xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision 69d4acec15909325d6df21fec172510a50f77a8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright 2015 RackTop Systems.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /*
30  * Pool import support functions.
31  *
32  * To import a pool, we rely on reading the configuration information from the
33  * ZFS label of each device.  If we successfully read the label, then we
34  * organize the configuration information in the following hierarchy:
35  *
36  * 	pool guid -> toplevel vdev guid -> label txg
37  *
38  * Duplicate entries matching this same tuple will be discarded.  Once we have
39  * examined every device, we pick the best label txg config for each toplevel
40  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41  * update any paths that have changed.  Finally, we attempt to import the pool
42  * using our derived config, and record the results.
43  */
44 
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
60 
61 #include <sys/vdev_impl.h>
62 
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65 
66 /*
67  * Intermediate structures used to gather configuration information.
68  */
69 typedef struct config_entry {
70 	uint64_t		ce_txg;
71 	nvlist_t		*ce_config;
72 	struct config_entry	*ce_next;
73 } config_entry_t;
74 
75 typedef struct vdev_entry {
76 	uint64_t		ve_guid;
77 	config_entry_t		*ve_configs;
78 	struct vdev_entry	*ve_next;
79 } vdev_entry_t;
80 
81 typedef struct pool_entry {
82 	uint64_t		pe_guid;
83 	vdev_entry_t		*pe_vdevs;
84 	struct pool_entry	*pe_next;
85 } pool_entry_t;
86 
87 typedef struct name_entry {
88 	char			*ne_name;
89 	uint64_t		ne_guid;
90 	struct name_entry	*ne_next;
91 } name_entry_t;
92 
93 typedef struct pool_list {
94 	pool_entry_t		*pools;
95 	name_entry_t		*names;
96 } pool_list_t;
97 
98 /*
99  * Go through and fix up any path and/or devid information for the given vdev
100  * configuration.
101  */
102 static int
103 fix_paths(nvlist_t *nv, name_entry_t *names)
104 {
105 	nvlist_t **child;
106 	uint_t c, children;
107 	uint64_t guid;
108 	name_entry_t *ne, *best;
109 	char *path, *devid;
110 	int matched;
111 
112 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113 	    &child, &children) == 0) {
114 		for (c = 0; c < children; c++)
115 			if (fix_paths(child[c], names) != 0)
116 				return (-1);
117 		return (0);
118 	}
119 
120 	/*
121 	 * This is a leaf (file or disk) vdev.  In either case, go through
122 	 * the name list and see if we find a matching guid.  If so, replace
123 	 * the path and see if we can calculate a new devid.
124 	 *
125 	 * There may be multiple names associated with a particular guid, in
126 	 * which case we have overlapping slices or multiple paths to the same
127 	 * disk.  If this is the case, then we want to pick the path that is
128 	 * the most similar to the original, where "most similar" is the number
129 	 * of matching characters starting from the end of the path.  This will
130 	 * preserve slice numbers even if the disks have been reorganized, and
131 	 * will also catch preferred disk names if multiple paths exist.
132 	 */
133 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
134 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
135 		path = NULL;
136 
137 	matched = 0;
138 	best = NULL;
139 	for (ne = names; ne != NULL; ne = ne->ne_next) {
140 		if (ne->ne_guid == guid) {
141 			const char *src, *dst;
142 			int count;
143 
144 			if (path == NULL) {
145 				best = ne;
146 				break;
147 			}
148 
149 			src = ne->ne_name + strlen(ne->ne_name) - 1;
150 			dst = path + strlen(path) - 1;
151 			for (count = 0; src >= ne->ne_name && dst >= path;
152 			    src--, dst--, count++)
153 				if (*src != *dst)
154 					break;
155 
156 			/*
157 			 * At this point, 'count' is the number of characters
158 			 * matched from the end.
159 			 */
160 			if (count > matched || best == NULL) {
161 				best = ne;
162 				matched = count;
163 			}
164 		}
165 	}
166 
167 	if (best == NULL)
168 		return (0);
169 
170 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
171 		return (-1);
172 
173 	if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
174 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
175 	} else {
176 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
177 			devid_str_free(devid);
178 			return (-1);
179 		}
180 		devid_str_free(devid);
181 	}
182 
183 	return (0);
184 }
185 
186 /*
187  * Add the given configuration to the list of known devices.
188  */
189 static int
190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
191     nvlist_t *config)
192 {
193 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
194 	pool_entry_t *pe;
195 	vdev_entry_t *ve;
196 	config_entry_t *ce;
197 	name_entry_t *ne;
198 
199 	/*
200 	 * If this is a hot spare not currently in use or level 2 cache
201 	 * device, add it to the list of names to translate, but don't do
202 	 * anything else.
203 	 */
204 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
205 	    &state) == 0 &&
206 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
207 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
208 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
209 			return (-1);
210 
211 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
212 			free(ne);
213 			return (-1);
214 		}
215 
216 		ne->ne_guid = vdev_guid;
217 		ne->ne_next = pl->names;
218 		pl->names = ne;
219 
220 		nvlist_free(config);
221 		return (0);
222 	}
223 
224 	/*
225 	 * If we have a valid config but cannot read any of these fields, then
226 	 * it means we have a half-initialized label.  In vdev_label_init()
227 	 * we write a label with txg == 0 so that we can identify the device
228 	 * in case the user refers to the same disk later on.  If we fail to
229 	 * create the pool, we'll be left with a label in this state
230 	 * which should not be considered part of a valid pool.
231 	 */
232 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
233 	    &pool_guid) != 0 ||
234 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
235 	    &vdev_guid) != 0 ||
236 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
237 	    &top_guid) != 0 ||
238 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
239 	    &txg) != 0 || txg == 0) {
240 		nvlist_free(config);
241 		return (0);
242 	}
243 
244 	/*
245 	 * First, see if we know about this pool.  If not, then add it to the
246 	 * list of known pools.
