1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Pool import support functions. 29 * 30 * To import a pool, we rely on reading the configuration information from the 31 * ZFS label of each device. If we successfully read the label, then we 32 * organize the configuration information in the following hierarchy: 33 * 34 * pool guid -> toplevel vdev guid -> label txg 35 * 36 * Duplicate entries matching this same tuple will be discarded. Once we have 37 * examined every device, we pick the best label txg config for each toplevel 38 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 39 * update any paths that have changed. Finally, we attempt to import the pool 40 * using our derived config, and record the results. 41 */ 42 43 #include <ctype.h> 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stddef.h> 49 #include <stdlib.h> 50 #include <string.h> 51 #include <sys/stat.h> 52 #include <unistd.h> 53 #include <fcntl.h> 54 #include <sys/vtoc.h> 55 #include <sys/dktp/fdisk.h> 56 #include <sys/efi_partition.h> 57 #include <thread_pool.h> 58 59 #include <sys/vdev_impl.h> 60 61 #include "libzfs.h" 62 #include "libzfs_impl.h" 63 64 /* 65 * Intermediate structures used to gather configuration information. 66 */ 67 typedef struct config_entry { 68 uint64_t ce_txg; 69 nvlist_t *ce_config; 70 struct config_entry *ce_next; 71 } config_entry_t; 72 73 typedef struct vdev_entry { 74 uint64_t ve_guid; 75 config_entry_t *ve_configs; 76 struct vdev_entry *ve_next; 77 } vdev_entry_t; 78 79 typedef struct pool_entry { 80 uint64_t pe_guid; 81 vdev_entry_t *pe_vdevs; 82 struct pool_entry *pe_next; 83 } pool_entry_t; 84 85 typedef struct name_entry { 86 char *ne_name; 87 uint64_t ne_guid; 88 struct name_entry *ne_next; 89 } name_entry_t; 90 91 typedef struct pool_list { 92 pool_entry_t *pools; 93 name_entry_t *names; 94 } pool_list_t; 95 96 static char * 97 get_devid(const char *path) 98 { 99 int fd; 100 ddi_devid_t devid; 101 char *minor, *ret; 102 103 if ((fd = open(path, O_RDONLY)) < 0) 104 return (NULL); 105 106 minor = NULL; 107 ret = NULL; 108 if (devid_get(fd, &devid) == 0) { 109 if (devid_get_minor_name(fd, &minor) == 0) 110 ret = devid_str_encode(devid, minor); 111 if (minor != NULL) 112 devid_str_free(minor); 113 devid_free(devid); 114 } 115 (void) close(fd); 116 117 return (ret); 118 } 119 120 121 /* 122 * Go through and fix up any path and/or devid information for the given vdev 123 * configuration. 124 */ 125 static int 126 fix_paths(nvlist_t *nv, name_entry_t *names) 127 { 128 nvlist_t **child; 129 uint_t c, children; 130 uint64_t guid; 131 name_entry_t *ne, *best; 132 char *path, *devid; 133 int matched; 134 135 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 136 &child, &children) == 0) { 137 for (c = 0; c < children; c++) 138 if (fix_paths(child[c], names) != 0) 139 return (-1); 140 return (0); 141 } 142 143 /* 144 * This is a leaf (file or disk) vdev. In either case, go through 145 * the name list and see if we find a matching guid. If so, replace 146 * the path and see if we can calculate a new devid. 147 * 148 * There may be multiple names associated with a particular guid, in 149 * which case we have overlapping slices or multiple paths to the same 150 * disk. If this is the case, then we want to pick the path that is 151 * the most similar to the original, where "most similar" is the number 152 * of matching characters starting from the end of the path. This will 153 * preserve slice numbers even if the disks have been reorganized, and 154 * will also catch preferred disk names if multiple paths exist. 155 */ 156 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 157 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 158 path = NULL; 159 160 matched = 0; 161 best = NULL; 162 for (ne = names; ne != NULL; ne = ne->ne_next) { 163 if (ne->ne_guid == guid) { 164 const char *src, *dst; 165 int count; 166 167 if (path == NULL) { 168 best = ne; 169 break; 170 } 171 172 src = ne->ne_name + strlen(ne->ne_name) - 1; 173 dst = path + strlen(path) - 1; 174 for (count = 0; src >= ne->ne_name && dst >= path; 175 src--, dst--, count++) 176 if (*src != *dst) 177 break; 178 179 /* 180 * At this point, 'count' is the number of characters 181 * matched from the end. 182 */ 183 if (count > matched || best == NULL) { 184 best = ne; 185 matched = count; 186 } 187 } 188 } 189 190 if (best == NULL) 191 return (0); 192 193 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 194 return (-1); 195 196 if ((devid = get_devid(best->ne_name)) == NULL) { 197 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 198 } else { 199 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 200 return (-1); 201 devid_str_free(devid); 202 } 203 204 return (0); 205 } 206 207 /* 208 * Add the given configuration to the list of known devices. 