw devices instead of block devices when we're 1160 * reading the labels skips a bunch of slow operations during 1161 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1162 */ 1163 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1164 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1165 else 1166 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1167 1168 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1169 (dirp = fdopendir(dfd)) == NULL) { 1170 if (dfd >= 0) 1171 (void) close(dfd); 1172 zfs_error_aux(hdl, strerror(errno)); 1173 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1174 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1175 rdsk); 1176 goto error; 1177 } 1178 1179 avl_create(&slice_cache, slice_cache_compare, 1180 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1181 /* 1182 * This is not MT-safe, but we have no MT consumers of libzfs 1183 */ 1184 while ((dp = readdir64(dirp)) != NULL) { 1185 const char *name = dp->d_name; 1186 if (name[0] == '.' && 1187 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1188 continue; 1189 1190 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1191 slice->rn_name = zfs_strdup(hdl, name); 1192 slice->rn_avl = &slice_cache; 1193 slice->rn_dfd = dfd; 1194 slice->rn_hdl = hdl; 1195 slice->rn_nozpool = B_FALSE; 1196 avl_add(&slice_cache, slice); 1197 } 1198 /* 1199 * create a thread pool to do all of this in parallel; 1200 * rn_nozpool is not protected, so this is racy in that 1201 * multiple tasks could decide that the same slice can 1202 * not hold a zpool, which is benign. Also choose 1203 * double the number of processors; we hold a lot of 1204 * locks in the kernel, so going beyond this doesn't 1205 * buy us much. 1206 */ 1207 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1208 0, NULL); 1209 for (slice = avl_first(&slice_cache); slice; 1210 (slice = avl_walk(&slice_cache, slice, 1211 AVL_AFTER))) 1212 (void) tpool_dispatch(t, zpool_open_func, slice); 1213 tpool_wait(t); 1214 tpool_destroy(t); 1215 1216 cookie = NULL; 1217 while ((slice = avl_destroy_nodes(&slice_cache, 1218 &cookie)) != NULL) { 1219 if (slice->rn_config != NULL && !config_failed) { 1220 nvlist_t *config = slice->rn_config; 1221 boolean_t matched = B_TRUE; 1222 1223 if (iarg->poolname != NULL) { 1224 char *pname; 1225 1226 matched = nvlist_lookup_string(config, 1227 ZPOOL_CONFIG_POOL_NAME, 1228 &pname) == 0 && 1229 strcmp(iarg->poolname, pname) == 0; 1230 } else if (iarg->guid != 0) { 1231 uint64_t this_guid; 1232 1233 matched = nvlist_lookup_uint64(config, 1234 ZPOOL_CONFIG_POOL_GUID, 1235 &this_guid) == 0 && 1236 iarg->guid == this_guid; 1237 } 1238 if (!matched) { 1239 nvlist_free(config); 1240 } else { 1241 /* 1242 * use the non-raw path for the config 1243 */ 1244 (void) strlcpy(end, slice->rn_name, 1245 pathleft); 1246 if (add_config(hdl, &pools, path, 1247 config) != 0) 1248 config_failed = B_TRUE; 1249 } 1250 } 1251 free(slice->rn_name); 1252 free(slice); 1253 } 1254 avl_destroy(&slice_cache); 1255 1256 (void) closedir(dirp); 1257 1258 if (config_failed) 1259 goto error; 1260 } 1261 1262 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1263 1264 error: 1265 for (pe = pools.pools; pe != NULL; pe = penext) { 1266 penext = pe->pe_next; 1267 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1268 venext = ve->ve_next; 1269 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1270 cenext = ce->ce_next; 1271 nvlist_free(ce->ce_config); 1272 free(ce); 1273 } 1274 free(ve); 1275 } 1276 free(pe); 1277 } 1278 1279 for (ne = pools.names; ne != NULL; ne = nenext) { 1280 nenext = ne->ne_next; 1281 free(ne->ne_name); 1282 free(ne); 1283 } 1284 1285 return (ret); 1286 } 1287 1288 nvlist_t * 1289 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1290 { 1291 importargs_t iarg = { 0 }; 1292 1293 iarg.paths = argc; 1294 iarg.path = argv; 1295 1296 return (zpool_find_import_impl(hdl, &iarg)); 1297 } 1298 1299 /* 1300 * Given a cache file, return the contents as a list of importable pools. 