247 	 */
248 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
249 		if (pe->pe_guid == pool_guid)
250 			break;
251 	}
252 
253 	if (pe == NULL) {
254 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
255 			nvlist_free(config);
256 			return (-1);
257 		}
258 		pe->pe_guid = pool_guid;
259 		pe->pe_next = pl->pools;
260 		pl->pools = pe;
261 	}
262 
263 	/*
264 	 * Second, see if we know about this toplevel vdev.  Add it if its
265 	 * missing.
266 	 */
267 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
268 		if (ve->ve_guid == top_guid)
269 			break;
270 	}
271 
272 	if (ve == NULL) {
273 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
274 			nvlist_free(config);
275 			return (-1);
276 		}
277 		ve->ve_guid = top_guid;
278 		ve->ve_next = pe->pe_vdevs;
279 		pe->pe_vdevs = ve;
280 	}
281 
282 	/*
283 	 * Third, see if we have a config with a matching transaction group.  If
284 	 * so, then we do nothing.  Otherwise, add it to the list of known
285 	 * configs.
286 	 */
287 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
288 		if (ce->ce_txg == txg)
289 			break;
290 	}
291 
292 	if (ce == NULL) {
293 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
294 			nvlist_free(config);
295 			return (-1);
296 		}
297 		ce->ce_txg = txg;
298 		ce->ce_config = config;
299 		ce->ce_next = ve->ve_configs;
300 		ve->ve_configs = ce;
301 	} else {
302 		nvlist_free(config);
303 	}
304 
305 	/*
306 	 * At this point we've successfully added our config to the list of
307 	 * known configs.  The last thing to do is add the vdev guid -> path
308 	 * mappings so that we can fix up the configuration as necessary before
309 	 * doing the import.
310 	 */
311 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
312 		return (-1);
313 
314 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
315 		free(ne);
316 		return (-1);
317 	}
318 
319 	ne->ne_guid = vdev_guid;
320 	ne->ne_next = pl->names;
321 	pl->names = ne;
322 
323 	return (0);
324 }
325 
326 /*
327  * Returns true if the named pool matches the given GUID.
328  */
329 static int
330 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
331     boolean_t *isactive)
332 {
333 	zpool_handle_t *zhp;
334 	uint64_t theguid;
335 
336 	if (zpool_open_silent(hdl, name, &zhp) != 0)
337 		return (-1);
338 
339 	if (zhp == NULL) {
340 		*isactive = B_FALSE;
341 		return (0);
342 	}
343 
344 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
345 	    &theguid) == 0);
346 
347 	zpool_close(zhp);
348 
349 	*isactive = (theguid == guid);
350 	return (0);
351 }
352 
353 static nvlist_t *
354 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
355 {
356 	nvlist_t *nvl;
357 	zfs_cmd_t zc = { 0 };
358 	int err, dstbuf_size;
359 
360 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
361 		return (NULL);
362 
363 	dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
364 
365 	if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
366 		zcmd_free_nvlists(&zc);
367 		return (NULL);
368 	}
369 
370 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
371 	    &zc)) != 0 && errno == ENOMEM) {
372 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
373 			zcmd_free_nvlists(&zc);
374 			return (NULL);
375 		}
376 	}
377 
378 	if (err) {
379 		zcmd_free_nvlists(&zc);
380 		return (NULL);
381 	}
382 
383 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
384 		zcmd_free_nvlists(&zc);
385 		return (NULL);
386 	}
387 
388 	zcmd_free_nvlists(&zc);
389 	return (nvl);
390 }
391 
392 /*
393  * Determine if the vdev id is a hole in the namespace.
394  */
395 boolean_t
396 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
397 {
398 	for (int c = 0; c < holes; c++) {
399 
400 		/* Top-level is a hole */
401 		if (hole_array[c] == id)
402 			return (B_TRUE);
403 	}
404 	return (B_FALSE);
405 }
406 
407 /*
408  * Convert our list of pools into the definitive set of configurations.  We
409  * start by picking the best config for each toplevel vdev.  Once that's done,
410  * we assemble the toplevel vdevs into a full config for the pool.  We make a
411  * pass to fix up any incorrect paths, and then add it to the main list to
412  * return to the user.
413  */
414 static nvlist_t *
415 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
416     nvlist_t *policy)
417 {
418 	pool_entry_t *pe;
419 	vdev_entry_t *ve;
420 	config_entry_t *ce;
421 	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
422 	nvlist_t **spares, **l2cache;
423 	uint_t i, nspares, nl2cache;
424 	boolean_t config_seen;
425 	uint64_t best_txg;
426 	char *name, *hostname = NULL;
427 	uint64_t guid;
428 	uint_t children = 0;
429 	nvlist_t **child = NULL;
430 	uint_t holes;
431 	uint64_t *hole_array, max_id;
432 	uint_t c;
433 	boolean_t isactive;
434 	uint64_t hostid;
435 	nvlist_t *nvl;
436 	boolean_t found_one = B_FALSE;
437 	boolean_t valid_top_config = B_FALSE;
438 
439 	if (nvlist_alloc(&ret, 0, 0) != 0)
440 		goto nomem;
441 
442 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
443 		uint64_t id, max_txg = 0;
444 
445 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
446 			goto nomem;
447 		config_seen = B_FALSE;
448 
449 		/*
450 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
451 		 * from the first one we find, and then go through the rest and
452 		 * add them as necessary to the 'vdevs' member of the config.
453 		 */
454 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
455 
456 			/*
457 			 * Determine the best configuration for this vdev by
458 			 * selecting the config with the latest transaction
459 			 * group.
460 			 */
461 			best_txg = 0;
462 			for (ce = ve->ve_configs; ce != NULL;
463 			    ce = ce->ce_next) {
464 
465 				if (ce->ce_txg > best_txg) {
466 					tmp = ce->ce_config;
467 					best_txg = ce->ce_txg;
468 				}
469 			}
470 
471 			/*
472 			 * We rely on the fact that the max txg for the
473 			 * pool will contain the most up-to-date information
474 			 * about the valid top-levels in the vdev namespace.