209 */ 210 static int 211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 212 nvlist_t *config) 213 { 214 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 215 pool_entry_t *pe; 216 vdev_entry_t *ve; 217 config_entry_t *ce; 218 name_entry_t *ne; 219 220 /* 221 * If this is a hot spare not currently in use or level 2 cache 222 * device, add it to the list of names to translate, but don't do 223 * anything else. 224 */ 225 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 226 &state) == 0 && 227 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 228 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 229 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 230 return (-1); 231 232 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 233 free(ne); 234 return (-1); 235 } 236 ne->ne_guid = vdev_guid; 237 ne->ne_next = pl->names; 238 pl->names = ne; 239 return (0); 240 } 241 242 /* 243 * If we have a valid config but cannot read any of these fields, then 244 * it means we have a half-initialized label. In vdev_label_init() 245 * we write a label with txg == 0 so that we can identify the device 246 * in case the user refers to the same disk later on. If we fail to 247 * create the pool, we'll be left with a label in this state 248 * which should not be considered part of a valid pool. 249 */ 250 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 251 &pool_guid) != 0 || 252 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 253 &vdev_guid) != 0 || 254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 255 &top_guid) != 0 || 256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 257 &txg) != 0 || txg == 0) { 258 nvlist_free(config); 259 return (0); 260 } 261 262 /* 263 * First, see if we know about this pool. If not, then add it to the 264 * list of known pools. 265 */ 266 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 267 if (pe->pe_guid == pool_guid) 268 break; 269 } 270 271 if (pe == NULL) { 272 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 273 nvlist_free(config); 274 return (-1); 275 } 276 pe->pe_guid = pool_guid; 277 pe->pe_next = pl->pools; 278 pl->pools = pe; 279 } 280 281 /* 282 * Second, see if we know about this toplevel vdev. Add it if its 283 * missing. 284 */ 285 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 286 if (ve->ve_guid == top_guid) 287 break; 288 } 289 290 if (ve == NULL) { 291 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 292 nvlist_free(config); 293 return (-1); 294 } 295 ve->ve_guid = top_guid; 296 ve->ve_next = pe->pe_vdevs; 297 pe->pe_vdevs = ve; 298 } 299 300 /* 301 * Third, see if we have a config with a matching transaction group. If 302 * so, then we do nothing. Otherwise, add it to the list of known 303 * configs. 304 */ 305 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 306 if (ce->ce_txg == txg) 307 break; 308 } 309 310 if (ce == NULL) { 311 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 312 nvlist_free(config); 313 return (-1); 314 } 315 ce->ce_txg = txg; 316 ce->ce_config = config; 317 ce->ce_next = ve->ve_configs; 318 ve->ve_configs = ce; 319 } else { 320 nvlist_free(config); 321 } 322 323 /* 324 * At this point we've successfully added our config to the list of 325 * known configs. The last thing to do is add the vdev guid -> path 326 * mappings so that we can fix up the configuration as necessary before 327 * doing the import. 328 */ 329 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 330 return (-1); 331 332 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 333 free(ne); 334 return (-1); 335 } 336 337 ne->ne_guid = vdev_guid; 338 ne->ne_next = pl->names; 339 pl->names = ne; 340 341 return (0); 342 } 343 344 /* 345 * Returns true if the named pool matches the given GUID. 346 */ 347 static int 348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 349 boolean_t *isactive) 350 { 351 zpool_handle_t *zhp; 352 uint64_t theguid; 353 354 if (zpool_open_silent(hdl, name, &zhp) != 0) 355 return (-1); 356 357 if (zhp == NULL) { 358 *isactive = B_FALSE; 359 return (0); 360 } 361 362 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 363 &theguid) == 0); 364 365 zpool_close(zhp); 366 367 *isactive = (theguid == guid); 368 return (0); 369 } 370 371 static nvlist_t * 372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 373 { 374 nvlist_t *nvl; 375 zfs_cmd_t zc = { 0 }; 376 int err; 377 378 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 379 return (NULL); 380 381 if (zcmd_alloc_dst_nvlist(hdl, &zc, 382 zc.zc_nvlist_conf_size * 2) != 0) { 383 zcmd_free_nvlists(&zc); 384 return (NULL); 385 } 386 387 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 388 &zc)) != 0 && errno == ENOMEM) { 389 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 390 zcmd_free_nvlists(&zc); 391 return (NULL); 392 } 393 } 394 395 if (err) { 396 zcmd_free_nvlists(&zc); 397 return (NULL); 398 } 399 400 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 401 zcmd_free_nvlists(&zc); 402 return (NULL); 403 } 404 405 zcmd_free_nvlists(&zc); 406 return (nvl); 407 } 408 409 /* 410 * Determine if the vdev id is a hole in the namespace. 411 */ 412 boolean_t 413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 414 { 415 for (int c = 0; c < holes; c++) { 416 417 /* Top-level is a hole */ 418 if (hole_array[c] == id) 419 return (B_TRUE); 420 } 421 return (B_FALSE); 422 } 423 424 /* 425 * Convert our list of pools into the definitive set of configurations. We 426 * start by picking the best config for each toplevel vdev. Once that's done, 427 * we assemble the toplevel vdevs into a full config for the pool. We make a 428 * pass to fix up any incorrect paths, and then add it to the main list to 429 * return to the user. 430 */ 431 static nvlist_t * 432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 433 { 434 pool_entry_t *pe; 435 vdev_entry_t *ve; 436 config_entry_t *ce; 437 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 438 nvlist_t **spares, **l2cache; 439 uint_t i, nspares, nl2cache; 440 boolean_t config_seen; 441 uint64_t best_txg; 442 char *name, *hostname; 443 uint64_t guid; 444 uint_t children = 0; 445 nvlist_t **child = NULL; 446 uint_t holes; 447 uint64_t *hole_array, max_id; 448 uint_t c; 449 boolean_t isactive; 450 uint64_t hostid; 451 nvlist_t *nvl; 452 boolean_t found_one = B_FALSE; 453 boolean_t valid_top_config = B_FALSE; 454 455 if (nvlist_alloc(&ret, 0, 0) != 0) 456 goto nomem; 457 458 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 459 uint64_t id, max_txg = 0; 460 461 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 462 goto nomem; 463 config_seen = B_FALSE; 464 465 /* 466 * Iterate over all toplevel vdevs. Grab the pool configuration 467 * from the first one we find, and then go through the rest and 468 * add them as necessary to the 'vdevs' member of the config. 