1301 * poolname or guid (but not both) are provided by the caller when trying 1302 * to import a specific pool. 1303 */ 1304 nvlist_t * 1305 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1306 char *poolname, uint64_t guid) 1307 { 1308 char *buf; 1309 int fd; 1310 struct stat64 statbuf; 1311 nvlist_t *raw, *src, *dst; 1312 nvlist_t *pools; 1313 nvpair_t *elem; 1314 char *name; 1315 uint64_t this_guid; 1316 boolean_t active; 1317 1318 verify(poolname == NULL || guid == 0); 1319 1320 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1321 zfs_error_aux(hdl, "%s", strerror(errno)); 1322 (void) zfs_error(hdl, EZFS_BADCACHE, 1323 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1324 return (NULL); 1325 } 1326 1327 if (fstat64(fd, &statbuf) != 0) { 1328 zfs_error_aux(hdl, "%s", strerror(errno)); 1329 (void) close(fd); 1330 (void) zfs_error(hdl, EZFS_BADCACHE, 1331 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1332 return (NULL); 1333 } 1334 1335 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1336 (void) close(fd); 1337 return (NULL); 1338 } 1339 1340 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1341 (void) close(fd); 1342 free(buf); 1343 (void) zfs_error(hdl, EZFS_BADCACHE, 1344 dgettext(TEXT_DOMAIN, 1345 "failed to read cache file contents")); 1346 return (NULL); 1347 } 1348 1349 (void) close(fd); 1350 1351 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1352 free(buf); 1353 (void) zfs_error(hdl, EZFS_BADCACHE, 1354 dgettext(TEXT_DOMAIN, 1355 "invalid or corrupt cache file contents")); 1356 return (NULL); 1357 } 1358 1359 free(buf); 1360 1361 /* 1362 * Go through and get the current state of the pools and refresh their 1363 * state. 1364 */ 1365 if (nvlist_alloc(&pools, 0, 0) != 0) { 1366 (void) no_memory(hdl); 1367 nvlist_free(raw); 1368 return (NULL); 1369 } 1370 1371 elem = NULL; 1372 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1373 src = fnvpair_value_nvlist(elem); 1374 1375 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1376 if (poolname != NULL && strcmp(poolname, name) != 0) 1377 continue; 1378 1379 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1380 if (guid != 0 && guid != this_guid) 1381 continue; 1382 1383 if (pool_active(hdl, name, this_guid, &active) != 0) { 1384 nvlist_free(raw); 1385 nvlist_free(pools); 1386 return (NULL); 1387 } 1388 1389 if (active) 1390 continue; 1391 1392 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1393 cachefile) != 0) { 1394 (void) no_memory(hdl); 1395 nvlist_free(raw); 1396 nvlist_free(pools); 1397 return (NULL); 1398 } 1399 1400 if ((dst = refresh_config(hdl, src)) == NULL) { 1401 nvlist_free(raw); 1402 nvlist_free(pools); 1403 return (NULL); 1404 } 1405 1406 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1407 (void) no_memory(hdl); 1408 nvlist_free(dst); 1409 nvlist_free(raw); 1410 nvlist_free(pools); 1411 return (NULL); 1412 } 1413 nvlist_free(dst); 1414 } 1415 1416 nvlist_free(raw); 1417 return (pools); 1418 } 1419 1420 static int 1421 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1422 { 1423 importargs_t *import = data; 1424 int found = 0; 1425 1426 if (import->poolname != NULL) { 1427 char *pool_name; 1428 1429 verify(nvlist_lookup_string(zhp->zpool_config, 