475 			 */
476 			if (best_txg > max_txg) {
477 				(void) nvlist_remove(config,
478 				    ZPOOL_CONFIG_VDEV_CHILDREN,
479 				    DATA_TYPE_UINT64);
480 				(void) nvlist_remove(config,
481 				    ZPOOL_CONFIG_HOLE_ARRAY,
482 				    DATA_TYPE_UINT64_ARRAY);
483 
484 				max_txg = best_txg;
485 				hole_array = NULL;
486 				holes = 0;
487 				max_id = 0;
488 				valid_top_config = B_FALSE;
489 
490 				if (nvlist_lookup_uint64(tmp,
491 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
492 					verify(nvlist_add_uint64(config,
493 					    ZPOOL_CONFIG_VDEV_CHILDREN,
494 					    max_id) == 0);
495 					valid_top_config = B_TRUE;
496 				}
497 
498 				if (nvlist_lookup_uint64_array(tmp,
499 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
500 				    &holes) == 0) {
501 					verify(nvlist_add_uint64_array(config,
502 					    ZPOOL_CONFIG_HOLE_ARRAY,
503 					    hole_array, holes) == 0);
504 				}
505 			}
506 
507 			if (!config_seen) {
508 				/*
509 				 * Copy the relevant pieces of data to the pool
510 				 * configuration:
511 				 *
512 				 *	version
513 				 *	pool guid
514 				 *	name
515 				 *	comment (if available)
516 				 *	pool state
517 				 *	hostid (if available)
518 				 *	hostname (if available)
519 				 */
520 				uint64_t state, version;
521 				char *comment = NULL;
522 
523 				version = fnvlist_lookup_uint64(tmp,
524 				    ZPOOL_CONFIG_VERSION);
525 				fnvlist_add_uint64(config,
526 				    ZPOOL_CONFIG_VERSION, version);
527 				guid = fnvlist_lookup_uint64(tmp,
528 				    ZPOOL_CONFIG_POOL_GUID);
529 				fnvlist_add_uint64(config,
530 				    ZPOOL_CONFIG_POOL_GUID, guid);
531 				name = fnvlist_lookup_string(tmp,
532 				    ZPOOL_CONFIG_POOL_NAME);
533 				fnvlist_add_string(config,
534 				    ZPOOL_CONFIG_POOL_NAME, name);
535 
536 				if (nvlist_lookup_string(tmp,
537 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
538 					fnvlist_add_string(config,
539 					    ZPOOL_CONFIG_COMMENT, comment);
540 
541 				state = fnvlist_lookup_uint64(tmp,
542 				    ZPOOL_CONFIG_POOL_STATE);
543 				fnvlist_add_uint64(config,
544 				    ZPOOL_CONFIG_POOL_STATE, state);
545 
546 				hostid = 0;
547 				if (nvlist_lookup_uint64(tmp,
548 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
549 					fnvlist_add_uint64(config,
550 					    ZPOOL_CONFIG_HOSTID, hostid);
551 					hostname = fnvlist_lookup_string(tmp,
552 					    ZPOOL_CONFIG_HOSTNAME);
553 					fnvlist_add_string(config,
554 					    ZPOOL_CONFIG_HOSTNAME, hostname);
555 				}
556 
557 				config_seen = B_TRUE;
558 			}
559 
560 			/*
561 			 * Add this top-level vdev to the child array.
562 			 */
563 			verify(nvlist_lookup_nvlist(tmp,
564 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
565 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
566 			    &id) == 0);
567 
568 			if (id >= children) {
569 				nvlist_t **newchild;
570 
571 				newchild = zfs_alloc(hdl, (id + 1) *
572 				    sizeof (nvlist_t *));
573 				if (newchild == NULL)
574 					goto nomem;
575 
576 				for (c = 0; c < children; c++)
577 					newchild[c] = child[c];
578 
579 				free(child);
580 				child = newchild;
581 				children = id + 1;
582 			}
583 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
584 				goto nomem;
585 
586 		}
587 
588 		/*
589 		 * If we have information about all the top-levels then
590 		 * clean up the nvlist which we've constructed. This
591 		 * means removing any extraneous devices that are
592 		 * beyond the valid range or adding devices to the end
593 		 * of our array which appear to be missing.
594 		 */
595 		if (valid_top_config) {
596 			if (max_id < children) {
597 				for (c = max_id; c < children; c++)
598 					nvlist_free(child[c]);
599 				children = max_id;
600 			} else if (max_id > children) {
601 				nvlist_t **newchild;
602 
603 				newchild = zfs_alloc(hdl, (max_id) *
604 				    sizeof (nvlist_t *));
605 				if (newchild == NULL)
606 					goto nomem;
607 
608 				for (c = 0; c < children; c++)
609 					newchild[c] = child[c];
610 
611 				free(child);
612 				child = newchild;
613 				children = max_id;
614 			}
615 		}
616 
617 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
618 		    &guid) == 0);
619 
620 		/*
621 		 * The vdev namespace may contain holes as a result of
622 		 * device removal. We must add them back into the vdev
623 		 * tree before we process any missing devices.
624 		 */
625 		if (holes > 0) {
626 			ASSERT(valid_top_config);
627 
628 			for (c = 0; c < children; c++) {
629 				nvlist_t *holey;
630 
631 				if (child[c] != NULL ||
632 				    !vdev_is_hole(hole_array, holes, c))
633 					continue;
634 
635 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
636 				    0) != 0)
637 					goto nomem;
638 
639 				/*
640 				 * Holes in the namespace are treated as
641 				 * "hole" top-level vdevs and have a
642 				 * special flag set on them.
643 				 */
644 				if (nvlist_add_string(holey,
645 				    ZPOOL_CONFIG_TYPE,
646 				    VDEV_TYPE_HOLE) != 0 ||
647 				    nvlist_add_uint64(holey,
648 				    ZPOOL_CONFIG_ID, c) != 0 ||
649 				    nvlist_add_uint64(holey,
650 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
651 					nvlist_free(holey);
652 					goto nomem;
653 				}
654 				child[c] = holey;
655 			}
656 		}
657 
658 		/*
659 		 * Look for any missing top-level vdevs.  If this is the case,
660 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
661 		 * simply compress the child array, because the kernel performs
662 		 * certain checks to make sure the vdev IDs match their location
663 		 * in the configuration.