469 */ 470 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 471 472 /* 473 * Determine the best configuration for this vdev by 474 * selecting the config with the latest transaction 475 * group. 476 */ 477 best_txg = 0; 478 for (ce = ve->ve_configs; ce != NULL; 479 ce = ce->ce_next) { 480 481 if (ce->ce_txg > best_txg) { 482 tmp = ce->ce_config; 483 best_txg = ce->ce_txg; 484 } 485 } 486 487 /* 488 * We rely on the fact that the max txg for the 489 * pool will contain the most up-to-date information 490 * about the valid top-levels in the vdev namespace. 491 */ 492 if (best_txg > max_txg) { 493 (void) nvlist_remove(config, 494 ZPOOL_CONFIG_VDEV_CHILDREN, 495 DATA_TYPE_UINT64); 496 (void) nvlist_remove(config, 497 ZPOOL_CONFIG_HOLE_ARRAY, 498 DATA_TYPE_UINT64_ARRAY); 499 500 max_txg = best_txg; 501 hole_array = NULL; 502 holes = 0; 503 max_id = 0; 504 valid_top_config = B_FALSE; 505 506 if (nvlist_lookup_uint64(tmp, 507 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 508 verify(nvlist_add_uint64(config, 509 ZPOOL_CONFIG_VDEV_CHILDREN, 510 max_id) == 0); 511 valid_top_config = B_TRUE; 512 } 513 514 if (nvlist_lookup_uint64_array(tmp, 515 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 516 &holes) == 0) { 517 verify(nvlist_add_uint64_array(config, 518 ZPOOL_CONFIG_HOLE_ARRAY, 519 hole_array, holes) == 0); 520 } 521 } 522 523 if (!config_seen) { 524 /* 525 * Copy the relevant pieces of data to the pool 526 * configuration: 527 * 528 * version 529 * pool guid 530 * name 531 * comment (if available) 532 * pool state 533 * hostid (if available) 534 * hostname (if available) 535 */ 536 uint64_t state, version; 537 char *comment = NULL; 538 539 version = fnvlist_lookup_uint64(tmp, 540 ZPOOL_CONFIG_VERSION); 541 fnvlist_add_uint64(config, 542 ZPOOL_CONFIG_VERSION, version); 543 guid = fnvlist_lookup_uint64(tmp, 544 ZPOOL_CONFIG_POOL_GUID); 545 fnvlist_add_uint64(config, 546 ZPOOL_CONFIG_POOL_GUID, guid); 547 name = fnvlist_lookup_string(tmp, 548 ZPOOL_CONFIG_POOL_NAME); 549 fnvlist_add_string(config, 550 ZPOOL_CONFIG_POOL_NAME, name); 551 552 if (nvlist_lookup_string(tmp, 553 ZPOOL_CONFIG_COMMENT, &comment) == 0) 554 fnvlist_add_string(config, 555 ZPOOL_CONFIG_COMMENT, comment); 556 557 state = fnvlist_lookup_uint64(tmp, 558 ZPOOL_CONFIG_POOL_STATE); 559 fnvlist_add_uint64(config, 560 ZPOOL_CONFIG_POOL_STATE, state); 561 562 hostid = 0; 563 if (nvlist_lookup_uint64(tmp, 564 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 565 fnvlist_add_uint64(config, 566 ZPOOL_CONFIG_HOSTID, hostid); 567 hostname = fnvlist_lookup_string(tmp, 568 ZPOOL_CONFIG_HOSTNAME); 569 fnvlist_add_string(config, 570 ZPOOL_CONFIG_HOSTNAME, hostname); 571 } 572 573 config_seen = B_TRUE; 574 } 575 576 /* 577 * Add this top-level vdev to the child array. 578 */ 579 verify(nvlist_lookup_nvlist(tmp, 580 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 581 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 582 &id) == 0); 583 584 if (id >= children) { 585 nvlist_t **newchild; 586 587 newchild = zfs_alloc(hdl, (id + 1) * 588 sizeof (nvlist_t *)); 589 if (newchild == NULL) 590 goto nomem; 591 592 for (c = 0; c < children; c++) 593 newchild[c] = child[c]; 594 595 free(child); 596 child = newchild; 597 children = id + 1; 598 } 599 if (nvlist_dup(nvtop, &child[id], 0) != 0) 600 goto nomem; 601 602 } 603 604 /* 605 * If we have information about all the top-levels then 606 * clean up the nvlist which we've constructed. This 607 * means removing any extraneous devices that are 608 * beyond the valid range or adding devices to the end 609 * of our array which appear to be missing. 610 */ 611 if (valid_top_config) { 612 if (max_id < children) { 613 for (c = max_id; c < children; c++) 614 nvlist_free(child[c]); 615 children = max_id; 616 } else if (max_id > children) { 617 nvlist_t **newchild; 618 619 newchild = zfs_alloc(hdl, (max_id) * 620 sizeof (nvlist_t *)); 621 if (newchild == NULL) 622 goto nomem; 623 624 for (c = 0; c < children; c++) 625 newchild[c] = child[c]; 626 627 free(child); 628 child = newchild; 629 children = max_id; 630 } 631 } 632 633 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 634 &guid) == 0); 635 636 /* 637 * The vdev namespace may contain holes as a result of 638 * device removal. We must add them back into the vdev 639 * tree before we process any missing devices. 