1430 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1431 if (strcmp(pool_name, import->poolname) == 0) 1432 found = 1; 1433 } else { 1434 uint64_t pool_guid; 1435 1436 verify(nvlist_lookup_uint64(zhp->zpool_config, 1437 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1438 if (pool_guid == import->guid) 1439 found = 1; 1440 } 1441 1442 zpool_close(zhp); 1443 return (found); 1444 } 1445 1446 nvlist_t * 1447 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1448 { 1449 verify(import->poolname == NULL || import->guid == 0); 1450 1451 if (import->unique) 1452 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1453 1454 if (import->cachefile != NULL) 1455 return (zpool_find_import_cached(hdl, import->cachefile, 1456 import->poolname, import->guid)); 1457 1458 return (zpool_find_import_impl(hdl, import)); 1459 } 1460 1461 boolean_t 1462 find_guid(nvlist_t *nv, uint64_t guid) 1463 { 1464 uint64_t tmp; 1465 nvlist_t **child; 1466 uint_t c, children; 1467 1468 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1469 if (tmp == guid) 1470 return (B_TRUE); 1471 1472 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1473 &child, &children) == 0) { 1474 for (c = 0; c < children; c++) 1475 if (find_guid(child[c], guid)) 1476 return (B_TRUE); 1477 } 1478 1479 return (B_FALSE); 1480 } 1481 1482 typedef struct aux_cbdata { 1483 const char *cb_type; 1484 uint64_t cb_guid; 1485 zpool_handle_t *cb_zhp; 1486 } aux_cbdata_t; 1487 1488 static int 1489 find_aux(zpool_handle_t *zhp, void *data) 1490 { 1491 aux_cbdata_t *cbp = data; 1492 nvlist_t **list; 1493 uint_t i, count; 1494 uint64_t guid; 1495 nvlist_t *nvroot; 1496 1497 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1498 &nvroot) == 0); 1499 1500 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1501 &list, &count) == 0) { 1502 for (i = 0; i < count; i++) { 1503 verify(nvlist_lookup_uint64(list[i], 1504 ZPOOL_CONFIG_GUID, &guid) == 0); 1505 if (guid == cbp->cb_guid) { 1506 cbp->cb_zhp = zhp; 1507 return (1); 1508 } 1509 } 1510 } 1511 1512 zpool_close(zhp); 1513 return (0); 1514 } 1515 1516 /* 1517 * Determines if the pool is in use. If so, it returns true and the state of 1518 * the pool as well as the name of the pool. Both strings are allocated and 1519 * must be freed by the caller. 1520 */ 1521 int 1522 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1523 boolean_t *inuse) 1524 { 1525 nvlist_t *config; 1526 char *name; 1527 boolean_t ret; 1528 uint64_t guid, vdev_guid; 1529 zpool_handle_t *zhp; 1530 nvlist_t *pool_config; 1531 uint64_t stateval, isspare; 1532 aux_cbdata_t cb = { 0 }; 1533 boolean_t isactive; 1534 1535 *inuse = B_FALSE; 1536 1537 if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) { 1538 (void) no_memory(hdl); 1539 return (-1); 1540 } 1541 1542 if (config == NULL) 1543 return (0); 1544 1545 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1546 &stateval) == 0); 1547 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1548 &vdev_guid) == 0); 1549 1550 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1551 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1552 &name) == 0); 1553 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1554 &guid) == 0); 1555 } 1556 1557 switch (stateval) { 1558 case POOL_STATE_EXPORTED: 1559 /* 1560 * A pool with an exported state may in fact be imported 1561 * read-only, so check the in-core state to see if it's 1562 * active and imported read-only. If it is, set 1563 * its state to active. 