664 		 */
665 		for (c = 0; c < children; c++) {
666 			if (child[c] == NULL) {
667 				nvlist_t *missing;
668 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
669 				    0) != 0)
670 					goto nomem;
671 				if (nvlist_add_string(missing,
672 				    ZPOOL_CONFIG_TYPE,
673 				    VDEV_TYPE_MISSING) != 0 ||
674 				    nvlist_add_uint64(missing,
675 				    ZPOOL_CONFIG_ID, c) != 0 ||
676 				    nvlist_add_uint64(missing,
677 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
678 					nvlist_free(missing);
679 					goto nomem;
680 				}
681 				child[c] = missing;
682 			}
683 		}
684 
685 		/*
686 		 * Put all of this pool's top-level vdevs into a root vdev.
687 		 */
688 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
689 			goto nomem;
690 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
691 		    VDEV_TYPE_ROOT) != 0 ||
692 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
693 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
694 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
695 		    child, children) != 0) {
696 			nvlist_free(nvroot);
697 			goto nomem;
698 		}
699 
700 		for (c = 0; c < children; c++)
701 			nvlist_free(child[c]);
702 		free(child);
703 		children = 0;
704 		child = NULL;
705 
706 		/*
707 		 * Go through and fix up any paths and/or devids based on our
708 		 * known list of vdev GUID -> path mappings.
709 		 */
710 		if (fix_paths(nvroot, pl->names) != 0) {
711 			nvlist_free(nvroot);
712 			goto nomem;
713 		}
714 
715 		/*
716 		 * Add the root vdev to this pool's configuration.
717 		 */
718 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
719 		    nvroot) != 0) {
720 			nvlist_free(nvroot);
721 			goto nomem;
722 		}
723 		nvlist_free(nvroot);
724 
725 		/*
726 		 * zdb uses this path to report on active pools that were
727 		 * imported or created using -R.
728 		 */
729 		if (active_ok)
730 			goto add_pool;
731 
732 		/*
733 		 * Determine if this pool is currently active, in which case we
734 		 * can't actually import it.
735 		 */
736 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
737 		    &name) == 0);
738 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
739 		    &guid) == 0);
740 
741 		if (pool_active(hdl, name, guid, &isactive) != 0)
742 			goto error;
743 
744 		if (isactive) {
745 			nvlist_free(config);
746 			config = NULL;
747 			continue;
748 		}
749 
750 		if (policy != NULL) {
751 			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
752 			    policy) != 0)
753 				goto nomem;
754 		}
755 
756 		if ((nvl = refresh_config(hdl, config)) == NULL) {
757 			nvlist_free(config);
758 			config = NULL;
759 			continue;
760 		}
761 
762 		nvlist_free(config);
763 		config = nvl;
764 
765 		/*
766 		 * Go through and update the paths for spares, now that we have
767 		 * them.
768 		 */
769 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
770 		    &nvroot) == 0);
771 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
772 		    &spares, &nspares) == 0) {
773 			for (i = 0; i < nspares; i++) {
774 				if (fix_paths(spares[i], pl->names) != 0)
775 					goto nomem;
776 			}
777 		}
778 
779 		/*
780 		 * Update the paths for l2cache devices.
781 		 */
782 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
783 		    &l2cache, &nl2cache) == 0) {
784 			for (i = 0; i < nl2cache; i++) {
785 				if (fix_paths(l2cache[i], pl->names) != 0)
786 					goto nomem;
787 			}
788 		}
789 
790 		/*
791 		 * Restore the original information read from the actual label.
792 		 */
793 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
794 		    DATA_TYPE_UINT64);
795 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
796 		    DATA_TYPE_STRING);
797 		if (hostid != 0) {
798 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
799 			    hostid) == 0);
800 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
801 			    hostname) == 0);
802 		}
803 
804 add_pool:
805 		/*
806 		 * Add this pool to the list of configs.
807 		 */
808 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
809 		    &name) == 0);
810 		if (nvlist_add_nvlist(ret, name, config) != 0)
811 			goto nomem;
812 
813 		found_one = B_TRUE;
814 		nvlist_free(config);
815 		config = NULL;
816 	}
817 
818 	if (!found_one) {
819 		nvlist_free(ret);
820 		ret = NULL;
821 	}
822 
823 	return (ret);
824 
825 nomem:
826 	(void) no_memory(hdl);
827 error:
828 	nvlist_free(config);
829 	nvlist_free(ret);
830 	for (c = 0; c < children; c++)
831 		nvlist_free(child[c]);
832 	free(child);
833 
834 	return (NULL);
835 }
836 
837 /*
838  * Return the offset of the given label.
839  */
840 static uint64_t
841 label_offset(uint64_t size, int l)
842 {
843 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
844 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
845 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
846 }
847 
848 /*
849  * Given a file descriptor, read the label information and return an nvlist
850  * describing the configuration, if there is one.