640 */ 641 if (holes > 0) { 642 ASSERT(valid_top_config); 643 644 for (c = 0; c < children; c++) { 645 nvlist_t *holey; 646 647 if (child[c] != NULL || 648 !vdev_is_hole(hole_array, holes, c)) 649 continue; 650 651 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 652 0) != 0) 653 goto nomem; 654 655 /* 656 * Holes in the namespace are treated as 657 * "hole" top-level vdevs and have a 658 * special flag set on them. 659 */ 660 if (nvlist_add_string(holey, 661 ZPOOL_CONFIG_TYPE, 662 VDEV_TYPE_HOLE) != 0 || 663 nvlist_add_uint64(holey, 664 ZPOOL_CONFIG_ID, c) != 0 || 665 nvlist_add_uint64(holey, 666 ZPOOL_CONFIG_GUID, 0ULL) != 0) 667 goto nomem; 668 child[c] = holey; 669 } 670 } 671 672 /* 673 * Look for any missing top-level vdevs. If this is the case, 674 * create a faked up 'missing' vdev as a placeholder. We cannot 675 * simply compress the child array, because the kernel performs 676 * certain checks to make sure the vdev IDs match their location 677 * in the configuration. 678 */ 679 for (c = 0; c < children; c++) { 680 if (child[c] == NULL) { 681 nvlist_t *missing; 682 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 683 0) != 0) 684 goto nomem; 685 if (nvlist_add_string(missing, 686 ZPOOL_CONFIG_TYPE, 687 VDEV_TYPE_MISSING) != 0 || 688 nvlist_add_uint64(missing, 689 ZPOOL_CONFIG_ID, c) != 0 || 690 nvlist_add_uint64(missing, 691 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 692 nvlist_free(missing); 693 goto nomem; 694 } 695 child[c] = missing; 696 } 697 } 698 699 /* 700 * Put all of this pool's top-level vdevs into a root vdev. 701 */ 702 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 703 goto nomem; 704 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 705 VDEV_TYPE_ROOT) != 0 || 706 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 707 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 708 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 709 child, children) != 0) { 710 nvlist_free(nvroot); 711 goto nomem; 712 } 713 714 for (c = 0; c < children; c++) 715 nvlist_free(child[c]); 716 free(child); 717 children = 0; 718 child = NULL; 719 720 /* 721 * Go through and fix up any paths and/or devids based on our 722 * known list of vdev GUID -> path mappings. 723 */ 724 if (fix_paths(nvroot, pl->names) != 0) { 725 nvlist_free(nvroot); 726 goto nomem; 727 } 728 729 /* 730 * Add the root vdev to this pool's configuration. 731 */ 732 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 733 nvroot) != 0) { 734 nvlist_free(nvroot); 735 goto nomem; 736 } 737 nvlist_free(nvroot); 738 739 /* 740 * zdb uses this path to report on active pools that were 741 * imported or created using -R. 742 */ 743 if (active_ok) 744 goto add_pool; 745 746 /* 747 * Determine if this pool is currently active, in which case we 748 * can't actually import it. 749 */ 750 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 751 &name) == 0); 752 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 753 &guid) == 0); 754 755 if (pool_active(hdl, name, guid, &isactive) != 0) 756 goto error; 757 758 if (isactive) { 759 nvlist_free(config); 760 config = NULL; 761 continue; 762 } 763 764 if ((nvl = refresh_config(hdl, config)) == NULL) { 765 nvlist_free(config); 766 config = NULL; 767 continue; 768 } 769 770 nvlist_free(config); 771 config = nvl; 772 773 /* 774 * Go through and update the paths for spares, now that we have 775 * them. 776 */ 777 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 778 &nvroot) == 0); 779 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 780 &spares, &nspares) == 0) { 781 for (i = 0; i < nspares; i++) { 782 if (fix_paths(spares[i], pl->names) != 0) 783 goto nomem; 784 } 785 } 786 787 /* 788 * Update the paths for l2cache devices. 789 */ 790 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 791 &l2cache, &nl2cache) == 0) { 792 for (i = 0; i < nl2cache; i++) { 793 if (fix_paths(l2cache[i], pl->names) != 0) 794 goto nomem; 795 } 796 } 797 798 /* 799 * Restore the original information read from the actual label. 800 */ 801 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 802 DATA_TYPE_UINT64); 803 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 804 DATA_TYPE_STRING); 805 if (hostid != 0) { 806 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 807 hostid) == 0); 808 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 809 hostname) == 0); 810 } 811 812 add_pool: 813 /* 814 * Add this pool to the list of configs. 815 */ 816 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 817 &name) == 0); 818 if (nvlist_add_nvlist(ret, name, config) != 0) 819 goto nomem; 820 821 found_one = B_TRUE; 822 nvlist_free(config); 823 config = NULL; 824 } 825 826 if (!found_one) { 827 nvlist_free(ret); 828 ret = NULL; 829 } 830 831 return (ret); 832 833 nomem: 834 (void) no_memory(hdl); 835 error: 836 nvlist_free(config); 837 nvlist_free(ret); 838 for (c = 0; c < children; c++) 839 nvlist_free(child[c]); 840 free(child); 841 842 return (NULL); 843 } 844 845 /* 846 * Return the offset of the given label. 847 */ 848 static uint64_t 849 label_offset(uint64_t size, int l) 850 { 851 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 852 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 853 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 854 } 855 856 /* 857 * Given a file descriptor, read the label information and return an nvlist 858 * describing the configuration, if there is one. 859 */ 860 int 861 zpool_read_label(int fd, nvlist_t **config) 862 { 863 struct stat64 statbuf; 864 int l; 865 vdev_label_t *label; 866 uint64_t state, txg, size; 867 868 *config = NULL; 869 870 if (fstat64(fd, &statbuf) == -1) 871 return (0); 872 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 873 874 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 875 return (-1); 876 877 for (l = 0; l < VDEV_LABELS; l++) { 878 if (pread64(fd, label, sizeof (vdev_label_t), 879 label_offset(size, l)) != sizeof (vdev_label_t)) 880 continue; 881 882 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 883 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 884 continue; 885 886 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 887 &state) != 0 || state > POOL_STATE_L2CACHE) { 888 nvlist_free(*config); 889 continue; 890 } 891 892 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 893 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 894 &txg) != 0 || txg == 0)) { 895 nvlist_free(*config); 896 continue; 897 } 898 899 free(label); 900 return (0); 901 } 902 903 free(label); 904 *config = NULL; 905 return (0); 906 } 907 908 typedef struct rdsk_node { 909 char *rn_name; 910 int rn_dfd; 911 libzfs_handle_t *rn_hdl; 912 nvlist_t *rn_config; 913 avl_tree_t *rn_avl; 914 avl_node_t rn_node; 915 boolean_t rn_nozpool; 916 } rdsk_node_t; 917 918 static int 919 slice_cache_compare(const void *arg1, const void *arg2) 920 { 921 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 922 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 923 char *nm1slice, *nm2slice; 924 int rv; 925 926 /* 927 * slices zero and two are the most likely to provide results, 928 * so put those first 929 */ 930 nm1slice = strstr(nm1, "s0"); 931 nm2slice = strstr(nm2, "s0"); 932 if (nm1slice && !nm2slice) { 933 return (-1); 934 } 935 if (!nm1slice && nm2slice) { 936 return (1); 937 } 938 nm1slice = strstr(nm1, "s2"); 939 nm2slice = strstr(nm2, "s2"); 940 if (nm1slice && !nm2slice) { 941 return (-1); 942 } 943 if (!nm1slice && nm2slice) { 944 return (1); 945 } 946 947 rv = strcmp(nm1, nm2); 948 if (rv == 0) 949 return (0); 950 return (rv > 0 ? 1 : -1); 951 } 952 953 static void 954 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 955 diskaddr_t size, uint_t blksz) 956 { 957 rdsk_node_t tmpnode; 958 rdsk_node_t *node; 959 char sname[MAXNAMELEN]; 960 961 tmpnode.rn_name = &sname[0]; 962 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 963 diskname, partno); 964 /* 965 * protect against division by zero for disk labels that 966 * contain a bogus sector size 967 */ 968 if (blksz == 0) 969 blksz = DEV_BSIZE; 970 /* too small to contain a zpool? */ 971 if ((size < (SPA_MINDEVSIZE / blksz)) && 972 (node = avl_find(r, &tmpnode, NULL))) 973 node->rn_nozpool = B_TRUE; 974 } 975 976 static void 977 nozpool_all_slices(avl_tree_t *r, const char *sname) 978 { 979 char diskname[MAXNAMELEN]; 980 char *ptr; 981 int i; 982 983 (void) strncpy(diskname, sname, MAXNAMELEN); 984 if (((ptr = strrchr(diskname, 's')) == NULL) && 985 ((ptr = strrchr(diskname, 'p')) == NULL)) 986 return; 987 ptr[0] = 's'; 988 ptr[1] = '\0'; 989 for (i = 0; i < NDKMAP; i++) 990 check_one_slice(r, diskname, i, 0, 1); 991 ptr[0] = 'p'; 992 for (i = 0; i <= FD_NUMPART; i++) 993 check_one_slice(r, diskname, i, 0, 1); 994 } 995 996 static void 997 check_slices(avl_tree_t *r, int fd, const char *sname) 998 { 999 struct extvtoc vtoc; 1000 struct dk_gpt *gpt; 1001 char diskname[MAXNAMELEN]; 1002 char *ptr; 1003 int i; 1004 1005 (void) strncpy(diskname, sname, MAXNAMELEN); 1006 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1007 return; 1008 ptr[1] = '\0'; 1009 1010 if (read_extvtoc(fd, &vtoc) >= 0) { 1011 for (i = 0; i < NDKMAP; i++) 1012 check_one_slice(r, diskname, i, 1013 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1014 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1015 /* 1016 * on x86 we'll still have leftover links that point 1017 * to slices s[9-15], so use NDKMAP instead 1018 */ 1019 for (i = 0; i < NDKMAP; i++) 1020 check_one_slice(r, diskname, i, 1021 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1022 /* nodes p[1-4] are never used with EFI labels */ 1023 ptr[0] = 'p'; 1024 for (i = 1; i <= FD_NUMPART; i++) 1025 check_one_slice(r, diskname, i, 0, 1); 1026 efi_free(gpt); 1027 } 1028 } 1029 1030 static void 1031 zpool_open_func(void *arg) 1032 { 1033 rdsk_node_t *rn = arg; 1034 struct stat64 statbuf; 1035 nvlist_t *config; 1036 int fd; 1037 1038 if (rn->rn_nozpool) 1039 return; 1040 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1041 /* symlink to a device that's no longer there */ 1042 if (errno == ENOENT) 1043 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1044 return; 1045 } 1046 /* 1047 * Ignore failed stats. We only want regular 1048 * files, character devs and block devs. 1049 */ 1050 if (fstat64(fd, &statbuf) != 0 || 1051 (!S_ISREG(statbuf.st_mode) && 1052 !S_ISCHR(statbuf.st_mode) && 1053 !S_ISBLK(statbuf.st_mode))) { 1054 (void) close(fd); 1055 return; 1056 } 1057 /* this file is too small to hold a zpool */ 1058 if (S_ISREG(statbuf.st_mode) && 1059 statbuf.st_size < SPA_MINDEVSIZE) { 1060 (void) close(fd); 1061 return; 1062 } else if (!S_ISREG(statbuf.st_mode)) { 1063 /* 1064 * Try to read the disk label first so we don't have to 1065 * open a bunch of minor nodes that can't have a zpool. 1066 */ 1067 check_slices(rn->rn_avl, fd, rn->rn_name); 1068 } 1069 1070 if ((zpool_read_label(fd, &config)) != 0) { 1071 (void) close(fd); 1072 (void) no_memory(rn->rn_hdl); 1073 return; 1074 } 1075 (void) close(fd); 1076 1077 1078 rn->rn_config = config; 1079 if (config != NULL) { 1080 assert(rn->rn_nozpool == B_FALSE); 1081 } 1082 } 1083 1084 /* 1085 * Given a file descriptor, clear (zero) the label information. This function 1086 * is currently only used in the appliance stack as part of the ZFS sysevent 1087 * module. 