1564 */ 1565 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1566 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1567 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1568 stateval = POOL_STATE_ACTIVE; 1569 1570 /* 1571 * All we needed the zpool handle for is the 1572 * readonly prop check. 1573 */ 1574 zpool_close(zhp); 1575 } 1576 1577 ret = B_TRUE; 1578 break; 1579 1580 case POOL_STATE_ACTIVE: 1581 /* 1582 * For an active pool, we have to determine if it's really part 1583 * of a currently active pool (in which case the pool will exist 1584 * and the guid will be the same), or whether it's part of an 1585 * active pool that was disconnected without being explicitly 1586 * exported. 1587 */ 1588 if (pool_active(hdl, name, guid, &isactive) != 0) { 1589 nvlist_free(config); 1590 return (-1); 1591 } 1592 1593 if (isactive) { 1594 /* 1595 * Because the device may have been removed while 1596 * offlined, we only report it as active if the vdev is 1597 * still present in the config. Otherwise, pretend like 1598 * it's not in use. 1599 */ 1600 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1601 (pool_config = zpool_get_config(zhp, NULL)) 1602 != NULL) { 1603 nvlist_t *nvroot; 1604 1605 verify(nvlist_lookup_nvlist(pool_config, 1606 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1607 ret = find_guid(nvroot, vdev_guid); 1608 } else { 1609 ret = B_FALSE; 1610 } 1611 1612 /* 1613 * If this is an active spare within another pool, we 1614 * treat it like an unused hot spare. This allows the 1615 * user to create a pool with a hot spare that currently 1616 * in use within another pool. Since we return B_TRUE, 1617 * libdiskmgt will continue to prevent generic consumers 1618 * from using the device. 1619 */ 1620 if (ret && nvlist_lookup_uint64(config, 1621 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1622 stateval = POOL_STATE_SPARE; 1623 1624 if (zhp != NULL) 1625 zpool_close(zhp); 1626 } else { 1627 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1628 ret = B_TRUE; 1629 } 1630 break; 1631 1632 case POOL_STATE_SPARE: 1633 /* 1634 * For a hot spare, it can be either definitively in use, or 1635 * potentially active. To determine if it's in use, we iterate 1636 * over all pools in the system and search for one with a spare 1637 * with a matching guid. 1638 * 1639 * Due to the shared nature of spares, we don't actually report 1640 * the potentially active case as in use. This means the user 1641 * can freely create pools on the hot spares of exported pools, 1642 * but to do otherwise makes the resulting code complicated, and 1643 * we end up having to deal with this case anyway. 1644 */ 1645 cb.cb_zhp = NULL; 1646 cb.cb_guid = vdev_guid; 1647 cb.cb_type = ZPOOL_CONFIG_SPARES; 1648 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1649 name = (char *)zpool_get_name(cb.cb_zhp); 1650 ret = B_TRUE; 1651 } else { 1652 ret = B_FALSE; 1653 } 1654 break; 1655 1656 case POOL_STATE_L2CACHE: 1657 1658 /* 1659 * Check if any pool is currently using this l2cache device. 1660 */ 1661 cb.cb_zhp = NULL; 1662 cb.cb_guid = vdev_guid; 1663 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1664 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1665 name = (char *)zpool_get_name(cb.cb_zhp); 1666 ret = B_TRUE; 1667 } else { 1668 ret = B_FALSE; 1669 } 1670 break; 1671 1672 default: 1673 ret = B_FALSE; 1674 } 1675 1676 1677 if (ret) { 1678 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1679 if (cb.cb_zhp) 1680 zpool_close(cb.cb_zhp); 1681 nvlist_free(config); 1682 return (-1); 1683 } 1684 *state = (pool_state_t)stateval; 1685 } 1686 1687 if (cb.cb_zhp) 1688 zpool_close(cb.cb_zhp); 1689 1690 nvlist_free(config); 1691 *inuse = ret; 1692 return (0); 1693 } 1694