851  * Return 0 on success, or -1 on failure
852  */
853 int
854 zpool_read_label(int fd, nvlist_t **config)
855 {
856 	struct stat64 statbuf;
857 	int l;
858 	vdev_label_t *label;
859 	uint64_t state, txg, size;
860 
861 	*config = NULL;
862 
863 	if (fstat64(fd, &statbuf) == -1)
864 		return (-1);
865 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
866 
867 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
868 		return (-1);
869 
870 	for (l = 0; l < VDEV_LABELS; l++) {
871 		if (pread64(fd, label, sizeof (vdev_label_t),
872 		    label_offset(size, l)) != sizeof (vdev_label_t))
873 			continue;
874 
875 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
876 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
877 			continue;
878 
879 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
880 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
881 			nvlist_free(*config);
882 			continue;
883 		}
884 
885 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
886 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
887 		    &txg) != 0 || txg == 0)) {
888 			nvlist_free(*config);
889 			continue;
890 		}
891 
892 		free(label);
893 		return (0);
894 	}
895 
896 	free(label);
897 	*config = NULL;
898 	errno = ENOENT;
899 	return (-1);
900 }
901 
902 typedef struct rdsk_node {
903 	char *rn_name;
904 	int rn_dfd;
905 	libzfs_handle_t *rn_hdl;
906 	nvlist_t *rn_config;
907 	avl_tree_t *rn_avl;
908 	avl_node_t rn_node;
909 	boolean_t rn_nozpool;
910 } rdsk_node_t;
911 
912 static int
913 slice_cache_compare(const void *arg1, const void *arg2)
914 {
915 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
916 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
917 	char *nm1slice, *nm2slice;
918 	int rv;
919 
920 	/*
921 	 * slices zero and two are the most likely to provide results,
922 	 * so put those first
923 	 */
924 	nm1slice = strstr(nm1, "s0");
925 	nm2slice = strstr(nm2, "s0");
926 	if (nm1slice && !nm2slice) {
927 		return (-1);
928 	}
929 	if (!nm1slice && nm2slice) {
930 		return (1);
931 	}
932 	nm1slice = strstr(nm1, "s2");
933 	nm2slice = strstr(nm2, "s2");
934 	if (nm1slice && !nm2slice) {
935 		return (-1);
936 	}
937 	if (!nm1slice && nm2slice) {
938 		return (1);
939 	}
940 
941 	rv = strcmp(nm1, nm2);
942 	if (rv == 0)
943 		return (0);
944 	return (rv > 0 ? 1 : -1);
945 }
946 
947 static void
948 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
949     diskaddr_t size, uint_t blksz)
950 {
951 	rdsk_node_t tmpnode;
952 	rdsk_node_t *node;
953 	char sname[MAXNAMELEN];
954 
955 	tmpnode.rn_name = &sname[0];
956 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
957 	    diskname, partno);
958 	/*
959 	 * protect against division by zero for disk labels that
960 	 * contain a bogus sector size
961 	 */
962 	if (blksz == 0)
963 		blksz = DEV_BSIZE;
964 	/* too small to contain a zpool? */
965 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
966 	    (node = avl_find(r, &tmpnode, NULL)))
967 		node->rn_nozpool = B_TRUE;
968 }
969 
970 static void
971 nozpool_all_slices(avl_tree_t *r, const char *sname)
972 {
973 	char diskname[MAXNAMELEN];
974 	char *ptr;
975 	int i;
976 
977 	(void) strncpy(diskname, sname, MAXNAMELEN);
978 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
979 	    ((ptr = strrchr(diskname, 'p')) == NULL))
980 		return;
981 	ptr[0] = 's';
982 	ptr[1] = '\0';
983 	for (i = 0; i < NDKMAP; i++)
984 		check_one_slice(r, diskname, i, 0, 1);
985 	ptr[0] = 'p';
986 	for (i = 0; i <= FD_NUMPART; i++)
987 		check_one_slice(r, diskname, i, 0, 1);
988 }
989 
990 static void
991 check_slices(avl_tree_t *r, int fd, const char *sname)
992 {
993 	struct extvtoc vtoc;
994 	struct dk_gpt *gpt;
995 	char diskname[MAXNAMELEN];
996 	char *ptr;
997 	int i;
998 
999 	(void) strncpy(diskname, sname, MAXNAMELEN);
1000 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1001 		return;
1002 	ptr[1] = '\0';
1003 
1004 	if (read_extvtoc(fd, &vtoc) >= 0) {
1005 		for (i = 0; i < NDKMAP; i++)
1006 			check_one_slice(r, diskname, i,
1007 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1008 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1009 		/*
1010 		 * on x86 we'll still have leftover links that point
1011 		 * to slices s[9-15], so use NDKMAP instead
1012 		 */
1013 		for (i = 0; i < NDKMAP; i++)
1014 			check_one_slice(r, diskname, i,
1015 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1016 		/* nodes p[1-4] are never used with EFI labels */
1017 		ptr[0] = 'p';
1018 		for (i = 1; i <= FD_NUMPART; i++)
1019 			check_one_slice(r, diskname, i, 0, 1);
1020 		efi_free(gpt);
1021 	}
1022 }
1023 
1024 static void
1025 zpool_open_func(void *arg)
1026 {
1027 	rdsk_node_t *rn = arg;
1028 	struct stat64 statbuf;
1029 	nvlist_t *config;
1030 	int fd;
1031 
1032 	if (rn->rn_nozpool)
1033 		return;
1034 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1035 		/* symlink to a device that's no longer there */
1036 		if (errno == ENOENT)
1037 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1038 		return;
1039 	}
1040 	/*
1041 	 * Ignore failed stats.  We only want regular
1042 	 * files, character devs and block devs.
1043 	 */
1044 	if (fstat64(fd, &statbuf) != 0 ||
1045 	    (!S_ISREG(statbuf.st_mode) &&
1046 	    !S_ISCHR(statbuf.st_mode) &&
1047 	    !S_ISBLK(statbuf.st_mode))) {
1048 		(void) close(fd);
1049 		return;
1050 	}
1051 	/* this file is too small to hold a zpool */
1052 	if (S_ISREG(statbuf.st_mode) &&
1053 	    statbuf.st_size < SPA_MINDEVSIZE) {
1054 		(void) close(fd);
1055 		return;
1056 	} else if (!S_ISREG(statbuf.st_mode)) {
1057 		/*
1058 		 * Try to read the disk label first so we don't have to
1059 		 * open a bunch of minor nodes that can't have a zpool.
1060 		 */
1061 		check_slices(rn->rn_avl, fd, rn->rn_name);
1062 	}
1063 
1064 	if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1065 		(void) close(fd);
1066 		(void) no_memory(rn->rn_hdl);
1067 		return;
1068 	}
1069 	(void) close(fd);
1070 
1071 	rn->rn_config = config;
1072 }
1073 
1074 /*
1075  * Given a file descriptor, clear (zero) the label information.
1076  */
1077 int
1078 zpool_clear_label(int fd)
1079 {
1080 	struct stat64 statbuf;
1081 	int l;
1082 	vdev_label_t *label;
1083 	uint64_t size;
1084 
1085 	if (fstat64(fd, &statbuf) == -1)
1086 		return (0);
1087 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1088 
1089 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1090 		return (-1);
1091 
1092 	for (l = 0; l < VDEV_LABELS; l++) {
1093 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1094 		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1095 			free(label);
1096 			return (-1);
1097 		}
1098 	}
1099 
1100 	free(label);
1101 	return (0);
1102 }
1103 
1104 /*
1105  * Given a list of directories to search, find all pools stored on disk.  This
1106  * includes partial pools which are not available to import.  If no args are
1107  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1108  * poolname or guid (but not both) are provided by the caller when trying
1109  * to import a specific pool.