1088 */ 1089 int 1090 zpool_clear_label(int fd) 1091 { 1092 struct stat64 statbuf; 1093 int l; 1094 vdev_label_t *label; 1095 uint64_t size; 1096 1097 if (fstat64(fd, &statbuf) == -1) 1098 return (0); 1099 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1100 1101 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1102 return (-1); 1103 1104 for (l = 0; l < VDEV_LABELS; l++) { 1105 if (pwrite64(fd, label, sizeof (vdev_label_t), 1106 label_offset(size, l)) != sizeof (vdev_label_t)) 1107 return (-1); 1108 } 1109 1110 free(label); 1111 return (0); 1112 } 1113 1114 /* 1115 * Given a list of directories to search, find all pools stored on disk. This 1116 * includes partial pools which are not available to import. If no args are 1117 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1118 * poolname or guid (but not both) are provided by the caller when trying 1119 * to import a specific pool. 1120 */ 1121 static nvlist_t * 1122 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1123 { 1124 int i, dirs = iarg->paths; 1125 DIR *dirp = NULL; 1126 struct dirent64 *dp; 1127 char path[MAXPATHLEN]; 1128 char *end, **dir = iarg->path; 1129 size_t pathleft; 1130 nvlist_t *ret = NULL; 1131 static char *default_dir = "/dev/dsk"; 1132 pool_list_t pools = { 0 }; 1133 pool_entry_t *pe, *penext; 1134 vdev_entry_t *ve, *venext; 1135 config_entry_t *ce, *cenext; 1136 name_entry_t *ne, *nenext; 1137 avl_tree_t slice_cache; 1138 rdsk_node_t *slice; 1139 void *cookie; 1140 1141 if (dirs == 0) { 1142 dirs = 1; 1143 dir = &default_dir; 1144 } 1145 1146 /* 1147 * Go through and read the label configuration information from every 1148 * possible device, organizing the information according to pool GUID 1149 * and toplevel GUID. 1150 */ 1151 for (i = 0; i < dirs; i++) { 1152 tpool_t *t; 1153 char *rdsk; 1154 int dfd; 1155 1156 /* use realpath to normalize the path */ 1157 if (realpath(dir[i], path) == 0) { 1158 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1159 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1160 goto error; 1161 } 1162 end = &path[strlen(path)]; 1163 *end++ = '/'; 1164 *end = 0; 1165 pathleft = &path[sizeof (path)] - end; 1166 1167 /* 1168 * Using raw devices instead of block devices when we're 1169 * reading the labels skips a bunch of slow operations during 1170 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1171 */ 1172 if (strcmp(path, "/dev/dsk/") == 0) 1173 rdsk = "/dev/rdsk/"; 1174 else 1175 rdsk = path; 1176 1177 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1178 (dirp = fdopendir(dfd)) == NULL) { 1179 zfs_error_aux(hdl, strerror(errno)); 1180 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1181 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1182 rdsk); 1183 goto error; 1184 } 1185 1186 avl_create(&slice_cache, slice_cache_compare, 1187 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1188 /* 1189 * This is not MT-safe, but we have no MT consumers of libzfs 1190 */ 1191 while ((dp = readdir64(dirp)) != NULL) { 1192 const char *name = dp->d_name; 1193 if (name[0] == '.' && 1194 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1195 continue; 1196 1197 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1198 slice->rn_name = zfs_strdup(hdl, name); 1199 slice->rn_avl = &slice_cache; 1200 slice->rn_dfd = dfd; 1201 slice->rn_hdl = hdl; 1202 slice->rn_nozpool = B_FALSE; 1203 avl_add(&slice_cache, slice); 1204 } 1205 /* 1206 * create a thread pool to do all of this in parallel; 1207 * rn_nozpool is not protected, so this is racy in that 1208 * multiple tasks could decide that the same slice can 1209 * not hold a zpool, which is benign. Also choose 1210 * double the number of processors; we hold a lot of 1211 * locks in the kernel, so going beyond this doesn't 1212 * buy us much. 1213 */ 1214 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1215 0, NULL); 1216 for (slice = avl_first(&slice_cache); slice; 1217 (slice = avl_walk(&slice_cache, slice, 1218 AVL_AFTER))) 1219 (void) tpool_dispatch(t, zpool_open_func, slice); 1220 tpool_wait(t); 1221 tpool_destroy(t); 1222 1223 cookie = NULL; 1224 while ((slice = avl_destroy_nodes(&slice_cache, 1225 &cookie)) != NULL) { 1226 if (slice->rn_config != NULL) { 1227 nvlist_t *config = slice->rn_config; 1228 boolean_t matched = B_TRUE; 1229 1230 if (iarg->poolname != NULL) { 1231 char *pname; 1232 1233 matched = nvlist_lookup_string(config, 1234 ZPOOL_CONFIG_POOL_NAME, 1235 &pname) == 0 && 1236 strcmp(iarg->poolname, pname) == 0; 1237 } else if (iarg->guid != 0) { 1238 uint64_t this_guid; 1239 1240 matched = nvlist_lookup_uint64(config, 1241 ZPOOL_CONFIG_POOL_GUID, 1242 &this_guid) == 0 && 1243 iarg->guid == this_guid; 1244 } 1245 if (!matched) { 1246 nvlist_free(config); 1247 config = NULL; 1248 continue; 1249 } 1250 /* use the non-raw path for the config */ 1251 (void) strlcpy(end, slice->rn_name, pathleft); 1252 if (add_config(hdl, &pools, path, config) != 0) 1253 goto error; 1254 } 1255 free(slice->rn_name); 1256 free(slice); 1257 } 1258 avl_destroy(&slice_cache); 1259 1260 (void) closedir(dirp); 1261 dirp = NULL; 1262 } 1263 1264 ret = get_configs(hdl, &pools, iarg->can_be_active); 1265 1266 error: 1267 for (pe = pools.pools; pe != NULL; pe = penext) { 1268 penext = pe->pe_next; 1269 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1270 venext = ve->ve_next; 1271 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1272 cenext = ce->ce_next; 1273 if (ce->ce_config) 1274 nvlist_free(ce->ce_config); 1275 free(ce); 1276 } 1277 free(ve); 1278 } 1279 free(pe); 1280 } 1281 1282 for (ne = pools.names; ne != NULL; ne = nenext) { 1283 nenext = ne->ne_next; 1284 if (ne->ne_name) 1285 free(ne->ne_name); 1286 free(ne); 1287 } 1288 1289 if (dirp) 1290 (void) closedir(dirp); 1291 1292 return (ret); 1293 } 1294 1295 nvlist_t * 1296 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1297 { 1298 importargs_t iarg = { 0 }; 1299 1300 iarg.paths = argc; 1301 iarg.path = argv; 1302 1303 return (zpool_find_import_impl(hdl, &iarg)); 1304 } 1305 1306 /* 1307 * Given a cache file, return the contents as a list of importable pools. 