1110  */
1111 static nvlist_t *
1112 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1113 {
1114 	int i, dirs = iarg->paths;
1115 	struct dirent64 *dp;
1116 	char path[MAXPATHLEN];
1117 	char *end, **dir = iarg->path;
1118 	size_t pathleft;
1119 	nvlist_t *ret = NULL;
1120 	static char *default_dir = ZFS_DISK_ROOT;
1121 	pool_list_t pools = { 0 };
1122 	pool_entry_t *pe, *penext;
1123 	vdev_entry_t *ve, *venext;
1124 	config_entry_t *ce, *cenext;
1125 	name_entry_t *ne, *nenext;
1126 	avl_tree_t slice_cache;
1127 	rdsk_node_t *slice;
1128 	void *cookie;
1129 
1130 	if (dirs == 0) {
1131 		dirs = 1;
1132 		dir = &default_dir;
1133 	}
1134 
1135 	/*
1136 	 * Go through and read the label configuration information from every
1137 	 * possible device, organizing the information according to pool GUID
1138 	 * and toplevel GUID.
1139 	 */
1140 	for (i = 0; i < dirs; i++) {
1141 		tpool_t *t;
1142 		char rdsk[MAXPATHLEN];
1143 		int dfd;
1144 		boolean_t config_failed = B_FALSE;
1145 		DIR *dirp;
1146 
1147 		/* use realpath to normalize the path */
1148 		if (realpath(dir[i], path) == 0) {
1149 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1150 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1151 			goto error;
1152 		}
1153 		end = &path[strlen(path)];
1154 		*end++ = '/';
1155 		*end = 0;
1156 		pathleft = &path[sizeof (path)] - end;
1157 
1158 		/*
1159 		 * Using raw devices instead of block devices when we're
1160 		 * reading the labels skips a bunch of slow operations during
1161 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1162 		 */
1163 		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1164 			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1165 		else
1166 			(void) strlcpy(rdsk, path, sizeof (rdsk));
1167 
1168 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1169 		    (dirp = fdopendir(dfd)) == NULL) {
1170 			if (dfd >= 0)
1171 				(void) close(dfd);
1172 			zfs_error_aux(hdl, strerror(errno));
1173 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1174 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1175 			    rdsk);
1176 			goto error;
1177 		}
1178 
1179 		avl_create(&slice_cache, slice_cache_compare,
1180 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1181 		/*
1182 		 * This is not MT-safe, but we have no MT consumers of libzfs
1183 		 */
1184 		while ((dp = readdir64(dirp)) != NULL) {
1185 			const char *name = dp->d_name;
1186 			if (name[0] == '.' &&
1187 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1188 				continue;
1189 
1190 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1191 			slice->rn_name = zfs_strdup(hdl, name);
1192 			slice->rn_avl = &slice_cache;
1193 			slice->rn_dfd = dfd;
1194 			slice->rn_hdl = hdl;
1195 			slice->rn_nozpool = B_FALSE;
1196 			avl_add(&slice_cache, slice);
1197 		}
1198 		/*
1199 		 * create a thread pool to do all of this in parallel;
1200 		 * rn_nozpool is not protected, so this is racy in that
1201 		 * multiple tasks could decide that the same slice can
1202 		 * not hold a zpool, which is benign.  Also choose
1203 		 * double the number of processors; we hold a lot of
1204 		 * locks in the kernel, so going beyond this doesn't
1205 		 * buy us much.
1206 		 */
1207 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1208 		    0, NULL);
1209 		for (slice = avl_first(&slice_cache); slice;
1210 		    (slice = avl_walk(&slice_cache, slice,
1211 		    AVL_AFTER)))
1212 			(void) tpool_dispatch(t, zpool_open_func, slice);
1213 		tpool_wait(t);
1214 		tpool_destroy(t);
1215 
1216 		cookie = NULL;
1217 		while ((slice = avl_destroy_nodes(&slice_cache,
1218 		    &cookie)) != NULL) {
1219 			if (slice->rn_config != NULL && !config_failed) {
1220 				nvlist_t *config = slice->rn_config;
1221 				boolean_t matched = B_TRUE;
1222 
1223 				if (iarg->poolname != NULL) {
1224 					char *pname;
1225 
1226 					matched = nvlist_lookup_string(config,
1227 					    ZPOOL_CONFIG_POOL_NAME,
1228 					    &pname) == 0 &&
1229 					    strcmp(iarg->poolname, pname) == 0;
1230 				} else if (iarg->guid != 0) {
1231 					uint64_t this_guid;
1232 
1233 					matched = nvlist_lookup_uint64(config,
1234 					    ZPOOL_CONFIG_POOL_GUID,
1235 					    &this_guid) == 0 &&
1236 					    iarg->guid == this_guid;
1237 				}
1238 				if (!matched) {
1239 					nvlist_free(config);
1240 				} else {
1241 					/*
1242 					 * use the non-raw path for the config
1243 					 */
1244 					(void) strlcpy(end, slice->rn_name,
1245 					    pathleft);
1246 					if (add_config(hdl, &pools, path,
1247 					    config) != 0)
1248 						config_failed = B_TRUE;
1249 				}
1250 			}
1251 			free(slice->rn_name);
1252 			free(slice);
1253 		}
1254 		avl_destroy(&slice_cache);
1255 
1256 		(void) closedir(dirp);
1257 
1258 		if (config_failed)
1259 			goto error;
1260 	}
1261 
1262 	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1263 
1264 error:
1265 	for (pe = pools.pools; pe != NULL; pe = penext) {
1266 		penext = pe->pe_next;
1267 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1268 			venext = ve->ve_next;
1269 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1270 				cenext = ce->ce_next;
1271 				nvlist_free(ce->ce_config);
1272 				free(ce);
1273 			}
1274 			free(ve);
1275 		}
1276 		free(pe);
1277 	}
1278 
1279 	for (ne = pools.names; ne != NULL; ne = nenext) {
1280 		nenext = ne->ne_next;
1281 		free(ne->ne_name);
1282 		free(ne);
1283 	}
1284 
1285 	return (ret);
1286 }
1287 
1288 nvlist_t *
1289 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1290 {
1291 	importargs_t iarg = { 0 };
1292 
1293 	iarg.paths = argc;
1294 	iarg.path = argv;
1295 
1296 	return (zpool_find_import_impl(hdl, &iarg));
1297 }
1298 
1299 /*
1300  * Given a cache file, return the contents as a list of importable pools.