1308 * poolname or guid (but not both) are provided by the caller when trying 1309 * to import a specific pool. 1310 */ 1311 nvlist_t * 1312 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1313 char *poolname, uint64_t guid) 1314 { 1315 char *buf; 1316 int fd; 1317 struct stat64 statbuf; 1318 nvlist_t *raw, *src, *dst; 1319 nvlist_t *pools; 1320 nvpair_t *elem; 1321 char *name; 1322 uint64_t this_guid; 1323 boolean_t active; 1324 1325 verify(poolname == NULL || guid == 0); 1326 1327 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1328 zfs_error_aux(hdl, "%s", strerror(errno)); 1329 (void) zfs_error(hdl, EZFS_BADCACHE, 1330 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1331 return (NULL); 1332 } 1333 1334 if (fstat64(fd, &statbuf) != 0) { 1335 zfs_error_aux(hdl, "%s", strerror(errno)); 1336 (void) close(fd); 1337 (void) zfs_error(hdl, EZFS_BADCACHE, 1338 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1339 return (NULL); 1340 } 1341 1342 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1343 (void) close(fd); 1344 return (NULL); 1345 } 1346 1347 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1348 (void) close(fd); 1349 free(buf); 1350 (void) zfs_error(hdl, EZFS_BADCACHE, 1351 dgettext(TEXT_DOMAIN, 1352 "failed to read cache file contents")); 1353 return (NULL); 1354 } 1355 1356 (void) close(fd); 1357 1358 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1359 free(buf); 1360 (void) zfs_error(hdl, EZFS_BADCACHE, 1361 dgettext(TEXT_DOMAIN, 1362 "invalid or corrupt cache file contents")); 1363 return (NULL); 1364 } 1365 1366 free(buf); 1367 1368 /* 1369 * Go through and get the current state of the pools and refresh their 1370 * state. 1371 */ 1372 if (nvlist_alloc(&pools, 0, 0) != 0) { 1373 (void) no_memory(hdl); 1374 nvlist_free(raw); 1375 return (NULL); 1376 } 1377 1378 elem = NULL; 1379 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1380 verify(nvpair_value_nvlist(elem, &src) == 0); 1381 1382 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1383 &name) == 0); 1384 if (poolname != NULL && strcmp(poolname, name) != 0) 1385 continue; 1386 1387 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1388 &this_guid) == 0); 1389 if (guid != 0) { 1390 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1391 &this_guid) == 0); 1392 if (guid != this_guid) 1393 continue; 1394 } 1395 1396 if (pool_active(hdl, name, this_guid, &active) != 0) { 1397 nvlist_free(raw); 1398 nvlist_free(pools); 1399 return (NULL); 1400 } 1401 1402 if (active) 1403 continue; 1404 1405 if ((dst = refresh_config(hdl, src)) == NULL) { 1406 nvlist_free(raw); 1407 nvlist_free(pools); 1408 return (NULL); 1409 } 1410 1411 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1412 (void) no_memory(hdl); 1413 nvlist_free(dst); 1414 nvlist_free(raw); 1415 nvlist_free(pools); 1416 return (NULL); 1417 } 1418 nvlist_free(dst); 1419 } 1420 1421 nvlist_free(raw); 1422 return (pools); 1423 } 1424 1425 static int 1426 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1427 { 1428 importargs_t *import = data; 1429 int found = 0; 1430 1431 if (import->poolname != NULL) { 1432 char *pool_name; 1433 1434 verify(nvlist_lookup_string(zhp->zpool_config, 1435 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1436 if (strcmp(pool_name, import->poolname) == 0) 1437 found = 1; 1438 } else { 1439 uint64_t pool_guid; 1440 1441 verify(nvlist_lookup_uint64(zhp->zpool_config, 1442 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1443 if (pool_guid == import->guid) 1444 found = 1; 1445 } 1446 1447 zpool_close(zhp); 1448 return (found); 1449 } 1450 1451 nvlist_t * 1452 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1453 { 1454 verify(import->poolname == NULL || import->guid == 0); 1455 1456 if (import->unique) 1457 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1458 1459 if (import->cachefile != NULL) 1460 return (zpool_find_import_cached(hdl, import->cachefile, 1461 import->poolname, import->guid)); 1462 1463 return (zpool_find_import_impl(hdl, import)); 1464 } 1465 1466 boolean_t 1467 find_guid(nvlist_t *nv, uint64_t guid) 1468 { 1469 uint64_t tmp; 1470 nvlist_t **child; 1471 uint_t c, children; 1472 1473 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1474 if (tmp == guid) 1475 return (B_TRUE); 1476 1477 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1478 &child, &children) == 0) { 1479 for (c = 0; c < children; c++) 1480 if (find_guid(child[c], guid)) 1481 return (B_TRUE); 1482 } 1483 1484 return (B_FALSE); 1485 } 1486 1487 typedef struct aux_cbdata { 1488 const char *cb_type; 1489 uint64_t cb_guid; 1490 zpool_handle_t *cb_zhp; 1491 } aux_cbdata_t; 1492 1493 static int 1494 find_aux(zpool_handle_t *zhp, void *data) 1495 { 1496 aux_cbdata_t *cbp = data; 1497 nvlist_t **list; 1498 uint_t i, count; 1499 uint64_t guid; 1500 nvlist_t *nvroot; 1501 1502 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1503 &nvroot) == 0); 1504 1505 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1506 &list, &count) == 0) { 1507 for (i = 0; i < count; i++) { 1508 verify(nvlist_lookup_uint64(list[i], 1509 ZPOOL_CONFIG_GUID, &guid) == 0); 1510 if (guid == cbp->cb_guid) { 1511 cbp->cb_zhp = zhp; 1512 return (1); 1513 } 1514 } 1515 } 1516 1517 zpool_close(zhp); 1518 return (0); 1519 } 1520 1521 /* 1522 * Determines if the pool is in use. If so, it returns true and the state of 1523 * the pool as well as the name of the pool. Both strings are allocated and 1524 * must be freed by the caller. 