1301  * poolname or guid (but not both) are provided by the caller when trying
1302  * to import a specific pool.
1303  */
1304 nvlist_t *
1305 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1306     char *poolname, uint64_t guid)
1307 {
1308 	char *buf;
1309 	int fd;
1310 	struct stat64 statbuf;
1311 	nvlist_t *raw, *src, *dst;
1312 	nvlist_t *pools;
1313 	nvpair_t *elem;
1314 	char *name;
1315 	uint64_t this_guid;
1316 	boolean_t active;
1317 
1318 	verify(poolname == NULL || guid == 0);
1319 
1320 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1321 		zfs_error_aux(hdl, "%s", strerror(errno));
1322 		(void) zfs_error(hdl, EZFS_BADCACHE,
1323 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1324 		return (NULL);
1325 	}
1326 
1327 	if (fstat64(fd, &statbuf) != 0) {
1328 		zfs_error_aux(hdl, "%s", strerror(errno));
1329 		(void) close(fd);
1330 		(void) zfs_error(hdl, EZFS_BADCACHE,
1331 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1332 		return (NULL);
1333 	}
1334 
1335 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1336 		(void) close(fd);
1337 		return (NULL);
1338 	}
1339 
1340 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1341 		(void) close(fd);
1342 		free(buf);
1343 		(void) zfs_error(hdl, EZFS_BADCACHE,
1344 		    dgettext(TEXT_DOMAIN,
1345 		    "failed to read cache file contents"));
1346 		return (NULL);
1347 	}
1348 
1349 	(void) close(fd);
1350 
1351 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1352 		free(buf);
1353 		(void) zfs_error(hdl, EZFS_BADCACHE,
1354 		    dgettext(TEXT_DOMAIN,
1355 		    "invalid or corrupt cache file contents"));
1356 		return (NULL);
1357 	}
1358 
1359 	free(buf);
1360 
1361 	/*
1362 	 * Go through and get the current state of the pools and refresh their
1363 	 * state.
1364 	 */
1365 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1366 		(void) no_memory(hdl);
1367 		nvlist_free(raw);
1368 		return (NULL);
1369 	}
1370 
1371 	elem = NULL;
1372 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1373 		src = fnvpair_value_nvlist(elem);
1374 
1375 		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1376 		if (poolname != NULL && strcmp(poolname, name) != 0)
1377 			continue;
1378 
1379 		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1380 		if (guid != 0 && guid != this_guid)
1381 			continue;
1382 
1383 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1384 			nvlist_free(raw);
1385 			nvlist_free(pools);
1386 			return (NULL);
1387 		}
1388 
1389 		if (active)
1390 			continue;
1391 
1392 		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1393 		    cachefile) != 0) {
1394 			(void) no_memory(hdl);
1395 			nvlist_free(raw);
1396 			nvlist_free(pools);
1397 			return (NULL);
1398 		}
1399 
1400 		if ((dst = refresh_config(hdl, src)) == NULL) {
1401 			nvlist_free(raw);
1402 			nvlist_free(pools);
1403 			return (NULL);
1404 		}
1405 
1406 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1407 			(void) no_memory(hdl);
1408 			nvlist_free(dst);
1409 			nvlist_free(raw);
1410 			nvlist_free(pools);
1411 			return (NULL);
1412 		}
1413 		nvlist_free(dst);
1414 	}
1415 
1416 	nvlist_free(raw);
1417 	return (pools);
1418 }
1419 
1420 static int
1421 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1422 {
1423 	importargs_t *import = data;
1424 	int found = 0;
1425 
1426 	if (import->poolname != NULL) {
1427 		char *pool_name;
1428 
1429 		verify(nvlist_lookup_string(zhp->zpool_config,
1430 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1431 		if (strcmp(pool_name, import->poolname) == 0)
1432 			found = 1;
1433 	} else {
1434 		uint64_t pool_guid;
1435 
1436 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1437 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1438 		if (pool_guid == import->guid)
1439 			found = 1;
1440 	}
1441 
1442 	zpool_close(zhp);
1443 	return (found);
1444 }
1445 
1446 nvlist_t *
1447 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1448 {
1449 	verify(import->poolname == NULL || import->guid == 0);
1450 
1451 	if (import->unique)
1452 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1453 
1454 	if (import->cachefile != NULL)
1455 		return (zpool_find_import_cached(hdl, import->cachefile,
1456 		    import->poolname, import->guid));
1457 
1458 	return (zpool_find_import_impl(hdl, import));
1459 }
1460 
1461 boolean_t
1462 find_guid(nvlist_t *nv, uint64_t guid)
1463 {
1464 	uint64_t tmp;
1465 	nvlist_t **child;
1466 	uint_t c, children;
1467 
1468 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1469 	if (tmp == guid)
1470 		return (B_TRUE);
1471 
1472 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1473 	    &child, &children) == 0) {
1474 		for (c = 0; c < children; c++)
1475 			if (find_guid(child[c], guid))
1476 				return (B_TRUE);
1477 	}
1478 
1479 	return (B_FALSE);
1480 }
1481 
1482 typedef struct aux_cbdata {
1483 	const char	*cb_type;
1484 	uint64_t	cb_guid;
1485 	zpool_handle_t	*cb_zhp;
1486 } aux_cbdata_t;
1487 
1488 static int
1489 find_aux(zpool_handle_t *zhp, void *data)
1490 {
1491 	aux_cbdata_t *cbp = data;
1492 	nvlist_t **list;
1493 	uint_t i, count;
1494 	uint64_t guid;
1495 	nvlist_t *nvroot;
1496 
1497 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1498 	    &nvroot) == 0);
1499 
1500 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1501 	    &list, &count) == 0) {
1502 		for (i = 0; i < count; i++) {
1503 			verify(nvlist_lookup_uint64(list[i],
1504 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1505 			if (guid == cbp->cb_guid) {
1506 				cbp->cb_zhp = zhp;
1507 				return (1);
1508 			}
1509 		}
1510 	}
1511 
1512 	zpool_close(zhp);
1513 	return (0);
1514 }
1515 
1516 /*
1517  * Determines if the pool is in use.  If so, it returns true and the state of
1518  * the pool as well as the name of the pool.  Both strings are allocated and
1519  * must be freed by the caller.