1525 */ 1526 int 1527 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1528 boolean_t *inuse) 1529 { 1530 nvlist_t *config; 1531 char *name; 1532 boolean_t ret; 1533 uint64_t guid, vdev_guid; 1534 zpool_handle_t *zhp; 1535 nvlist_t *pool_config; 1536 uint64_t stateval, isspare; 1537 aux_cbdata_t cb = { 0 }; 1538 boolean_t isactive; 1539 1540 *inuse = B_FALSE; 1541 1542 if (zpool_read_label(fd, &config) != 0) { 1543 (void) no_memory(hdl); 1544 return (-1); 1545 } 1546 1547 if (config == NULL) 1548 return (0); 1549 1550 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1551 &stateval) == 0); 1552 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1553 &vdev_guid) == 0); 1554 1555 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1556 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1557 &name) == 0); 1558 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1559 &guid) == 0); 1560 } 1561 1562 switch (stateval) { 1563 case POOL_STATE_EXPORTED: 1564 /* 1565 * A pool with an exported state may in fact be imported 1566 * read-only, so check the in-core state to see if it's 1567 * active and imported read-only. If it is, set 1568 * its state to active. 1569 */ 1570 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1571 (zhp = zpool_open_canfail(hdl, name)) != NULL && 1572 zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1573 stateval = POOL_STATE_ACTIVE; 1574 1575 ret = B_TRUE; 1576 break; 1577 1578 case POOL_STATE_ACTIVE: 1579 /* 1580 * For an active pool, we have to determine if it's really part 1581 * of a currently active pool (in which case the pool will exist 1582 * and the guid will be the same), or whether it's part of an 1583 * active pool that was disconnected without being explicitly 1584 * exported. 1585 */ 1586 if (pool_active(hdl, name, guid, &isactive) != 0) { 1587 nvlist_free(config); 1588 return (-1); 1589 } 1590 1591 if (isactive) { 1592 /* 1593 * Because the device may have been removed while 1594 * offlined, we only report it as active if the vdev is 1595 * still present in the config. Otherwise, pretend like 1596 * it's not in use. 1597 */ 1598 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1599 (pool_config = zpool_get_config(zhp, NULL)) 1600 != NULL) { 1601 nvlist_t *nvroot; 1602 1603 verify(nvlist_lookup_nvlist(pool_config, 1604 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1605 ret = find_guid(nvroot, vdev_guid); 1606 } else { 1607 ret = B_FALSE; 1608 } 1609 1610 /* 1611 * If this is an active spare within another pool, we 1612 * treat it like an unused hot spare. This allows the 1613 * user to create a pool with a hot spare that currently 1614 * in use within another pool. Since we return B_TRUE, 1615 * libdiskmgt will continue to prevent generic consumers 1616 * from using the device. 1617 */ 1618 if (ret && nvlist_lookup_uint64(config, 1619 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1620 stateval = POOL_STATE_SPARE; 1621 1622 if (zhp != NULL) 1623 zpool_close(zhp); 1624 } else { 1625 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1626 ret = B_TRUE; 1627 } 1628 break; 1629 1630 case POOL_STATE_SPARE: 1631 /* 1632 * For a hot spare, it can be either definitively in use, or 1633 * potentially active. To determine if it's in use, we iterate 1634 * over all pools in the system and search for one with a spare 1635 * with a matching guid. 1636 * 1637 * Due to the shared nature of spares, we don't actually report 1638 * the potentially active case as in use. This means the user 1639 * can freely create pools on the hot spares of exported pools, 1640 * but to do otherwise makes the resulting code complicated, and 1641 * we end up having to deal with this case anyway. 1642 */ 1643 cb.cb_zhp = NULL; 1644 cb.cb_guid = vdev_guid; 1645 cb.cb_type = ZPOOL_CONFIG_SPARES; 1646 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1647 name = (char *)zpool_get_name(cb.cb_zhp); 1648 ret = TRUE; 1649 } else { 1650 ret = FALSE; 1651 } 1652 break; 1653 1654 case POOL_STATE_L2CACHE: 1655 1656 /* 1657 * Check if any pool is currently using this l2cache device. 1658 */ 1659 cb.cb_zhp = NULL; 1660 cb.cb_guid = vdev_guid; 1661 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1662 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1663 name = (char *)zpool_get_name(cb.cb_zhp); 1664 ret = TRUE; 1665 } else { 1666 ret = FALSE; 1667 } 1668 break; 1669 1670 default: 1671 ret = B_FALSE; 1672 } 1673 1674 1675 if (ret) { 1676 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1677 if (cb.cb_zhp) 1678 zpool_close(cb.cb_zhp); 1679 nvlist_free(config); 1680 return (-1); 1681 } 1682 *state = (pool_state_t)stateval; 1683 } 1684 1685 if (cb.cb_zhp) 1686 zpool_close(cb.cb_zhp); 1687 1688 nvlist_free(config); 1689 *inuse = ret; 1690 return (0); 1691 } 1692