1520  */
1521 int
1522 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1523     boolean_t *inuse)
1524 {
1525 	nvlist_t *config;
1526 	char *name;
1527 	boolean_t ret;
1528 	uint64_t guid, vdev_guid;
1529 	zpool_handle_t *zhp;
1530 	nvlist_t *pool_config;
1531 	uint64_t stateval, isspare;
1532 	aux_cbdata_t cb = { 0 };
1533 	boolean_t isactive;
1534 
1535 	*inuse = B_FALSE;
1536 
1537 	if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1538 		(void) no_memory(hdl);
1539 		return (-1);
1540 	}
1541 
1542 	if (config == NULL)
1543 		return (0);
1544 
1545 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1546 	    &stateval) == 0);
1547 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1548 	    &vdev_guid) == 0);
1549 
1550 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1551 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1552 		    &name) == 0);
1553 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1554 		    &guid) == 0);
1555 	}
1556 
1557 	switch (stateval) {
1558 	case POOL_STATE_EXPORTED:
1559 		/*
1560 		 * A pool with an exported state may in fact be imported
1561 		 * read-only, so check the in-core state to see if it's
1562 		 * active and imported read-only.  If it is, set
1563 		 * its state to active.
1564 		 */
1565 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1566 		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1567 			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1568 				stateval = POOL_STATE_ACTIVE;
1569 
1570 			/*
1571 			 * All we needed the zpool handle for is the
1572 			 * readonly prop check.
1573 			 */
1574 			zpool_close(zhp);
1575 		}
1576 
1577 		ret = B_TRUE;
1578 		break;
1579 
1580 	case POOL_STATE_ACTIVE:
1581 		/*
1582 		 * For an active pool, we have to determine if it's really part
1583 		 * of a currently active pool (in which case the pool will exist
1584 		 * and the guid will be the same), or whether it's part of an
1585 		 * active pool that was disconnected without being explicitly
1586 		 * exported.
1587 		 */
1588 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1589 			nvlist_free(config);
1590 			return (-1);
1591 		}
1592 
1593 		if (isactive) {
1594 			/*
1595 			 * Because the device may have been removed while
1596 			 * offlined, we only report it as active if the vdev is
1597 			 * still present in the config.  Otherwise, pretend like
1598 			 * it's not in use.
1599 			 */
1600 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1601 			    (pool_config = zpool_get_config(zhp, NULL))
1602 			    != NULL) {
1603 				nvlist_t *nvroot;
1604 
1605 				verify(nvlist_lookup_nvlist(pool_config,
1606 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1607 				ret = find_guid(nvroot, vdev_guid);
1608 			} else {
1609 				ret = B_FALSE;
1610 			}
1611 
1612 			/*
1613 			 * If this is an active spare within another pool, we
1614 			 * treat it like an unused hot spare.  This allows the
1615 			 * user to create a pool with a hot spare that currently
1616 			 * in use within another pool.  Since we return B_TRUE,
1617 			 * libdiskmgt will continue to prevent generic consumers
1618 			 * from using the device.
1619 			 */
1620 			if (ret && nvlist_lookup_uint64(config,
1621 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1622 				stateval = POOL_STATE_SPARE;
1623 
1624 			if (zhp != NULL)
1625 				zpool_close(zhp);
1626 		} else {
1627 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1628 			ret = B_TRUE;
1629 		}
1630 		break;
1631 
1632 	case POOL_STATE_SPARE:
1633 		/*
1634 		 * For a hot spare, it can be either definitively in use, or
1635 		 * potentially active.  To determine if it's in use, we iterate
1636 		 * over all pools in the system and search for one with a spare
1637 		 * with a matching guid.
1638 		 *
1639 		 * Due to the shared nature of spares, we don't actually report
1640 		 * the potentially active case as in use.  This means the user
1641 		 * can freely create pools on the hot spares of exported pools,
1642 		 * but to do otherwise makes the resulting code complicated, and
1643 		 * we end up having to deal with this case anyway.
1644 		 */
1645 		cb.cb_zhp = NULL;
1646 		cb.cb_guid = vdev_guid;
1647 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1648 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1649 			name = (char *)zpool_get_name(cb.cb_zhp);
1650 			ret = B_TRUE;
1651 		} else {
1652 			ret = B_FALSE;
1653 		}
1654 		break;
1655 
1656 	case POOL_STATE_L2CACHE:
1657 
1658 		/*
1659 		 * Check if any pool is currently using this l2cache device.
1660 		 */
1661 		cb.cb_zhp = NULL;
1662 		cb.cb_guid = vdev_guid;
1663 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1664 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1665 			name = (char *)zpool_get_name(cb.cb_zhp);
1666 			ret = B_TRUE;
1667 		} else {
1668 			ret = B_FALSE;
1669 		}
1670 		break;
1671 
1672 	default:
1673 		ret = B_FALSE;
1674 	}
1675 
1676 
1677 	if (ret) {
1678 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1679 			if (cb.cb_zhp)
1680 				zpool_close(cb.cb_zhp);
1681 			nvlist_free(config);
1682 			return (-1);
1683 		}
1684 		*state = (pool_state_t)stateval;
1685 	}
1686 
1687 	if (cb.cb_zhp)
1688 		zpool_close(cb.cb_zhp);
1689 
1690 	nvlist_free(config);
1691 	*inuse = ret;
1692 	return (0);
1693 }
1694